STATISTIKA MIGRANTŮ PRO REGIONY V MORAVSKOSLEZSKÉM KRAJI A PRO KRAJ V OBDOBÍ

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "STATISTIKA MIGRANTŮ PRO REGIONY V MORAVSKOSLEZSKÉM KRAJI A PRO KRAJ V OBDOBÍ 1992-2005"

Transkript

1 VYSOKÁ ŠKOLA BÁŇSKÁ - TECHNICKÁ UNIVERZITA OSTRAVA Hornicko-geologická fakulta institut geoinformatiky STATISTIKA MIGRANTŮ PRO REGIONY V MORAVSKOSLEZSKÉM KRAJI A PRO KRAJ V OBDOBÍ Speciální metody analýzy dat GN260 Igor IVAN

2 Úvod Část tohoto projektu bude součástí diplomové práce s názvem Analýzy vývoje migrace obyvatelstva v Moravskoslezském kraji. Data, která jsou zde použita pocházejí z tzv. běžné evidence migrace. Tyto záznamy vycházejí z povinnosti občana k přihlášení se k trvalému pobytu Hlášení o stěhování které zpracovávají matriky, resp. ČSÚ. Tento datový zdroj umožňuje, kromě územní lokalizace, také analyzovat migranta podle některých základních demografických a socioekonomických znaků. V první kapitole, která se zabývá explorační analýzou, budu zkoumat zvlášť dvě skutečnosti. Jelikož bych rád využil část projektu v diplomové práci, tak jednotlivé grafy a slovní vyhodnocení grafů budou zaměřeny na analýzu přistěhovalých a vystěhovalých do/z jednotlivých regionů 1 MSK v analyzovaném období Ve druhé části projektu, která již nebude součástí diplomové práce, se program zabývá počty přistěhovalých a vystěhovalých do/z MSK jako celku a to opět v období regionů, které byly vytvořeny v téže diplomové práci podle metodiky Martina Hampla. Data pro vytvoření jednotlivých regionů pochází ze Sčítání domů, lidu a bytů z roku

3 3

4 Jednorozměrná explorační analýza dat V této části se budeme zabývat vývojem přistěhovalých a vystěhovalých v jednotlivých letech a regionech. Pro každý z roků byly vypočteny základní statistické charakteristiky. Histogram popisuje vývoj počtu přistěhovalých a vystěhovalých do, z regionů v MSK. Jednotlivé grafy musely být rozděleny do dvou samostatných oddílů z nichž každý má jiný rozsah na ose y. Důvodem je rozdílný počet migrantů v regionu Ostravsko je řádově 4x více migrantů než v ostatních regionech. Na první pohled je patrné, že ve všech regionech převyšuje počet vystěhovalých ty přistěhované. Lze tedy konstatovat, že migrační saldo (rozdíl přistěhovalí - vystěhovalí) je negativní obyvatelstvo ztrácí na migraci. Nejlépe nám vychází dva regiony Frýdecko-Místecko a Novojičínsko. Obzvláště prvně jmenovaný region je v posledních letech v kladných hodnotách migračního salda a to zhruba od roku Tento trend se dá vysvětlit tzv. deurbanizací. Mezi hlavní znaky deurbanizace patří velké snižování počtu obyvatelstva v centrech měst i vnějších městských částech. Dochází ke stěhování na venkov, do menších měst, do nových měst nebo do metropolí. Novojičínsko mělo vyrovnaný stav zhruba v druhé polovině 90. let, ale poté znova propadlo do záporných čísel. Jednoznačně nejhůře je na tom region Ostravsko a Bruntálsko a v posledních letech také Opavsko. U Ostravska se to dá vysvětlit právě již výše zmíněnou deurbanizací, u Bruntálska patrně nízkou životní úrovní, velkým procentem nezaměstnaných. Lze také vyčíst útlum v migračních pohybech vůbec a to v období druhé poloviny 90. let, kdy ve všech regionech je patrný propad. V posledních letech se opět čísla zvětšují, bohužel v některých regionech pouze ta o vystěhovalých. 4

5 5

6 6

7 Jak bylo již zmíněno výše, tak právě na těchto histogramech je patrný negativní vývoj migrace v jednotlivých regionech MSK, vyjímaje regionu Frýdek-Místek. Zde po roce 2000 je patrný obrat v migračním vývoji. 7

8 U výsečových grafů je cílem analyzovat cíle přistěhovalců, respektive odkud se vystěhovalci vystěhovávají. Opět se jedná o totožné období, jako u předchozí analýzy a to roky Tyto výsledky nám bohužel neukazují nějaké zásadní změny ve vývoji migrace. Po celou dobu je jasným cílem migrantů region Ostravsko a to většinou kolem 48% všech přistěhovalých. Toto je způsobeno velkým počtem obyvatel v tomto regionu a tak přímoúměrným větším počtem migrantů. Zajímavější je ale souboj o druhé místo mezi regiony Novojičínsko a Frýdeckomístecko. Opět rok 2000 zde hraje hraniční roli. Počínaje tímto rokem se dostává na druhé místo Frýdeckomístecko, což opět potvrzuje myšlenku deurbanizace. Pokud se podíváme na koláčové grafy, které se týkají 8

9 vystěhovalých, tak jsou výsledky obdobné, jako u přistěhovalých. Jasně na prvním místě je Ostravsko, ale tentokráte je podíl na celkovém čísle vystěhovalých vyšší a to zhruba 49% a v posledních letech se dostává přes 50%. Na druhém místě zůstává po celou dobu analýzy Novojíčínsko. Zajímavá je opět situace u Frýdecko- Místecka. U toho se podíl vystěhovaných postupně snižuje a postupně se přibližuje k Opavsku, u kterého se naopak podíl zvyšuje. V roce 1992 činil rozdíl mezi těmito regiony 2,5% a v roce 2005 už jen 0,26%. Pokud se podíváme na další regiony, tak je zajímavé pozorovat, jak si v jednotlivých letech vyměňují vzájemně pořadí regiony Třinecko a Bruntálsko. V dalším kroku se dostáváme k liniovým grafům. Ty jsou, stejně jako sloupcové, rozděleny do dvou částí. Opět se potvrzuje předchozí 9

10 zjištění. Většina regionů má záporné migrační saldo. Tento graf nám navíc hezky ukáže vzrůstající rozdíl mezi počtem přistěhovaných a vystěhovaných. Toto je patrné zejména u regionu Ostravsko a Bruntálsko. Obzvláště u Ostravska je rozdíl postupem let narůstající. U Opavska je vývoj relativně totožný po celou dobu analýzy, bohužel rovněž negativní. Novojičínsko má podobný vývoj jako Krnovsko, dobou se střídají období, kdy je saldo pozitivní s obdobím s negativním saldem. Opět výjimečný je region Frýdecko- Místecko. I zde se ukazuje změna ve vývoji regionu zhruba od roku 2000, kdy se střídá období s negativním saldem s obdobím s pozitivním stavem. I u těchto grafů je patrný propad v migračním chování v polovině devadesátých let. 10

