II. Statistické metody vyhodnocení kvantitativních dat Gejza Dohnal

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "II. Statistické metody vyhodnocení kvantitativních dat Gejza Dohnal"

Transkript

1 Základy navrhování průmyslových experimentů DOE II. Statistické metody vyhodnocení kvantitativních dat Gejza Dohnal!

2 Testování statistických hypotéz

3 kvalitativní odezva kvantitativní chí-kvadrát test homogenity, kontingenční tabulka ano ano normální ne spojitá ne GLIM, K-W regrese, t-test, ANOVA regrese, Wilcoxon Kruskal-Wallis Friedman

4 Vícefaktoriální návrhy experimentů Kontingenční tabulka odezva má kvalitativní charakter: může nabývat r hodnot jeden kvalitativní faktor: může nabývat s hodnot, u nichž nemá smysl uspořádání provádíme N > r.s pozorování a sledujeme četnosti nij výsledky zapisujeme do tabulky o s řádcích a r sloupcích Testování v kontingenční tabulce: test hypotézy o nezávislosti znaků (test homogenity) test symetrie Test nezávislosti: testová statistika = Σ(pozorované - očekávané) očekávané označme: nij absolutní četnost v řádku i a sloupci j napozorovaná v experimentu mij očekávaná četnost v řádku i a sloupci j za platnosti hypotézy m ij = R is j N, kde Ri = součet četností v řádku i Sj = součet četností ve sloupci j Omezení: očekávané četnosti musejí být větší než 5! = rx sx (n ij m ij ) i=1 j=1 m ij testová statistika má chí-kvadrát rozdělení o (r-1)x(s-1) stupňů volnosti

5 Vícefaktoriální návrhy experimentů Kontingenční tabulka odezva má kvalitativní charakter: může nabývat r hodnot jeden kvalitativní faktor: může nabývat s hodnot, u nichž nemá smysl uspořádání provádíme N > r.s pozorování a sledujeme četnosti nij výsledky zapisujeme do tabulky o s řádcích a r sloupcích Příklad: Ovlivňuje barva očí Rh faktor? Provedeme 400 pozorování, jejichž výsledky jsou v tabulce napravo: Za předpokladu nezávislosti by (podle marginálních součtů) mělo platit: Chceme testovat hypotézu o tom, že barva očí neovlivňuje Rh faktor: => Na hladině významnosti 5% nebyla prokázána závislost mezi barvou očí a Rh faktorem.

6 Vícefaktoriální návrhy experimentů Kontingenční tabulka Příklad : Ovlivňuje složení krmiva schopnost otelení krav? odezva má kvalitativní charakter: dojde k otelení (ano) nebo nedojde (ne) dva kvantitativní faktory, každý na dvou úrovních: krmení s vysokým nebo nízkým obsahem energie nebo proteinů. To vytvoří celkem 4 kombinace = 4 řádky tabulky. Celkem bylo sledováno n = 100 zvířat. kombinace ano ne vysoká energie a vysoký protein vysoká energie a nízký protein 88 1 nízká energie a vysoký protein 75 5 nízká energie a nízký protein Pro celou tabulku: testová statistika má df = 3.1=3 (stupně volnosti) = 58, 549, 0,01(3) = 11, 3 Sloučíme-li řádky 1 + (vysoká energie) a (nízká energie), dostaneme tabulku x s df = 1 a testovou statistiku (efekt energie) en = 3, 080, 0,01(1) = 6, 63 Sloučíme-li řádky (vysoký protein) a + 4 (nízký protein), dostaneme tabulku x s df = 1 a testovou statistiku (efekt proteinu) prot =7, 709, 0,01(1) = 6, 63 Odečteme-li hodnoty chí-kvadrát energie a proteinu od celkového chí-kvadrátu, dostaneme efekt interakce en.prot = 18, 760.

7 Vícefaktoriální návrhy experimentů Kontingenční tabulka Test symetrie: hypotéza: n ij N = n ji N testová statistika = rx i=1 ix j=1 (n ij n ji ) n ij + n ji má chí-kvadrát rozdělení o r(r-1) stupňů volnosti Příklad: Dědí syn barvu očí otce? Bylo provedeno 1000 pozorování, jejichž výsledky jsou v tabulce napravo. Barva očí je zakódována: 1=sv.modrá, =modrozelená 3=tm.šedá nebo sv.hnědá, 4=tm.hnědá Dosazením do testové statistiky dostaneme hodnotu Kritická hodnota pro 6 stupňů volnosti a pro α=5% je barva očí otce = 19, 56 6(0, 05) = 1, 59 barva očí syna => Na hladině významnosti 5% nebyla prokázána shoda barvy očí otce a syna.

