Problém 1: Ceny nemovitostí Poznámkykřešení 1

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Problém 1: Ceny nemovitostí Poznámkykřešení 1"

Transkript

1 Problém 1: Ceny nemovitostí Poznámkykřešení 1 Zadání 1.Majínemovitostiurčenékbydlenívyššícenutam,kdeječistšíovzduší?Pokudano,okolik? 2. Lze vztah mezi znečištěním a cenou, pokud existuje, vysvětlit tím, že ve znečištěných oblastech bydlí chudší lidé, menšiny, jsou tam horší veřejné služby, atd.? 3. Myslíte, že cílený program na zlepšení čistoty ovzduší by vedl ke zvýšení cen rodinných domků v dané lokalitě? Postup Načtu data: data1 <- read.csv("cvic1.csv") Ověřím si velikost dat a jména veličin: names(data1); dim(data1) Vypíšu si základní popisné charakteristiky veličin: summary(data1) Vidím, že(i) v datech nejsou chybějící hodnoty;(ii) všechny veličiny jsou spojité kromě chas, která je nula-jedničková. Zajistím si přímý přístup k veličinám: attach(data1). Podívám se na nejdůležitější veličiny podrobněji. Např. histogramy(hist(medv), hist(nox)), tabulky četností: > table(cut(nox,c(-inf,seq(0.4,0.8,by=0.1),inf))) (-Inf,0.4] (0.4,0.5] (0.5,0.6] (0.6,0.7] (0.7,0.8] (0.8,Inf] > table(cut(medv,c(-inf,seq(5,30,by=5),inf))) (-Inf,5] (5,10] (10,15] (15,20] (20,25] (25,30](30,Inf] Prozkoumám popisně vztah mezi nox a medv. Např. obrázek(scatterplot) vyhlazený neparametrickou křivkou lowess:(plot(nox,medv); lines(lowess(nox,medv))) nebo tabulku průměrů medv podle intervalů nox: > tapply(medv,cut(nox,c(-inf,seq(0.4,0.8,by=0.1),inf)),mean) (-Inf,0.4] (0.4,0.5] (0.5,0.6] (0.6,0.7] (0.7,0.8] (0.8,Inf] Uvědomímsi,ženoxnabýváhodnotzhrubamezi0.4a0.9.Abychlépeviděl,coznamenajíparametryv mých modelech, udělám transformaci tnox <- (nox-0.4)/0.1. Absolutní člen v mých modelech bude nyníudávatprůměrnoucenunemovitostípřikoncentracino x = (nikoliv0)aparametrunox budeudávatzměnucenypřinárůstuno x o (nikolio1). První model, který vyzkouším, bude fit1 <- lm(medv~tnox). Dostanu 1 MichalKulich,KPMSMFFUK

2 Call: lm(formula = medv ~ tnox) Residuals: Min 1Q Median 3Q Max (Intercept) <2e-16*** tnox <2e-16*** Residual standard error: on 504 degrees of freedom Multiple R-Squared: , Adjusted R-squared: F-statistic: on 1 and 504 DF, p-value: < 2.2e-16 Vidím,žeprůměrnácenadomupřikoncentraciNO x =0.4jest$27780acenaklesáo$3392snárůstem koncentrace o 0.1. Nicméně z výběrových kvantilů pro residua ve výšeuvedeném výpisu si hned všimnu, že residua jsou silně asymetrická. Totéž potvrdí obrázek qqnorm(resid(fit1)). Zkusímztransformovatcenulogaritmem.Dostanumodellog(Y)=β 0 + β 1 X+ ε,čili Y =e β0 e β1x e ε. MámtedyE(Y X= x)=e β0 e β1x Ee ε.poděleníme(y X= x+1)ae(y X= x)dostanupřesně e β1,takže100(e β1 1)můžuinterpretovatjakopercentuálnípřírůstek/úbytekE Y přizměně Xojednu jednotku(tj.nárůstukoncentraceno x o0.1).obecněnemohutvrdit,žee β0 jestřednícenanemovitosti přikoncentracino x =0.4,alezapředpokladusymetrierozděleníchyb εlzeříci,žee β0 jemediánem cenynemovitostipřikoncentracino x =0.4. Tak tedy fit2 <- lm(log(medv)~tnox): Call: lm(formula = log(medv) ~ tnox) Residuals: Min 1Q Median 3Q Max (Intercept) <2e-16*** tnox <2e-16*** Residual standard error: on 504 degrees of freedom Multiple R-Squared: , Adjusted R-squared: F-statistic: on 1 and 504 DF, p-value: < 2.2e-16 Se symetrií residuí jsme si dost pomohli, což potvrdí i qqnorm(fit2). Ještě ztransformuji parametry: > exp(coef(fit2)) (Intercept) tnox

3 Obrázek 1: Porovnání lineárního a kubického modelu pro logaritmus ceny. medv tnox Odhadnutýmediáncenydomupřikoncentraci0.4jetedy$27471.Cenadomuvprůměruklesáo16.5% při nárůstu koncentrace o 0.1. JeštěsezabývejmenelineárnítransformacíNO x.zkusímetřebapolynomtřetíhořádu: > fit3 <- lm(log(medv)~poly(tnox,3)) > anova(fit2,fit3) Analysis of Variance Table Model 1: log(medv) ~ tnox Model 2: log(medv) ~ poly(tnox, 3) Res.Df RSS Df Sum of Sq F Pr(>F) e-06*** 3

