STATISTIKA MIGRANTŮ PRO REGIONY V MORAVSKOSLEZSKÉM KRAJI A PRO KRAJ V OBDOBÍ

Rozměr: px
Začít zobrazení ze stránky:

Download "STATISTIKA MIGRANTŮ PRO REGIONY V MORAVSKOSLEZSKÉM KRAJI A PRO KRAJ V OBDOBÍ 1992-2005"

Transkript

1 VYSOKÁ ŠKOLA BÁŇSKÁ - TECHNICKÁ UNIVERZITA OSTRAVA Hornicko-geologická fakulta institut geoinformatiky STATISTIKA MIGRANTŮ PRO REGIONY V MORAVSKOSLEZSKÉM KRAJI A PRO KRAJ V OBDOBÍ Speciální metody analýzy dat GN260 Igor IVAN

2 Úvod Část tohoto projektu bude součástí diplomové práce s názvem Analýzy vývoje migrace obyvatelstva v Moravskoslezském kraji. Data, která jsou zde použita pocházejí z tzv. běžné evidence migrace. Tyto záznamy vycházejí z povinnosti občana k přihlášení se k trvalému pobytu Hlášení o stěhování které zpracovávají matriky, resp. ČSÚ. Tento datový zdroj umožňuje, kromě územní lokalizace, také analyzovat migranta podle některých základních demografických a socioekonomických znaků. V první kapitole, která se zabývá explorační analýzou, budu zkoumat zvlášť dvě skutečnosti. Jelikož bych rád využil část projektu v diplomové práci, tak jednotlivé grafy a slovní vyhodnocení grafů budou zaměřeny na analýzu přistěhovalých a vystěhovalých do/z jednotlivých regionů 1 MSK v analyzovaném období Ve druhé části projektu, která již nebude součástí diplomové práce, se program zabývá počty přistěhovalých a vystěhovalých do/z MSK jako celku a to opět v období regionů, které byly vytvořeny v téže diplomové práci podle metodiky Martina Hampla. Data pro vytvoření jednotlivých regionů pochází ze Sčítání domů, lidu a bytů z roku

3 3

4 Jednorozměrná explorační analýza dat V této části se budeme zabývat vývojem přistěhovalých a vystěhovalých v jednotlivých letech a regionech. Pro každý z roků byly vypočteny základní statistické charakteristiky. Histogram popisuje vývoj počtu přistěhovalých a vystěhovalých do, z regionů v MSK. Jednotlivé grafy musely být rozděleny do dvou samostatných oddílů z nichž každý má jiný rozsah na ose y. Důvodem je rozdílný počet migrantů v regionu Ostravsko je řádově 4x více migrantů než v ostatních regionech. Na první pohled je patrné, že ve všech regionech převyšuje počet vystěhovalých ty přistěhované. Lze tedy konstatovat, že migrační saldo (rozdíl přistěhovalí - vystěhovalí) je negativní obyvatelstvo ztrácí na migraci. Nejlépe nám vychází dva regiony Frýdecko-Místecko a Novojičínsko. Obzvláště prvně jmenovaný region je v posledních letech v kladných hodnotách migračního salda a to zhruba od roku Tento trend se dá vysvětlit tzv. deurbanizací. Mezi hlavní znaky deurbanizace patří velké snižování počtu obyvatelstva v centrech měst i vnějších městských částech. Dochází ke stěhování na venkov, do menších měst, do nových měst nebo do metropolí. Novojičínsko mělo vyrovnaný stav zhruba v druhé polovině 90. let, ale poté znova propadlo do záporných čísel. Jednoznačně nejhůře je na tom region Ostravsko a Bruntálsko a v posledních letech také Opavsko. U Ostravska se to dá vysvětlit právě již výše zmíněnou deurbanizací, u Bruntálska patrně nízkou životní úrovní, velkým procentem nezaměstnaných. Lze také vyčíst útlum v migračních pohybech vůbec a to v období druhé poloviny 90. let, kdy ve všech regionech je patrný propad. V posledních letech se opět čísla zvětšují, bohužel v některých regionech pouze ta o vystěhovalých. 4

5 5

6 6

7 Jak bylo již zmíněno výše, tak právě na těchto histogramech je patrný negativní vývoj migrace v jednotlivých regionech MSK, vyjímaje regionu Frýdek-Místek. Zde po roce 2000 je patrný obrat v migračním vývoji. 7

8 U výsečových grafů je cílem analyzovat cíle přistěhovalců, respektive odkud se vystěhovalci vystěhovávají. Opět se jedná o totožné období, jako u předchozí analýzy a to roky Tyto výsledky nám bohužel neukazují nějaké zásadní změny ve vývoji migrace. Po celou dobu je jasným cílem migrantů region Ostravsko a to většinou kolem 48% všech přistěhovalých. Toto je způsobeno velkým počtem obyvatel v tomto regionu a tak přímoúměrným větším počtem migrantů. Zajímavější je ale souboj o druhé místo mezi regiony Novojičínsko a Frýdeckomístecko. Opět rok 2000 zde hraje hraniční roli. Počínaje tímto rokem se dostává na druhé místo Frýdeckomístecko, což opět potvrzuje myšlenku deurbanizace. Pokud se podíváme na koláčové grafy, které se týkají 8

9 vystěhovalých, tak jsou výsledky obdobné, jako u přistěhovalých. Jasně na prvním místě je Ostravsko, ale tentokráte je podíl na celkovém čísle vystěhovalých vyšší a to zhruba 49% a v posledních letech se dostává přes 50%. Na druhém místě zůstává po celou dobu analýzy Novojíčínsko. Zajímavá je opět situace u Frýdecko- Místecka. U toho se podíl vystěhovaných postupně snižuje a postupně se přibližuje k Opavsku, u kterého se naopak podíl zvyšuje. V roce 1992 činil rozdíl mezi těmito regiony 2,5% a v roce 2005 už jen 0,26%. Pokud se podíváme na další regiony, tak je zajímavé pozorovat, jak si v jednotlivých letech vyměňují vzájemně pořadí regiony Třinecko a Bruntálsko. V dalším kroku se dostáváme k liniovým grafům. Ty jsou, stejně jako sloupcové, rozděleny do dvou částí. Opět se potvrzuje předchozí 9

10 zjištění. Většina regionů má záporné migrační saldo. Tento graf nám navíc hezky ukáže vzrůstající rozdíl mezi počtem přistěhovaných a vystěhovaných. Toto je patrné zejména u regionu Ostravsko a Bruntálsko. Obzvláště u Ostravska je rozdíl postupem let narůstající. U Opavska je vývoj relativně totožný po celou dobu analýzy, bohužel rovněž negativní. Novojičínsko má podobný vývoj jako Krnovsko, dobou se střídají období, kdy je saldo pozitivní s obdobím s negativním saldem. Opět výjimečný je region Frýdecko- Místecko. I zde se ukazuje změna ve vývoji regionu zhruba od roku 2000, kdy se střídá období s negativním saldem s obdobím s pozitivním stavem. I u těchto grafů je patrný propad v migračním chování v polovině devadesátých let. 10