8 Vícefaktoriální návrhy experimentů Regresní model experimentu odezva má kvantitativní charakter: může nabývat hodnot z podintervalu reálné přímky lineární model regresní závislosti: Y = b0 + b1 X1 + b X + + bk Xk + ε Máme n pozorování: Y = (Y1, Y,, Yn) vektor pozorování odezvy X = (Xij), i =1,..,n, j =0,1,..,k matice (nx(k+1)) pozorování k faktorů β = (β0, β1,,βk) vektor (k+1) neznámých parametrů ε = (ε1,, εn) vektor náhodných odchylek (náhodná složka) obecný lineární model: Y = Xβ + ε Předpoklady lineárního modelu: 1) E(ε) = 0 => střední hodnota E(εi)=0 pro všechna i = 1,, n => E(Y) = Xβ ) rozptyl Var(εi)=σ je konstantní (nezávisí na i ) = homoskedaticita 3) Cov(εiεj)=0 pro všechna i j = 1,,, n => D(ε) = σ I = D(Y) 4) Matice X je nenáhodná 5) Hodnost matice X je k+1 6) náhodné veličiny εi mají normální rozdělení Pokud je některý z těchto předpokladů porušen, jedná se o zobecněný lineární model (GLM)

9 Vícefaktoriální návrhy experimentů Regresní model experimentu odhad parametrů metodou nejmenších čtverců: (X X)b = X Y => b = (X X) -1 X Y Platí: E(b) = β, D(b) = σ (X X) -1 lineární model pro jeden faktor: Y = X 0 X = Y 1 1 X A X A = Y n 1 X n P P n P xi xi x i X 0 Y = a b P P Yi xi Y i = Y = a + bx + ε 0 1 A n Ȳ = 1 n X Yi, x = 1 n X xi b 1 = P xi Y i n xȳ P x i n x, b 0 = Ȳ b 1 x s = P P P Y i b 0 Yi b 1 xi Y i n T 1 = b q 1 X Pro test hypotézy H0: x β1 = 0 použijeme testovou statistiku i n x s, která má t-rozdělení o (n-) stupních volnosti. s 1 (x x) Pro dané x je interval spolehlivosti predikce Y: b 0 + b 1 x ± t n ( )s + P n x i n x

10 Vícefaktoriální návrhy experimentů Regresní model experimentu odhad parametrů metodou nejmenších čtverců: (X X)b = X Y => b = (X X) -1 X Y Platí: E(b) = β, D(b) = σ (X X) -1 lineární model pro jeden faktor: Y = a + bx + ε

11 Vícefaktoriální návrhy experimentů Regresní model experimentu lineární model pro dva faktory: Y 1 1 X 1 Z 1 X 1 Z 1 Y X A Y n 1 X n Z n X n Z n 0 P P P 1 P n P xi P zi P xi z i X 0 X = B xi x i xi z i x P P P P i z zi xi z i z P P P i xi zi xi z i x i z i xi zi P x i zi Y = a + bx + cz + dxz + ε 0 1 a 0 A = Bb ca d C A X0 Y = 1... n 1 A 0 P P Yi B P xi Y P zi Y i xi z i Y i 1 C A

12 Srovnání dvou souborů dat Dvě nezávislá měření X : X 1,X,...,X n Y : Y 1,Y,...,Y m X s N(µ X, X) Y s N(µ Y, oba parametry v obou případech známe# známe střední hodnoty a neznáme rozptyly# známe rozptyly a neznáme střední hodnoty# žádný z parametrů neznáme Odhady středních hodnot: X = 1 n Odhady rozptylů: s X = 1 n 1 nx i=1 X i X (X X), s Y = 1 n 1 Y ) Ȳ = 1 m nx i=1 Y i X (Y Ȳ )

13 Srovnání dvou souborů dat Dvě nezávislá měření X : X 1,X,...,X n Y : Y 1,Y,...,Y m X s N(µ X, X) Y s N(µ Y, Y ) test shody rozptylů# test shody středních hodnot při stejných rozptylech# test shody středních hodnot při nestejných rozptylech Dvě závislá měření X : X 1,X,...,X n Y : Y 1,Y,..., Y n párová pozorování párový test shody středních hodnot

14 Srovnání rozptylů dvou nezávislých měření Liší se statisticky významně dvě nezávislá měření z hlediska velikosti rozptylu? Lze považovat rozptyl dvou nezávislých měření za shodný při dané hladině významnosti? nulová hypotéza :# alternativní hypotéza:# H 0 : H A : X = X 6= Y Y F-test testová statistika :# hladina významnosti: F = s X s Y Fisherovo-Snedecorovo rozdělení F(n-1, m-1) H0 nezamítneme, když pro dané bude# # F / (n 1,m 1) <F <F / (n 1,m 1)