4 Jelikož původní model je vnořený do tohoto modelu, můžeme otestovat rozdíl mezi nimi F-testem. Ten je vysoce významný. Teď je nejlepší udělat si obrázek, abychom viděli, v čem se oba modely liší. Nakreslíme si predikce odezvy z obou modelů do jednoho obrázku(všimněte si použití funkce predict()): noxpts <- seq(min(tnox),max(tnox),length=300) newdata <- data.frame(tnox=noxpts) fitted2 <- exp(predict(fit2,newdata)) fitted3 <- exp(predict(fit3,newdata)) plot(tnox,medv) lines(noxpts,fitted2,lty=1) lines(noxpts,fitted3,lty=2) Výsledekjenaobrázku1.Vidíme,že(i)vrozmezítnoxod0.5do3.5jevztahvpodstatělineárníaoba modely se liší jen málo;(ii) největší rozdíly mezi oběma jsou pro nejmenší a největší hodnoty znečištění; (iii) polynomiální model naznačuje, že pro znečištění menší než cca. 0.5 anebo větší než cca. 0.75(na původníškále)jevlivkoncentraceno x nacenuminimální. Cosepřesněnaoboukoncíchděje,tojetěžkosoudit.Zobrázku1jevidět,žedataoznečištěníjsou podezřele seskupená například hodnoty znečištění větší než 3 jsou prakticky diskrétní. To může být způsobeno metodikou měření(zaokrouhlování), nebo tím, že některé lokality jsou natolik blízko sebe, že jejich znečištění je prakticky stejné, nebo tím, že jeden měřicí přístroj udává hodnotu znečištění pro několik sousedních lokalit. V posledních dvou případech bychom měli problém s předpokladem nezávislosti data ve skutečnosti přicházejí ve shlucích, ale o struktuře těchto shluků nemáme žádnou informaci. Závislost mezi pozorováními pak může způsobit zakřivení regresního vztahu při vysokých hodnotách znečištění. Budeme dál pokračovat v aplikaci lineárního modelu, ale měli bychom si uvědomovat, že předpoklady modelu nejspíš neplatí a být opatrní při interpretaci výsledků, které dostaneme. Nyní máme dvě možnosti: buď můžeme zvolit lineární závislost(a nelpět příliš na výsledcích pro oba extrémyno x ),nebopřejítkekubickézávislosti(amítpotížesvysvětlovánímjehoparametrů).jemožné vymyslet i něco jiného(třeba spojitou po částech lineární křivku), ale vyberme si pro jednoduchost první variantu, lineární vztah. Vzhledem k tomu, že v modelu fit2 má znečištění vysoce významný vztah k ceně nemovitosti, můžeme si i při evidentním porušení předpokladu nezávislosti dovolit vyslovit dost jednoznačný závěr. Odpovězme na otázku 1 takto: Cena nemovitosti statisticky významně souvisí se znečištěním ovzduší. Střednícenanemovitostivrůznýchlokalitách,kteréselišívkoncentraciNO x,klesázhrubao16.5%na každých0.1nárůstukoncentraceno x.vlivkoncentraceno x navelmilevnéanebovelmidrahénemovitosti může však být nižší než oněch průměrných 16.5%. Otázkač.2:Podívejmesenejprve,jaksouvisíkoncentraceNO x sostatnímiveličinami:totojsoujejich korelace: crim zn indus chas nox rm age dis rad [1,] tax ptratio black lstat medv [1,] Vidíme, že vyšší znečištění může souviset s vyšší kriminalitou, nižším podílem velkých pozemků, vyšší industrialisací, vyšším stářím domů, větší blízkostí do centra, vyšší daňovou sazbou a vyšší mírou chudoby. Možná, že ve skutečnosti cenu pozemku ovlivňují jen tyto faktory, zatímco znečištění nehraje roli. Abychom zjistili, zdali tomu tak je, pokusíme se od vlivu znečištění odečíst vlivy těchto vedlejších matoucích(confounding) faktorů. V principu stačí sestavit model, který obsahuje kromě nox i ostatní potenciální vysvětlující veličiny, a podívat se, zdali i potom nox významně souvisí s cenou. 4

5 Zkusíme model fitm1 <- lm(log(medv)~tnox+crim+zn+indus+chas+rm+age+dis+ rad+tax+ptratio+black+lstat) summary(fitm1)... (Intercept) < 2e-16 *** tnox e-07***... Člověkihnedvidí,žetentomodelvysvětlujecenupozemkumnohemlépeažeřadaznověpřidaných veličinmávelmiúzkývztahkceněpozemků.těchpár,kterénemají,můžemealenemusímezmodelu odstranit. Nás totiž nejvíc zajímá, co se stalo s koeficientem veličiny tnox. Ten je stále signifikantně různý od nuly, ale jeho hodnota se změnila. Hleďme: getci <- function(fit,var) { # get estimateand se for variablevar a <- summary(fit)$coef[var,1:2] # get 95% confidence interv. ci <- rep(a[1],2)+c(-1,1)*a[2]*qt(0.975,fit$df.residual) names(ci) <- c("lower","upper") exp(c(a[1],ci)) } > getci(fit2,"tnox") Estimate Lower Upper > getci(fitm1,"tnox") Estimate Lower Upper Zavedli jsme novou funkci getci(fit,var), která vysaje z odhadnutého modelu fit výsledky pro veličinu var(zadatjakoznakovýřetězecvuvozovkách)aspočteeˆβa95%intervalspolehlivostiproe β. Tutofunkci 2 použijemenafit2afitm1aporovnámevýsledkyprotnox.jevidět,žepůvodní16.5%-ní sníženíprůměrnécenypřivzrůstukoncentraceno x o0.1(95%-níintervalspolehlivosti14% 19%;viz modelfit2)sezměnilona8.5%-nísníženívmodelufitm1(interval5% 10%).Jetedyvidět,žeostatní veličiny,kteréjsmevzalivúvahu,vysvětlujízhrubapolovinupůvodněodhadnutéhuvlivuno x,alenikoli vliv celý. Odpověďnaotázkuč.2:OstatníuvažovanéfaktoryvysvětlujízhrubapolovinuvlivukoncentraceNO x nacenunemovitosti. Ikdyžjevezmemevúvahu,koncentraceNO x mástálenegativnívztahkceně nemovitosti a nárůst koncentrace o 0.1 vede ke snížení průměrné ceny o zhruba 8.5%. Odpověďnaotázkuč.3:Nelzevyloučitaniprokázat,žezlepšeníčistotyovzdušíbyvedlokezvýšenícen nemovitostí. I kdyby se tak stalo, jednalo by se pravděpodobně o zvýšení relativně malé. Závěrečná poznámka: Kdybychom chtěli dělat věci pořádně, museli bychom řádně prozkoumat funkcionální vztah všech veličin v modelu fitm1 k odezvě log(medv)(tj., potenciální transformace regresorů) a museli bychom uvažovat možné interakce mezi nimi. 2 Jistěbyšlapoužítifunkceconfint vkombinacisexp.getcijevšaksnadnoupravitelnáipromodely,naněžconfint nefunguje. 5

Pokud data zadáme přes "Commands" okno: SDF1$X1<-c(1:15) //vytvoření řady čísel od 1 do 15 SDF1$Y1<-c(1.5,3,4.5,5,6,8,9,11,13,14,15,16,18.