11 11

12 Rok Platné 7,00 7,00 7,00 7,00 7,00 7,00 7,00 N Chybějící 0,00 0,00 0,00 0,00 0,00 0,00 0,00 Průměr 3726, , , , , , ,14 Medián 2182, , , , , , ,00 Dolní kvartil 1790, , , , , , ,00 Horní kvartil 3265, , , , , , ,00 Směrodatná odchylka 4214, , , , , , ,45 Minimum 956, ,00 877,00 760,00 735,00 834,00 710,00 Maximum 13127, , , , , , ,00 Sum 26088, , , , , , ,00 Rok Platné 7,00 7,00 7,00 7,00 7,00 7,00 7,00 N Chybějící 0,00 0,00 0,00 0,00 0,00 0,00 0,00 Průměr 2557, , , , , , ,86 Medián 1676, , , , , , ,00 Dolní kvartil 1307, , , , , , ,00 Horní kvartil 2106, , , , , , ,00 Směrodatná odchylka 2764, , , , , , ,97 Minimum 685,00 777,00 728,00 688,00 707,00 750,00 764,00 Maximum 8734, , , , , , ,00 Suma 17904, , , , , , ,00 Tabulka 1 - Explorační analýza pro přistěhovalé do MSK V této části se analýza liší od těch předchozích. Jak již bylo uvedeno v úvodu, tak počínaje touto pasáží se analýza bude věnovat MSK jako celku a nebude ho rozdělovat do jednotlivých regionů. Tato tabulka ukazuje statistické vyhodnocení vývoje v počtu přistěhovalých do MSK za jednotlivé roky v období I zde jde vidět pokles v počtu přistěhovalých do MSK, kde minima dosahuje v roce Zároveň lze 12

13 vidět, jak se jednotlivé migrační toky v období druhé poloviny 90. let zmenšují a počínaje roku 2000 se opět začínají růst. Toto nám ukazuje medián, který se postupně zmenšuje a ke konci analýzy opět roste. To, že je medián menší než průměr ukazuje na extrémně velké hodnoty v počtu přistěhovalých. Bude se jistě jednat opět o region Ostravsko, kam bude přicházet řádově více migrantů než například do regionu Krnovsko. Taky rozdíl mezi dolním kvartilem a mediánem je mnohem menší než naopak rozdíl mezi horním kvartilem a mediánem, což opět potvrzuje myšlenku o rapidně větším množství menších migračních toků. Vysvětlení pojmů Průměr součet všech hodnot vydělený jejich počtem Medián 2 je hodnota, jež dělí řadu podle velikosti seřazených výsledků na dvě stejně početné poloviny. Jestliže n je sudé číslo, pak medián odpovídá x = 0,5( x + x ). Jestliže n je liché číslo, pak x = x ( n + 1). n n Dolní a horní kvartil oddělují ze statistického souboru čtvrtiny Směrodatná odchylka vypovídá o tom, jak moc se od sebe navzájem liší typické případy v souboru zkoumaných čísel. Je-li malá, jsou si prvky souboru většinou navzájem podobné, a naopak velká směrodatná odchylka signalizuje velké vzájemné odlišnosti. Směrodatná odchylka je nejužívanější míra variability. 2 2 Zdroj: HENDL Jan: Přehled statistických metod zpracování dat. Praha, 1. vydání, ISBN stran 13

14 Také v této pasáži se analýza zabývá Moravskoslezským krajem jako celkem a přestává ho, až na jednu výjimku u jednofaktorové analýzy rozptylu ANOVA, dělit do jednotlivých regionů. Nyní následuje explorační analýza pro přistěhovalé a vystěhovalé do/z MSK pro analyzované období Stem-and-Leaf Display for PRISTEHOVALI: unit = 100,0 1 2 represents 1200,0 Summary Statistics for PRISTEHOVALI (7) HI 4046,0 4361,0 Počet sledování 14 Průměrný počet 3021,5 přistěhovalých Směrodatná 545,185 odchylka Minimum 2506,0 Maximum 4361,0 Je vidět, že počty přistěhovalých se v analyzovaném období pohybují nejčastěji v intervalu migrantů. Z krabicového grafu jsou patrné dvě odlehlé hodnoty, které přesahují hodnotu Právě tyto dvě extrémní hodnoty zvyšují hodnotu průměru nad medián. Tyto hodnoty jsou z počátku analýzy z roku 1992 a Dá se říci, že v té době byl ještě charakter MSK jiný než v dalších letech, jelikož průmyslový útlum byl teprve v začátcích. 14

15 Graf Stem-and-Leaf znázorňuje data podobně jako histogram četností. Oproti histogramu ale navíc prezentuje zjištěná data s přesnosti na stovky přistěhovalých. Hodnoty umístěné ve sloupci před lomítky představuji tisíce přistěhovalých. Do sloupce za lomítky pak jsou zapsány stovky přistěhovalých pro příslušné hodnoty před lomítky. Např. druhý řádek tak odpovídá sedmi zjištěným hodnotám 2600 a 6 x 2700 přistěhovalých. Graf zároveň znázorňuje dvě odlehlé hodnoty o velikosti 4046,0 a 4361,0. Stem-and-Leaf Display for VYSTEHOVALI: unit = 100,0 1 2 represents 1200, (4) Summary Statistics for VYSTEHOVALI Počet sledování 14 Průměrný počet 4818,14 vystěhovalých Směrodatná 455,164 odchylka Minimum 4195,0 Maximum 5632,0 Malý rozdíl mezi průměrem a mediánem zapříčinil, že oproti výsledkům pro přistěhovalé se zde nevyskytují extrémní hodnoty. Také histogram naznačuje vyrovnanější vývoj, bez žádných extrémních výkyvů, pro vystěhovalé než pro přistěhovalé. 15

16 Dvouvýběrový test střední hodnoty: Budeme testovat, zda na základě dat o počtu přistěhovalých/vystěhovalých do/z kraje v období lze prohlásit, že se střední hodnota počtu přistěhovalých a vystěhovalých liší. Jako vstupní údaje jsou potřeba: Přistěhovalí Vystěhovalí Počet sledování Průměrná hodnota 3021, ,14 Směrodatná odchylka 545,19 455,16 Testujeme hypotézu o rovnosti středních hodnot: H 0 : µ 1 = µ 2 přistěhovalí = vystěhovalí Oproti alternativě: H A : µ 1 < µ 2 přistěhovalí < vystěhovalí Hypothesis Tests Sample means = 3021,5 and 4818,14 Sample standard deviations = 545,16 and 455,16 Sample sizes = 14 and 14 95,0% upper confidence bound for difference between means: -1796, ,748 [-1472,89] Null Hypothesis: difference between means = 0,0 Alternative: less than Computed t statistic = -9,46536 P-Value = 3,2864E-10 Reject the null hypothesis for alpha = 0,05. Zamítáme hypotézu H 0. Z dodaného vzorku 14 pozorování pro přistěhovalé a vystěhovalé do/z kraje, lze konstatovat, že je více vystěhovalých než přistěhovalých, což potvrzuje demografické analýzy v úvodu této práce obyvatelstva v MSK ubývá díky převažující migraci ven z kraje.

17 Jednofaktorová analýza rozptylu ANOVA Analýza zda existuje závislost mezi počtem přistěhovalých a jednotlivými regiony v MSK v období Testujeme hypotézu: H 0 : µ 1 = µ 2 = µ 3 = µ 4 = µ 5 = µ 6 = µ 7 H A : neplatí H 0 kde µ 1 je střední hodnota počtu přistěhovalých do regionu Bruntál µ 2 je střední hodnota počtu přistěhovalých do regionu Frýdek-Místek µ 3 je střední hodnota počtu přistěhovalých do regionu Krnov µ 4 je střední hodnota počtu přistěhovalých do regionu Nový Jičín µ 5 je střední hodnota počtu přistěhovalých do regionu Opava µ 6 je střední hodnota počtu přistěhovalých do regionu Ostrava µ 7 je střední hodnota počtu přistěhovalých do regionu Třinec ANOVA Table Source Sum of Squares Df Mean Square F-Ratio P-Value Between groups 7,53154E8 6 1,25526E8 447,00 0,0000 Within groups 2,55542E , Total (Corr.) 7,78709E8 97 P-value je menší než 0,05, tedy existuje statisticky významný rozdíl mezi středními hodnotami jednotlivých tříd, a proto budu dále specifikovat bližší určení rozdílů mezi jednotlivými třídami. 17