15 Srovnání středních hodnot dvou nezávislých souborů dat - dvouvýběrový t-test Liší se statisticky významně dvě nezávislá měření z hlediska jejich střední hodnoty? Lze považovat střední hodnoty dvou nezávislých měření za shodné při dané hladině významnosti? Lze od sebe statisticky významně odlišit dvě nezávislá měření podle jejich jejich střední hodnoty? nulová hypotéza :# H 0 : µ X = µ Y alternativní hypotéza: testová statistika :# hladina významnosti: H A : µ X 6= µ Y T = X Ȳ s X Ȳ (oboustranná)#

16 Srovnání středních hodnot dvou nezávislých souborů dat - dvouvýběrový t-test nulová hypotéza :# alternativní hypotéza: testová statistika :# hladina významnosti: H 0 : µ X = µ Y H A : µ X 6= µ Y T = X Ȳ s X Ȳ (oboustranná)# pokud X = Y pokud X 6= Y dvouvýběrový t-test# se stejnými rozptyly dvouvýběrový t-test # s nestejnými rozptyly

17 Srovnání středních hodnot dvou nezávislých souborů dat - dvouvýběrový t-test pokud X = Y = ) s X Ȳ = s X + s Ȳ = s X n + s Y m = s 1 n + 1 m = s m + n n.m dále odhadneme s ze všech naměřených hodnot: s 1 X n mx = (X i X) + (Y i Ȳ ) = n + m i=1 i=1 1 (n 1)s X +(m 1)s Y tedy: n + m s X Ȳ = n + m nm(n + m ) (n 1)s X +(m 1)s Y

18 Srovnání středních hodnot dvou nezávislých souborů dat - dvouvýběrový t-test pokud X = Y = Testová statistika bude mít tvar: T = X p Ȳ (n 1)s X +(m 1)s Y r nm(n + m ) n + m ta má t-rozdělení (Studentovo rozdělení) pravděpodobnosti o (n+m-) stupních volnosti. H0 nezamítneme, když pro dané bude# T t (n + m ) kde t (n + m ) je (oboustranná) -kritická hodnota t-rozdělení o (n+m-) stupních volnosti.

19 Srovnání středních hodnot dvou nezávislých souborů dat - dvouvýběrový t-test Y pokud X 6= : Testová statistika bude mít tvar: X T = q Ȳ 1 n s X + 1 m s Y a má rozdělení, které je směsí t-rozdělení o (n-1) a (m-1) stupních volnosti. H0 nezamítneme, když pro dané bude splněna nerovnost T At (n 1) + Bt (m 1), kde A a B jsou váhy, A+B=1. A = 1 n s X 1 n s X + 1 m s Y, B = 1 m s Y 1 n s X + 1 m s Y

20 Srovnání párových souborů dat - párový t-test pozorování stejné veličiny před a po nějakém zásahu# měření stejných obektů za různých podmínek# měření stejné veličiny ve dvou různých časech#... X : X 1,X,...,X n X s N(µ X, Y : Y 1,Y,..., Y n Y s N(µ Y, X) Y ) ) Z 1 = X 1 Y 1, Z = X Y,..., Z n = X n Y n, Z s N(µ X µ Y, Z) H 0 : µ X = µ Y H A : µ X 6= µ Y H 0 : µ Z =0 H A : µ Z 6=0

21 Srovnání párových souborů dat - párový t-test H 0 : µ Z = a H A : µ Z 6= a T = Z s Z ap n T má t-rozdělení (Studentovo rozdělení) pravděpodobnosti o (n-1) stupních volnosti. H0 nezamítneme, když pro dané bude# T t (n 1) kde t (n 1) je (oboustranná) -kritická hodnota t-rozdělení o (n-1) stupních volnosti.

22 Jednostranné testy dolní nebo horní jednostranná alternativa : H 0 : µ X = µ Y H A : µ X <µ Y H 0 : µ X = µ Y H A : µ X >µ Y H0 nezamítneme, když pro dané bude buď# T< t (n 1) nebo# T>t (n 1) kde t (n 1) je (jednostranná) -kritická hodnota t-rozdělení o (n-1) stupních volnosti. oboustranná -kritická hodnota je (1 /)-kvantil# t 1 / (n 1) jednostranná -kritická hodnota je (1 ) -kvantil t 1 (n 1)

23 Příklady: Lze považovat délky tyčí od dvou různých dodavatelů za shodné na hladině významnosti 5%? Byly měřeny odchylky délky ocelových tyčí od požadované hodnoty 4m od dvou dodavatelů. Odchylky jsou uvedeny v cm. Dodavatel X: > x [1] [7] [13] [19] [5] [31] [37] [43] [49] [55] [61] [67] [73] [79] [85] [91] [97] [103] [109] [115]