11 11

12 Rok Platné 7,00 7,00 7,00 7,00 7,00 7,00 7,00 N Chybějící 0,00 0,00 0,00 0,00 0,00 0,00 0,00 Průměr 3726, , , , , , ,14 Medián 2182, , , , , , ,00 Dolní kvartil 1790, , , , , , ,00 Horní kvartil 3265, , , , , , ,00 Směrodatná odchylka 4214, , , , , , ,45 Minimum 956, ,00 877,00 760,00 735,00 834,00 710,00 Maximum 13127, , , , , , ,00 Sum 26088, , , , , , ,00 Rok Platné 7,00 7,00 7,00 7,00 7,00 7,00 7,00 N Chybějící 0,00 0,00 0,00 0,00 0,00 0,00 0,00 Průměr 2557, , , , , , ,86 Medián 1676, , , , , , ,00 Dolní kvartil 1307, , , , , , ,00 Horní kvartil 2106, , , , , , ,00 Směrodatná odchylka 2764, , , , , , ,97 Minimum 685,00 777,00 728,00 688,00 707,00 750,00 764,00 Maximum 8734, , , , , , ,00 Suma 17904, , , , , , ,00 Tabulka 1 - Explorační analýza pro přistěhovalé do MSK V této části se analýza liší od těch předchozích. Jak již bylo uvedeno v úvodu, tak počínaje touto pasáží se analýza bude věnovat MSK jako celku a nebude ho rozdělovat do jednotlivých regionů. Tato tabulka ukazuje statistické vyhodnocení vývoje v počtu přistěhovalých do MSK za jednotlivé roky v období I zde jde vidět pokles v počtu přistěhovalých do MSK, kde minima dosahuje v roce Zároveň lze 12

13 vidět, jak se jednotlivé migrační toky v období druhé poloviny 90. let zmenšují a počínaje roku 2000 se opět začínají růst. Toto nám ukazuje medián, který se postupně zmenšuje a ke konci analýzy opět roste. To, že je medián menší než průměr ukazuje na extrémně velké hodnoty v počtu přistěhovalých. Bude se jistě jednat opět o region Ostravsko, kam bude přicházet řádově více migrantů než například do regionu Krnovsko. Taky rozdíl mezi dolním kvartilem a mediánem je mnohem menší než naopak rozdíl mezi horním kvartilem a mediánem, což opět potvrzuje myšlenku o rapidně větším množství menších migračních toků. Vysvětlení pojmů Průměr součet všech hodnot vydělený jejich počtem Medián 2 je hodnota, jež dělí řadu podle velikosti seřazených výsledků na dvě stejně početné poloviny. Jestliže n je sudé číslo, pak medián odpovídá x = 0,5( x + x ). Jestliže n je liché číslo, pak x = x ( n + 1). n n Dolní a horní kvartil oddělují ze statistického souboru čtvrtiny Směrodatná odchylka vypovídá o tom, jak moc se od sebe navzájem liší typické případy v souboru zkoumaných čísel. Je-li malá, jsou si prvky souboru většinou navzájem podobné, a naopak velká směrodatná odchylka signalizuje velké vzájemné odlišnosti. Směrodatná odchylka je nejužívanější míra variability. 2 2 Zdroj: HENDL Jan: Přehled statistických metod zpracování dat. Praha, 1. vydání, ISBN stran 13

14 Také v této pasáži se analýza zabývá Moravskoslezským krajem jako celkem a přestává ho, až na jednu výjimku u jednofaktorové analýzy rozptylu ANOVA, dělit do jednotlivých regionů. Nyní následuje explorační analýza pro přistěhovalé a vystěhovalé do/z MSK pro analyzované období Stem-and-Leaf Display for PRISTEHOVALI: unit = 100,0 1 2 represents 1200,0 Summary Statistics for PRISTEHOVALI (7) HI 4046,0 4361,0 Počet sledování 14 Průměrný počet 3021,5 přistěhovalých Směrodatná 545,185 odchylka Minimum 2506,0 Maximum 4361,0 Je vidět, že počty přistěhovalých se v analyzovaném období pohybují nejčastěji v intervalu migrantů. Z krabicového grafu jsou patrné dvě odlehlé hodnoty, které přesahují hodnotu Právě tyto dvě extrémní hodnoty zvyšují hodnotu průměru nad medián. Tyto hodnoty jsou z počátku analýzy z roku 1992 a Dá se říci, že v té době byl ještě charakter MSK jiný než v dalších letech, jelikož průmyslový útlum byl teprve v začátcích. 14

15 Graf Stem-and-Leaf znázorňuje data podobně jako histogram četností. Oproti histogramu ale navíc prezentuje zjištěná data s přesnosti na stovky přistěhovalých. Hodnoty umístěné ve sloupci před lomítky představuji tisíce přistěhovalých. Do sloupce za lomítky pak jsou zapsány stovky přistěhovalých pro příslušné hodnoty před lomítky. Např. druhý řádek tak odpovídá sedmi zjištěným hodnotám 2600 a 6 x 2700 přistěhovalých. Graf zároveň znázorňuje dvě odlehlé hodnoty o velikosti 4046,0 a 4361,0. Stem-and-Leaf Display for VYSTEHOVALI: unit = 100,0 1 2 represents 1200, (4) Summary Statistics for VYSTEHOVALI Počet sledování 14 Průměrný počet 4818,14 vystěhovalých Směrodatná 455,164 odchylka Minimum 4195,0 Maximum 5632,0 Malý rozdíl mezi průměrem a mediánem zapříčinil, že oproti výsledkům pro přistěhovalé se zde nevyskytují extrémní hodnoty. Také histogram naznačuje vyrovnanější vývoj, bez žádných extrémních výkyvů, pro vystěhovalé než pro přistěhovalé. 15

16 Dvouvýběrový test střední hodnoty: Budeme testovat, zda na základě dat o počtu přistěhovalých/vystěhovalých do/z kraje v období lze prohlásit, že se střední hodnota počtu přistěhovalých a vystěhovalých liší. Jako vstupní údaje jsou potřeba: Přistěhovalí Vystěhovalí Počet sledování Průměrná hodnota 3021, ,14 Směrodatná odchylka 545,19 455,16 Testujeme hypotézu o rovnosti středních hodnot: H 0 : µ 1 = µ 2 přistěhovalí = vystěhovalí Oproti alternativě: H A : µ 1 < µ 2 přistěhovalí < vystěhovalí Hypothesis Tests Sample means = 3021,5 and 4818,14 Sample standard deviations = 545,16 and 455,16 Sample sizes = 14 and 14 95,0% upper confidence bound for difference between means: -1796, ,748 [-1472,89] Null Hypothesis: difference between means = 0,0 Alternative: less than Computed t statistic = -9,46536 P-Value = 3,2864E-10 Reject the null hypothesis for alpha = 0,05. Zamítáme hypotézu H 0. Z dodaného vzorku 14 pozorování pro přistěhovalé a vystěhovalé do/z kraje, lze konstatovat, že je více vystěhovalých než přistěhovalých, což potvrzuje demografické analýzy v úvodu této práce obyvatelstva v MSK ubývá díky převažující migraci ven z kraje.

17 Jednofaktorová analýza rozptylu ANOVA Analýza zda existuje závislost mezi počtem přistěhovalých a jednotlivými regiony v MSK v období Testujeme hypotézu: H 0 : µ 1 = µ 2 = µ 3 = µ 4 = µ 5 = µ 6 = µ 7 H A : neplatí H 0 kde µ 1 je střední hodnota počtu přistěhovalých do regionu Bruntál µ 2 je střední hodnota počtu přistěhovalých do regionu Frýdek-Místek µ 3 je střední hodnota počtu přistěhovalých do regionu Krnov µ 4 je střední hodnota počtu přistěhovalých do regionu Nový Jičín µ 5 je střední hodnota počtu přistěhovalých do regionu Opava µ 6 je střední hodnota počtu přistěhovalých do regionu Ostrava µ 7 je střední hodnota počtu přistěhovalých do regionu Třinec ANOVA Table Source Sum of Squares Df Mean Square F-Ratio P-Value Between groups 7,53154E8 6 1,25526E8 447,00 0,0000 Within groups 2,55542E , Total (Corr.) 7,78709E8 97 P-value je menší než 0,05, tedy existuje statisticky významný rozdíl mezi středními hodnotami jednotlivých tříd, a proto budu dále specifikovat bližší určení rozdílů mezi jednotlivými třídami. 17