18 Multiple Range Tests Method: 95,0 percent LSD Count Mean Homogeneous Groups Krnov ,357 X Bruntál ,0 X Třinec ,29 XX Opava ,79 X Frýdek_Místek ,29 X Nový Jičín ,07 X Ostrava ,57 X Z výsledků jednofaktorové analýzy rozptylu je jasně patrné, že kvůli extrémním výsledkům pro region Ostrava, jsou rozdíly mezi výsledky pro ostatní regiony nevýrazné. Proto nyní bude tatáž analýza provedena opět a region Ostrava z ní bude vyloučen, aby výsledky byly přesvědčivější a názornější. 18

19 ANOVA Table Source Sum of Squares Df Mean Square F-Ratio P-Value Between groups 2,53614E7 5 5,07228E6 86,23 0,0000 Within groups 4,5884E ,7 Total (Corr.) 2,99498E7 83 Multiple Range Tests Method: 95,0 percent LSD Count Mean Homogeneous Groups Krnov ,357 X Bruntál ,0 X Třinec ,29 X Opava ,79 X Frýdek_Místek ,29 X Nový Jičín ,07 X 19

20 Z výše uvedených údajů je zřejmé, že existuje závislost mezi počtem přistěhovalých osob a regionem do kterého míří. Jsou viditelné zajímavé rozdíly mezi počtem přistěhovalých v jednotlivých regionech. Osamocený je region Krnov (také region Ostrava, který je z analýzy vyloučena). U ostatních regionů je vidět určitá podobnost. Podle analýzy počtu přistěhovalých tvoří regiony homogenní skupiny: Bruntál Třinec Třinec Opava Nový Jičín Frýdek-Místek. Tento závěr potvrzuje také grafické srovnání 95% intervalů spolehlivosti pro jednotlivé střední hodnoty, kde jsou jednotlivé skupiny označeny barevně. 20

21 Regrese Pokusíme se zjistit, zda-li existuje nějaká závislost mezi počtem přistěhovalých a vystěhovalých v MSK v období Pokud existuje, tak určíme, jak je významná. Simple Regression - PRISTEHOVALI vs. VYSTEHOVALI Dependent variable: PRISTEHOVALI Independent variable: VYSTEHOVALI Linear model: Y = a + b*x Coefficients Least Squares Standard T Parameter Estimate Error Statistic P-Value Intercept 227, ,78 0, ,8789 Slope 0, , , ,0794 Analysis of Variance Source Sum of Squares Df Mean Square F-Ratio P-Value Model , , 3,67 0,0794 Residual 2,95849E , Total (Corr.) 3,86395E6 13 Correlation Coefficient = 0,48408 R-squared = 23,4334 percent R-squared (adjusted for d.f.) = 17,0528 percent Standard Error of Est. = 496,529 Mean absolute error = 378,418 Durbin-Watson statistic = 0, (P=0,0000) Lag 1 residual autocorrelation = 0, V tabulce ANOVA vyšlo p-value vyšší než 0,05 (přesněji 0,0794), tudíž nemá smysl vůbec žádnou regresi provádět, neboť proměnné X a Y jsou nezávislé (regresní křivka specifikuje typ závislosti mezi proměnnými. Nemá tedy smysl ji dělat pro nezávislé proměnné). Koeficient R-squared udává, jak těsná je závislost mezi proměnnými X, Y, resp. jak přesné je nahrazení závislosti zvolenou regresní křivkou. Čím je R-squared blíže jedničce, o to přesnější aproximaci se jedná. Pokud je R-squared blízko nule, je zvolená funkce nevhodná pro aproximaci dané závislosti anebo mezi uvažovanými veličinami vůbec neexistuje těsná závislost, což je tento případ, jelikož R-squared vyšlo 23,4334%. 21

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická

Více

Vysoká škola báňská technická univerzita Ostrava. Fakulta elektrotechniky a informatiky

Vysoká škola báňská technická univerzita Ostrava. Fakulta elektrotechniky a informatiky Vysoká škola báňská technická univerzita Ostrava Fakulta elektrotechniky a informatiky Bankovní účty (semestrální projekt statistika) Tomáš Hejret (hej124) 18.5.2013 Úvod Cílem tohoto projektu, zadaného

Více

Pokud data zadáme přes "Commands" okno: SDF1$X1<-c(1:15) //vytvoření řady čísel od 1 do 15 SDF1$Y1<-c(1.5,3,4.5,5,6,8,9,11,13,14,15,16,18.

Pokud data zadáme přes Commands okno: SDF1$X1<-c(1:15) //vytvoření řady čísel od 1 do 15 SDF1$Y1<-c(1.5,3,4.5,5,6,8,9,11,13,14,15,16,18. Regresní analýza; transformace dat Pro řešení vztahů mezi proměnnými kontinuálního typu používáme korelační a regresní analýzy. Korelace se používá pokud nelze určit "kauzalitu". Regresní analýza je určena

Více

Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu

Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu K čemu slouží statistika Popisuje velké soubory dat pomocí charakteristických čísel (popisná statistika). Hledá skryté zákonitosti v souborech

Více

A7B39TUR Úloha B Kvantitativní testování ZS 2013/2014 Software MS Office Word a Open Office Writer

A7B39TUR Úloha B Kvantitativní testování ZS 2013/2014 Software MS Office Word a Open Office Writer A7B39TUR Úloha B Kvantitativní testování ZS 2013/2014 Software MS Office Word a Open Office Writer Vypracoval: Peter Šourek ( sourepet@fel.cvut.cz ) Obsah 1Úvod...3 1.1Cíl testování...3 1.2Proměnné...3

Více

Pozn. přeskakuji zde popisnou statistiku, jinak by měla být součástí každé analýzy.

Pozn. přeskakuji zde popisnou statistiku, jinak by měla být součástí každé analýzy. Pozn. přeskakuji zde popisnou statistiku, jinak by měla být součástí každé analýzy. Z pastí na daném území byla odhadnuta abundance několika druhů: myšice lesní 250, myšice křovinná 200, hraboš polní 150,

Více

UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11.

UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11. UNIVERZITA OBRANY Fakulta ekonomiky a managementu Aplikace STAT1 Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 Jiří Neubauer, Marek Sedlačík, Oldřich Kříž 3. 11. 2012 Popis a návod k použití aplikace

Více

Statistika. Semestrální projekt

Statistika. Semestrální projekt Statistika Semestrální projekt 18.5.2013 Tomáš Jędrzejek, JED0008 Obsah Úvod 3 Analyzovaná data 4 Analýza dat 6 Statistická indukce 12 Závěr 15 1. Úvod Cílem této semestrální práce je aplikovat získané

Více

Zpracování náhodného výběru. Ing. Michal Dorda, Ph.D.

Zpracování náhodného výběru. Ing. Michal Dorda, Ph.D. Zpracování náhodného výběru popisná statistika Ing. Michal Dorda, Ph.D. Základní pojmy Úkolem statistiky je na základě vlastností výběrového souboru usuzovat o vlastnostech celé populace. Populace(základní

Více

Projekt z předmětu Statistika

Projekt z předmětu Statistika Projekt z předmětu Téma: Typologie hráče české nejvyšší hokejové soutěže VŠB-TU Ostrava:Fakulta Elektrotechniky a informatiky jaro 2011 Martin Dočkal doc068 dockal.martin@gmail.com 1 Obsah 2 Zadání...