24 Příklady: Lze považovat délky tyčí od dvou různých dodavatelů za shodné na hladině významnosti 5%? Byly měřeny odchylky délky ocelových tyčí od požadované hodnoty 4m od dvou dodavatelů. Odchylky jsou uvedeny v cm. Dodavatel Y: > y [1] [7] [13] [19] [5] [31] [37] [43] [49] [55] [61] [67] [73] [79] [85] [91] [97]

25 Příklady: Lze považovat délky tyčí od dvou různých dodavatelů za shodné na hladině významnosti 5%? Byly měřeny odchylky délky ocelových tyčí od požadované hodnoty 4m od dvou dodavatelů. Odchylky jsou uvedeny v cm. 1) Vizualizace dat: Box&Whiskers diagram

26 Příklady: Lze považovat délky tyčí od dvou různých dodavatelů za shodné na hladině významnosti 5%? Byly měřeny odchylky délky ocelových tyčí od požadované hodnoty 4m od dvou dodavatelů. Odchylky jsou uvedeny v cm. ) Srovnání rozptylů: F-test > var.test(x,y) # F test to compare two variances # data: x and y F = 0.871, num df = 119, denom df = 99, p- value = alternative hypothesis: true ratio of variances is not equal to 1 95 percent confidence interval: sample estimates: ratio of variances => nulovou hypotézu nezamítáme, rozptyly se statisticky významně neliší

27 Příklady: Lze považovat délky tyčí od dvou různých dodavatelů za shodné na hladině významnosti 5%? Byly měřeny odchylky délky ocelových tyčí od požadované hodnoty 4m od dvou dodavatelů. Odchylky jsou uvedeny v cm. 3) Srovnání středních hodnot: dvouvýběrový t-test se shodnými rozptyly > t.test(x,y, var.equal=t) # Two Sample t- test # data: x and y t = , df = 18, p- value = alternative hypothesis: true difference in means is not equal to 0 95 percent confidence interval: sample estimates: mean of x mean of y => nulovou hypotézu nezamítáme, střední hodnoty se statisticky významně neliší

28 Příklady: Byla měřena rychlost reakce operátorů před a po speciálním cvičení v sekundách. Mělo cvičení statisticky významný vliv na rychlost? 1) Data: > pred_cvicenim [1] [7] [13] [19] [5] [31] [37] [43] [49] [55] [61] [67] [73] [79] [85] [91] [97] [103] [109] [115]

29 Příklady: Byla měřena rychlost reakce operátorů před a po speciálním cvičení v sekundách. Mělo cvičení statisticky významný vliv na rychlost? 1) Data: > po_cviceni [1] [7] [13] [19] [5] [31] [37] [43] [49] [55] [61] [67] [73] [79] [85] [91] [97] [103] [109] [115]

30 Příklady: Byla měřena rychlost reakce operátorů před a po speciálním cvičení v sekundách. Mělo cvičení statisticky významný vliv na rychlost? ) Grafické zobrazení

31 Příklady: Byla měřena rychlost reakce operátorů před a po speciálním cvičení v sekundách. Mělo cvičení statisticky významný vliv na rychlost? 3) Rozdíly: > rozdil = pred_cvicenim - po_cviceni > rozdil [1] [7] [13] [19] [5] [31] [37] [43] [49] [55] [61] [67] [73] [79] [85] [91] [97] [103] [109] [115]

32 Příklady: Byla měřena rychlost reakce operátorů před a po speciálním cvičení v sekundách. Mělo cvičení statisticky významný vliv na rychlost? 4) Párový t-test: > t.test(rozdil, mu=0) # One Sample t- test # data: rozdil t = , df = 119, p- value = 9.54e- 05 alternative hypothesis: true mean is not equal to 0 95 percent confidence interval: sample estimates: mean of x => nulovou hypotézu zamítáme, cvičení mělo vliv a rychlost reakce se statisticky # významně zvýšila

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 010 1.týden (0.09.-4.09. ) Data, typy dat, variabilita, frekvenční analýza

Více

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická

Více

Intervalové odhady. Interval spolehlivosti pro střední hodnotu v N(µ, σ 2 ) Interpretace intervalu spolehlivosti. Interval spolehlivosti ilustrace

Intervalové odhady. Interval spolehlivosti pro střední hodnotu v N(µ, σ 2 ) Interpretace intervalu spolehlivosti. Interval spolehlivosti ilustrace Intervalové odhady Interval spolehlivosti pro střední hodnotu v Nµ, σ 2 ) Situace: X 1,..., X n náhodný výběr z Nµ, σ 2 ), kde σ 2 > 0 známe měli jsme: bodové odhady odhadem charakteristiky je číslo) nevyjadřuje