18 Multiple Range Tests Method: 95,0 percent LSD Count Mean Homogeneous Groups Krnov ,357 X Bruntál ,0 X Třinec ,29 XX Opava ,79 X Frýdek_Místek ,29 X Nový Jičín ,07 X Ostrava ,57 X Z výsledků jednofaktorové analýzy rozptylu je jasně patrné, že kvůli extrémním výsledkům pro region Ostrava, jsou rozdíly mezi výsledky pro ostatní regiony nevýrazné. Proto nyní bude tatáž analýza provedena opět a region Ostrava z ní bude vyloučen, aby výsledky byly přesvědčivější a názornější. 18

19 ANOVA Table Source Sum of Squares Df Mean Square F-Ratio P-Value Between groups 2,53614E7 5 5,07228E6 86,23 0,0000 Within groups 4,5884E ,7 Total (Corr.) 2,99498E7 83 Multiple Range Tests Method: 95,0 percent LSD Count Mean Homogeneous Groups Krnov ,357 X Bruntál ,0 X Třinec ,29 X Opava ,79 X Frýdek_Místek ,29 X Nový Jičín ,07 X 19

20 Z výše uvedených údajů je zřejmé, že existuje závislost mezi počtem přistěhovalých osob a regionem do kterého míří. Jsou viditelné zajímavé rozdíly mezi počtem přistěhovalých v jednotlivých regionech. Osamocený je region Krnov (také region Ostrava, který je z analýzy vyloučena). U ostatních regionů je vidět určitá podobnost. Podle analýzy počtu přistěhovalých tvoří regiony homogenní skupiny: Bruntál Třinec Třinec Opava Nový Jičín Frýdek-Místek. Tento závěr potvrzuje také grafické srovnání 95% intervalů spolehlivosti pro jednotlivé střední hodnoty, kde jsou jednotlivé skupiny označeny barevně. 20

21 Regrese Pokusíme se zjistit, zda-li existuje nějaká závislost mezi počtem přistěhovalých a vystěhovalých v MSK v období Pokud existuje, tak určíme, jak je významná. Simple Regression - PRISTEHOVALI vs. VYSTEHOVALI Dependent variable: PRISTEHOVALI Independent variable: VYSTEHOVALI Linear model: Y = a + b*x Coefficients Least Squares Standard T Parameter Estimate Error Statistic P-Value Intercept 227, ,78 0, ,8789 Slope 0, , , ,0794 Analysis of Variance Source Sum of Squares Df Mean Square F-Ratio P-Value Model , , 3,67 0,0794 Residual 2,95849E , Total (Corr.) 3,86395E6 13 Correlation Coefficient = 0,48408 R-squared = 23,4334 percent R-squared (adjusted for d.f.) = 17,0528 percent Standard Error of Est. = 496,529 Mean absolute error = 378,418 Durbin-Watson statistic = 0, (P=0,0000) Lag 1 residual autocorrelation = 0, V tabulce ANOVA vyšlo p-value vyšší než 0,05 (přesněji 0,0794), tudíž nemá smysl vůbec žádnou regresi provádět, neboť proměnné X a Y jsou nezávislé (regresní křivka specifikuje typ závislosti mezi proměnnými. Nemá tedy smysl ji dělat pro nezávislé proměnné). Koeficient R-squared udává, jak těsná je závislost mezi proměnnými X, Y, resp. jak přesné je nahrazení závislosti zvolenou regresní křivkou. Čím je R-squared blíže jedničce, o to přesnější aproximaci se jedná. Pokud je R-squared blízko nule, je zvolená funkce nevhodná pro aproximaci dané závislosti anebo mezi uvažovanými veličinami vůbec neexistuje těsná závislost, což je tento případ, jelikož R-squared vyšlo 23,4334%. 21

Zpracování studie týkající se průzkumu vlastností statistických proměnných a vztahů mezi nimi.

Zpracování studie týkající se průzkumu vlastností statistických proměnných a vztahů mezi nimi. SEMINÁRNÍ PRÁCE Zadání: Data: Statistické metody: Zpracování studie týkající se průzkumu vlastností statistických proměnných a vztahů mezi nimi. Minimálně 6 proměnných o 30 pozorováních (z toho 2 proměnné

Více

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická

Více

Stav Svobodný Rozvedený Vdovec. Svobodná 37 10 6. Rozvedená 8 12 8. Vdova 5 8 6

Stav Svobodný Rozvedený Vdovec. Svobodná 37 10 6. Rozvedená 8 12 8. Vdova 5 8 6 1. Příklad Byly sledovány rodinné stavy nevěst a ženichů při uzavírání sňatků a byla vytvořena následující tabulka četností. Stav Svobodný Rozvedený Vdovec Svobodná 37 10 6 Rozvedená 8 12 8 Vdova 5 8 6

Více

4ST201 STATISTIKA CVIČENÍ Č. 10

4ST201 STATISTIKA CVIČENÍ Č. 10 4ST201 STATISTIKA CVIČENÍ Č. 10 regresní analýza - vícenásobná lineární regrese korelační analýza Př. 10.1 Máte zadaný výstup regresní analýzy závislosti závisle proměnné Y na nezávisle proměnné X. Doplňte

Více

Vysoká škola báňská technická univerzita Ostrava. Fakulta elektrotechniky a informatiky

Vysoká škola báňská technická univerzita Ostrava. Fakulta elektrotechniky a informatiky Vysoká škola báňská technická univerzita Ostrava Fakulta elektrotechniky a informatiky Bankovní účty (semestrální projekt statistika) Tomáš Hejret (hej124) 18.5.2013 Úvod Cílem tohoto projektu, zadaného

Více

veličin, deskriptivní statistika Ing. Michael Rost, Ph.D.

veličin, deskriptivní statistika Ing. Michael Rost, Ph.D. Vybraná rozdělení spojitých náhodných veličin, deskriptivní statistika Ing. Michael Rost, Ph.D. Třídění Základním zpracováním dat je jejich třídění. Jde o uspořádání získaných dat, kde volba třídícího

Více

31. 3. 2014, Brno Hanuš Vavrčík Základy statistiky ve vědě

31. 3. 2014, Brno Hanuš Vavrčík Základy statistiky ve vědě 31. 3. 2014, Brno Hanuš Vavrčík Základy statistiky ve vědě Motto Statistika nuda je, má však cenné údaje. strana 3 Statistické charakteristiky Charakteristiky polohy jsou kolem ní seskupeny ostatní hodnoty

Více

ÚKOL 2 1886 22 5,77 5,00 5 2,531,003,056 -,869,113

ÚKOL 2 1886 22 5,77 5,00 5 2,531,003,056 -,869,113 ÚKOL 2 Jméno a příjmení: UČO: Imatrik. ročník: Úkol 2.1: V souboru EVS99_cvicny.sav zjistěte, zdali rozložení názoru na to, kdo by měl být odpovědný za zajištění bydlení (proměnná q54h), je normální. Řešte

Více

Radovan Szurman, szu025. Statistika I Semestrální projekt. Pevné disky

Radovan Szurman, szu025. Statistika I Semestrální projekt. Pevné disky Radovan Szurman, szu025 Statistika I Semestrální projekt Pevné disky Úvod V tomto referátu se pokusím s pomocí různých nástrojů statistiky rozebrat situaci na trhu na poli pevných disků a také poukázat

Více

Analýza dat z dotazníkových šetření

Analýza dat z dotazníkových šetření Analýza dat z dotazníkových šetření Cvičení 6. Rozsah výběru Př. Určete minimální rozsah výběru pro proměnnou věk v souboru dovolena, jestliže 95% interval spolehlivost průměru proměnné nemá být širší

Více

C V I Č E N Í ZE STATISTIKY PRO BIOLOGY:

C V I Č E N Í ZE STATISTIKY PRO BIOLOGY: C V I Č E N Í ZE STATISTIKY PRO BIOLOGY: S B Í R K A P Ř Í K L A D Ů (VERZE 1.3) Martin Duchoslav Olomouc 2004 Předložený text reprezentuje výběr příkladů, které doplňují přednášky a cvičení kurzu Základy

Více

Statistické metody v marketingu. Ing. Michael Rost, Ph.D.