Více

Hodina 50 Strana 1/14. Gymnázium Budějovická. Hodnocení akcií

Hodina 50 Strana 1/14. Gymnázium Budějovická. Hodnocení akcií Hodina 50 Strana /4 Gymnázium Budějovická Volitelný předmět Ekonomie - jednoletý BLOK ČÍSLO 8 Hodnocení akcií Předpokládaný počet : 9 hodin Použitá literatura : František Egermayer, Jan Kožíšek Statistická

Více

Statistické metody vyhodnocení vlivu škodlivin na denní úmrtnost, hospitalizaci a příznaky kardiovaskulárních a respiračních onemocnění

Statistické metody vyhodnocení vlivu škodlivin na denní úmrtnost, hospitalizaci a příznaky kardiovaskulárních a respiračních onemocnění Statistické metody vyhodnocení vlivu škodlivin na denní úmrtnost, hospitalizaci a příznaky kardiovaskulárních a respiračních onemocnění Jiří Skorkovský Úvod a cíle studie vlivu PM10 na denní

Více

Program Statistica Base 9. Mgr. Karla Hrbáčková, Ph.D.

Program Statistica Base 9. Mgr. Karla Hrbáčková, Ph.D. Program Statistica Base 9 Mgr. Karla Hrbáčková, Ph.D. OBSAH KURZU obsluha jednotlivých nástrojů, funkce pro import dat z jiných aplikací, práce s popisnou statistikou, vytváření grafů, analýza dat, výstupní

Více

Statistická analýza dat podzemních vod. Statistical analysis of ground water data. Vladimír Sosna 1

Statistická analýza dat podzemních vod. Statistical analysis of ground water data. Vladimír Sosna 1 Statistická analýza dat podzemních vod. Statistical analysis of ground water data. Vladimír Sosna 1 1 ČHMÚ, OPZV, Na Šabatce 17, 143 06 Praha 4 - Komořany sosna@chmi.cz, tel. 377 256 617 Abstrakt: Referát

Více

Třídění statistických dat

Třídění statistických dat 2.1 Třídění statistických dat Všechny muže ve městě rozdělíme na 2 skupiny: A) muži, kteří chodí k holiči B) muži, kteří se holí sami Do které skupiny zařadíme holiče? prof. Raymond M. Smullyan, Dr. Math.

Více

Jak nelhat se statistikou? Martina Litschmannová Katedra aplikované matematiky, FEI, VŠB-TU Ostrava

Jak nelhat se statistikou? Martina Litschmannová Katedra aplikované matematiky, FEI, VŠB-TU Ostrava Jak nelhat se statistikou? Martina Litschmannová Katedra aplikované matematiky, FEI, VŠB-TU Ostrava Co je to statistika? teoretická disciplína, která se zabývá metodami sběru a analýzy dat Jak získat data?

Více

PSY117/454 Statistická analýza dat v psychologii Přednáška 10

PSY117/454 Statistická analýza dat v psychologii Přednáška 10 PSY117/454 Statistická analýza dat v psychologii Přednáška 10 TESTY PRO NOMINÁLNÍ A ORDINÁLNÍ PROMĚNNÉ NEPARAMETRICKÉ METODY... a to mělo, jak sám vidíte, nedozírné následky. Smrť Analýza četností hodnot

Více

Korelační a regresní analýza

Korelační a regresní analýza Korelační a regresní analýza Analýza závislosti v normálním rozdělení Pearsonův (výběrový) korelační koeficient: r = s XY s X s Y, kde s XY = 1 n (x n 1 i=0 i x )(y i y ), s X (s Y ) je výběrová směrodatná

Více

Testy pro porovnání vlastností dvou skupin

Testy pro porovnání vlastností dvou skupin Testy pro porovnání vlastností dvou skupin Petr Pošík Části dokumentu jsou převzaty (i doslovně) z Mirko Navara: Pravděpodobnost a matematická statistika, https://cw.felk.cvut.cz/lib/exe/fetch.php/courses/a6m33ssl/pms_print.pdf

Více

3.1 HISTORICKÉ ASPEKTY MIGRACE V PRAZE Martin Ouředníček, Ivana Přidalová

3.1 HISTORICKÉ ASPEKTY MIGRACE V PRAZE Martin Ouředníček, Ivana Přidalová 3.1 HISTORICKÉ ASPEKTY MIGRACE V PRAZE Martin Ouředníček, Ivana Přidalová Mapový list zachycuje stěžejní historické etapy vývoje migrace v Praze od meziválečného období do současnosti. Tematicky navazuje

Více

Číselné charakteristiky a jejich výpočet

Číselné charakteristiky a jejich výpočet Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz charakteristiky polohy charakteristiky variability charakteristiky koncetrace charakteristiky polohy charakteristiky

Více

Vznik a vývoj DDI. Struktura DDI. NESSTAR Systém pro publikování, prezentaci a analýzu dat. PhDr. Martin Vávra, Mgr. Tomáš Čížek

Vznik a vývoj DDI. Struktura DDI. NESSTAR Systém pro publikování, prezentaci a analýzu dat. PhDr. Martin Vávra, Mgr. Tomáš Čížek NESSTAR Systém pro publikování, prezentaci a analýzu dat PhDr. Martin Vávra, Mgr. Tomáš Čížek Vznik a vývoj DDI Potřeba standardizace popisu datových souborů v souvislosti s elektronickou archivací dat

Více

Aplikovaná statistika pro učitele a žáky v hodinách zeměpisu aneb jak využít MS Excel v praxi. Geografický seminář 30. března 2011 Pavel Bednář

Aplikovaná statistika pro učitele a žáky v hodinách zeměpisu aneb jak využít MS Excel v praxi. Geografický seminář 30. března 2011 Pavel Bednář Aplikovaná statistika pro učitele a žáky v hodinách zeměpisu aneb jak využít MS Excel v praxi Geografický seminář 30. března 2011 Pavel Bednář Výchozí stav Sebehodnocení práce s MS Excel studujícími oboru

Více

A 4 9 18 24 26 B 1 5 10 11 16 C 2 3 8 13 15 17 19 22 23 25 D 6 7 12 14 20 21

A 4 9 18 24 26 B 1 5 10 11 16 C 2 3 8 13 15 17 19 22 23 25 D 6 7 12 14 20 21 Příklad 1 Soutěž o nelepší akost výrobků obeslali čtyři výrobci A, B, C, D celkem 26 výrobky. Porota sestavila toto pořadí (uveden pouze původ výrobku od nelepšího k nehoršímu): Pořadí 1 2 3 4 5 6 7 8

Více

Stručný úvod do vybraných zredukovaných základů statistické analýzy dat

Stručný úvod do vybraných zredukovaných základů statistické analýzy dat Stručný úvod do vybraných zredukovaných základů statistické analýzy dat Statistika nuda je, má však cenné údaje. Neklesejme na mysli, ona nám to vyčíslí. Z pohádky Princové jsou na draka Populace (základní

Více

Statistika pro gymnázia

Statistika pro gymnázia Statistika pro gymnázia Pracovní verze učebního textu ZÁKLADNÍ POJMY Statistika zkoumá jevy (společenské, přírodní, technické) ve velkých statistických souborech. Prvky statistických souborů se nazývají

Více

SAMOSTATNÁ STUDENTSKÁ PRÁCE ZE STATISTIKY

SAMOSTATNÁ STUDENTSKÁ PRÁCE ZE STATISTIKY SAMOSTATÁ STUDETSKÁ PRÁCE ZE STATISTIKY Váha studentů Kučerová Eliška, Pazdeříková Jana septima červen 005 Zadání: My dvě studentky jsme si vylosovaly zjistit statistickým šetřením v celém ročníku septim

Více

Předpoklad o normalitě rozdělení je zamítnut, protože hodnota testovacího kritéria χ exp je vyšší než tabulkový 2

Předpoklad o normalitě rozdělení je zamítnut, protože hodnota testovacího kritéria χ exp je vyšší než tabulkový 2 Na úloze ukážeme postup analýzy velkého výběru s odlehlými prvky pro určení typu rozdělení koncentrace kyseliny močové u 50 dárců krve. Jaká je míra polohy a rozptýlení uvedeného výběru? Z grafických diagnostik