Pokud data zadáme přes Commands okno: SDF1$X1<-c(1:15) //vytvoření řady čísel od 1 do 15 SDF1$Y1<-c(1.5,3,4.5,5,6,8,9,11,13,14,15,16,18. Regresní analýza; transformace dat Pro řešení vztahů mezi proměnnými kontinuálního typu používáme korelační a regresní analýzy. Korelace se používá pokud nelze určit "kauzalitu". Regresní analýza je určena

Více

05/29/08 cvic5.r. cv5.dat <- read.csv("cvic5.csv")

05/29/08 cvic5.r. cv5.dat <- read.csv(cvic5.csv) Zobecněné lineární modely Úloha 5: Vzdělání a zájem o politiku cv5.dat

Více

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická

Více

Statistika. Regresní a korelační analýza Úvod do problému. Roman Biskup

Statistika. Regresní a korelační analýza Úvod do problému. Roman Biskup Statistika Regresní a korelační analýza Úvod do problému Roman Biskup Jihočeská univerzita v Českých Budějovicích Ekonomická fakulta (Zemědělská fakulta) Katedra aplikované matematiky a informatiky 2008/2009

Více

STATISTIKA MIGRANTŮ PRO REGIONY V MORAVSKOSLEZSKÉM KRAJI A PRO KRAJ V OBDOBÍ 1992-2005

STATISTIKA MIGRANTŮ PRO REGIONY V MORAVSKOSLEZSKÉM KRAJI A PRO KRAJ V OBDOBÍ 1992-2005 VYSOKÁ ŠKOLA BÁŇSKÁ - TECHNICKÁ UNIVERZITA OSTRAVA Hornicko-geologická fakulta institut geoinformatiky STATISTIKA MIGRANTŮ PRO REGIONY V MORAVSKOSLEZSKÉM KRAJI A PRO KRAJ V OBDOBÍ 1992-2005 Speciální metody

Více

PSY117/454 Statistická analýza dat v psychologii Přednáška 10

PSY117/454 Statistická analýza dat v psychologii Přednáška 10 PSY117/454 Statistická analýza dat v psychologii Přednáška 10 TESTY PRO NOMINÁLNÍ A ORDINÁLNÍ PROMĚNNÉ NEPARAMETRICKÉ METODY... a to mělo, jak sám vidíte, nedozírné následky. Smrť Analýza četností hodnot

Více

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1 Logistická regrese Menu: QCExpert Regrese Logistická Modul Logistická regrese umožňuje analýzu dat, kdy odezva je binární, nebo frekvenční veličina vyjádřená hodnotami 0 nebo 1, případně poměry v intervalu

Více

Statistické metody v ekonomii: Teoretická východiska, Jednofaktorová a dvoufaktorová analýza rozptlylu. Ing. Michael Rost, Ph.D.

Statistické metody v ekonomii: Teoretická východiska, Jednofaktorová a dvoufaktorová analýza rozptlylu. Ing. Michael Rost, Ph.D. Statistické metody v ekonomii: Teoretická východiska, Jednofaktorová a dvoufaktorová analýza rozptlylu Ing. Michael Rost, Ph.D. Co je vlastně cílem? Cílem statistického zpracování dat je podání informace

Více

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK211 Základy ekonometrie LS 2014/15 Cvičení 4: Statistické vlastnosti MNČ LENKA FIŘTOVÁ KATEDRA EKONOMETRIE, FAKULTA INFORMATIKY A STATISTIKY VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE Upřesnění k pojmům a značení

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

Průzkumová analýza dat

Průzkumová analýza dat Průzkumová analýza dat Proč zkoumat data? Základ průzkumové analýzy dat položil John Tukey ve svém díle Exploratory Data Analysis (odtud zkratka EDA). Často se stává, že data, se kterými pracujeme, se

Více

Statistické metody vyhodnocení vlivu škodlivin na denní úmrtnost, hospitalizaci a příznaky kardiovaskulárních a respiračních onemocnění

Statistické metody vyhodnocení vlivu škodlivin na denní úmrtnost, hospitalizaci a příznaky kardiovaskulárních a respiračních onemocnění Statistické metody vyhodnocení vlivu škodlivin na denní úmrtnost, hospitalizaci a příznaky kardiovaskulárních a respiračních onemocnění Jiří Skorkovský Úvod a cíle studie vlivu PM10 na denní

Více

Národníinformačnístředisko pro podporu jakosti

Národníinformačnístředisko pro podporu jakosti Národníinformačnístředisko pro podporu jakosti OVĚŘOVÁNÍ PŘEDPOKLADU NORMALITY Doc. Ing. Eva Jarošová, CSc. Ing. Jan Král Používané metody statistické testy: Chí-kvadrát test dobré shody Kolmogorov -Smirnov

Více

Úvodem Dříve les než stromy 3 Operace s maticemi

Úvodem Dříve les než stromy 3 Operace s maticemi Obsah 1 Úvodem 13 2 Dříve les než stromy 17 2.1 Nejednoznačnost terminologie 17 2.2 Volba metody analýzy dat 23 2.3 Přehled vybraných vícerozměrných metod 25 2.3.1 Metoda hlavních komponent 26 2.3.2 Faktorová

Více

Korelační a regresní analýza

Korelační a regresní analýza Korelační a regresní analýza Analýza závislosti v normálním rozdělení Pearsonův (výběrový) korelační koeficient: r = s XY s X s Y, kde s XY = 1 n (x n 1 i=0 i x )(y i y ), s X (s Y ) je výběrová směrodatná

Více

Číselné charakteristiky a jejich výpočet

Číselné charakteristiky a jejich výpočet Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz charakteristiky polohy charakteristiky variability charakteristiky koncetrace charakteristiky polohy charakteristiky

Více

Písemná práce k modulu Statistika

Písemná práce k modulu Statistika The Nottingham Trent University B.I.B.S., a. s. Brno BA (Hons) in Business Management Písemná práce k modulu Statistika Číslo zadání: 144 Autor: Zdeněk Fekar Ročník: II., 2005/2006 1 Prohlašuji, že jsem

Více

vzorek1 0.0033390 0.0047277 0.0062653 0.0077811 0.0090141... vzorek 30 0.0056775 0.0058778 0.0066916 0.0076192 0.0087291

vzorek1 0.0033390 0.0047277 0.0062653 0.0077811 0.0090141... vzorek 30 0.0056775 0.0058778 0.0066916 0.0076192 0.0087291 Vzorová úloha 4.16 Postup vícerozměrné kalibrace Postup vícerozměrné kalibrace ukážeme na úloze C4.10 Vícerozměrný kalibrační model kvality bezolovnatého benzinu. Dle následujících kroků na základě naměřených

Více

Modul Základní statistika

Modul Základní statistika Modul Základní statistika Menu: QCExpert Základní statistika Základní statistika slouží k předběžné analýze a diagnostice dat, testování předpokladů (vlastností dat), jejichž splnění je nutné pro použití

