B4M39RSO * Úvod do globálního osvětlení * Radiometrie * Světelné zdroje. Vlastimil Havran ČVUT v Praze
|
|
- Jana Štěpánková
- před 6 lety
- Počet zobrazení:
Transkript
1 B4M39RSO * Úvod do globálního osvětlení * Radiometrie * Světelné zdroje Vlastimil Havran ČVUT v Praze
2 Úvod do globálního osvětlení
3 Počítačová grafika Mezioborová tematika Matematický popis světa Animace objektů Zpracování obrazu a také SYNTÉZA OBRAZU = rendering 3
4 Rendering Vytvoř obrázek z popisu scény. 4
5 Popis scény Geometrie Kde je jaký objekt ve scéně Nejčastěji hraniční reprezentace (síť trojúhelníků mesh, nebo v průmyslové praxi plochy vyššího řádu Bézier, NURBS, subdivision surfaces) Materiály povrchů Barva, lesklost,... Zdroje světla Poloha, směr, velikost Směrové a prostorové rozložení intenzity, spektrum Kamera Perspektivní, ortografická, sférická 5
6 Přístupy k renderingu Nefotorealistický rendering Cíl: napodobení uměleckých stylů či technické nákresy Zdůraznění nějaké informace Fotorealistický rendering Cíl: obrázky podobné realitě Metoda: simulace a a aproximace přenosu světla ve scéně Prediktivní rendering Cíl: obrázky co nejpřesněji odpovídající realitě Metoda: věrná matematická simulace přenosu světla ve scéně 6
7 Simulace používaná v renderingu Kolik světla? 7
8 Odkud se přichází světlo? V bodě p, světlo přichází přímo ze světelného zdroje (=přímé osvětlení, direct illumination ) ze všech ploch ve scéně po odrazu (= nepřímé osvětlení, indirect illumination ) p 8
9 Globální osvětlení (Global illumination GI) Pouze přímé osvětlení Světlo se odrazí JEDNOU na cestě ze zdroje do kamery Images PDI/Dreamworks Globální osvětlení Globální = Přímé + Nepřímé Transport světla mezi plochami ve scéně Mnoho odrazů světla 9
10 Efekty globálního osvětlení Ideální odraz/lom světla Půjčování barev (Color bleeding) Kaustiky prasátka (Caustics) 10
11 Efekty globálního osvětlení Ideální odraz/lom světla Sklo, zrcadlo, vodní hladina Obraz na povrchu vody je dán rozložením světla v úplně jiné části scény (dno, okolí, nebe, slunce) 11
12 Efekty globálního osvětlení Půjčování barev (color bleeding) červená modrá 12
13 Efekty globálního osvětlení Půjčování barev (color bleeding) Odraz světla z jednoho difúzního povrchu na jiný Důležité např. v malbě Lidé podvědomě používají půjčování barev mezi objekty k pochopení vzájemného prostorového uspořádání objektů podobně jako řadu dalších nápověd, ostrých a neostrých stínů, okluze atd. 13
14 Efekty globálního osvětlení Kaustiky (caustics) Prasátka 1. Zaostření světla při odrazu nebo lomu lokální zvýšení intenzity světla 2. Dopad zaostřeného světla na difúzní plochu skutečnost Simulace pomocí fotonových map 14
15 Kaustiky Ve fyzice a v počítačovém vidění se kaustikou rozumí lokální maximum hustoty světla 15
16 Pohled na vodu Odraz + lom na povrchu vody Kaustiky na dně bazénu 16
17 Kaustiky pod vodou Hodně světla Málo světla 17
18 Efekty globálního osvětlení jsou důsledkem změn intenzity světla jako funkce prostoru a úhlu při odrazu světla na površích objektů (kaustiky) Dáno geometrií objektů Materiálovými vlastnostmi objektů (matný x lesklý) změn barvy světla při odrazu (půjčování barev) Tj. změn intenzity světla jako funkce vlnové délky Dáno spektrální odrazivostí materiálů s jakou měrou objekt odráží světlo různých vlnových délek 18
19 Simulace globálního osvětlení Potřebujeme Popis množství světla v prostoru radiometrie Popis odrazu světla na povrchu BRDF Popis rozložení světla v rovnovážném stavu zobrazovací rovnice Efektivní algoritmy Nalezení takového rozložení světla ve scéně, která odpovídá Zobrazovací rovnici Okrajovým podmínkám = tj. popisu scény radiozita, stochastický ray tracing 19
20 Radiometrie, fotometrie
21 Radiometrie, fotometrie Radiometrie Popisuje optické záření (EM záření o vlnové délce 0, µm ultrafialové, viditelné, infračervené) Všechny radiometrické veličiny jsou funkcí vlnové délky Fotometrie Popisuje světlo (EM záření viditelné lidským okem) Jako radiometrie, až na to, že všechny veličiny jsou váženy spektrální odezvou oka ( CIE luminanční funkcí, CIE luminous efficiency curve) 21
22 Jednotky SI zopakování fyziky 1 Veličina Název-Jednotky Značka jednotky délka metr m hmotnost kilogram kg čas sekunda s elektrický proud ampér A teplota kelvin K svítivost kandela cd látkové množství mol mol
23 Odvozené jednotky zopakování fyziky 2 Název veličiny Název-jednotky Značka jed. Rozměr Prostorový úhel steradián sr [-] Kmitočet hertz Hz s -1 Rychlost metr za sekundu -- m.s -1 Zrychlení m.s -2 Síla newton N kg.m.s -2 Tlak pascal Pa kg.m -1.s -2 Energie joule J kg.m 2.s -2 Výkon watt W kg.m 2.s -3
24 Odvozené jednotky zopakování fyziky 3 Název veličiny Název-jednotky Značka jed. Rozměr Elektrický náboj coloumb C s.a Elektrické napětí volt V kg.m 2.s -3.A -1 Elektrická kapacita farad F kg.m -2.s 4.A 2 Elektrický odpor ohm -- kg.m 2.s -3.A -2 Magnetická indukce tesla T kg.s -2.A -1 Indukčnost henry H kg.m 2.s -2.A -2
25 Zářivá energie Q [J] Anglický název: Radiant energy Značka: Q, W Jednotka: Joule, J Význam: Kolik fotonů je na nějakém místě v ohraničeném prostoru. Fotometrická veličina: Světelná energie (luminous energy), jednotka Talbot (=lumen.s) 25
26 Zářivý tok Φ [W] A.k.a výkon Anglický název: Radiant flux, Power Značka: Φ, P Jednotka: Watt [W] Definice: Význam: Φ = dq dt [W ] Jak rychle se mění množství fotonů v určitém místě. Neboli jak rychle fotony tečou z/do daného místa. Fotometrická veličina: Světelný tok (luminous flux), jednotka Lumen Převod pro denní vidění: 683 Lumen ~ 1 Watt 26