Více

aktivita A0705 Metodická a faktografická příprava řešení regionálních disparit ve fyzické dostupnosti bydlení v ČR

aktivita A0705 Metodická a faktografická příprava řešení regionálních disparit ve fyzické dostupnosti bydlení v ČR aktivita A0705 Metodická a faktografická příprava řešení regionálních disparit ve fyzické dostupnosti bydlení v ČR 1 aktivita A0705 Metodická a faktografická příprava řešení regionálních disparit ve fyzické

Více

Vliv regionálních rozdílů ve finanční dostupnosti bydlení na pracovně orientovanou migraci české populace

Vliv regionálních rozdílů ve finanční dostupnosti bydlení na pracovně orientovanou migraci české populace Vliv regionálních rozdílů ve finanční dostupnosti bydlení na pracovně orientovanou migraci české populace Martin LUX Petr SUNEGA Struktura prezentace Kontext k problému Návaznost na dříve řešený projekt

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

Národníinformačnístředisko pro podporu jakosti

Národníinformačnístředisko pro podporu jakosti Národníinformačnístředisko pro podporu jakosti OVĚŘOVÁNÍ PŘEDPOKLADU NORMALITY Doc. Ing. Eva Jarošová, CSc. Ing. Jan Král Používané metody statistické testy: Chí-kvadrát test dobré shody Kolmogorov -Smirnov

Více

GEOINFORMATICKÁ PODPORA CHARAKTERISTIKY OBYVATELSTVA ČESKÉHO SLEZSKA

GEOINFORMATICKÁ PODPORA CHARAKTERISTIKY OBYVATELSTVA ČESKÉHO SLEZSKA GEOINFORMATICKÁ PODPORA CHARAKTERISTIKY OBYVATELSTVA ČESKÉHO SLEZSKA Bakalářská práce SIRNÝ Lukáš Institut geoinformatiky VŠB - Technická univerzita Ostrava 17. Listopadu 15 708 33 Ostrava Poruba E mail:

Více

Cronbachův koeficient α nová adaptovaná metoda uvedení vlastností položkové analýzy deskriptivní induktivní parametrické

Cronbachův koeficient α nová adaptovaná metoda uvedení vlastností položkové analýzy deskriptivní induktivní parametrické Československá psychologie 0009-062X Metodologické požadavky na výzkumné studie METODOLOGICKÉ POŽADAVKY NA VÝZKUMNÉ STUDIE Výzkumné studie mají přinášet nová konkrétní zjištění získaná specifickými výzkumnými

Více

Kurz SPSS: Jednoduchá analýza dat. Jiří Šafr

Kurz SPSS: Jednoduchá analýza dat. Jiří Šafr Kurz SPSS: Jednoduchá analýza dat Jiří Šafr vytvořeno 29. 6. 2009 Dva základní typy statistiky 1. Popisná statistika: metody pro zjišťování a sumarizaci informací grfy, tabulky, popisné chrakteristiky

Více

Přednáška 9. Testy dobré shody. Grafická analýza pro ověření shody empirického a teoretického rozdělení

Přednáška 9. Testy dobré shody. Grafická analýza pro ověření shody empirického a teoretického rozdělení Přednáška 9 Testy dobré shody Grafická analýza pro ověření shody empirického a teoretického rozdělení χ 2 test dobré shody ověření, zda jsou relativní četnosti jednotlivých variant rovny číslům π 01 ;

Více

Testování hypotéz a měření asociace mezi proměnnými

Testování hypotéz a měření asociace mezi proměnnými Testování hypotéz a měření asociace mezi proměnnými Testování hypotéz Nulová a alternativní hypotéza většina statistických analýz zahrnuje různá porovnání, hledání vztahů, efektů Tvrzení, že efekt je nulový,

Více

6. Lineární regresní modely

6. Lineární regresní modely 6. Lineární regresní modely 6.1 Jednoduchá regrese a validace 6.2 Testy hypotéz v lineární regresi 6.3 Kritika dat v regresním tripletu 6.4 Multikolinearita a polynomy 6.5 Kritika modelu v regresním tripletu

Více

05/29/08 cvic5.r. cv5.dat <- read.csv("cvic5.csv")

05/29/08 cvic5.r. cv5.dat <- read.csv(cvic5.csv) Zobecněné lineární modely Úloha 5: Vzdělání a zájem o politiku cv5.dat

Více

Průzkumová analýza dat

Průzkumová analýza dat Průzkumová analýza dat Proč zkoumat data? Základ průzkumové analýzy dat položil John Tukey ve svém díle Exploratory Data Analysis (odtud zkratka EDA). Často se stává, že data, se kterými pracujeme, se

Více

ADDS cvičení 7. Pavlína Kuráňová

ADDS cvičení 7. Pavlína Kuráňová ADDS cvičení 7 Pavlína Kuráňová Analyzujte závislost věku obyvatel na místě kde nejčastěji tráví dovolenou. (dotazník dovolená, sloupce Jaký je Váš věk a Kde nejčastěji trávíte dovolenou) Analyzujte závislost

Více

Analýza dat s využitím MS Excel

Analýza dat s využitím MS Excel Analýza dat s využitím MS Excel Seminář aplikované statistiky Martina Litschmannová Několik fíglů na úvod Absolutní vs. relativní adresování změna pomocí F4 =$H$20 =H$20 =$H20 =H20 Posun po souvislé oblasti

Více

VNITROSKUPINOVÝ ROZPTYL. Je mírou variability uvnitř skupin Jiný název: průměr rozptylů Vypočítává se jako průměr rozptylů v jednotlivých skupinách

VNITROSKUPINOVÝ ROZPTYL. Je mírou variability uvnitř skupin Jiný název: průměr rozptylů Vypočítává se jako průměr rozptylů v jednotlivých skupinách ROZKLAD ROZPTYLU ROZKLAD ROZPTYLU Rozptyl se dá rozložit na vnitroskupinový a meziskupinový rozptyl. Celkový rozptyl je potom součet meziskupinového a vnitroskupinového Užívá se k výpočtu rozptylu, jestliže

Více

Vícerozměrné statistické metody

Vícerozměrné statistické metody Vícerozměrné statistické metody Smysl a cíle vícerozměrné analýzy dat a modelování, vztah jednorozměrných a vícerozměrných statistických metod Jiří Jarkovský, Simona Littnerová Průběh výuky 13 přednášek

Více

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D.

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D. Testování statistických hypotéz Ing. Michal Dorda, Ph.D. Testování normality Př. : Při simulaci provozu na křižovatce byla získána data o mezerách mezi přijíždějícími vozidly v [s]. Otestujte na hladině

Více

Statistika jako obor. Statistika. Popisná statistika. Matematická statistika TEORIE K MV2

Statistika jako obor. Statistika. Popisná statistika. Matematická statistika TEORIE K MV2 Statistika jako obor Statistika Statistika je vědní obor zabývající se zkoumáním jevů hromadného charakteru. Tím se myslí to, že zkoumaný jev musí příslušet určité části velkého množství objektů (lidí,

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

NEZAMĚSTNANOST V JEDNOTLIVÝCH KRAJÍCH ČR V LETECH 2000 2011

NEZAMĚSTNANOST V JEDNOTLIVÝCH KRAJÍCH ČR V LETECH 2000 2011 NEZAMĚSTNANOST V JEDNOTLIVÝCH KRAJÍCH ČR V LETECH 2000 2011 Markéta Nesrstová Abstrakt Nezaměstnanost vždy byla, je a bude závažným problémem. Míra nezaměstnanosti v České republice se v současné době