Více

letní semestr 2012 Katedra pravděpodobnosti a matematické statistiky Matematicko-fyzikální fakulta Univerzity Karlovy Matematická statistika

letní semestr 2012 Katedra pravděpodobnosti a matematické statistiky Matematicko-fyzikální fakulta Univerzity Karlovy Matematická statistika Šárka Hudecová Katedra pravděpodobnosti a matematické statistiky Matematicko-fyzikální fakulta Univerzity Karlovy letní semestr 2012 Opakování t- vs. neparametrické Wilcoxonův jednovýběrový test Opakování

Více

Příklady na testy hypotéz o parametrech normálního rozdělení

Příklady na testy hypotéz o parametrech normálního rozdělení Příklady na testy hypotéz o parametrech normálního rozdělení. O životnosti 75W žárovky (v hodinách) je známo, že má normální rozdělení s = 5h. Pro náhodný výběr 0 žárovek byla stanovena průměrná životnost

Více

letní semestr 2012 Katedra pravděpodobnosti a matematické statistiky Matematicko-fyzikální fakulta Univerzity Karlovy Matematická statistika t-test

letní semestr 2012 Katedra pravděpodobnosti a matematické statistiky Matematicko-fyzikální fakulta Univerzity Karlovy Matematická statistika t-test Párový Šárka Hudecová Katedra pravděpodobnosti a matematické statistiky Matematicko-fyzikální fakulta Univerzity Karlovy letní semestr 2012 motivační příklad Párový Příklad (Platová diskriminace) firma

Více

Statistika, Biostatistika pro kombinované studium. Jan Kracík

Statistika, Biostatistika pro kombinované studium. Jan Kracík Statistika, Biostatistika pro kombinované studium Letní semestr 2014/2015 Tutoriál č. 6: ANOVA Jan Kracík jan.kracik@vsb.cz Obsah: Testování hypotéz opakování ANOVA Testování hypotéz (opakování) Testování

Více

Katedra matematické analýzy a aplikací matematiky, Přírodovědecká fakulta, UP v Olomouci

Katedra matematické analýzy a aplikací matematiky, Přírodovědecká fakulta, UP v Olomouci Zpracování dat v edukačních vědách - Testování hypotéz Kamila Fačevicová Katedra matematické analýzy a aplikací matematiky, Přírodovědecká fakulta, UP v Olomouci Obsah seminářů 5.11. Úvod do matematické

Více

Regresní analýza 1. Regresní analýza

Regresní analýza 1. Regresní analýza Regresní analýza 1 1 Regresní funkce Regresní analýza Důležitou statistickou úlohou je hledání a zkoumání závislostí proměnných, jejichž hodnoty získáme při realizaci experimentů Vzhledem k jejich náhodnému

Více

7. Analýza rozptylu.

7. Analýza rozptylu. 7. Analýza rozptylu. Uvedeme obecnou ideu, která je založena na minimalizaci chyby metodou nejmenších čtverců. Nejdříve uvedeme několik základních tvrzení. Uvažujeme náhodný vektor Y = (Y, Y,..., Y n a

Více

Základy biostatistiky II. Veřejné zdravotnictví 3.LF UK - II

Základy biostatistiky II. Veřejné zdravotnictví 3.LF UK - II Základy biostatistiky II Veřejné zdravotnictví 3.LF UK - II Teoretické rozložení-matematické modely rozložení Naměřená data Výběrové rozložení Teoretické rozložení 1 e 2 x 2 Teoretické rozložení-matematické

Více

diskriminaci žen letní semestr 2012 1 = výrok, o jehož pravdivosti chceme rozhodnout tvrzení o populaci, o jehož platnosti rozhodujeme

diskriminaci žen letní semestr 2012 1 = výrok, o jehož pravdivosti chceme rozhodnout tvrzení o populaci, o jehož platnosti rozhodujeme motivační příklad Párový Párový Příklad (Platová diskriminace) firma provedla šetření s cílem zjistit, zda dochází k platové diskriminaci žen Šárka Hudecová Katedra pravděpodobnosti a matematické statistiky

Více

Testování hypotéz o parametrech regresního modelu

Testování hypotéz o parametrech regresního modelu Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Lineární regresní model kde Y = Xβ + e, y 1 e 1 β y 2 Y =., e = e 2 x 11 x 1 1k., X =....... β 2,

Více

Jana Vránová, 3. lékařská fakulta UK

Jana Vránová, 3. lékařská fakulta UK Jana Vránová, 3. lékařská fakulta UK Vznikají při zkoumání vztahů kvalitativních resp. diskrétních znaků Jedná se o analogii s korelační analýzou spojitých znaků Přitom předpokládáme, že každý prvek populace