27 Intenzita ozáření E [W.m -2 ] A.k.a.: Hustota zářivého toku Anglický název: irradiance (flux density) Značka: E Jednotka: Watt na metr čtvereční [W.m -2 ] Definice: dφ( x) 2 E( x) = [ W. m ] da Význam: Kolik fotonů dopadne na jednotkovou plochu v daném místě (za jednotku času). Vždy definováno vzhledem k nějakému bodu x na ploše S se specifikovanou normálou N(x). Zajímá nás pouze světlo přicházejicí z horní strany plochy. Fotometrická veličina: osvětlení (illuminance), jednotka Lux = lumen.m -2 27
28 Intenzita vyzařování B [W.m -2 ] A.k.a.: Radiozita Anglický název: Radiant exitance, radiosity Značka: B, M Jednotka: Watt na metr čtvereční [W.m -2 ] Definice: dφ( x) 2 B( x) = [ W. m ] da Význam: Kolik fotonů na jednotkovou plochu je vyzářeno z daného místa (za jednotku času). Jako irradiance, avšak místo dopadnutého světla nás zajímá světlo vyzářené. Vyzářené světlo může být emitováno z plošky (pokud jde o světelný zdroj) nebo odraženo to radiozita nerozlišuje. Fotometrická veličina: Luminosity, jednotka Lux = lumen.m -2 28
29 Vsuvka: Směr ve 3D Směr = jednotkový vektor ve 3D Kartézské souřadnice ω = [ x, y, z], x + y + z = 1 Sférické souřadnice ω = [ θ, ϕ] θ [0, π / 2] ϕ [0,2π ] θ = ϕ = arccos arctan z y x x = sinθ cosϕ y = sinθ sinϕ z = cosθ θ polární úhel - odchylka od osy Z φ... azimut - úhel od osy X 29
30 Vsuvka: Funkce na jednotkové kouli Funkce jako každá jiná, ale argumentem je směr ve 3D Funkční hodnota je číslo (nebo třeba trojice čísel RGB) Zápis např. F(ω) F(x,y,z) F(θ,φ) Závisí na zvolené reprezentaci směrů ve 3D 30
31 Vsuvka: Prostorový úhel Plocha projekce objektu na jednotkovou kouli okolo středu prostorového úhlu Jednotka: steradian (sr) Rovinný úhel Délka oblouku na jednotkové kružnici Kružnice má 2π radiánů Prostorový úhel Velikost plochy na jednotkové kouli Koule má 4π steradiánů 31
32 Vsuvka: Diferenciální prostorový úhel Nekonečně malý prostorový úhel okolo směru 3D vektor Velikost dω velikost diferenciální plošky na jednotkové kouli Směr dω střed projekce diferenciální plošky na jednotkovou kouli Prostorový úhel diferenciální plošky dω = da cosθ 2 r 32
33 33
34 Zpět k radiometrii: Zářivost I [W.sr -1 ] Anglický název: Radiant intensity Značka: I Jednotka: Watt na steradián [W.sr -1 ] Definice: Význam: I( ω) = dφ( ω) dω Kolik fotonů na jednotkový úhel je vyzářeno v daném směru (za jednotku času). Použití Popis vyzařování bodových zdrojů světla Fotometrická veličina (důležité, Candela = zákl. jedn. SI) Svítivost (luminous intensity), jednotka Candela (cd=lumen.sr -1 ) Kandela definice - svítivost zdroje, který v daném směru vysílá monochromatické záření s kmitočtem hertzů a jehož zářivost v tomto směru je 1/683 wattů na steradián 34
35 Zář L [W.m -2.sr -1 ] Anglický název: Radiance Značka: L Jednotka: Watt na metr čtvereční na steradián, [W. m -2.sr -1 ] Definice: dφ L( x, ω) = cosθdadω Fotometrická veličina Jas (luminance), jednotka candela.m -2 (v ang. též Nit) Popis záření LCD displeje v kandelách na m 2 Z hlediska předmětu nejdůležitější jednotka, ze které lze ostatní odvodit integrací. 35
36 Faktor cosθ v definici radiance Faktor cos θ kompenzuje úbytek irradiance na ploše se zvyšujícím se θ při stejné míře osvětlení. Tj. svítím-li na nějakou plochu zdrojem světla, jehož parametry neměním, a otáčím onou plochou, pak: Irradiance se s otáčením mění (protože se mění tok na plošce). Radiance se nemění (protože změna toku na ploše je kompenzována faktorem cos θ v definici záře). 36
37 Výpočet ostatních veličin z radiance Intenzita ozáření: E( x) = = Zářivý tok: Φ = = A H ( x) 2π L( x, ω)cosθdω = π / 2 ϕ = 0 θ = 0 E( x) da AH (x) substituce : dω = sinθdθdϕ L( x, θ, ϕ)cosθ sinθdθdϕ L( x, ω) cosθdωda cos θdω = promítnutý prostorový úhel (projected solid angle) H (x) = hemisféra nad bodem x 37
38 Vlastnosti radiance (1) Odezva senzoru kamery (nebo lidského oka) je přímo úměrná hodnotě radiance odražené od plochy viditelné senzorem. 38
39 Vlastnosti radiance (2) Radiance (zář) je konstantní podél paprsku. Proto je právě radiance radiometrickou veličinou spojenou s paprskem v ray traceru a jiných algoritmech, kde se simuluje šíření světelné energie podél paprsků. Odvozeno ze zachování toku dφ = LdωdA = LdωdA = dφ dω = da r dω = da r dωda dada = = dωda r L1 = L2 39
40 Příchozí / odchozí radiance i L o L ( x, ω) ( x, ω) Příchozí (incoming) radiance radiance před odrazem Odchozí (outgoing, odražená) radiance radiance po odrazu Radiance na plošce je nespojitá proto rozlišení příchozí a odchozí. o i Ve volném prostoru platí: L ( x, ω) = L ( x, ω) 40
41 source Incident light Radiometric concepts recap d ω (solid angle subtended by da ) Reflected light r da'= cosθ da θ i (foreshortened area) i da (surface area) θ o da dω (1) Solid Angle : da' dω = 2 r (2) Radiant Intensity of Source : (3) Surface Irradiance : da cos θi 2 r = ( steradian ) dφ dω Light Flux (power) emitted per unit solid angle E I dφ da = ( watts / steradian ) = ( watts / m ) Light Flux (power) incident per unit surface area. Does not depend on where the light is coming from! (4) Surface Radiance : L d 2 Φ ( = 2 da cos θ ) o dω (watts/ m /steradian ) Flux emitted per unit foreshortened area per unit solid angle. Surface can radiate into whole hemisphere. L depends on reflectance properties of surface.