Statistické metody v marketingu. Ing. Michael Rost, Ph.D. Statistické metody v marketingu Ing. Michael Rost, Ph.D. Jihočeská univerzita v Českých Budějovicích Regresní analýza doplnění základů Vzhledem k požadavku Vašich kolegů zařazuji doplňující partii o regresní

Více

Semestrální projekt. do předmětu Statistika. Vypracoval: Adam Mlejnek 2-36. Oponenti: Patrik Novotný 2-36. Jakub Nováček 2-36. Click here to buy 2

Semestrální projekt. do předmětu Statistika. Vypracoval: Adam Mlejnek 2-36. Oponenti: Patrik Novotný 2-36. Jakub Nováček 2-36. Click here to buy 2 Semestrální projekt do předmětu Statistika Vypracoval: Adam Mlejnek 2-36 Oponenti: Patrik Novotný 2-36 Jakub Nováček 2-36 Úvod Pro vypracování projektu do předmětu statistika jsem si zvolil průzkum kvality

Více

UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11.

UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11. UNIVERZITA OBRANY Fakulta ekonomiky a managementu Aplikace STAT1 Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 Jiří Neubauer, Marek Sedlačík, Oldřich Kříž 3. 11. 2012 Popis a návod k použití aplikace

Více

Pokud data zadáme přes "Commands" okno: SDF1$X1<-c(1:15) //vytvoření řady čísel od 1 do 15 SDF1$Y1<-c(1.5,3,4.5,5,6,8,9,11,13,14,15,16,18.

Pokud data zadáme přes Commands okno: SDF1$X1<-c(1:15) //vytvoření řady čísel od 1 do 15 SDF1$Y1<-c(1.5,3,4.5,5,6,8,9,11,13,14,15,16,18. Regresní analýza; transformace dat Pro řešení vztahů mezi proměnnými kontinuálního typu používáme korelační a regresní analýzy. Korelace se používá pokud nelze určit "kauzalitu". Regresní analýza je určena

Více

Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu

Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu K čemu slouží statistika Popisuje velké soubory dat pomocí charakteristických čísel (popisná statistika). Hledá skryté zákonitosti v souborech

Více

Analýza variance (ANOVA) - jednocestná; faktor s pevným efektem; mnohonásobná srovnání

Analýza variance (ANOVA) - jednocestná; faktor s pevným efektem; mnohonásobná srovnání Analýza variance (ANOVA) - jednocestná; faktor s pevným efektem; mnohonásobná srovnání 1. Analýzu variance (ANOVu) používáme při studiu problémů, kdy máme závislou proměnou spojitého typu a nezávislé proměnné

Více

{ } ( 2) Příklad: Test nezávislosti kategoriálních znaků

{ } ( 2) Příklad: Test nezávislosti kategoriálních znaků Příklad: Test nezávislosti kategoriálních znaků Určete na hladině významnosti 5 % na základě dat zjištěných v rámci dotazníkového šetření ve Šluknově, zda existuje závislost mezi pohlavím respondenta a

Více

Statistická analýza dat podzemních vod. Statistical analysis of ground water data. Vladimír Sosna 1

Statistická analýza dat podzemních vod. Statistical analysis of ground water data. Vladimír Sosna 1 Statistická analýza dat podzemních vod. Statistical analysis of ground water data. Vladimír Sosna 1 1 ČHMÚ, OPZV, Na Šabatce 17, 143 06 Praha 4 - Komořany sosna@chmi.cz, tel. 377 256 617 Abstrakt: Referát

Více

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK211 Základy ekonometrie ZS 2015/16 Cvičení 7: Časově řady, autokorelace LENKA FIŘTOVÁ KATEDRA EKONOMETRIE, FAKULTA INFORMATIKY A STATISTIKY VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE 1. Časové řady Data: HDP.wf1

Více

Zpracování náhodného výběru. Ing. Michal Dorda, Ph.D.

Zpracování náhodného výběru. Ing. Michal Dorda, Ph.D. Zpracování náhodného výběru popisná statistika Ing. Michal Dorda, Ph.D. Základní pojmy Úkolem statistiky je na základě vlastností výběrového souboru usuzovat o vlastnostech celé populace. Populace(základní

Více

"Competitivness in the EU Challenge for the V4 countries" Nitra, May 17-18, 2006

Competitivness in the EU Challenge for the V4 countries Nitra, May 17-18, 2006 ANALÝZA ROZPTYLU JAKO ZÁKLADNÍ METODA MNOHONÁSOBNÉHO POROVNÁVÁNÍ STŘEDNÍCH HODNOT V RŮZNÝCH SOFTWAROVÝCH PRODUKTECH ANALYSIS OF VARIANCE AS A PRIMARY METHOD OF MULTIPLE COMPARISON OF EXPECTED VALUES IN

Více

Statistické metody vyhodnocení vlivu škodlivin na denní úmrtnost, hospitalizaci a příznaky kardiovaskulárních a respiračních onemocnění

Statistické metody vyhodnocení vlivu škodlivin na denní úmrtnost, hospitalizaci a příznaky kardiovaskulárních a respiračních onemocnění Statistické metody vyhodnocení vlivu škodlivin na denní úmrtnost, hospitalizaci a příznaky kardiovaskulárních a respiračních onemocnění Jiří Skorkovský Úvod a cíle studie vlivu PM10 na denní

Více

KGG/STG Statistika pro geografy

KGG/STG Statistika pro geografy KGG/STG Statistika pro geografy 10. Mgr. David Fiedor 27. dubna 2015 Nelineární závislost - korelační poměr užití v případě, kdy regresní čára není přímka, ale je vyjádřena složitější matematickou funkcí

Více

Statistické testování hypotéz II

Statistické testování hypotéz II PSY117/454 Statistická analýza dat v psychologii Přednáška 9 Statistické testování hypotéz II Přehled testů, rozdíly průměrů, velikost účinku, síla testu Základní výzkumné otázky/hypotézy 1. Stanovení

Více

Statistické metody v ekonomii. Ing. Michael Rost, Ph.D.

Statistické metody v ekonomii. Ing. Michael Rost, Ph.D. Statistické metody v ekonomii Ing. Michael Rost, Ph.D. Jihočeská univerzita v Českých Budějovicích Test χ 2 v kontingenční tabulce typu 2 2 Jde vlastně o speciální případ χ 2 testu pro čtyřpolní tabulku.

Více

Pozn. přeskakuji zde popisnou statistiku, jinak by měla být součástí každé analýzy.