Více

6. Lineární regresní modely

6. Lineární regresní modely 6. Lineární regresní modely 6.1 Jednoduchá regrese a validace 6.2 Testy hypotéz v lineární regresi 6.3 Kritika dat v regresním tripletu 6.4 Multikolinearita a polynomy 6.5 Kritika modelu v regresním tripletu

Více

3.3 Data použitá v analýze

3.3 Data použitá v analýze ALCHYMIE NEPOJISTNÝCH SOCIÁLNÍCH DÁVEK 3.3 Data použitá v analýze V kapitole se vychází zejména z mikrodat statistického šetření SILC, které je dnes jednotně využíváno ve všech zemích EU k měření sociální

Více

5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza

5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5.1 Vícerozměrná data a vícerozměrná rozdělení Při zpracování vícerozměrných dat se hledají souvislosti mezi dvěma, případně

Více

Stručný úvod do vybraných zredukovaných základů statistické analýzy dat

Stručný úvod do vybraných zredukovaných základů statistické analýzy dat Stručný úvod do vybraných zredukovaných základů statistické analýzy dat Statistika nuda je, má však cenné údaje. Neklesejme na mysli, ona nám to vyčíslí. Z pohádky Princové jsou na draka Populace (základní

Více

SAMOSTATNÁ STUDENTSKÁ PRÁCE ZE STATISTIKY

SAMOSTATNÁ STUDENTSKÁ PRÁCE ZE STATISTIKY SAMOSTATÁ STUDETSKÁ PRÁCE ZE STATISTIKY Váha studentů Kučerová Eliška, Pazdeříková Jana septima červen 005 Zadání: My dvě studentky jsme si vylosovaly zjistit statistickým šetřením v celém ročníku septim

Více

Kurz SPSS: Jednoduchá analýza dat. Jiří Šafr

Kurz SPSS: Jednoduchá analýza dat. Jiří Šafr Kurz SPSS: Jednoduchá analýza dat Jiří Šafr vytvořeno 29. 6. 2009 Dva základní typy statistiky 1. Popisná statistika: metody pro zjišťování a sumarizaci informací grfy, tabulky, popisné chrakteristiky

Více

FACTORS AFFECTING THE DIRECT HOUSEHOLD EXPENDITURES ON HEALTH. Jitka Bartošová

FACTORS AFFECTING THE DIRECT HOUSEHOLD EXPENDITURES ON HEALTH. Jitka Bartošová FAKTORY OVLIVŇUJÍCÍ PŘÍMÉ VÝDAJE DOMÁCNOSTÍ NA ZDRAVÍ FACTORS AFFECTING THE DIRECT HOUSEHOLD EXPENDITURES ON HEALTH Jitka Bartošová Abstract This paper focuses on the search of factors affecting direct

Více

Hodina 50 Strana 1/14. Gymnázium Budějovická. Hodnocení akcií

Hodina 50 Strana 1/14. Gymnázium Budějovická. Hodnocení akcií Hodina 50 Strana /4 Gymnázium Budějovická Volitelný předmět Ekonomie - jednoletý BLOK ČÍSLO 8 Hodnocení akcií Předpokládaný počet : 9 hodin Použitá literatura : František Egermayer, Jan Kožíšek Statistická

Více

Cronbachův koeficient α nová adaptovaná metoda uvedení vlastností položkové analýzy deskriptivní induktivní parametrické

Cronbachův koeficient α nová adaptovaná metoda uvedení vlastností položkové analýzy deskriptivní induktivní parametrické Československá psychologie 0009-062X Metodologické požadavky na výzkumné studie METODOLOGICKÉ POŽADAVKY NA VÝZKUMNÉ STUDIE Výzkumné studie mají přinášet nová konkrétní zjištění získaná specifickými výzkumnými

Více

Pozn. přeskakuji zde popisnou statistiku, jinak by měla být součástí každé analýzy.

Pozn. přeskakuji zde popisnou statistiku, jinak by měla být součástí každé analýzy. Pozn. přeskakuji zde popisnou statistiku, jinak by měla být součástí každé analýzy. Z pastí na daném území byla odhadnuta abundance několika druhů: myšice lesní 250, myšice křovinná 200, hraboš polní 150,

Více

Návod na statistický software PSPP část 2. Kontingenční tabulky

Návod na statistický software PSPP část 2. Kontingenční tabulky Návod na statistický software PSPP část 2. Kontingenční tabulky Jiří Šafr FHS UK poslední revize 31. srpna 2010 Logika kontingenčních tabulek... 2 Postup vytváření kontingenčních tabulek v PSPP (SPSS)....

Více

Testování hypotéz a měření asociace mezi proměnnými

Testování hypotéz a měření asociace mezi proměnnými Testování hypotéz a měření asociace mezi proměnnými Testování hypotéz Nulová a alternativní hypotéza většina statistických analýz zahrnuje různá porovnání, hledání vztahů, efektů Tvrzení, že efekt je nulový,

Více

Statistické metody uţívané při ověřování platnosti hypotéz

Statistické metody uţívané při ověřování platnosti hypotéz Statistické metody uţívané při ověřování platnosti hypotéz Hypotéza Domněnka, předpoklad Nejčastěji o rozdělení, středních hodnotách, závislostech, Hypotézy ve vědeckém výzkumu pracovní, věcné hypotézy

Více

ROZDĚLENÍ NÁHODNÝCH VELIČIN

ROZDĚLENÍ NÁHODNÝCH VELIČIN ROZDĚLENÍ NÁHODNÝCH VELIČIN 1 Vytvořeno s podporou projektu Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny společného základu (reg. č. CZ.1.07/2.2.00/28.0021)

Více

Modelování výnosové křivky a modelování úrokových nákladů státního dluhu Kamil Kladívko Odbor řízení státního dluhu a finančního majetku Úrokové náklady portfolia státního dluhu 2 Úrokové náklady státního

Více

Výsledky aplikace kvantitativních metod CIE na OP LZZ, oblast podpory 1.1. Workshop č. 4 24. října 2012

Výsledky aplikace kvantitativních metod CIE na OP LZZ, oblast podpory 1.1. Workshop č. 4 24. října 2012 Výsledky aplikace kvantitativních metod CIE na OP LZZ, oblast podpory 1.1 Workshop č. 4 24. října 212 Po čem pátráme v této evaluaci a ještě rok budeme? Jaké jsou dopady ESF v podpořených firmách na: zaměstnanost,