42 Radiometrické a fotometrické veličiny Název veličiny Název-jednotky Značka Symbol Anglicky zářivá energie joule [J] Q radiant energy světelná energie talbot [Tb, lm.s] Q V luminous energy zářivý tok watt [W] Φ radiant flux světelný tok lumen [lm] Φ V luminous flux intenzita ozáření [W.m -2 ] E irradiance osvětlení (illuminance) Lux [lm.m -2 ] E V illuminance intenzita vyzařování [W.m -2 ] B radiant exitance, radiosity luminosity Lux [lm.m -2 ] B luminous exitance zářivost [W.sr -1 ] I radiant intensity svítivost candela [cd=lm.sr -1 ] I V luminous intensity zář [W.m -2.sr -1 ] L radiance jas [cd.m -2 ] L V luminance
43 Část 3: Modely světelných zdrojů
44 Světelné zdroje 44
45 Bodové světelné zdroje Světlo emitováno z jednoho bodu Emise plně popsána intenzitou jako funkcí směru vyzařování: I(ω) Izotropní bodové světlo konstantní zářivost (intenzita) [W/sr] Reflektor (Spot light) Konstantní zářivost uvnitř kuželu, nula jinde Obecný bodový zdroj Popsán goniometrickým diagramem Tabulkové vyjádření I(ω) pro bodové světlo Používáno v osvětlovací technice 45
46 Isotropic Point Light Source We see a inverse distance squared fall off in intensity. Here light does not weaken, but only spreads in a sphere.
47 Izotropní bodové světlo Celkový tok: Φ = = = = Ω I( ω) dω = 2π I ϕ I 2π 4πI π = 0 θ = 0 [ cosθ ] dω = sinθdθdϕ π 0 substituce : sinθdθdϕ I = Φ 4π 47
48 48 Bodové světlo Irradiance bodu na ploše osvětlené bodovým zdrojem 2 cos ) ( ) ( ) ( ) ( x p x p x p x x = = Φ = θ ω I da d I da d E da x p dω θ
49 SpotLight - Reflektor Bodové světlo s nekonstantní závislostí intenzity na směru Intenzita je funkcí odchylky od referenčního směru d : I( ω) = f ( ω, d) Např. I( ω) = I o cos ( ω, d) = I ( ω d) Io ( ω, d) < τ I( ω) = 0 jinak Jaký je tok v případě (1) a (2)? o (1) (2) ω d 49
50 Obecné bodové světlo Formáty ANSI/IESNA LM-63-02, LM , CIBSE,EULUMDAT = fotometrický textový popis svítivosti [cd] pro úhly zadané goniometrickým diagramem = často poskytovaný výrobci svítidel = aproximace nebodového zdroje bodovým zdrojem far field photometry
51 Použití v osvětlování a simulacích
52 Plošné světelné zdroje Záření plně popsáno vyzářenou září L e (x,ω) pro všechna místa a směry na zdroji světla Celkový zářivý tok Integrál L e (x,ω) přes plochu zdroje a úhly Φ = L AH (x) ( x, ω) cosθdωda Difůzní zdroj světla B e L e (x,ω) je konstantní v ω Radiozita: B e (x) = πl e (x) e ( x) = = = H ( x) L L e e L ( x) e ( x) π ( x, ω)cosθdω cosθdω H ( x) Uniformní difůzní zdroj L e (x,ω) je navíc konstantní v x Tok: Φ e = A B e = π A L e 52
53 Světelné zdroje mapa prostředí Mapa prostředí Příchozí světlo nezávisí na místě v prostoru, pouze na příchozím směru Intenzita světla vyjádřena září (radiance) v texelu mapy prostředí 53
Počítačová grafika III Radiometrie. Jaroslav Křivánek, MFF UK
Počítačová grafika III Radiometrie Jaroslav Křivánek, MFF UK Jaroslav.Krivanek@mff.cuni.cz Směr, prostorový úhel, integrování na jednotkové kouli Směr ve 3D Směr = jednotkový vektor ve 3D Kartézské souřadnice
Počítačová grafika III Radiometrie. Jaroslav Křivánek, MFF UK
Počítačová grafika III Radiometrie Jaroslav Křivánek, MFF UK Jaroslav.Krivanek@mff.cuni.cz Směr, prostorový úhel, integrování na jednotkové kouli Směr ve 3D Směr = jednotkový vektor ve 3D Kartézské souřadnice
Počítačová grafika III Světlo, Radiometrie. Jaroslav Křivánek, MFF UK
Počítačová grafika III Světlo, Radiometrie Jaroslav Křivánek, MFF UK Jaroslav.Krivanek@mff.cuni.cz Syntéza obrazu (Rendering) Vytvoř obrázek z matematického popisu scény. 2 Fotorealistická syntéza obrazu
Počítačová grafika III Světlo, Radiometrie. Jaroslav Křivánek, MFF UK
Počítačová grafika III Světlo, Radiometrie Jaroslav Křivánek, MFF UK Jaroslav.Krivanek@mff.cuni.cz Syntéza obrazu (Rendering) Vytvoř obrázek z matematického popisu scény. Fotorealistická syntéza obrazu
Počítačová grafika III Úvod
Počítačová grafika III Úvod Jaroslav Křivánek, MFF UK Jaroslav.Krivanek@mff.cuni.cz Syntéza obrazu (Rendering) Vytvoř obrázek z matematického popisu scény. Popis scény Geometrie Kde je jaký objekt ve scéně
Počítačová grafika III Úvod
Počítačová grafika III Úvod Jaroslav Křivánek, MFF UK Jaroslav.Krivanek@mff.cuni.cz Syntéza obrazu (Rendering) Vytvoř obrázek z matematického popisu scény. Popis scény Geometrie Kde je jaký objekt ve scéně
Stojaté a částečně stojaté vlny
Stojaté a částečně stojaté vlny Interference 2 postupných vln Dokonalá stojatá vlna: interference 2 vln stejné amplitudy a antiparalelních vlnových vektorů Problém s radiometrickou definicí intensity pomocí
Charakteristiky optického záření