Pozn. přeskakuji zde popisnou statistiku, jinak by měla být součástí každé analýzy. Pozn. přeskakuji zde popisnou statistiku, jinak by měla být součástí každé analýzy. Z pastí na daném území byla odhadnuta abundance několika druhů: myšice lesní 250, myšice křovinná 200, hraboš polní 150,

Více

A7B39TUR Úloha B Kvantitativní testování ZS 2013/2014 Software MS Office Word a Open Office Writer

A7B39TUR Úloha B Kvantitativní testování ZS 2013/2014 Software MS Office Word a Open Office Writer A7B39TUR Úloha B Kvantitativní testování ZS 2013/2014 Software MS Office Word a Open Office Writer Vypracoval: Peter Šourek ( sourepet@fel.cvut.cz ) Obsah 1Úvod...3 1.1Cíl testování...3 1.2Proměnné...3

Více

marek.pomp@vsb.cz http://homel.vsb.cz/~pom68

marek.pomp@vsb.cz http://homel.vsb.cz/~pom68 Statistika B (151-0303) Marek Pomp ZS 2014 marek.pomp@vsb.cz http://homel.vsb.cz/~pom68 Cvičení: Pavlína Kuráňová & Marek Pomp Podmínky pro úspěšné ukončení zápočet 45 bodů, min. 23 bodů, dvě zápočtové

Více

NEZAMĚSTNANOST V JEDNOTLIVÝCH KRAJÍCH ČR V LETECH 2000 2011

NEZAMĚSTNANOST V JEDNOTLIVÝCH KRAJÍCH ČR V LETECH 2000 2011 NEZAMĚSTNANOST V JEDNOTLIVÝCH KRAJÍCH ČR V LETECH 2000 2011 Markéta Nesrstová Abstrakt Nezaměstnanost vždy byla, je a bude závažným problémem. Míra nezaměstnanosti v České republice se v současné době

Více

MSA-Analýza systému měření

MSA-Analýza systému měření MSA-Analýza systému měření Josef Bednář Abstrakt: V příspěvku je popsáno provedení analýzy systému měření v technické praxi pro spojitá data. Je zde popsáno provedení R&R studie pomocí analýzy rozptylu

Více

Problém 1: Ceny nemovitostí Poznámkykřešení 1

Problém 1: Ceny nemovitostí Poznámkykřešení 1 Problém 1: Ceny nemovitostí Poznámkykřešení 1 Zadání 1.Majínemovitostiurčenékbydlenívyššícenutam,kdeječistšíovzduší?Pokudano,okolik? 2. Lze vztah mezi znečištěním a cenou, pokud existuje, vysvětlit tím,

Více

Popisná statistika kvantitativní veličiny

Popisná statistika kvantitativní veličiny StatSoft Popisná statistika kvantitativní veličiny Protože nám surová data obvykle žádnou smysluplnou informaci neposkytnou, je žádoucí vyjádřit tyto ve zhuštěnější formě. V předchozím dílu jsme začali

Více

Třídění statistických dat

Třídění statistických dat 2.1 Třídění statistických dat Všechny muže ve městě rozdělíme na 2 skupiny: A) muži, kteří chodí k holiči B) muži, kteří se holí sami Do které skupiny zařadíme holiče? prof. Raymond M. Smullyan, Dr. Math.

Více

Tabulka 1 Rizikové online zážitky v závislosti na místě přístupu k internetu N M SD Min Max. Přístup ve vlastním pokoji 10804 1,61 1,61 0,00 5,00

Tabulka 1 Rizikové online zážitky v závislosti na místě přístupu k internetu N M SD Min Max. Přístup ve vlastním pokoji 10804 1,61 1,61 0,00 5,00 Seminární úkol č. 4 Autoři: Klára Čapková (406803), Markéta Peschková (414906) Zdroj dat: EU Kids Online Survey Popis dat Analyzovaná data pocházejí z výzkumu online chování dětí z 25 evropských zemí.

Více

Obsah. Statistika Zpracování informací ze statistického šetření Charakteristiky úrovně, variability a koncentrace kvantitativního znaku

Obsah. Statistika Zpracování informací ze statistického šetření Charakteristiky úrovně, variability a koncentrace kvantitativního znaku Obsah Statistika Zpracování informací ze statistického šetření Charakteristiky úrovně, variability a koncentrace kvantitativního znaku Roman Biskup (zapálený) statistik ve výslužbě, aktuálně analytik v

Více

Zpráva o testu dřevin na pozemku ve Stachách na Šumavě

Zpráva o testu dřevin na pozemku ve Stachách na Šumavě Ústřední kontrolní a zkušební ústav zemědělský Oddělení půdy a lesnictví Zpráva o testu dřevin na pozemku ve Stachách na Šumavě Průběžná zpráva Zpracoval: Ing. Dušan Reininger, Ph.D Dr.Ing. Přemysl Fiala

Více

Porovnání dvou výběrů

Porovnání dvou výběrů Porovnání dvou výběrů Menu: QCExpert Porovnání dvou výběrů Tento modul je určen pro podrobnou analýzu dvou datových souborů (výběrů). Modul poskytuje dva postupy analýzy: porovnání dvou nezávislých výběrů

Více

Analýza rozptylu. Přednáška STATISTIKA II - EKONOMETRIE. Jiří Neubauer

Analýza rozptylu. Přednáška STATISTIKA II - EKONOMETRIE. Jiří Neubauer ANOVA Přednáška STATISTIKA II - EKONOMETRIE Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz ANOVA ANOVA je nástroj pro zkoumání vztahu mezi vysvětlovanými a vysvětlujícími

Více

PŘÍLOHA A. METODA NEJMENŠÍCH ČTVERCŮ PRODEJ BYTŮ. Příloha A. Metoda nejmenších čtverců Prodej bytů

PŘÍLOHA A. METODA NEJMENŠÍCH ČTVERCŮ PRODEJ BYTŮ. Příloha A. Metoda nejmenších čtverců Prodej bytů PŘÍLOHA A. METODA NEJMENŠÍCH ČTVERCŮ PRODEJ BYTŮ Příloha A Metoda nejmenších čtverců Prodej bytů i PŘÍLOHA A. METODA NEJMENŠÍCH ČTVERCŮ PRODEJ BYTŮ 1 2 3 TOT. 1 7 33 40 2 1 18 125 144 2.5 1 72 73 3.5 1

Více

Korelační a regresní analýza

Korelační a regresní analýza Korelační a regresní analýza Analýza závislosti v normálním rozdělení Pearsonův (výběrový) korelační koeficient: r = s XY s X s Y, kde s XY = 1 n (x n 1 i=0 i x )(y i y ), s X (s Y ) je výběrová směrodatná

Více

PSY117/454 Statistická analýza dat v psychologii Přednáška 10

PSY117/454 Statistická analýza dat v psychologii Přednáška 10 PSY117/454 Statistická analýza dat v psychologii Přednáška 10 TESTY PRO NOMINÁLNÍ A ORDINÁLNÍ PROMĚNNÉ NEPARAMETRICKÉ METODY... a to mělo, jak sám vidíte, nedozírné následky. Smrť Analýza četností hodnot

Více

Odhad vývoje počtu obyvatel do roku 2020 Městské části Praha 21 Újezd nad Lesy

Odhad vývoje počtu obyvatel do roku 2020 Městské části Praha 21 Újezd nad Lesy ÚTVAR ROZVOJE HL. M. PRAHY Odbor strategické koncepce Odhad vývoje počtu obyvatel do roku 2020 Městské části Praha 21 Újezd nad Lesy Zpracoval Petr Gibas, MSc. Odbor strategické koncepce, oddělení strategie

Více

Analýza dat z dotazníkových šetření. Zdrojová data: dotazník http://www.vyplnto.cz/realizovane-pruzkumy/konzumace-ryb-a-rybich-vyrob/

Analýza dat z dotazníkových šetření. Zdrojová data: dotazník http://www.vyplnto.cz/realizovane-pruzkumy/konzumace-ryb-a-rybich-vyrob/ Analýza dat z dotazníkových šetření Cvičení 3. - Jednorozměrné třídění Zdrojová data: dotazník http://www.vyplnto.cz/realizovane-pruzkumy/konzumace-ryb-a-rybich-vyrob/ - Seznamte se s dotazníkem a strukturou

Více

Normální (Gaussovo) rozdělení

Normální (Gaussovo) rozdělení Normální (Gaussovo) rozdělení Normální (Gaussovo) rozdělení popisuje vlastnosti náhodné spojité veličiny, která vzniká složením různých náhodných vlivů, které jsou navzájem nezávislé, kterých je velký

Více

Program Statistica Base 9. Mgr. Karla Hrbáčková, Ph.D.