Více

MEZIREGIONÁLNÍ PŘEPRAVA NA ŽELEZNICI V ČR INTERREGINAL RAILWAY TRANSPORT IN CZECH REPUBLIC

MEZIREGIONÁLNÍ PŘEPRAVA NA ŽELEZNICI V ČR INTERREGINAL RAILWAY TRANSPORT IN CZECH REPUBLIC MEZIREGIONÁLNÍ PŘEPRAVA NA ŽELEZNICI V ČR INTERREGINAL RAILWAY TRANSPORT IN CZECH REPUBLIC Kateřina Pojkarová 1 Anotace:Článek se věnuje železniční přepravě mezi kraji v České republice, se zaměřením na

Více

ň Ý Á Ú ú ň Ó š š š ú ó ú ů ů ů š ů ů ů š ů ů ú ů ů ů ú ů ů ů ů ů ů ó ú ú ó ů ů ň ů ň ů ů ú ú ú ó š ó ú ú ó š ú š š š ú ú ů ň ú ů ú ú ú ů ú ú ň ů ú š ň ú š š š š ú ň ů ň ú š ů ů ň ů ů ů ů ú ů ú ú ň ú ú

Více

E(X) = np D(X) = np(1 p) 1 2p np(1 p) (n + 1)p 1 ˆx (n + 1)p. A 3 (X) =

E(X) = np D(X) = np(1 p) 1 2p np(1 p) (n + 1)p 1 ˆx (n + 1)p. A 3 (X) = Základní rozdělení pravděpodobnosti Diskrétní rozdělení pravděpodobnosti. Pojem Náhodná veličina s Binomickým rozdělením Bi(n, p), kde n je přirozené číslo, p je reálné číslo, < p < má pravděpodobnostní

Více

Předpoklad o normalitě rozdělení je zamítnut, protože hodnota testovacího kritéria χ exp je vyšší než tabulkový 2

Předpoklad o normalitě rozdělení je zamítnut, protože hodnota testovacího kritéria χ exp je vyšší než tabulkový 2 Na úloze ukážeme postup analýzy velkého výběru s odlehlými prvky pro určení typu rozdělení koncentrace kyseliny močové u 50 dárců krve. Jaká je míra polohy a rozptýlení uvedeného výběru? Z grafických diagnostik

Více

Měření závislosti statistických dat

Měření závislosti statistických dat 5.1 Měření závislosti statistických dat Každý pořádný astronom je schopen vám předpovědět, kde se bude nacházet daná hvězda půl hodiny před půlnocí. Ne každý je však téhož schopen předpovědět v případě

Více

UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11.

UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11. UNIVERZITA OBRANY Fakulta ekonomiky a managementu Aplikace STAT1 Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 Jiří Neubauer, Marek Sedlačík, Oldřich Kříž 3. 11. 2012 Popis a návod k použití aplikace

Více

1. cvičení 4ST201. Základní informace: Vyučující: Obsah: Informace o kurzu Popisná statistika Úvod do SASu

1. cvičení 4ST201. Základní informace: Vyučující: Obsah: Informace o kurzu Popisná statistika Úvod do SASu cvičící 1. cvičení 4ST201 Informace o kurzu Popisná statistika Úvod do SASu Obsah: Vysoká škola ekonomická 1 Vyučující: Základní informace:» Konzultační hodiny: pátek 9:00 11:00» Místnost: JM317» Email:

Více

ADDS cvičení 7. Pavlína Kuráňová

ADDS cvičení 7. Pavlína Kuráňová ADDS cvičení 7 Pavlína Kuráňová Analyzujte závislost věku obyvatel na místě kde nejčastěji tráví dovolenou. (dotazník dovolená, sloupce Jaký je Váš věk a Kde nejčastěji trávíte dovolenou) Analyzujte závislost

Více

10. Předpovídání - aplikace regresní úlohy

10. Předpovídání - aplikace regresní úlohy 10. Předpovídání - aplikace regresní úlohy Regresní úloha (analýza) je označení pro statistickou metodu, pomocí nichž odhadujeme hodnotu náhodné veličiny (tzv. závislé proměnné, cílové proměnné, regresandu

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

Simulace. Simulace dat. Parametry

Simulace. Simulace dat. Parametry Simulace Simulace dat Menu: QCExpert Simulace Simulace dat Tento modul je určen pro generování pseudonáhodných dat s danými statistickými vlastnostmi. Nabízí čtyři typy rozdělení: normální, logaritmicko-normální,

Více

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK211 Základy ekonometrie Úvod do předmětu obecné informace Základní pojmy ze statistiky / ekonometrie Úvod do programu EViews, Gretl Některé užitečné funkce v MS Excel Cvičení 1 Zuzana Dlouhá Úvod do

Více

Přednáška 9. Testy dobré shody. Grafická analýza pro ověření shody empirického a teoretického rozdělení

Přednáška 9. Testy dobré shody. Grafická analýza pro ověření shody empirického a teoretického rozdělení Přednáška 9 Testy dobré shody Grafická analýza pro ověření shody empirického a teoretického rozdělení χ 2 test dobré shody ověření, zda jsou relativní četnosti jednotlivých variant rovny číslům π 01 ;

Více

Míra přerozdělování příjmů v ČR

Míra přerozdělování příjmů v ČR Míra přerozdělování příjmů v ČR Luboš Marek, Michal Vrabec Anotace V tomto článku počítají autoři hodnoty Giniho indexu v České republice. Tento index je spočítán nejprve za celou ČR, poté pro skupinu

Více

Kondenzace vlhkosti na oknech

Kondenzace vlhkosti na oknech Kondenzace vlhkosti na oknech Úvod: Problematika rosení oken je věčným tématem podzimních a zimních měsíců. Stále se nedaří vysvětlit jev kondenzace vlhkosti na zasklení široké obci uživatelů plastových

Více

Katedra matematiky Fakulty jaderné a fyzikálně inženýrské ČVUT v Praze. Zápočtová písemná práce č. 1 z předmětu 01MAB3 varianta A

Katedra matematiky Fakulty jaderné a fyzikálně inženýrské ČVUT v Praze. Zápočtová písemná práce č. 1 z předmětu 01MAB3 varianta A Zápočtová písemná práce č. 1 z předmětu 01MAB3 varianta A středa 19. listopadu 2014, 11:20 13:20 ➊ (8 bodů) Rozhodněte o stejnoměrné konvergenci řady n 3 n ( ) 1 e xn2 x 2 +n 2 na množině A = 0, + ). ➋

Více

Vícerozměrné statistické metody

Vícerozměrné statistické metody Vícerozměrné statistické metody Smysl a cíle vícerozměrné analýzy dat a modelování, vztah jednorozměrných a vícerozměrných statistických metod Jiří Jarkovský, Simona Littnerová Průběh výuky 13 přednášek

Více

Program Statistica Base 9. Mgr. Karla Hrbáčková, Ph.D.