Více

Základní analýza dat. Úvod

Základní analýza dat. Úvod Základní analýza dat literatura: Hendl, J. 2006: Přehled statistických metod zpracování dat. Analýza a metaanalýza dat. Praha: Portál. Macháček, J. 2001: Studie k velkomoravské keramice. Metody, analýzy

Více

Úloha 1. Napište matici pro případ lineárního regresního spline vyjádřeného přes useknuté

Úloha 1. Napište matici pro případ lineárního regresního spline vyjádřeného přes useknuté Úloha 1. Napište matici pro případ lineárního regresního spline vyjádřeného přes useknuté polynomy pro případ dvou uzlových bodů ξ 1 = 1 a ξ 2 = 4. Experimentální body jsou x = [0.2 0.4 0.6 1.5 2.0 3.0

Více

MEZIREGIONÁLNÍ PŘEPRAVA NA ŽELEZNICI V ČR INTERREGINAL RAILWAY TRANSPORT IN CZECH REPUBLIC

MEZIREGIONÁLNÍ PŘEPRAVA NA ŽELEZNICI V ČR INTERREGINAL RAILWAY TRANSPORT IN CZECH REPUBLIC MEZIREGIONÁLNÍ PŘEPRAVA NA ŽELEZNICI V ČR INTERREGINAL RAILWAY TRANSPORT IN CZECH REPUBLIC Kateřina Pojkarová 1 Anotace:Článek se věnuje železniční přepravě mezi kraji v České republice, se zaměřením na

Více

Obsah. 3 Testy 31 3.1 z test... 32 3.2 z test 2... 33 3.3 t test... 34 3.4 t test 2s... 35

Obsah. 3 Testy 31 3.1 z test... 32 3.2 z test 2... 33 3.3 t test... 34 3.4 t test 2s... 35 Obsah 1 Popisná statistika 4 1.1 bas stat........................................ 5 1.2 mean.......................................... 6 1.3 meansq........................................ 7 1.4 sumsq.........................................

Více

SEXUALITA UŽIVATELŮ MARIHUANY OČIMA PARTNEREK

SEXUALITA UŽIVATELŮ MARIHUANY OČIMA PARTNEREK SEXUALITA UŽIVATELŮ MARIHUANY OČIMA PARTNEREK Mgr. Alexandra HROUZKOVÁ Katedra psychologie FFUK, Praha Prof. PhDr. Petr WEISS, PhD. Sexuologický ústav VFN a 1.LF UK, Praha ÚVODEM Konopné drogy jsou po

Více

STUDIJNÍ OPORY S PŘEVAŽUJÍCÍMI DISTANČNÍMI PRVKY PRO VÝUKU STATISTIKY PRVNÍ ZKUŠENOSTI. Pavel Praks, Zdeněk Boháč

STUDIJNÍ OPORY S PŘEVAŽUJÍCÍMI DISTANČNÍMI PRVKY PRO VÝUKU STATISTIKY PRVNÍ ZKUŠENOSTI. Pavel Praks, Zdeněk Boháč STUDIJNÍ OPORY S PŘEVAŽUJÍCÍMI DISTANČNÍMI PRVKY PRO VÝUKU STATISTIKY PRVNÍ ZKUŠENOSTI Pavel Praks, Zdeněk Boháč Katedra matematiky a deskriptivní geometrie, VŠB - Technická univerzita Ostrava 17. listopadu

Více

přesné jako tabulky, ale rychle a lépe mohou poskytnou názornou představu o důležitých tendencích a souvislostech.

přesné jako tabulky, ale rychle a lépe mohou poskytnou názornou představu o důležitých tendencích a souvislostech. 3 Grafické zpracování dat Grafické znázorňování je velmi účinný způsob, jak prezentovat statistické údaje. Grafy nejsou tak přesné jako tabulky, ale rychle a lépe mohou poskytnou názornou představu o důležitých

Více

vzorek1 0.0033390 0.0047277 0.0062653 0.0077811 0.0090141... vzorek 30 0.0056775 0.0058778 0.0066916 0.0076192 0.0087291

vzorek1 0.0033390 0.0047277 0.0062653 0.0077811 0.0090141... vzorek 30 0.0056775 0.0058778 0.0066916 0.0076192 0.0087291 Vzorová úloha 4.16 Postup vícerozměrné kalibrace Postup vícerozměrné kalibrace ukážeme na úloze C4.10 Vícerozměrný kalibrační model kvality bezolovnatého benzinu. Dle následujících kroků na základě naměřených

Více

10. Předpovídání - aplikace regresní úlohy

10. Předpovídání - aplikace regresní úlohy 10. Předpovídání - aplikace regresní úlohy Regresní úloha (analýza) je označení pro statistickou metodu, pomocí nichž odhadujeme hodnotu náhodné veličiny (tzv. závislé proměnné, cílové proměnné, regresandu

Více

Navrhování experimentů a jejich analýza. Eva Jarošová

Navrhování experimentů a jejich analýza. Eva Jarošová Navrhování experimentů a jejich analýza Eva Jarošová Obsah Základní techniky Vyhodnocení výsledků Experimenty s jedním zkoumaným faktorem Faktoriální experimenty úplné 2 N dílčí 2 N-p Experimenty pro studium

Více

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004.

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Testování hypotéz na základě jednoho a dvou výběrů 1 1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/004. Testování hypotéz Pokud nás zajímá zda platí, či neplatí tvrzení o určitém parametru,

Více

Seminarni prace. 2 3 stranky staci, dat nema byt 3 a nema jich byt pul milionu. k te seminarce

Seminarni prace. 2 3 stranky staci, dat nema byt 3 a nema jich byt pul milionu. k te seminarce Seminarni prace Popisná statistika, data nesmí být časovou řadou Zkoumat můžeme třeba mzdy, obraty atd. (takže možná QA?) Formát pdf, poslat nejpozději den před zkouškou. Podrobnější informace jsou na

Více

StatSoft Jak poznat vliv faktorů vizuálně

StatSoft Jak poznat vliv faktorů vizuálně StatSoft Jak poznat vliv faktorů vizuálně V tomto článku bychom se rádi věnovali otázce, jak poznat již z grafického náhledu vztahy a závislosti v analýze rozptylu. Pomocí následujících grafických zobrazení

Více

4.2.15 Funkce kotangens

4.2.15 Funkce kotangens 4..5 Funkce kotangens Předpoklady: 44 Pedagogická poznámka: Pokud nemáte čas, doporučuji nechat tuto hodinu studentům na domácí práci. Nedá se na tom nic zkazit a v budoucnu to není nikde příliš potřeba.

Více

METODICKÉ PROBLÉMY SLEDOVÁNÍ MIGRACE

METODICKÉ PROBLÉMY SLEDOVÁNÍ MIGRACE SLEDOVÁNÍ MIGRACE ZDENĚK ČERMÁK PROSTOROVÁ MOBILITA: TEORETICKÉ KONCEPTY A METODICKÉ PROBLÉMY Workshop, 4. června 2014 Albertov 6, Praha 2 Projekt Grantové agentury ČR 404/14/00393 EVIDENCE MIGRACE Průběžná

Více

Vícerozměrné metody. PSY117/454 Statistická analýza dat v psychologii Přednáška 12. Schematický úvod

Vícerozměrné metody. PSY117/454 Statistická analýza dat v psychologii Přednáška 12. Schematický úvod PSY117/454 Statistická analýza dat v psychologii Přednáška 12 Vícerozměrné metody Schematický úvod Co je na slově statistika tak divného, že jeho vyslovení tak často způsobuje napjaté ticho? William Kruskal

Více

Regresní analýza jednoduchá lineární regrese mnohonásobná lineární regrese logistická regrese