Program Statistica Base 9. Mgr. Karla Hrbáčková, Ph.D. Program Statistica Base 9 Mgr. Karla Hrbáčková, Ph.D. OBSAH KURZU obsluha jednotlivých nástrojů, funkce pro import dat z jiných aplikací, práce s popisnou statistikou, vytváření grafů, analýza dat, výstupní

Více

Charakteristiky kategoriálních veličin. Absolutní četnosti (FREQUENCY)

Charakteristiky kategoriálních veličin. Absolutní četnosti (FREQUENCY) Charakteristiky kategoriálních veličin Absolutní četnosti (FREQUENCY) Charakteristiky kategoriálních veličin Relativní četnosti Charakteristiky kategoriálních veličin Relativní četnosti Charakteristiky

Více

Praktická statistika. Petr Ponížil Eva Kutálková

Praktická statistika. Petr Ponížil Eva Kutálková Praktická statistika Petr Ponížil Eva Kutálková Zápis výsledků měření Předpokládejme, že známe hodnotu napětí U = 238,9 V i její chybu 3,3 V. Hodnotu veličiny zapíšeme na tolik míst, aby až poslední bylo

Více

SAMOSTATNÁ STUDENTSKÁ PRÁCE ZE STATISTIKY

SAMOSTATNÁ STUDENTSKÁ PRÁCE ZE STATISTIKY SAMOSTATÁ STUDETSKÁ PRÁCE ZE STATISTIKY Váha studentů Kučerová Eliška, Pazdeříková Jana septima červen 005 Zadání: My dvě studentky jsme si vylosovaly zjistit statistickým šetřením v celém ročníku septim

Více

Hodina 50 Strana 1/14. Gymnázium Budějovická. Hodnocení akcií

Hodina 50 Strana 1/14. Gymnázium Budějovická. Hodnocení akcií Hodina 50 Strana /4 Gymnázium Budějovická Volitelný předmět Ekonomie - jednoletý BLOK ČÍSLO 8 Hodnocení akcií Předpokládaný počet : 9 hodin Použitá literatura : František Egermayer, Jan Kožíšek Statistická

Více

MĚŘENÍ STATISTICKÝCH ZÁVISLOSTÍ

MĚŘENÍ STATISTICKÝCH ZÁVISLOSTÍ MĚŘENÍ STATISTICKÝCH ZÁVISLOSTÍ v praxi u jednoho prvku souboru se často zkoumá více veličin, které mohou na sobě různě záviset jednorozměrný výběrový soubor VSS X vícerozměrným výběrovým souborem VSS

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

Vybrané mzdové charakteristiky v krajích ČR členěné podle věku a pohlaví v roce 2008

Vybrané mzdové charakteristiky v krajích ČR členěné podle věku a pohlaví v roce 2008 Vybrané mzdové charakteristiky v krajích ČR členěné podle věku a pohlaví v roce 2008 Luboš Marek, Michal Vrabec Souhrn: V tomto příspěvku jsme se zaměřili na zkoumání rozdílů u běžných charakteristik mzdových

Více

Metodologie pro Informační studia a knihovnictví 2

Metodologie pro Informační studia a knihovnictví 2 Metodologie pro Informační studia a knihovnictví 2 Modul 5: Popis nekategorizovaných dat Co se dozvíte v tomto modulu? Kdy používat modus, průměr a medián. Co je to směrodatná odchylka. Jak popsat distribuci

Více

Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie STATISTICKÉ ZPRACOVÁNÍ EXPERIMENTÁLNÍCH DAT

Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie STATISTICKÉ ZPRACOVÁNÍ EXPERIMENTÁLNÍCH DAT Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie STATISTICKÉ ZPRACOVÁNÍ EXPERIMENTÁLNÍCH DAT STATISTICKÁ ANALÝZA JEDNOROZMĚRNÝCH DAT Seminární práce 1 Brno, 2002 Ing. Pavel

Více

-10 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

-10 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 Hrubá míra migračního salda (promile) B Sociálně prostorová diferenciace Prahy v historické perspektivě 3.2 MIGRACE V PRAZE 2000 2013 Martin Ouředníček, Ivana Přidalová Migrační bilance Prahy je výslednicí

Více

Jak nelhat se statistikou? Martina Litschmannová Katedra aplikované matematiky, FEI, VŠB-TU Ostrava

Jak nelhat se statistikou? Martina Litschmannová Katedra aplikované matematiky, FEI, VŠB-TU Ostrava Jak nelhat se statistikou? Martina Litschmannová Katedra aplikované matematiky, FEI, VŠB-TU Ostrava Co je to statistika? teoretická disciplína, která se zabývá metodami sběru a analýzy dat Jak získat data?

Více

Matematická statistika

Matematická statistika Matematická statistika Daniel Husek Gymnázium Rožnov pod Radhoštěm, 8. A8 Dne 12. 12. 2010 v Rožnově pod Radhoštěm Osnova Strana 1) Úvod 3 2) Historie matematické statistiky 4 3) Základní pojmy matematické

Více

Sociodemografická analýza regionu Frýdlantsko Beskydy

Sociodemografická analýza regionu Frýdlantsko Beskydy Sociodemografická analýza regionu Frýdlantsko Beskydy Zpracovala: Mgr. Pavla Šimoňáková Ing. Dana Diváková Institut komunitního rozvoje Na Hradbách 6 702 00 Ostrava www.ikor.cz Obsah dokumentu 1. Úvod

Více

Analýza rozptylu. Statistika II. Jiří Neubauer. Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.

Analýza rozptylu. Statistika II. Jiří Neubauer. Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob. ANOVA Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz ANOVA ANOVA je nástroj pro zkoumání vztahu mezi vysvětlovanými a vysvětlujícími proměnnými.

Více

6. Lineární regresní modely

6. Lineární regresní modely 6. Lineární regresní modely 6.1 Jednoduchá regrese a validace 6.2 Testy hypotéz v lineární regresi 6.3 Kritika dat v regresním tripletu 6.4 Multikolinearita a polynomy 6.5 Kritika modelu v regresním tripletu

Více

KOMBINATORIKA, PRAVDĚPODOBNOST, STATISTIKA. Charakteristiky variability. Mgr. Jakub Němec. VY_32_INOVACE_M4r0120

KOMBINATORIKA, PRAVDĚPODOBNOST, STATISTIKA. Charakteristiky variability. Mgr. Jakub Němec. VY_32_INOVACE_M4r0120 KOMBINATORIKA, PRAVDĚPODOBNOST, STATISTIKA Charakteristiky variability Mgr. Jakub Němec VY_32_INOVACE_M4r0120 CHARAKTERISTIKY VARIABILITY Charakteristika variability se určuje pouze u kvantitativních znaků.