Fyzika III - Optika Charakteristiky optického záření / 1 Charakteristiky optického záření 1. Spektrální charakteristika vychází se z rovinné harmonické vlny jako elementu elektromagnetického pole : primární
Její uplatnění lze nalézt v těchto oblastech zkoumání:
RADIOMETRIE, FOTOMETRIE http://cs.wikipedia.org/wiki/kandela http://www.gymhol.cz/projekt/fyzika/12_energie/12_energie.htm M. Vrbová, H. Jelínková, P. Gavrilov. Úvod do laserové techniky, skripta ČVUT,
Radiometrie, radiační metody
Radiometrie, radiační metody 1996-2018 Josef Pelikán CGG MFF UK Praha pepca@cgg.mff.cuni.cz http://cgg.mff.cuni.cz/~pepca/ Radiometry 2018 Josef Pelikán, http://cgg.mff.cuni.cz/~pepca 1 / 34 Globální výpočet
Odraz světla, BRDF. Petr Kadleček
Odraz světla, BRDF Petr Kadleček 17. října 2011 Úvod V minulé přednášce jsme si představili matematický model scény včetně geometrie, materiálů, zdroje světla, kamery, atd. Ukázali jsme si, že při formulaci
Zobrazování a osvětlování
Zobrazování a osvětlování Petr Felkel Katedra počítačové grafiky a interakce, ČVUT FEL místnost KN:E-413 na Karlově náměstí E-mail: felkel@fel.cvut.cz S použitím materiálů Bohuslava Hudce, Jaroslava Sloupa
Světlo x elmag. záření. základní principy
Světlo x elmag. záření základní principy Jak vzniká a co je to duha? Spektrum elmag. záření Viditelné 380 760 nm, UV 100 380 nm, IR 760 nm 1mm Spektrum elmag. záření Harmonická vlna Harmonická vlna E =
Tabulka 1. SI - základní jednotky
1 Veličina Jednotka Značka Rozměr délka metr m L hmotnost kilogram kg M čas sekunda s T elektrický proud ampér A I termodynamická teplota kelvin K Θ látkové množství mol mol N svítivost kandela cd J Tabulka
světelný tok -Φ [ lm ] (lumen) Světelný tok udává, kolik světla celkem vyzáří zdroj do všech směrů.
Světeln telné veličiny iny a jejich jednotky Světeln telné veličiny iny a jejich jednotky, světeln telné vlastnosti látekl světelný tok -Φ [ lm ] (lumen) Světelný tok udává, kolik světla celkem vyzáří
Počítačová grafika Radiozita
Počítačová grafika Radiozita V. Chalupecký chalupec@kmlinux.fjfi.cvut.cz Obsah 1 Literatura 1 2 Úvod 5 3 Radiometrie a fotometrie 6 3.1 Prostorový úhel.......................... 6 3.2 Zářivý tok.............................
Radiometrie. Úvod do radiometrie. Olomouckém kraji CZ.1.07/1.3.13/ Detekce světla SLO/RCPTM 1 / 30
Detekce světla Úvod do radiometrie Ondřej Haderka Antonín Černoch Společná laboratoř optiky Regionální centrum pokročilých technologií a materiálů Rozvoj profesních kompetencí učitelů fyziky základních
Fotonové mapy. Leonid Buneev
Fotonové mapy Leonid Buneev 21. 01. 2012 Popis algoritmu Photon mapping algoritmus, který, stejně jako path tracing a bidirectional path tracing, vyřeší zobrazovací rovnice, ale podstatně jiným způsobem.
soustava jednotek SI, základní, odvozené, vedlejší a doplňkové jednotky, násobky a díly jednotek, skalární a vektorové veličiny
Škola: Autor: DUM: Vzdělávací obor: Tematický okruh: Téma: Masarykovo gymnázium Vsetín Mgr. Jitka Novosadová MGV_F_SS_3S3_D01_Z_OPAK_M_Uvodni_pojmy_T Člověk a příroda Fyzika Úvodní pojmy, fyzikální veličiny
264/2000 Sb. VYHLÁŠKA. Ministerstva průmyslu a obchodu. ze dne 14. července 2000,
Vyhl. č. 264/2000 Sb., stránka 1 z 7 264/2000 Sb. VYHLÁŠKA Ministerstva průmyslu a obchodu ze dne 14. července 2000, o základních měřicích jednotkách a ostatních jednotkách a o jejich označování Ministerstvo
Radiometrie se zabývá objektivním a fotometrie subjektivním měřením světla.
12. Radiometrie a fotometrie 12.1. Základní optické schéma 12.2. Zdroj světla 12.3. Objekt a prostředí 12.4. Detektory světla 12.5. Radiometrie 12.6. Fotometrie 12.7. Oko 12.8. Měření barev 12. Radiometrie
Soustava vznikla v roce 1960 ze soustavy metr-kilogram-sekunda (MKS).
Mezinárodní soustava jednotek SI Soustava SI (zkratka z francouzského Le Système International d'unités) je mezinárodně domluvená soustava jednotek fyzikálních veličin, která se skládá ze základních jednotek,
UMĚLÉ OSVĚTLENÍ V BUDOVÁCH. Ing. Bohumír Garlík, CSc. Katedra TZB
UMĚLÉ OSVĚTLENÍ V BUDOVÁCH Ing. Bohumír Garlík, CSc. Katedra TZB Praha 2008 1. PŘEDNÁŠKA 2. Měrné jednotky používané ve světelné technice: Měrové jednotky rovinného úhlu Rovinný úhel různoběžky: α je ten,
Elektrické světlo příklady
Elektrické světlo příklady ZÁKLADNÍ POJMY SVĚTELNÉ TECHNIKY. Rovinný úhel (rad) = arc = a/r = a'/l (pro malé, zorné, úhly) a a' a arc / π = /36 (malým se rozumí r/a >3 až 5) r l. Prostorový úhel Ω = S/r
Realistický rendering
Realistický rendering 2010-2017 Josef Pelikán, CGG MFF UK http://cgg.mff.cuni.cz/ http://cgg.mff.cuni.cz/~pepca/ Festival fantazie, Chotěboř, 4. 7. 2017 1 / 47 Obsah přednášky co je realistický rendering?