Regresní analýza jednoduchá lineární regrese mnohonásobná lineární regrese logistická regrese Regresní analýza jednoduchá lineární regrese mnohonásobná lineární regrese logistická regrese Regresní analýza korelační koeficient říká, že mezi dvěma proměnnými existuje souvislost - jsme schopni vyslovit

Více

Statistická analýza složek kvality bílého vína

Statistická analýza složek kvality bílého vína Statistická analýza složek kvality bílého vína Petr Voborník Fakulta informatiky a managementu, Katedra informatiky a kvantitativních metod Univerzita Hradec Králové, Rokitanského 62, 5 Hradec Králové,

Více

VÝVOJ VĚKOVÉ STRUKTURY OBYVATEL KRAJŮ ČESKÉ REPUBLIKY JAKO PŘÍLEŽITOST I HROZBA REGIONÁLNÍHO ROZVOJE

VÝVOJ VĚKOVÉ STRUKTURY OBYVATEL KRAJŮ ČESKÉ REPUBLIKY JAKO PŘÍLEŽITOST I HROZBA REGIONÁLNÍHO ROZVOJE VÝVOJ VĚKOVÉ STRUKTURY OBYVATEL KRAJŮ ČESKÉ REPUBLIKY JAKO PŘÍLEŽITOST I HROZBA REGIONÁLNÍHO ROZVOJE THE DEVELOPMENT OF THE AGE STRUCTURE OF THE POPULATION REGIONS OF THE CZECH REPUBLIC AS AN OPPORTUNITY

Více

IES FSV UK. Domácí úkol Pravděpodobnost a statistika I. Cyklistův rok

IES FSV UK. Domácí úkol Pravděpodobnost a statistika I. Cyklistův rok IES FSV UK Domácí úkol Pravděpodobnost a statistika I Cyklistův rok Radovan Fišer rfiser@gmail.com XII.26 Úvod Jako statistický soubor jsem si vybral počet ujetých kilometrů za posledních 1 dnů v mé vlastní

Více

EXPLORATORNÍ ANALÝZA DAT. 7. cvičení

EXPLORATORNÍ ANALÝZA DAT. 7. cvičení EXPLORATORNÍ ANALÝZA DAT 7. cvičení Teorie pravděpodobnosti x Statistika Teorie pravděpodobnosti popisuje zákonitosti týkající se náhodných jevů, používá se k modelování náhodností a neurčitostí, které

Více

t-test, Studentův párový test Ing. Michael Rost, Ph.D.

t-test, Studentův párový test Ing. Michael Rost, Ph.D. Testování hypotéz: dvouvýběrový t-test, Studentův párový test Ing. Michael Rost, Ph.D. Úvod do problému... Již známe jednovýběrový t-test, při kterém jsme měli k dispozici pouze jeden výběr. Můžeme se

Více

Demografický vývoj. VY_32_INOVACE_Z.1.01 PaedDr. Alena Vondráčková 1.pololetí školního roku 2013/2014. Člověk a společnost Geografie Zeměpis

Demografický vývoj. VY_32_INOVACE_Z.1.01 PaedDr. Alena Vondráčková 1.pololetí školního roku 2013/2014. Člověk a společnost Geografie Zeměpis Název vzdělávacího materiálu: Číslo vzdělávacího materiálu: Autor vzdělávací materiálu: Období, ve kterém byl vzdělávací materiál vytvořen: Vzdělávací oblast: Vzdělávací obor: Vzdělávací předmět: Tematická

Více

You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com)

You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com) Závislost náhodných veličin Úvod Předchozí přednášky: - statistické charakteristiky jednoho výběrového nebo základního souboru - vztahy mezi výběrovým a základním souborem - vztahy statistických charakteristik

Více

Modul Analýza síly testu Váš pomocník při analýze dat.

Modul Analýza síly testu Váš pomocník při analýze dat. 6..0 Modul Analýza síly testu Váš pomocník při analýze dat. Power Analysis and Interval Estimation Analýza síly testu Odhad velikosti vzorku Pokročilé techniky pro odhad intervalu spolehlivosti Rozdělení

Více

ZMĚNY V PROSTOROVÉM POHYBU OBYVATELSTVA MORAVSKOSLEZSKÉHO KRAJE 1

ZMĚNY V PROSTOROVÉM POHYBU OBYVATELSTVA MORAVSKOSLEZSKÉHO KRAJE 1 ZMĚNY V PROSTOROVÉM POHYBU OBYVATELSTVA MORAVSKOSLEZSKÉHO KRAJE 1 ABSTRACT Igor IVAN 1 ; Lubor TVRDÝ 2 The main goal of this paper is to show and to map the changes in spatial mobility of the people in

Více

Ovzduší a zdraví (2.část) determinanty zdraví, zdravotní ukazatele

Ovzduší a zdraví (2.část) determinanty zdraví, zdravotní ukazatele Ovzduší a zdraví (2.část) determinanty zdraví, zdravotní ukazatele Vážení čtenáři, Krajská hygienická stanice Moravskoslezského kraje se sídlem v Ostravě tímto příspěvkem pokračuje v seriálu článků na

Více

Centrum pro zjišťování výsledků vzdělávání CERMAT Jankovcova 933/63, 170 00 Praha 7, tel.: +420 224 507 507 www.cermat.cz, www.novamaturita.

Centrum pro zjišťování výsledků vzdělávání CERMAT Jankovcova 933/63, 170 00 Praha 7, tel.: +420 224 507 507 www.cermat.cz, www.novamaturita. Analýza výsledků testu - slovníček aktuálních pojmů. Úlohy zařazované do testů jsou různého typu. V uzavřených úlohách a uzavřených podúlohách svazku žák vybírá odpověď z několika nabízených alternativ.

Více

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení 2 Zpracování naměřených dat Důležitou součástí každé experimentální práce je statistické zpracování naměřených dat. V této krátké kapitole se budeme věnovat určení intervalů spolehlivosti získaných výsledků

Více

HODNOCENÍ JIHOČESKÉHO KRAJE Z HLEDISKA CEN NEMOVITOSTÍ URČENÝCH PRO BYDLENÍ V NÁVAZNOSTI NA EKONOMICKÝ RŮST REGIONU 1

HODNOCENÍ JIHOČESKÉHO KRAJE Z HLEDISKA CEN NEMOVITOSTÍ URČENÝCH PRO BYDLENÍ V NÁVAZNOSTI NA EKONOMICKÝ RŮST REGIONU 1 HODNOCENÍ JIHOČESKÉHO KRAJE Z HLEDISKA CEN NEMOVITOSTÍ URČENÝCH PRO BYDLENÍ V NÁVAZNOSTI NA EKONOMICKÝ RŮST REGIONU 1 Ivana Staňková, Tomáš Volek Jihočeská univerzita v Českých Budějovicích, Zemědělská

Více

Písemná práce k modulu Statistika

Písemná práce k modulu Statistika The Nottingham Trent University B.I.B.S., a. s. Brno BA (Hons) in Business Management Písemná práce k modulu Statistika Číslo zadání: 144 Autor: Zdeněk Fekar Ročník: II., 2005/2006 1 Prohlašuji, že jsem

Více

Simulace. Simulace dat. Parametry

Simulace. Simulace dat. Parametry Simulace Simulace dat Menu: QCExpert Simulace Simulace dat Tento modul je určen pro generování pseudonáhodných dat s danými statistickými vlastnostmi. Nabízí čtyři typy rozdělení: normální, logaritmicko-normální,

Více

Modul Základní statistika

Modul Základní statistika Modul Základní statistika Menu: QCExpert Základní statistika Základní statistika slouží k předběžné analýze a diagnostice dat, testování předpokladů (vlastností dat), jejichž splnění je nutné pro použití