Program Statistica Base 9. Mgr. Karla Hrbáčková, Ph.D. Program Statistica Base 9 Mgr. Karla Hrbáčková, Ph.D. OBSAH KURZU obsluha jednotlivých nástrojů, funkce pro import dat z jiných aplikací, práce s popisnou statistikou, vytváření grafů, analýza dat, výstupní

Více

Pojem a úkoly statistiky

Pojem a úkoly statistiky Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Pojem a úkoly statistiky Statistika je věda, která se zabývá získáváním, zpracováním a analýzou dat pro potřeby

Více

Ing. Radovan Nečas Mgr. Miroslav Hroza

Ing. Radovan Nečas Mgr. Miroslav Hroza Výzkumný ústav stavebních hmot, a.s. Hněvkovského, č.p. 30, or. 65, 617 00 BRNO zapsaná v OR u krajského soudu v Brně, oddíl B, vložka 3470 Aktivační energie rozkladu vápenců a její souvislost s ostatními

Více

APLIKACE DYNAMICKÝCH MODELŮ V ANALÝZE POPTÁVKY. LOGISTICKÝ RŮSTOVÝ MODEL. PRUŽNOST NABÍDKY A POPTÁVKY.

APLIKACE DYNAMICKÝCH MODELŮ V ANALÝZE POPTÁVKY. LOGISTICKÝ RŮSTOVÝ MODEL. PRUŽNOST NABÍDKY A POPTÁVKY. APLIKACE DYNAMICKÝCH MODELŮ V ANALÝZE POPTÁVKY. LOGITICKÝ RŮTOVÝ MODEL. PRUŽNOT NABÍDKY A POPTÁVKY. Následující text se věnuje modelům poptávky po předmětech dlouhodobé spotřeby. Na tyto modely bychom

Více

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení 2 Zpracování naměřených dat Důležitou součástí každé experimentální práce je statistické zpracování naměřených dat. V této krátké kapitole se budeme věnovat určení intervalů spolehlivosti získaných výsledků

Více

Statistika v příkladech

Statistika v příkladech Verlag Dashöfer Statistika v příkladech Praktické aplikace řešené v MS Ecel Ukázkové tety z připravované učebnice Doc. Ing. Jan Kožíšek, CSc. Ing. Barbora Stieberová, Ph.D. Praha 0 Obsah Obsah. Předmluva

Více

Projekt z předmětu Statistika

Projekt z předmětu Statistika Projekt z předmětu Téma: Typologie hráče české nejvyšší hokejové soutěže VŠB-TU Ostrava:Fakulta Elektrotechniky a informatiky jaro 2011 Martin Dočkal doc068 dockal.martin@gmail.com 1 Obsah 2 Zadání...

Více

Aproximace funkcí. x je systém m 1 jednoduchých, LN a dostatečně hladkých funkcí. x c m. g 1. g m. a 1. x a 2. x 2 a k. x k b 1. x b 2.

Aproximace funkcí. x je systém m 1 jednoduchých, LN a dostatečně hladkých funkcí. x c m. g 1. g m. a 1. x a 2. x 2 a k. x k b 1. x b 2. Aproximace funkcí Aproximace je výpočet funkčních hodnot funkce z nějaké třídy funkcí, která je v určitém smyslu nejbližší funkci nebo datům, která chceme aproximovat. Třída funkcí, ze které volíme aproximace

Více

Základní pojmy o signálech

Základní pojmy o signálech Základní pojmy o signálech klasifikace signálů transformace časové osy energie a výkon periodické signály harmonický signál jednotkový skok a impuls Jan Černocký ÚPGM FIT VUT Brno, cernocky@fit.vutbr.cz

Více

Modul Analýza síly testu Váš pomocník při analýze dat.

Modul Analýza síly testu Váš pomocník při analýze dat. 6..0 Modul Analýza síly testu Váš pomocník při analýze dat. Power Analysis and Interval Estimation Analýza síly testu Odhad velikosti vzorku Pokročilé techniky pro odhad intervalu spolehlivosti Rozdělení

Více

ANALÝZA KATEGORIZOVANÝCH DAT V SOCIOLOGII

ANALÝZA KATEGORIZOVANÝCH DAT V SOCIOLOGII ANALÝZA KATEGORIZOVANÝCH DAT V SOCIOLOGII Tomáš Katrňák Fakulta sociálních studií Masarykova univerzita Brno SOCIOLOGIE A STATISTIKA nadindividuální společenské struktury podmiňují lidské chování (Durkheim)

Více

Statistická analýza složek kvality bílého vína

Statistická analýza složek kvality bílého vína Statistická analýza složek kvality bílého vína Petr Voborník Fakulta informatiky a managementu, Katedra informatiky a kvantitativních metod Univerzita Hradec Králové, Rokitanského 62, 5 Hradec Králové,

Více

StatSoft Jak se pozná normalita pomocí grafů?

StatSoft Jak se pozná normalita pomocí grafů? StatSoft Jak se pozná normalita pomocí grafů? Dnes se podíváme na zoubek speciální třídě grafů, podle názvu článku a případně i ilustračního obrázku vpravo jste jistě již odhadli, že půjde o třídu pravděpodobnostních

Více

Zpracování náhodného výběru. Ing. Michal Dorda, Ph.D.

Zpracování náhodného výběru. Ing. Michal Dorda, Ph.D. Zpracování náhodného výběru popisná statistika Ing. Michal Dorda, Ph.D. Základní pojmy Úkolem statistiky je na základě vlastností výběrového souboru usuzovat o vlastnostech celé populace. Populace(základní

Více

Seminarni prace. 2 3 stranky staci, dat nema byt 3 a nema jich byt pul milionu. k te seminarce

Seminarni prace. 2 3 stranky staci, dat nema byt 3 a nema jich byt pul milionu. k te seminarce Seminarni prace Popisná statistika, data nesmí být časovou řadou Zkoumat můžeme třeba mzdy, obraty atd. (takže možná QA?) Formát pdf, poslat nejpozději den před zkouškou. Podrobnější informace jsou na

Více

StatSoft Jak poznat vliv faktorů vizuálně

StatSoft Jak poznat vliv faktorů vizuálně StatSoft Jak poznat vliv faktorů vizuálně V tomto článku bychom se rádi věnovali otázce, jak poznat již z grafického náhledu vztahy a závislosti v analýze rozptylu. Pomocí následujících grafických zobrazení