X39RSO/A4M39RSO Vychýlené (biased) metody globálního osvětlení. Vlastimil Havran ČVUT v Praze CTU Prague Verze 2011
X39RSO/A4M39RSO Vychýlené (biased) metody globálního osvětlení Vlastimil Havran ČVUT v Praze CTU Prague Verze 2011 Vychýlené versus nestranné metody Vychýlené vs. nestranné odhady (Biased vs. Unbiased
Photon-Mapping Josef Pelikán CGG MFF UK Praha.
Photon-Mapping 2009-2016 Josef Pelikán CGG MFF UK Praha pepca@cgg.mff.cuni.cz http://cgg.mff.cuni.cz/~pepca/ Photon-mapping 2016 Josef Pelikán, http://cgg.mff.cuni.cz/~pepca 1 / 25 Základy Photon-mappingu
ZÁKLADNÍ FOTOMETRICKÉ VELIČINY
ZÁKLADNÍ FOTOMETRICKÉ VELIČINY Ing. Petr Žák VÝVOJ ČLOVĚKA vývoj člověka přizpůsobení okolnímu prostředí (adaptace) příjem informací o okolním prostředí smyslové orgány rozhraní pro příjem informací SMYSLOVÉ
EXPERIMENTÁLNÍ METODY I 11. Měření světelných veličin
FSI UT v Brně, Energetický ústav Odbor termomechaniky a techniky prostředí prof. Ing. Milan Pavelek, CSc. EXPERIMENTÁLNÍ METODY I 11. Měření světelných veličin OSNOA 11. KAPITOLY Úvod do měření světelných
Vyšší odborná škola, Obchodní akademie a Střední odborná škola EKONOM, o. p. s. Litoměřice, Palackého 730/1
DUM Základy přírodních věd DUM III/2-T3-1 Téma: Veličiny a jednotky Střední škola Rok: 2012 2013 Varianta: A Zpracoval: Mgr. Pavel Hrubý VÝKLAD SI soustava Obsah MECHANIKA... Chyba! Záložka není definována.
ZPRACOVÁNÍ OBRAZU Úvodní přednáška
ZPRACOVÁNÍ OBRAZU Úvodní přednáška Vít Lédl vit.ledl@tul.cz TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií Tento materiál vznikl v rámci projektu ESF CZ.1.07/2.2.00/07.0247,
1. ÚVOD 1.1 SOUSTAVA FYZIKÁLNÍCH VELIČIN, KONSTANT,
1. ÚVOD 1.1 SOUSTAVA FYZIKÁLNÍCH VELIČIN, KONSTANT, JEDNOTEK A JEJICH PŘEVODŮ FYZIKÁLNÍ VELIČINY Fyzikálními veličinami charakterizujeme a popisujeme vlastnosti fyzikálních objektů parametry stavů, ve
Distribuované sledování paprsku
Distribuované sledování paprsku 1996-2015 Josef Pelikán, CGG MFF UK Praha http://cgg.mff.cuni.cz/~pepca/ pepca@cgg.mff.cuni.cz DistribRT 2015 Josef Pelikán, http://cgg.mff.cuni.cz/~pepca 1 / 24 Distribuované
25 ELEKTROMAGNETICKÉ VLNĚNÍ
300 25 ELEKTROMAGNETICKÉ VLNĚNÍ Teoretický důkaz existence elektromagnetického vlnění Vlastnosti elektromagnetických vln Elektromagnetické záření - radiometrie, světlo - fotometrie Významným druhem vlnění
Pořízení obrazu a jeho fyzikální základy
Pořízení obrazu a jeho fyzikální základy Václav Hlaváč České vysoké učení technické v Praze Český institut informatiky, robotiky a kybernetiky 166 36 Praha 6, Jugoslávských partyzánů 1580/3 http://people.ciirc.cvut.cz/hlavac,
Geometrická optika. Vnímání a měření barev. světlo určitého spektrálního složení vyvolá po dopadu na sítnici oka v mozku subjektivní barevný vjem
Vnímání a měření barev světlo určitého spektrálního složení vyvolá po dopadu na sítnici oka v mozku subjektivní barevný vjem fyzikální charakteristika subjektivní vjem světelný tok subjektivní jas vlnová
24. Elektromagnetické kmitání a vlnění
24. Elektromagnetické kmitání a vlnění 1. Elektromagnetické kmity ( elektromagnetický oscilátor, rozbor elektromagnetických kmitů, elektromagnetický oscilátor v praxi ) 2. Elektromagnetické vlny ( jejich
Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 1. 4. 2012 Číslo DUM: VY_32_INOVACE_07_FY_A
Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 1. 4. 2012 Číslo DUM: VY_32_INOVACE_07_FY_A Ročník: I. Fyzika Vzdělávací oblast: Přírodovědné vzdělávání Vzdělávací obor: Fyzika Tematický okruh: Úvod
Prototyp kilogramu. Průřez prototypu metru
Prototyp kilogramu Průřez prototypu metru 1.Fyzikální veličiny a jednotky 2.Mezinárodní soustava jednotek 3.Vektorové a skalární veličiny 4.Skládání vektorů 1. Fyzikální veličiny a jednotky Fyzikální veličiny
Viditelné elektromagnetické záření
Aj to bude masakr 1 Viditelné elektromagnetické záření Vlnová délka 1 až 1 000 000 000 nm Světlo se chová jako vlnění nebo proud fotonů (záleží na okolnostech) 2 Optické záření 1645 Korpuskulární teorie
fotometrická měření jedna z nejstarších měření vůbec!