Více

4ST201 STATISTIKA CVIČENÍ Č. 7

4ST201 STATISTIKA CVIČENÍ Č. 7 4ST201 STATISTIKA CVIČENÍ Č. 7 testování hypotéz parametrické testy test hypotézy o střední hodnotě test hypotézy o relativní četnosti test o shodě středních hodnot testování hypotéz v MS Excel neparametrické

Více

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 2010 1.týden (20.09.-24.09. ) Data, typy dat, variabilita, frekvenční analýza

Více

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 2010 1.týden (20.09.-24.09. ) Data, typy dat, variabilita, frekvenční analýza

Více

5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza

5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5.1 Vícerozměrná data a vícerozměrná rozdělení Při zpracování vícerozměrných dat se hledají souvislosti mezi dvěma, případně

Více

Matematická statistika. Testy v. v binomickém. Test pravděpodobnosti. Test homogenity dvou. Neparametrické testy. statistika. Testy v.

Matematická statistika. Testy v. v binomickém. Test pravděpodobnosti. Test homogenity dvou. Neparametrické testy. statistika. Testy v. Opakování Opakování: y o střední hodnotě normálního 1 jednovýběrový t-test 2 párový t-test 3 výběrový t-test Šárka Hudecová Katedra a matematické statistiky Matematicko-fyzikální fakulta Univerzity Karlovy

Více

STATISTIKA A INFORMATIKA - bc studium OZW, 1.roč. (zkušební otázky)

STATISTIKA A INFORMATIKA - bc studium OZW, 1.roč. (zkušební otázky) STATISTIKA A INFORMATIKA - bc studium OZW, 1.roč. (zkušební otázky) 1) Význam a využití statistiky v biologických vědách a veterinárním lékařství ) Rozdělení znaků (veličin) ve statistice 3) Základní a

Více

676 + 4 + 100 + 196 + 0 + 484 + 196 + 324 + 64 + 324 = = 2368

676 + 4 + 100 + 196 + 0 + 484 + 196 + 324 + 64 + 324 = = 2368 Příklad 1 Je třeba prověřit, zda lze na 5% hladině významnosti pokládat za prokázanou hypotézu, že střední doba výroby výlisku je 30 sekund. Přitom 10 náhodně vybraných výlisků bylo vyráběno celkem 540

Více

AVDAT Klasický lineární model, metoda nejmenších

AVDAT Klasický lineární model, metoda nejmenších AVDAT Klasický lineární model, metoda nejmenších čtverců Josef Tvrdík Katedra informatiky Přírodovědecká fakulta Ostravská univerzita Lineární model y i = β 0 + β 1 x i1 + + β k x ik + ε i (1) kde y i

Více

5. T e s t o v á n í h y p o t é z

5. T e s t o v á n í h y p o t é z 5. T e s t o v á n í h y p o t é z Na základě hodnot náhodného výběru činíme rozhodnutí o platnosti hypotézy o hodnotách parametrů rozdělení nebo o jeho vlastnostech. Rozeznáváme dva základní typy testů:

Více

Bodové a intervalové odhady parametrů v regresním modelu

Bodové a intervalové odhady parametrů v regresním modelu Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Lineární regresní model Mějme lineární regresní model (LRM) Y = Xβ + e, kde y 1 e 1 β y 2 Y =., e

Více

PSY117/454 Statistická analýza dat v psychologii seminář 9. Statistické testování hypotéz

PSY117/454 Statistická analýza dat v psychologii seminář 9. Statistické testování hypotéz PSY117/454 Statistická analýza dat v psychologii seminář 9 Statistické testování hypotéz Základní výzkumné otázky/hypotézy 1. Stanovení hodnoty parametru =stanovení intervalu spolehlivosti na μ, σ, ρ,

Více

Plánovací diář a Google Calendar

Plánovací diář a Google Calendar České vysoké učení technické v Praze FAKULTA ELEKTROTECHNICKÁ Kvantitativní test uživatelského rozhraní Plánovací diář a Google Calendar Semestrální práce do předmětu Testování uživatelského rozhraní LS

Více

Cvičení ze statistiky - 9. Filip Děchtěrenko

Cvičení ze statistiky - 9. Filip Děchtěrenko Cvičení ze statistiky - 9 Filip Děchtěrenko Minule bylo.. Dobrali jsme normální rozdělení Tyhle termíny by měly být známé: Inferenční statistika Konfidenční intervaly Z-test Postup při testování hypotéz

Více

Test dobré shody v KONTINGENČNÍCH TABULKÁCH

Test dobré shody v KONTINGENČNÍCH TABULKÁCH Test dobré shody v KONTINGENČNÍCH TABULKÁCH Opakování: Mějme náhodné veličiny X a Y uspořádané do kontingenční tabulky. Řekli jsme, že nulovou hypotézu H 0 : veličiny X, Y jsou nezávislé zamítneme, když