Více

Úloha 1. Napište matici pro případ lineárního regresního spline vyjádřeného přes useknuté

Úloha 1. Napište matici pro případ lineárního regresního spline vyjádřeného přes useknuté Úloha 1. Napište matici pro případ lineárního regresního spline vyjádřeného přes useknuté polynomy pro případ dvou uzlových bodů ξ 1 = 1 a ξ 2 = 4. Experimentální body jsou x = [0.2 0.4 0.6 1.5 2.0 3.0

Více

Navrhování experimentů a jejich analýza. Eva Jarošová

Navrhování experimentů a jejich analýza. Eva Jarošová Navrhování experimentů a jejich analýza Eva Jarošová Obsah Základní techniky Vyhodnocení výsledků Experimenty s jedním zkoumaným faktorem Faktoriální experimenty úplné 2 N dílčí 2 N-p Experimenty pro studium

Více

Téma: Investice do akcií společnosti ČEZ

Téma: Investice do akcií společnosti ČEZ Matematika a byznys Téma: Investice do akcií společnosti ČEZ Alena Švédová A07146 Investice do akcií společnosti ČEZ ÚVOD Tímto tématem, které jsem si pro tuto práci zvolila, bych chtěla poukázat na to,

Více

Organizační pokyny k přednášce. Matematická statistika. Co je statistika? Přehled témat

Organizační pokyny k přednášce. Matematická statistika. Co je statistika? Přehled témat Organizační pokyny k přednášce Matematická statistika MS710P05 Zdeněk Hlávka (Šárka Hudecová, Michal Kulich) Katedra pravděpodobnosti a matematické statistiky Matematicko-fyzikální fakulta UK hlavka@karlin.mff.cuni.cz

Více

Ž ž Í ž č í í í Ž í č čí ž í ž Ž í ží í ž í č Č ž žď ť í ž í í ú ď ž ž ťí Í í Í č Í í Ž í Č Č č í í Č č ž í Š ž í č Í í č Š č Ž í Í í Č Í Í ó Ó Í ň Ž Ž ČČ ž Ó ť ó č ó í ÓÍ í ň Ž ž Ó č í í ň ó ó ž ó í ň

Více

Statistická analýza dat podzemních vod. Statistical analysis of ground water data. Vladimír Sosna 1

Statistická analýza dat podzemních vod. Statistical analysis of ground water data. Vladimír Sosna 1 Statistická analýza dat podzemních vod. Statistical analysis of ground water data. Vladimír Sosna 1 1 ČHMÚ, OPZV, Na Šabatce 17, 143 06 Praha 4 - Komořany sosna@chmi.cz, tel. 377 256 617 Abstrakt: Referát

Více

Příručka k měsíčním zprávám ING fondů

Příručka k měsíčním zprávám ING fondů Příručka k měsíčním zprávám ING fondů ING Investment Management vydává každý měsíc aktuální zprávu ke každému fondu, která obsahuje základní informace o fondu, jeho aktuální výkonnosti, složení portfolia

Více

Možnosti vyhodnocení časových řad v softwaru STATISTICA

Možnosti vyhodnocení časových řad v softwaru STATISTICA StatSoft Možnosti vyhodnocení časových řad v softwaru STATISTICA Mnoho informací se zachycuje ve formě chronologicky uspořádaných údajů, jinak řečeno ve formě časových řad. Časová řada je tedy v čase uspořádaná

Více

Centrum pro zjišťování výsledků vzdělávání CERMAT Jankovcova 933/63, 170 00 Praha 7, tel.: +420 224 507 507 www.cermat.cz, www.novamaturita.

Centrum pro zjišťování výsledků vzdělávání CERMAT Jankovcova 933/63, 170 00 Praha 7, tel.: +420 224 507 507 www.cermat.cz, www.novamaturita. Analýza výsledků testu - slovníček aktuálních pojmů. Úlohy zařazované do testů jsou různého typu. V uzavřených úlohách a uzavřených podúlohách svazku žák vybírá odpověď z několika nabízených alternativ.

Více

8 Střední hodnota a rozptyl

8 Střední hodnota a rozptyl Břetislav Fajmon, UMAT FEKT, VUT Brno Této přednášce odpovídá kapitola 10 ze skript [1]. Také je k dispozici sbírka úloh [2], kde si můžete procvičit příklady z kapitol 2, 3 a 4. K samostatnému procvičení

Více

Národní informační středisko pro podporu kvality

Národní informační středisko pro podporu kvality Národní informační středisko pro podporu kvality Nestandardní regulační diagramy J.Křepela, J.Michálek REGULAČNÍ DIAGRAM PRO VŠECHNY INDIVIDUÁLNÍ HODNOTY xi V PODSKUPINĚ V praxi se někdy setkáváme s požadavkem

Více

Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu

Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu K čemu slouží statistika Popisuje velké soubory dat pomocí charakteristických čísel (popisná statistika). Hledá skryté zákonitosti v souborech

Více

Vysoká škola báňská technická univerzita Ostrava. Fakulta elektrotechniky a informatiky

Vysoká škola báňská technická univerzita Ostrava. Fakulta elektrotechniky a informatiky Vysoká škola báňská technická univerzita Ostrava Fakulta elektrotechniky a informatiky Bankovní účty (semestrální projekt statistika) Tomáš Hejret (hej124) 18.5.2013 Úvod Cílem tohoto projektu, zadaného

Více

STATISTICKÉ TESTY VÝZNAMNOSTI

STATISTICKÉ TESTY VÝZNAMNOSTI STATISTICKÉ TESTY VÝZNAMNOSTI jsou statistické postupy, pomocí nichž ověřujeme, zda mezi proměnnými existuje vztah (závislost, rozdíl). Pokud je výsledek šetření statisticky významný (signifikantní), znamená

Více

Obsah. 3 Testy 31 3.1 z test... 32 3.2 z test 2... 33 3.3 t test... 34 3.4 t test 2s... 35

Obsah. 3 Testy 31 3.1 z test... 32 3.2 z test 2... 33 3.3 t test... 34 3.4 t test 2s... 35 Obsah 1 Popisná statistika 4 1.1 bas stat........................................ 5 1.2 mean.......................................... 6 1.3 meansq........................................ 7 1.4 sumsq.........................................

Více

Funkce. Definiční obor a obor hodnot

Funkce. Definiční obor a obor hodnot Funkce Definiční obor a obor hodnot Opakování definice funkce Funkce je předpis, který každému číslu z definičního oboru, který je podmnožinou množiny všech reálných čísel R, přiřazuje právě jedno reálné

Více

Grafické vytěžování dat a jeho praktické uplatnění. Lubor Homolka

Grafické vytěžování dat a jeho praktické uplatnění. Lubor Homolka Grafické vytěžování dat a jeho praktické uplatnění Lubor Homolka Bakalářská práce 2008 ABSTRAKT Cílem této práce je popsání základních vizualizačních technik užívaných při statickém vyhodnocování dat.