Více

Aplikovaná statistika pro učitele a žáky v hodinách zeměpisu aneb jak využít MS Excel v praxi. Geografický seminář 30. března 2011 Pavel Bednář

Aplikovaná statistika pro učitele a žáky v hodinách zeměpisu aneb jak využít MS Excel v praxi. Geografický seminář 30. března 2011 Pavel Bednář Aplikovaná statistika pro učitele a žáky v hodinách zeměpisu aneb jak využít MS Excel v praxi Geografický seminář 30. března 2011 Pavel Bednář Výchozí stav Sebehodnocení práce s MS Excel studujícími oboru

Více

Testování hypotéz. Analýza dat z dotazníkových šetření. Kuranova Pavlina

Testování hypotéz. Analýza dat z dotazníkových šetření. Kuranova Pavlina Testování hypotéz Analýza dat z dotazníkových šetření Kuranova Pavlina Statistická hypotéza Možné cíle výzkumu Srovnání účinnosti různých metod Srovnání výsledků různých skupin Tzn. prokázání rozdílů mezi

Více

Časové řady - Cvičení

Časové řady - Cvičení Časové řady - Cvičení Příklad 2: Zobrazte měsíční časovou řadu míry nezaměstnanosti v obci Rybitví za roky 2005-2010. Příslušná data naleznete v souboru cas_rada.xlsx. Řešení: 1. Pro transformaci dat do

Více

a) Základní informace o souboru Statistika: Základní statistika a tabulky: Popisné statistiky: Detaily

a) Základní informace o souboru Statistika: Základní statistika a tabulky: Popisné statistiky: Detaily Testování hypotéz Testování hypotéz jsou klasické statistické úsudky založené na nějakém apriorním předpokladu. Vyslovíme-li předpoklad o hodnotě neznámého parametru nebo o zákonu rozdělení sledované náhodné

Více

Informační technologie a statistika 1

Informační technologie a statistika 1 Informační technologie a statistika 1 přednášející: konzul. hodiny: e-mail: Martin Schindler KAP, tel. 48 535 2836, budova G po dohodě martin.schindler@tul.cz naposledy upraveno: 21. září 2015, 1/33 Požadavek

Více

Výběrové šetření o zdravotním stavu české populace (HIS CR 2002) Fyzická aktivita (VIII. díl)

Výběrové šetření o zdravotním stavu české populace (HIS CR 2002) Fyzická aktivita (VIII. díl) Aktuální informace Ústavu zdravotnických informací a statistiky České republiky Praha 12. 12. 2002 60 Výběrové šetření o zdravotním stavu české populace (HIS CR 2002) Fyzická aktivita (VIII. díl) Tato

Více

Nadstavba pro statistické výpočty Statistics ToolBox obsahuje více než 200 m-souborů které podporují výpočty v následujících oblastech.

Nadstavba pro statistické výpočty Statistics ToolBox obsahuje více než 200 m-souborů které podporují výpočty v následujících oblastech. Statistics ToolBox Nadstavba pro statistické výpočty Statistics ToolBox obsahuje více než 200 m-souborů které podporují výpočty v následujících oblastech. [manual ST] 1. PROBABILITY DISTRIBUTIONS Statistics

Více

Statistika. Semestrální projekt

Statistika. Semestrální projekt Statistika Semestrální projekt 18.5.2013 Tomáš Jędrzejek, JED0008 Obsah Úvod 3 Analyzovaná data 4 Analýza dat 6 Statistická indukce 12 Závěr 15 1. Úvod Cílem této semestrální práce je aplikovat získané

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta strojního inženýrství Ústav strojírenské technologie odbor slévárenství. Ing. Martin Svadbík

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta strojního inženýrství Ústav strojírenské technologie odbor slévárenství. Ing. Martin Svadbík VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta strojního inženýrství Ústav strojírenské technologie odbor slévárenství Ing. Martin Svadbík OBJEMOVÉ MODELY JAKO NOVÝ PROSTŘEDEK KE STANOVENÍ VÝROBNÍCH ČASŮ VE SLÉVÁRENSTVÍ

Více

VNITROSKUPINOVÝ ROZPTYL. Je mírou variability uvnitř skupin Jiný název: průměr rozptylů Vypočítává se jako průměr rozptylů v jednotlivých skupinách

VNITROSKUPINOVÝ ROZPTYL. Je mírou variability uvnitř skupin Jiný název: průměr rozptylů Vypočítává se jako průměr rozptylů v jednotlivých skupinách ROZKLAD ROZPTYLU ROZKLAD ROZPTYLU Rozptyl se dá rozložit na vnitroskupinový a meziskupinový rozptyl. Celkový rozptyl je potom součet meziskupinového a vnitroskupinového Užívá se k výpočtu rozptylu, jestliže

Více

Vyhodnocení cenového vývoje drahých kovů na světových burzách v období let 2005 2010

Vyhodnocení cenového vývoje drahých kovů na světových burzách v období let 2005 2010 Vyhodnocení cenového vývoje drahých kovů na světových burzách v období let 2005 2010 Martin Maršík, Jitka Papáčková Vysoká škola technická a ekonomická Abstrakt V předloženém článku autoři rozebírají vývoj

Více

Projekt z předmětu Statistika

Projekt z předmětu Statistika Projekt z předmětu Téma: Typologie hráče české nejvyšší hokejové soutěže VŠB-TU Ostrava:Fakulta Elektrotechniky a informatiky jaro 2011 Martin Dočkal doc068 dockal.martin@gmail.com 1 Obsah 2 Zadání...

Více

Předpoklad o normalitě rozdělení je zamítnut, protože hodnota testovacího kritéria χ exp je vyšší než tabulkový 2

Předpoklad o normalitě rozdělení je zamítnut, protože hodnota testovacího kritéria χ exp je vyšší než tabulkový 2 Na úloze ukážeme postup analýzy velkého výběru s odlehlými prvky pro určení typu rozdělení koncentrace kyseliny močové u 50 dárců krve. Jaká je míra polohy a rozptýlení uvedeného výběru? Z grafických diagnostik

Více

V praxi pracujeme s daty nominálními (nabývají pouze dvou hodnot), kategoriálními (nabývají více

V praxi pracujeme s daty nominálními (nabývají pouze dvou hodnot), kategoriálními (nabývají více 9 Vícerozměrná data a jejich zpracování 9.1 Vícerozměrná data a vícerozměrná rozdělení Při zpracování vícerozměrných dat, hledáme souvislosti mezi dvěmi, případně více náhodnými veličinami. V praxi pracujeme

Více

SYSTÉM TECHNICKO-EKONOMICKÉ ANALÝZY VÝROBY TEKUTÉHO KOVU - CESTA KE SNIŽOVÁNÍ NÁKLADŮ

SYSTÉM TECHNICKO-EKONOMICKÉ ANALÝZY VÝROBY TEKUTÉHO KOVU - CESTA KE SNIŽOVÁNÍ NÁKLADŮ SYSTÉM TECHNICKO-EKONOMICKÉ ANALÝZY VÝROBY TEKUTÉHO KOVU - CESTA KE SNIŽOVÁNÍ NÁKLADŮ FIGALA V. a), KAFKA V. b) a) VŠB-TU Ostrava, FMMI, katedra slévárenství, 17. listopadu 15, 708 33 b) RACIO&RACIO, Vnitřní

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

Číselné charakteristiky a jejich výpočet

Číselné charakteristiky a jejich výpočet Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz charakteristiky polohy charakteristiky variability charakteristiky koncetrace charakteristiky polohy charakteristiky

Více

Protokol č. 1. Tloušťková struktura. Zadání:

Protokol č. 1. Tloušťková struktura. Zadání: Protokol č. 1 Tloušťková struktura Zadání: Pro zadané výčetní tloušťky (v cm) vypočítejte statistické charakteristiky a slovně interpretujte základní statistické vlastnosti tohoto souboru tloušťek. Dále

Více

Vývoj zemědělského půdního fondu ve světě

Vývoj zemědělského půdního fondu ve světě UNIVERZITA KARLOVA Přírodovědecká fakulta Vývoj zemědělského půdního fondu ve světě (cvičení z ekonomické geografie) 2005/2006 Pavel Břichnáč 1.roč. Ge-Ka 1.1 Vývoj zemědělského půdního fondu podle makroregionů