Více

4ST201 STATISTIKA CVIČENÍ Č. 7

4ST201 STATISTIKA CVIČENÍ Č. 7 4ST201 STATISTIKA CVIČENÍ Č. 7 testování hypotéz parametrické testy test hypotézy o střední hodnotě test hypotézy o relativní četnosti test o shodě středních hodnot testování hypotéz v MS Excel neparametrické

Více

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1 Logistická regrese Menu: QCExpert Regrese Logistická Modul Logistická regrese umožňuje analýzu dat, kdy odezva je binární, nebo frekvenční veličina vyjádřená hodnotami 0 nebo 1, případně poměry v intervalu

Více

MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ

MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ Má-li analytický výsledek objektivně vypovídat o chemickém složení vzorku, musí splňovat určitá kriteria: Mezinárodní metrologický slovník (VIM 3),

Více

Metodologie pedagogického výzkumu I

Metodologie pedagogického výzkumu I Metodologie pedagogického výzkumu I vyučující Hana Voňková, Katedra pedagogiky a Ústav výzkumu a rozvoje vzdělávání (zde uveden odborný profil), PedF UK email h.vonkova@gmail.com, hana.vonkova@pedf.cuni.cz

Více

FACTORS AFFECTING THE DIRECT HOUSEHOLD EXPENDITURES ON HEALTH. Jitka Bartošová

FACTORS AFFECTING THE DIRECT HOUSEHOLD EXPENDITURES ON HEALTH. Jitka Bartošová FAKTORY OVLIVŇUJÍCÍ PŘÍMÉ VÝDAJE DOMÁCNOSTÍ NA ZDRAVÍ FACTORS AFFECTING THE DIRECT HOUSEHOLD EXPENDITURES ON HEALTH Jitka Bartošová Abstract This paper focuses on the search of factors affecting direct

Více

Trh práce v Plzeňském kraji

Trh práce v Plzeňském kraji Trh práce v Plzeňském kraji Regionální rozvojová agentura Plzeňského kraje, o. p. s. Ing. Pavel Beneš Mgr. Martina Robotková Září 2011 Obsah: Úvod... 3 1. Postavení Plzeňského kraje v rámci ČR z hlediska

Více

Aktualizace 2014 STUDIE SÍDELNÍ STRUKTURY MORAVSKOSLEZSKÉHO KRAJE. Příloha - E Aktualizační úložiště. INSTITUT REGIONÁLNÍCH INFORMACÍ, s.r.o.

Aktualizace 2014 STUDIE SÍDELNÍ STRUKTURY MORAVSKOSLEZSKÉHO KRAJE. Příloha - E Aktualizační úložiště. INSTITUT REGIONÁLNÍCH INFORMACÍ, s.r.o. Aktualizace 2014 STUDIE SÍDELNÍ STRUKTURY MORAVSKOSLEZSKÉHO KRAJE Příloha - E Aktualizační úložiště INSTITUT REGIONÁLNÍCH INFORMACÍ, s.r.o. 4. 2. 2015 1 Tato část je nově zpracovanou přílohou ke Studii

Více

Pojem a úkoly statistiky

Pojem a úkoly statistiky Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Pojem a úkoly statistiky Statistika je věda, která se zabývá získáváním, zpracováním a analýzou dat pro potřeby

Více

ANALÝZA POPTÁVKY PO PIVU NA ZÁKLADĚ RODINNÝCH ÚČTŮ. D. Žídková katedra zemědělské ekonomiky, PEF Vysoká škola zemědělská, 165 21 Praha 6 - Suchdol

ANALÝZA POPTÁVKY PO PIVU NA ZÁKLADĚ RODINNÝCH ÚČTŮ. D. Žídková katedra zemědělské ekonomiky, PEF Vysoká škola zemědělská, 165 21 Praha 6 - Suchdol ANALÝZA POPTÁVKY PO PIVU NA ZÁKLADĚ RODINNÝCH ÚČTŮ. D. Žídková katedra zemědělské ekonomiky, PEF Vysoká škola zemědělská, 165 21 Praha 6 - Suchdol Anotace: Příspěvek charakterizuje poptávku po pivu v domácnostech

Více

Kvalita v laboratorní a kontrolní praxi

Kvalita v laboratorní a kontrolní praxi Kvalita v laboratorní a kontrolní praxi Část 3: Chyby a hodnocení výsledků měření Vladimír Kocourek Praha, únor 2015 Zkoušení (analýza) v laboratoři Výroba Výzkum a vývoj (R&D) Obchodování (dodávání) Ochrana

Více

Spokojenost se životem

Spokojenost se životem SEMINÁRNÍ PRÁCE Spokojenost se životem (sekundárních analýza dat sociologického výzkumu Naše společnost 2007 ) Předmět: Analýza kvantitativních revize Šafr dat I. Jiří (18/2/2012) Vypracoval: ANONYMIZOVÁNO

Více

Experimentáln. lní toků ve VK EMO. XXX. Dny radiační ochrany Liptovský Ján 10.11.-14.11.2008 Petr Okruhlica, Miroslav Mrtvý, Zdenek Kopecký. www.vf.

Experimentáln. lní toků ve VK EMO. XXX. Dny radiační ochrany Liptovský Ján 10.11.-14.11.2008 Petr Okruhlica, Miroslav Mrtvý, Zdenek Kopecký. www.vf. Experimentáln lní měření průtok toků ve VK EMO XXX. Dny radiační ochrany Liptovský Ján 10.11.-14.11.2008 Petr Okruhlica, Miroslav Mrtvý, Zdenek Kopecký Systém měření průtoku EMO Měření ve ventilačním komíně

Více

PROJEKCE OBYVATELSTVA ČESKÉ REPUBLIKY 2009-2065

PROJEKCE OBYVATELSTVA ČESKÉ REPUBLIKY 2009-2065 PROJEKCE OBYVATELSTVA ČESKÉ REPUBLIKY 29-265 1. Demografická konference Ph.D. studentů demografie Praha, 26.11.29 Český statistický úřad, oddělení demografie PROJEKCE ČSÚ 29 ZÁKLADNÍ FAKTA vypracována

Více

Prognóza školské mládeže v Městské části Praha 9 do roku 2020

Prognóza školské mládeže v Městské části Praha 9 do roku 2020 Přírodovědecká fakulta Univerzity Karlovy v Praze Katedra demografie a geodemografie Prognóza školské mládeže v Městské části Praha 9 do roku 2020 RNDr. Klára Hulíková Tesárková, Ph.D., RNDr. Olga Sivková,

Více

VYUŽITÍ MATLAB WEB SERVERU PRO INTERNETOVOU VÝUKU ANALÝZY DAT A ŘÍZENÍ JAKOSTI

VYUŽITÍ MATLAB WEB SERVERU PRO INTERNETOVOU VÝUKU ANALÝZY DAT A ŘÍZENÍ JAKOSTI VYUŽITÍ MATLAB WEB SERVERU PRO INTERNETOVOU VÝUKU ANALÝZY DAT A ŘÍZENÍ JAKOSTI Aleš Linka 1, Petr Volf 2 1 Katedra textilních materiálů, FT TUL, 2 Katedra aplikované matematiky, FP TUL ABSTRAKT. Internetové

Více

Me neˇ nezˇ minimum ze statistiky Michaela S ˇ edova KPMS MFF UK Principy medicı ny zalozˇene na du kazech a za klady veˇdecke prˇı pravy 1 / 76

Me neˇ nezˇ minimum ze statistiky Michaela S ˇ edova KPMS MFF UK Principy medicı ny zalozˇene na du kazech a za klady veˇdecke prˇı pravy 1 / 76 1 / 76 Méně než minimum ze statistiky Michaela Šedová KPMS MFF UK Principy medicíny založené na důkazech a základy vědecké přípravy Příklad Studie syndromu náhodného úmrtí dětí. Dvě skupiny: Děti, které

Více