Více

ROZPOČTOVÉ URČENÍ DANÍ. Zpracoval: Vladislav Vilímec poslanec PS PČR garant RUD

ROZPOČTOVÉ URČENÍ DANÍ. Zpracoval: Vladislav Vilímec poslanec PS PČR garant RUD ROZPOČTOVÉ URČENÍ DANÍ 17. září 2011 Zpracoval: Vladislav Vilímec poslanec PS PČR garant RUD RUD do roku 2000 Zákon o tzv. rozpočtovém určení č ídaní íč.243/2000 Sb. nahradil bývalý systém převodu daňových

Více

Testování hypotéz Biolog Statistik: Matematik: Informatik:

Testování hypotéz Biolog Statistik: Matematik: Informatik: Testování hypotéz Biolog, Statistik, Matematik a Informatik na safari. Zastaví džíp a pozorují dalekohledem. Biolog "Podívejte se! Stádo zeber! A mezi nimi bílá zebra! To je fantastické! " "Existují bílé

Více

Normy ČSN a ČSN ISO z oblasti aplikované statistiky (stav aktualizovaný k 1.1.2008)

Normy ČSN a ČSN ISO z oblasti aplikované statistiky (stav aktualizovaný k 1.1.2008) Normy ČSN a ČSN ISO z oblasti aplikované statistiky (stav aktualizovaný k 1.1.2008) Ing. Vratislav Horálek, DrSc., předseda TNK 4 při ČNI 1 Terminologické normy [1] ČSN ISO 3534-1:1994 Statistika Slovník

Více

Analýza kvantitativních dat: 1. Popisné statistiky a testování hypotéz

Analýza kvantitativních dat: 1. Popisné statistiky a testování hypotéz UK FHS Historická sociologie (LS 2010) Analýza kvantitativních dat: 1. Popisné statistiky a testování hypotéz Jiří Šafr jiri.safr(zavináč)seznam.cz vytvořeno 29. 6. 2009, poslední aktualizace 25. 5. 2010

Více

Testy dobré shody TESTY DOBRÉ SHODY (angl. goodness-of-fit tests), : veličiny X, Y jsou nezávislé nij eij

Testy dobré shody TESTY DOBRÉ SHODY (angl. goodness-of-fit tests),   : veličiny X, Y jsou nezávislé nij eij Testy dobré shody Máme dvě veličiny a předpokládáme, že jsou nezávislé (platí nulová hypotéza nezávislosti). Často chceme naopak prokázat jejich závislost. K tomu slouží: TESTY DOBRÉ SHODY (angl. goodness-of-fit

Více

Základní informace o programovém systému STATISTICA 6

Základní informace o programovém systému STATISTICA 6 Základní informace o programovém systému STATISTICA 6 Systém má modulární stavbu. V multilicenci pro Masarykovu univerzitu jsou k dispozici moduly: Basic Statistics/Tables, Multiple Regression, ANOVA,

Více

Me neˇ nezˇ minimum ze statistiky Michaela S ˇ edova KPMS MFF UK Principy medicı ny zalozˇene na du kazech a za klady veˇdecke prˇı pravy 1 / 76

Me neˇ nezˇ minimum ze statistiky Michaela S ˇ edova KPMS MFF UK Principy medicı ny zalozˇene na du kazech a za klady veˇdecke prˇı pravy 1 / 76 1 / 76 Méně než minimum ze statistiky Michaela Šedová KPMS MFF UK Principy medicíny založené na důkazech a základy vědecké přípravy Příklad Studie syndromu náhodného úmrtí dětí. Dvě skupiny: Děti, které

Více

ROZPOČTOVÉ URČENÍ DANÍ. 4. října 2011 Zpracoval: Vladislav Vilímec poslanec PS PČR garant RUD

ROZPOČTOVÉ URČENÍ DANÍ. 4. října 2011 Zpracoval: Vladislav Vilímec poslanec PS PČR garant RUD ROZPOČTOVÉ URČENÍ DANÍ 4. října 2011 Zpracoval: Vladislav Vilímec poslanec PS PČR garant RUD RUD do roku 2000 Zákon o tzv. rozpočtovém určení daní č.243/2000 Sb. nahradil bývalý systém převodu daňových

Více

9 INTERPOLACE A APROXIMACE

9 INTERPOLACE A APROXIMACE 1 9 INTERPOLACE A APROXIMACE Vzorová úloha 9.1 Náhrada funkce exp(x) Nalezněte interpolační polynom, který aproximuje funkci exp(x) v intervalu {0, 1} tak, že v krajních bodech x 1 = 0 a x = 1 souhlasí

Více

Propenzitní modelování. Veronika Počerová 10. 4. 2015

Propenzitní modelování. Veronika Počerová 10. 4. 2015 Propenzitní modelování Veronika Počerová 10. 4. 2015 motivace 2 definice Prediktivní analytika je disciplína, která využívá metod Data Miningu k tomu, aby na základě historického chování sledovaného jevu

Více

9.7 TŘÍDĚNÍ PODLE JEDNOHO SPOJITÉHO ČÍSELNÉHO ZNAKU. INTERVALOVÉ ROZDĚLENÍ ČETNOSTI

9.7 TŘÍDĚNÍ PODLE JEDNOHO SPOJITÉHO ČÍSELNÉHO ZNAKU. INTERVALOVÉ ROZDĚLENÍ ČETNOSTI Statistické třídění, intervalové rozdělení četnosti Aleš Drobník strana 1 9.7 TŘÍDĚNÍ PODLE JEDNOHO SPOJITÉHO ČÍSELNÉHO ZNAKU. INTERVALOVÉ ROZDĚLENÍ ČETNOSTI Problematiku třídění podle jednoho spojitého

Více

2. spojitost (7. cvičení) 3. sudost/lichost, periodicita (3. cvičení) 4. první derivace, stacionární body, intervaly monotonie (10.

2. spojitost (7. cvičení) 3. sudost/lichost, periodicita (3. cvičení) 4. první derivace, stacionární body, intervaly monotonie (10. MA. cvičení průběh funkce Lukáš Pospíšil,202 Průběh funkce Pod úkolem vyšetřete průběh funkce budeme rozumět nalezení všech kvalitativních vlastností zadané funkce - tedy bude potřeba zjistit o funkci

Více