Fotometrie fotometrie = fotos (světlo) + metron (míra, měřit) - část fyziky zabývající se měřením světla; zkoumáním hustoty světelného toku radiometrie obecnější, zkoumání hustoty toku záření fotometrická
Osvětlování a stínování
Osvětlování a stínování Pavel Strachota FJFI ČVUT v Praze 21. dubna 2010 Obsah 1 Vlastnosti osvětlovacích modelů 2 Světelné zdroje a stíny 3 Phongův osvětlovací model 4 Stínování 5 Mlha Obsah 1 Vlastnosti
DZDDPZ1 - Fyzikální základy DPZ (opakování) Doc. Dr. Ing. Jiří Horák Institut geoinformatiky VŠB-TU Ostrava
DZDDPZ1 - Fyzikální základy DPZ (opakování) Doc. Dr. Ing. Jiří Horák Institut geoinformatiky VŠB-TU Ostrava Elektromagnetické záření Nositelem informace v DPZ je EMZ elmag vlna zvláštní případ elmag pole,
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA INFORMAČNÍCH TECHNOLOGIÍ ÚSTAV POČÍTAČOVÉ GRAFIKY A MULTIMÉDIÍ FACULTY OF INFORMATION TECHNOLOGY DEPARTMENT OF COMPUTER GRAPHICS AND
Počítačová grafika III Photon mapping. Jaroslav Křivánek, MFF UK
Počítačová grafika III Photon mapping Jaroslav Křivánek, MFF UK Jaroslav.Krivanek@mff.cuni.cz Kvíz 1 Proč BPT neumí zobrazit kaustiku na dně bazénu (bodové světlo, pinhole kamera)? Řešení kvízu 2 Problem
Federální shromáždění Československé socialistické republiky II. v. o. Vládní návrh. Zákon
Federální shromáždění Československé socialistické republiky 1975 II. v. o. 88 Vládní návrh Zákon ze dne 1975, kterým se mění a doplňuje zákon č. 35/1962 Sb., o měrové službě Federální shromáždění Československé
Problémové okruhy ke zkoušce A3M38VBM Videometrie a bezkontaktní měření ls 2014 Optické záření- základní vlastnosti optického záření a veličiny a
Problémové okruhy ke zkoušce A3M38VBM Videometrie a bezkontaktní měření ls 2014 Optické záření- základní vlastnosti optického záření a veličiny a vztahy sloužící pro jeho popis (např. svítivost, zářivost,
Světlo jako elektromagnetické záření
Světlo jako elektromagnetické záření Základní pojmy: Homogenní prostředí prostředí, jehož dané vlastnosti jsou ve všech místech v prostředí stejné. Izotropní prostředí prostředí, jehož dané vlastnosti
Veličina. světelný rok ly ne 1 ly = (9,46051 ± 0,00009) km. účinný průřez v atomové a jaderné. barn b ne 1 b = m 2 fyzice
Veličina Jednotka Název Značka SI Vztah Poznámka Prostorové míry délka metr m ano Základní jednotka SI palec (USA) in ne 1 in = 25,40005080 mm 1 in = 1/36 yd palec (GB) in ne 1 in = 25,399978 mm 1 in =
4. V jednom krychlovém metru (1 m 3 ) plynu je 2, molekul. Ve dvou krychlových milimetrech (2 mm 3 ) plynu je molekul
Fyzika 20 Otázky za 2 body. Celsiova teplota t a termodynamická teplota T spolu souvisejí známým vztahem. Vyberte dvojici, která tento vztah vyjadřuje (zaokrouhleno na celá čísla) a) T = 253 K ; t = 20
Animace a geoprostor. První etapa: Animace 3. přednáško-cvičení. Jaromír Landa. jaromir.landa@mendelu.cz Ústav informatiky PEF MENDELU v Brně
Animace a geoprostor První etapa: Animace 3. přednáško-cvičení Jaromír Landa jaromir.landa@mendelu.cz Ústav informatiky PEF MENDELU v Brně Náplň přednáško-cvičení Nasvícení scény Světelné zdroje umělé
Soustava SI, převody jednotek
Variace 1 Soustava SI, převody jednotek Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Co je fyzika, jednotky
Přednáška č.14. Optika
Přednáška č.14 Optika Obsah základní pojmy odraz a lom světla disperze polarizace geometrická optika elektromagnetické záření Světlo = elektromagnetické vlnění o vlnové délce 390nm (fialové) až 790nm (červené)
Fotografický aparát. Fotografický aparát. Fotografický aparát. Fotografický aparát. Fotografický aparát. Fotografický aparát
Michal Veselý, 00 Základní části fotografického aparátu tedy jsou: tělo přístroje objektiv Pochopení funkce běžných objektivů usnadní zjednodušená představa, že objektiv jako celek se chová stejně jako
PRAKTIKUM III. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM III Úloha č. IV Název: Měření fotometrického diagramu. Fotometrické veličiny a jejich jednotky Pracoval: Jan Polášek stud.
Jaký obraz vytvoří rovinné zrcadlo? Zdánlivý, vzpřímený, stejně velký. Jaký obraz vytvoří vypuklé zrcadlo? Zdánlivý, vzpřímený, zmenšený
Jan Olbrecht Jaký obraz vytvoří rovinné zrcadlo? Zdánlivý, vzpřímený, stejně velký Jaký obraz vytvoří vypuklé zrcadlo? Zdánlivý, vzpřímený, zmenšený Jaký typ lomu nastane při průchodu světla z opticky
Elektromagnetické pole je generováno elektrickými náboji a jejich pohybem. Je-li zdroj charakterizován nábojovou hustotou ( r r
Záření Hertzova dipólu, kulové vlny, Rovnice elektromagnetického pole jsou vektorové diferenciální rovnice a podle symetrie bývá vhodné je řešit v křivočarých souřadnicích. Základní diferenciální operátory
Skalární a vektorový popis silového pole
Skalární a vektorový popis silového pole Elektrické pole Elektrický náboj Q [Q] = C Vlastnost materiálových objektů Interakce (vzájemné silové působení) Interakci (vzájemné silové působení) mezi dvěma
plochy oddělí. Dále určete vzdálenost d mezi místem jeho dopadu na
Přijímací zkouška z fyziky 01 - Nav. Mgr. - varianta A Příklad 1 (5 bodů) Koule o poloměru R=10 cm leží na vodorovné rovině. Z jejího nejvyššího bodu vypustíme s nulovou počáteční rychlostí bod o hmotností
Příklad 3 (25 bodů) Jakou rychlost musí mít difrakčním úhlu 120? -částice, abychom pozorovali difrakční maximum od rovin d hkl = 0,82 Å na
Přijímací zkouška z fyziky 01 - Nav. Mgr. - varianta A Příklad 1 (5 bodů) Koule o poloměru R=10 cm leží na vodorovné rovině. Z jejího nejvyššího bodu vypustíme s nulovou počáteční rychlostí bod o hmotností
Řešení: Nejdříve musíme určit sílu, kterou působí kladka proti směru pohybu padajícího vědra a napíná tak lano. Moment síly otáčení kladky je:
Přijímací zkouška na navazující magisterské studium - 16 Studijní program Fyzika - všechny obory kromě Učitelství fyziky-matematiky pro střední školy, Varianta A Příklad 1 (5 bodů) Jak dlouho bude padat
24. Elektromagnetické kmitání a vlnění
24. Elektromagnetické kmitání a vlnění 1. Elektromagnetické kmity ( elektromagnetický oscilátor, rozbor elektromagnetických kmitů, elektromagnetický oscilátor v praxi ) 2. Elektromagnetické vlny ( jejich
NUMERICKÉ MODELOVÁNÍ ZDROJŮ SVĚTLA
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV RADIOELEKTRONIKY FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION DEPARTMENT OF
Jsou všechny žárovky stejné?