Více

A 4 9 18 24 26 B 1 5 10 11 16 C 2 3 8 13 15 17 19 22 23 25 D 6 7 12 14 20 21

A 4 9 18 24 26 B 1 5 10 11 16 C 2 3 8 13 15 17 19 22 23 25 D 6 7 12 14 20 21 Příklad 1 Soutěž o nelepší akost výrobků obeslali čtyři výrobci A, B, C, D celkem 26 výrobky. Porota sestavila toto pořadí (uveden pouze původ výrobku od nelepšího k nehoršímu): Pořadí 1 2 3 4 5 6 7 8

Více

Vznik a vývoj DDI. Struktura DDI. NESSTAR Systém pro publikování, prezentaci a analýzu dat. PhDr. Martin Vávra, Mgr. Tomáš Čížek

Vznik a vývoj DDI. Struktura DDI. NESSTAR Systém pro publikování, prezentaci a analýzu dat. PhDr. Martin Vávra, Mgr. Tomáš Čížek NESSTAR Systém pro publikování, prezentaci a analýzu dat PhDr. Martin Vávra, Mgr. Tomáš Čížek Vznik a vývoj DDI Potřeba standardizace popisu datových souborů v souvislosti s elektronickou archivací dat

Více

Moderní regresní metody. Petr Šmilauer Biologická fakulta JU České Budějovice (c) 1998-2007

Moderní regresní metody. Petr Šmilauer Biologická fakulta JU České Budějovice (c) 1998-2007 Moderní regresní metody Petr Šmilauer Biologická fakulta JU České Budějovice (c) 1998-2007 Obsah Úvod... 5 1 Klasický lineární model a analýza variance... 7 Motivační příklad... 7 Fitování klasického lineárního

Více

Ilustrační příklad odhadu LRM v SW Gretl

Ilustrační příklad odhadu LRM v SW Gretl Ilustrační příklad odhadu LRM v SW Gretl Podkladové údaje Korelační matice Odhad lineárního regresního modelu (LRM) Verifikace modelu PEF ČZU Praha Určeno pro posluchače předmětu Ekonometrie Needitovaná

Více

Metoda Monte Carlo a její aplikace v problematice oceňování technologií. Manuál k programu

Metoda Monte Carlo a její aplikace v problematice oceňování technologií. Manuál k programu Metoda Monte Carlo a její aplikace v problematice oceňování technologií Manuál k programu This software was created under the state subsidy of the Czech Republic within the research and development project

Více

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D.

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D. Testování statistických hypotéz Ing. Michal Dorda, Ph.D. Testování normality Př. : Při simulaci provozu na křižovatce byla získána data o mezerách mezi přijíždějícími vozidly v [s]. Otestujte na hladině

Více

676 + 4 + 100 + 196 + 0 + 484 + 196 + 324 + 64 + 324 = = 2368

676 + 4 + 100 + 196 + 0 + 484 + 196 + 324 + 64 + 324 = = 2368 Příklad 1 Je třeba prověřit, zda lze na 5% hladině významnosti pokládat za prokázanou hypotézu, že střední doba výroby výlisku je 30 sekund. Přitom 10 náhodně vybraných výlisků bylo vyráběno celkem 540

Více

6. Lineární regresní modely

6. Lineární regresní modely 6. Lineární regresní modely 6.1 Jednoduchá regrese a validace 6.2 Testy hypotéz v lineární regresi 6.3 Kritika dat v regresním tripletu 6.4 Multikolinearita a polynomy 6.5 Kritika modelu v regresním tripletu

Více

Inferenční statistika - úvod. z-skóry normální rozdělení pravděpodobnost rozdělení výběrových průměrů

Inferenční statistika - úvod. z-skóry normální rozdělení pravděpodobnost rozdělení výběrových průměrů Inferenční statistika - úvod z-skóry normální rozdělení pravděpodobnost rozdělení výběrových průměrů Pravděpodobnost postupy induktivní statistiky vycházejí z teorie pravděpodobnosti pravděpodobnost, že

Více

Přednáška 5. Výběrová šetření, Exploratorní analýza

Přednáška 5. Výběrová šetření, Exploratorní analýza Přednáška 5 Výběrová šetření, Exploratorní analýza Pravděpodobnost vs. statistika Výběrová šetření aneb jak získat výběrový soubor Exploratorní statistika aneb jak popsat výběrový soubor Typy proměnných

Více

Robust 2010 31. ledna 5. února 2010, Králíky

Robust 2010 31. ledna 5. února 2010, Králíky Modelování rozdělení ročních příjmů českých domácností J. Bartošová 1 M. Forbelská 2 1 Katedra managementu informací Fakulta managementu v Jindřichově Hradci Vysoká škola ekonomická v Praze 2 Ústav matematiky

Více

Úloha 1. Napište matici pro případ lineárního regresního spline vyjádřeného přes useknuté

Úloha 1. Napište matici pro případ lineárního regresního spline vyjádřeného přes useknuté Úloha 1. Napište matici pro případ lineárního regresního spline vyjádřeného přes useknuté polynomy pro případ dvou uzlových bodů ξ 1 = 1 a ξ 2 = 4. Experimentální body jsou x = [0.2 0.4 0.6 1.5 2.0 3.0

Více

Vliv věku a příjmu na výhodnost vstupu do důchodového spoření (II. pilíře)

Vliv věku a příjmu na výhodnost vstupu do důchodového spoření (II. pilíře) Vliv věku a příjmu na výhodnost vstupu do důchodového spoření (II. pilíře) Následující analýza výhodnosti vstupu do II. pilíři vychází ze stejné metodologie, která je popsána v Pojistněmatematické zprávě

Více

Pomůcka pro cvičení: 3. semestr Bc studia

Pomůcka pro cvičení: 3. semestr Bc studia Pomůcka pro cvičení: 3. semestr Bc studia Statistika Základní pojmy balíček: Statistics Pro veškeré výpočty je třeba načíst balíček Statistic. Při řešení můžeme použít proceduru infolevel[statistics]:=1,

Více

Zhodnocení dopadů inovace na studijní výsledky

Zhodnocení dopadů inovace na studijní výsledky Zhodnocení dopadů inovace na studijní výsledky Zpracoval: doc. Ing. Josef Weigel, CSc. hlavní řešitel projektu Hodnocené studijní programy: - Bakalářský studijní program Geodézie a kartografie v prezenční

Více

Cvičení ze statistiky - 9. Filip Děchtěrenko

Cvičení ze statistiky - 9. Filip Děchtěrenko Cvičení ze statistiky - 9 Filip Děchtěrenko Minule bylo.. Dobrali jsme normální rozdělení Tyhle termíny by měly být známé: Inferenční statistika Konfidenční intervaly Z-test Postup při testování hypotéz

Více

Zpracování a vyhodnocování analytických dat

Zpracování a vyhodnocování analytických dat Zpracování a vyhodnocování analytických dat naměřená data Zpracování a statistická analýza dat analytické výsledky Naměř ěřená data jedna hodnota 5,00 mg (bod 1D) navážka, odměřený objem řada dat 15,8;

Více

SEXUALITA UŽIVATELŮ MARIHUANY OČIMA PARTNEREK

SEXUALITA UŽIVATELŮ MARIHUANY OČIMA PARTNEREK SEXUALITA UŽIVATELŮ MARIHUANY OČIMA PARTNEREK Mgr. Alexandra HROUZKOVÁ Katedra psychologie FFUK, Praha Prof. PhDr. Petr WEISS, PhD. Sexuologický ústav VFN a 1.LF UK, Praha ÚVODEM Konopné drogy jsou po

Více

STATISTICA Téma 7. Testy na základě více než 2 výběrů

STATISTICA Téma 7. Testy na základě více než 2 výběrů STATISTICA Téma 7. Testy na základě více než 2 výběrů 1) Test na homoskedasticitu Nalezneme jej v několika submenu. Omezme se na submenu Základní statistiky a tabulky základního menu Statistika. V něm

Více