Více

15. T e s t o v á n í h y p o t é z

15. T e s t o v á n í h y p o t é z 15. T e s t o v á n í h y p o t é z Na základě hodnot náhodného výběru činíme rozhodnutí o platnosti hypotézy o hodnotách parametrů rozdělení nebo o jeho vlastnostech. Rozeznáváme dva základní typy testů:

Více

Opakování. Neparametrické testy. Pořadí. Jednovýběrový Wilcoxonův test. t-testy: hypotézy o populačním průměru (střední hodnoty) předpoklad normality

Opakování. Neparametrické testy. Pořadí. Jednovýběrový Wilcoxonův test. t-testy: hypotézy o populačním průměru (střední hodnoty) předpoklad normality Opakování Opakování: Testy o střední hodnotě normálního rozdělení 1 jednovýběrový t-test 2 párový t-test 3 dvouvýběrový t-test jednovýběrový Wilcoxonův test párový Wilcoxonův test dvouvýběrový Wilcoxonův

Více

Příklad 1. Korelační pole. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 13

Příklad 1. Korelační pole. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 13 Příklad 1 Máme k dispozici výsledky prvního a druhého testu deseti sportovců. Na hladině významnosti 0,05 prověřte, zda jsou výsledky testů kladně korelované. 1.test : 7, 8, 10, 4, 14, 9, 6, 2, 13, 5 2.test

Více

Přednáška X. Testování hypotéz o kvantitativních proměnných

Přednáška X. Testování hypotéz o kvantitativních proměnných Přednáška X. Testování hypotéz o kvantitativních proměnných Testování hypotéz o podílech Kontingenční tabulka, čtyřpolní tabulka Testy nezávislosti, Fisherůvexaktní test, McNemarůvtest Testy dobré shody

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

Základy navrhování průmyslových experimentů# (Design Of Experiments)

Základy navrhování průmyslových experimentů# (Design Of Experiments) Základy navrhování průmyslových experimentů# (Design Of Experiments) cílová hodnota Prof. RNDr. Gejza Dohnal, CSc. střední hodnota cílová hodnota Přednáška - 13+1 lekcí, písemná zkouška 1. Úvod do plánování

Více

odpovídá jedna a jen jedna hodnota jiných

odpovídá jedna a jen jedna hodnota jiných 8. Regresní a korelační analýza Problém: hledání, zkoumání a hodnocení souvislostí, závislostí mezi dvěma a více statistickými znaky (veličinami). Typy závislostí: pevné a volné Pevná závislost každé hodnotě

Více

13.1. Úvod Cílem regresní analýzy je popsat závislost hodnot znaku Y na hodnotách

13.1. Úvod Cílem regresní analýzy je popsat závislost hodnot znaku Y na hodnotách 13 Regrese 13.1. Úvod Cílem regresní analýzy je popsat závislost hodnot znaku Y na hodnotách znaku X. Přitom je třeba vyřešit jednak volbu funkcí k vystižení dané závislosti a dále stanovení konkrétních

Více

Jednofaktorová analýza rozptylu

Jednofaktorová analýza rozptylu Jednofaktorová analýza rozptylu David Hampel Ústav statistiky a operačního výzkumu, Mendelova univerzita v Brně Kurz pokročilých statistických metod Global Change Research Centre AS CR, 5 7 8 2015 Tato

Více

Regresní analýza. Ekonometrie. Jiří Neubauer. Katedra ekonometrie FVL UO Brno kancelář 69a, tel

Regresní analýza. Ekonometrie. Jiří Neubauer. Katedra ekonometrie FVL UO Brno kancelář 69a, tel Regresní analýza Ekonometrie Jiří Neubauer Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Jiří Neubauer (Katedra ekonometrie UO Brno) Regresní analýza 1 / 23

Více

Základy navrhování průmyslových experimentů DOE

Základy navrhování průmyslových experimentů DOE Základy navrhování průmyslových experimentů DOE cílová hodnota Gejza Dohnal střední hodnota cílová hodnota 1. Kolik je základních kroků při plánování experimentů? 2. Jaké jsou základní kroky při plánování

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

Statistické testování hypotéz II

Statistické testování hypotéz II PSY117/454 Statistická analýza dat v psychologii Přednáška 9 Statistické testování hypotéz II Přehled testů, rozdíly průměrů, velikost účinku, síla testu Základní výzkumné otázky/hypotézy 1. Stanovení

Více

Přednáška IX. Analýza rozptylu (ANOVA)