Jsou všechny žárovky stejné? VÍT BEDNÁŘ, VLADIMÍR VOCHOZKA, JIŘÍ TESAŘ, Fakulta pedagogická, Západočeská univerzita, Plzeň Pedagogická fakulta, Jihočeská univerzita, České Budějovice Abstrakt Článek se
Přepočty jednotlivých veličin
Program VIKLAN - modul Jednotky Použité vzorce a výpočetní postupy Vypracoval: Ing. Josef Spilka Dne: 11. 3. 2011 Revize č. 1: Ing. Josef Spilka Dne: 26. 5. 2011 Způsob výpočtu Obecně Každá veličina má
Fyzikálně založené modely osvětlení
Fyzikálně založené modely osvětlení 1996-2015 Josef Pelikán, CGG MFF UK Praha http://cgg.mff.cuni.cz/~pepca/ pepca@cgg.mff.cuni.cz Physical 2015 Josef Pelikán, http://cgg.mff.cuni.cz/~pepca 1 / 31 Historie
Precomputed radiance transfer
Precomputed radiance transfer Martin Bulant 11. dubna 2011 Reprezentace funkce na sféře Reálnou funkci na sféře G(x) aproximujeme pomocí lineární kombinace lineárně nezávislých bázových funkcí B i (x):
Fotorealistická syntéza obrazu Josef Pelikán, MFF UK Praha
Fotorealistická sntéza obrazu 2006 Josef Pelikán MFF UK Praha Josef.Pelikan@mff.cuni.cz 10.4.2006 Obsah přednášk cíle a aplikace realistického zobrazování historie přehled používaných přístupů teoretické
Úvod do laserové techniky
Úvod do laserové techniky Světlo jako elektromagnetické záření I. část Jan Šulc Katedra fyzikální elektroniky České vysoké učení technické v Praze jan.sulc@fjfi.cvut.cz 5. října 2016 Kontakty Ing. Jan
Ing. Stanislav Jakoubek
Ing. Stanislav Jakoubek Číslo DUMu III/2-1-3-1 III/2-1-3-2 Název DUMu Fotometrie základní radiometrické a fotometrické veličiny Technika a hygiena osvětlování Ing. Stanislav Jakoubek Název školy Název
Počítačová grafika III Photon mapping. Jaroslav Křivánek, MFF UK
Počítačová grafika III Photon mapping Jaroslav Křivánek, MFF UK Jaroslav.Krivanek@mff.cuni.cz Obousměrné sledování cest - opakování Transport světla jako integrál Cíl: místo integrální rovnice chceme formulovat
stavitel Grada Publishing
stavitel Osvětlování světlovody Ing. Stanislav Darula, CSc. Doc. Ing. Richard Kittler, DrSc. Mgr. Miroslav Kocifaj, PhD. Doc. Jiří Plch, CSc. Ing. Jitka Mohelníková, PhD. Ing. František Vajkay Grada Publishing
Počítačová grafika III Důležitost, BPT. Jaroslav Křivánek, MFF UK
Počítačová grafika III Důležitost, BPT Jaroslav Křivánek, MFF UK Jaroslav.Krivanek@mff.cuni.cz Davis Cup Premier international team competition in men s tennis World group: 16 teams Total: 137 (in 2007)
(1 + v ) (5 bodů) Pozor! Je nutné si uvědomit, že v a f mají opačný směr! Síla působí proti pohybu.
Přijímací zkouška na navazující magisterské studium - 017 Studijní program Fyzika - všechny obory kromě Učitelství fyziky-matematiky pro střední školy, Varianta A Příklad 1 (5 bodů) Těleso s hmotností
1 Měrové jednotky používané v geodézii
1 Měrové jednotky používané v geodézii Ke stanovení vzájemné polohy jednotlivých bodů zemského povrchu, je nutno měřit různé fyzikální veličiny. Jsou to zejména délky, úhly, plošné obsahy, čas, teplota,
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA INFORMAČNÍCH TECHNOLOGIÍ ÚSTAV POČÍTAČOVÉ GRAFIKY A MULTIMÉDIÍ FACULTY OF INFORMATION TECHNOLOGY DEPARTMENT OF COMPUTER GRAPHICS AND
Pokročilé osvětlovací techniky. 2005 Josef Pelikán, MFF UK Praha http://cgg.ms.mff.cuni.cz/~pepca/ Josef.Pelikan@mff.cuni.cz
Pokročilé osvětlovací techniky 2005 Josef Pelikán, MFF UK Praha http://cgg.ms.mff.cuni.cz/~pepca/ Josef.Pelikan@mff.cuni.cz Obsah nefotorealistické techniky hrubé tónování kreslení obrysů ( siluety ) složitější
3.1 Laboratorní úlohy z osvětlovacích soustav
Osvětlovací soustavy. Laboratorní cvičení 11 3.1 Laboratorní úlohy z osvětlovacích soustav 3.1.1 Měření odraznosti povrchů Cíl: Cílem laboratorní úlohy je porovnat spektrální a integrální odraznosti různých
ZÁVĚREČNÁ ZPRÁVA GRANTOVÉHO ÚKOLU VLIV SVĚTLA A ULTRAFIALOVÉHO ZÁŘENÍ NA ARCHIVNÍ DOKUMENTY
ZÁVĚREČNÁ ZPRÁVA GRANTOVÉHO ÚKOLU VLIV SVĚTLA A ULTRAFIALOVÉHO ZÁŘENÍ NA ARCHIVNÍ DOKUMENTY Národní archiv, Archivní 4/2257, Praha 4 Chodovec Praha 2009 Vliv světla a UV záření na knižní, archivní, muzejní
16 Měření osvětlení Φ A
16 Měření osvětlení 16.1 Zadání úlohy a) změřte osvětlenost v měřicích bodech, b) spočítejte průměrnou hladinu osvětlenosti, c) určete maximální a minimální osvětlenost a spočítejte rovnoměrnost osvětlení,
Přehled veličin elektrických obvodů
Přehled veličin elektrických obvodů Ing. Martin Černík, Ph.D Projekt ESF CZ.1.7/2.2./28.5 Modernizace didaktických metod a inovace. Elektrický náboj - základní vlastnost některých elementárních částic
Měření osvětlení. 1. Proměřte průměrnou osvětlenost v různých místnostech v areálu školy.
Úloha č. 4 Měření osvětlení Úkoly měření: 1. Proměřte průměrnou osvětlenost v různých místnostech v areálu školy. 2. Hodnoty naměřených průměrných osvětleností v měřených místnostech podle bodu 1 porovnejte
Akustika. Rychlost zvukové vlny v v prostředí s hustotou ρ a modulem objemové pružnosti K
zvuk každé mechanické vlnění v látkovém prostředí, které je schopno vyvolat v lidském uchu sluchový vjem akustika zabývá se fyzikálními ději spojenými se vznikem zvukového vlnění, jeho šířením a vnímáním
Kapacita, indukčnost; kapacitor-kondenzátor, induktor-cívka
Kapacita, indukčnost; kapacitor-kondenzátor, induktor-cívka Kondenzátor je schopen uchovat energii v podobě elektrického náboje Q. Kapacita C se udává ve Faradech [F]. Kapacita je úměrná ploše elektrod
Optoelektronika. elektro-optické převodníky - LED, laserové diody, LCD. Elektronické součástky pro FAV (KET/ESCA)
Optoelektronika elektro-optické převodníky - LED, laserové diody, LCD Elektro-optické převodníky žárovka - nejzákladnější EO převodník nevhodné pro optiku široké spektrum vlnových délek vhodnost pro EO
Sbližování právních předpisů členských států týkajících se jednotek měření (kodifikované znění) ***I
P7_TA(2011)0209 Sbližování právních předpisů členských států týkajících se jednotek měření (kodifikované znění) ***I Legislativní usnesení Evropského parlamentu ze dne 11. května 2011 o návrhu směrnice
OPTIKA Fotometrie TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY.
OPTIKA Fotometrie TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY. Fotometrie definuje a studuje veličiny charakterizující působení světelného záření na
Využití ICT pro rozvoj klíčových kompetencí CZ.1.07/1.5.00/
Využití ICT pro rozvoj klíčových kompetencí CZ.1.07/1.5.00/4.0448 Číslo projektu Číslo materiálu Název školy Autor Tematický celek Ročník CZ.1.07/1.5.00/4.0448 ICT- PZF 1/20 Fyzikální veličiny a jejich
Kinematika tuhého tělesa. Pohyb tělesa v rovině a v prostoru, posuvný a rotační pohyb
Kinematika tuhého tělesa Pohyb tělesa v rovině a v prostoru, posuvný a rotační pohyb Úvod Tuhé těleso - definice všechny body tělesa mají stálé vzájemné vzdálenosti těleso se nedeformuje, nemění tvar počet
Záření KZ. Význam. Typy netermálního záření. studium zdrojů a vlastností KZ. energetické ztráty KZ. synchrotronní. brzdné.
Zářivé procesy Podmínky vyzařování, Larmorův vzorec, Thomsonův rozptyl, synchrotronní záření, brzdné záření, Comptonův rozptyl, čerenkovské záření, spektum zdroje KZ Záření KZ Význam studium zdrojů a vlastností
Svˇetelné kˇrivky dosvit u
Světelné křivky dosvitů. Filip Hroch Světelné křivky dosvitů p. 1 Charakteristiky dosvitů Dosvit (Optical Afterglow) je objekt pozorovaný po gama záblesku na větších vlnových délkách. Dosvit je bodový
Radiační ochrana pojetí a interpretace veličin a jednotek v souladu s posledními mezinárodními doporučeními
Radiační ochrana pojetí a interpretace veličin a jednotek v souladu s posledními mezinárodními doporučeními doc.ing. Jozef Sabol, DrSc. Fakulta biomedicínského inženýrství, ČVUT vpraze Nám. Sítná 3105
A4M39RSO. Sledování cest (Path tracing) Vlastimil Havran ČVUT v Praze CTU Prague Verze 2014
A4M39RSO Sledování cest (Path tracing) Vlastimil Havran ČVUT v Praze CTU Prague Verze 2014 1 Rendering = integrování Antialiasing Integrál přes plochu pixelu Osvětlení plošným zdrojem Integrál přes plochu
1/55 Sluneční energie
1/55 Sluneční energie sluneční záření základní pojmy dopadající energie teoretické výpočty praktické výpočty Slunce 2/55 nejbližší hvězda střed naší planetární soustavy sluneční soustavy Slunce 3/55 průměr
Jednoduchý elektrický obvod
21 25. 05. 22 01. 06. 23 22. 06. 24 04. 06. 25 28. 02. 26 02. 03. 27 13. 03. 28 16. 03. VI. A Jednoduchý elektrický obvod Jednoduchý elektrický obvod Prezentace zaměřená na jednoduchý elektrický obvod
Počítačová grafika III (NPGR010) 3. přednáška: Odraz světla, BRDF
Počítačová grafika III (NPGR010) 3. přednáška: Odraz světla, BRDF Kristina Bártová 4. října, 01 V této kapitole se budeme zabývat tím, co se stane, když světlo dopadne na povrch. odrazivých vlastností
Úvod do laserové techniky
Úvod do laserové techniky Světlo jako elektromagnetické záření I. část Michal Němec Katedra fyzikální elektroniky České vysoké učení technické v Praze michal.nemec@fjfi.cvut.cz Kontakty Ing. Michal Němec,
Modelování blízkého pole soustavy dipólů
1 Úvod Modelování blízkého pole soustavy dipólů J. Puskely, Z. Nováček Ústav radioelektroniky, Fakulta elektrotechniky a komunikačních technologií, VUT v Brně Purkyňova 118, 612 00 Brno Abstrakt Tento
VY_32_INOVACE_ELT-1.EI-02-FYZIKALNI JEDNOTKY. Střední odborná škola a Střední odborné učiliště, Dubno
Číslo projektu Číslo materiálu Název školy Autor Tematická oblast Ročník CZ.1.07/1.5.00/34.0581 VY_32_INOVACE_ELT-1.EI-02-FYZIKALNI JEDNOTKY Střední odborná škola a Střední odborné učiliště, Dubno Ing.
(Umělé) osvětlování pro analýzu obrazu
(Umělé) osvětlování pro analýzu obrazu Václav Hlaváč České vysoké učení technické v Praze Centrum strojového vnímání (přemosťuje skupiny z) Český institut informatiky, robotiky a kybernetiky 166 36 Praha