Přednáška IX. Analýza rozptylu (ANOVA) Přednáška IX. Analýza rozptylu (ANOVA) Princip a metodika výpočtu Předpoklady analýzy rozptylu a jejich ověření Rozbor rozdílů jednotlivých skupin násobné testování hypotéz Analýza rozptylu jako lineární

Více

Statistická analýza jednorozměrných dat

Statistická analýza jednorozměrných dat Statistická analýza jednorozměrných dat Prof. RNDr. Milan Meloun, DrSc. Univerzita Pardubice, Pardubice 31.ledna 2011 Tato prezentace je spolufinancována Evropským sociálním fondem a státním rozpočtem

Více

Testování statistických hypotéz

Testování statistických hypotéz Testování statistických hypotéz 1 Testování statistických hypotéz 1 Statistická hypotéza a její test V praxi jsme nuceni rozhodnout, zda nějaké tvrzeni o parametrech náhodných veličin nebo o veličině samotné

Více

Vzorová prezentace do předmětu Statistika

Vzorová prezentace do předmětu Statistika Vzorová prezentace do předmětu Statistika Popis situace: U 3 náhodně vybraných osob byly zjišťovány hodnoty těchto proměnných: SEX - muž, žena PUVOD Skandinávie, Středomoří, 3 západní Evropa IQ hodnota

Více

Testování hypotéz. Analýza dat z dotazníkových šetření. Kuranova Pavlina

Testování hypotéz. Analýza dat z dotazníkových šetření. Kuranova Pavlina Testování hypotéz Analýza dat z dotazníkových šetření Kuranova Pavlina Statistická hypotéza Možné cíle výzkumu Srovnání účinnosti různých metod Srovnání výsledků různých skupin Tzn. prokázání rozdílů mezi

Více

Testování hypotéz. Testování hypotéz o rozdílu průměrů t-test pro nezávislé výběry t-test pro závislé výběry

Testování hypotéz. Testování hypotéz o rozdílu průměrů t-test pro nezávislé výběry t-test pro závislé výběry Testování hypotéz Testování hypotéz o rozdílu průměrů t-test pro nezávislé výběry t-test pro závislé výběry Testování hypotéz Obecný postup 1. Určení statistické hypotézy 2. Určení hladiny chyby 3. Výpočet

Více

Kvantitativní testování virtuálních klávesnic na desktopu

Kvantitativní testování virtuálních klávesnic na desktopu Kvantitativní testování virtuálních klávesnic na desktopu Tomáš Jeníček Předmět testování uživatelského rozhraní Úvod Cílem tohoto testu bude porovnat dvě nejpoužívanější virtuální klávesnice na operačním

Více

KGG/STG Statistika pro geografy

KGG/STG Statistika pro geografy KGG/STG Statistika pro geografy 9. Korelační analýza Mgr. David Fiedor 20. dubna 2015 Analýza závislostí v řadě geografických disciplín studujeme jevy, u kterých vyšetřujeme nikoliv pouze jednu vlastnost

Více

Vysoká škola báňská technická univerzita Ostrava. Fakulta elektrotechniky a informatiky

Vysoká škola báňská technická univerzita Ostrava. Fakulta elektrotechniky a informatiky Vysoká škola báňská technická univerzita Ostrava Fakulta elektrotechniky a informatiky Bankovní účty (semestrální projekt statistika) Tomáš Hejret (hej124) 18.5.2013 Úvod Cílem tohoto projektu, zadaného

Více

6. T e s t o v á n í h y p o t é z

6. T e s t o v á n í h y p o t é z 6. T e s t o v á n í h y p o t é z Na základě hodnot z realizace náhodného výběru činíme rozhodnutí o platnosti hypotézy o hodnotách parametrů rozdělení nebo o jeho vlastnostech. Používáme k tomu vhodně

Více

UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11.

UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11. UNIVERZITA OBRANY Fakulta ekonomiky a managementu Aplikace STAT1 Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 Jiří Neubauer, Marek Sedlačík, Oldřich Kříž 3. 11. 2012 Popis a návod k použití aplikace

Více

TESTOVÁNÍ HYPOTÉZ STATISTICKÁ HYPOTÉZA Statistické testy Testovací kritérium = B B > B < B B - B - B < 0 - B > 0 oboustranný test = B > B

TESTOVÁNÍ HYPOTÉZ STATISTICKÁ HYPOTÉZA Statistické testy Testovací kritérium = B B > B < B B - B - B < 0 - B > 0 oboustranný test = B > B TESTOVÁNÍ HYPOTÉZ Od statistického šetření neočekáváme pouze elementární informace o velikosti některých statistických ukazatelů. Používáme je i k ověřování našich očekávání o výsledcích nějakého procesu,

Více

Náhodné veličiny jsou nekorelované, neexistuje mezi nimi korelační vztah. Když jsou X; Y nekorelované, nemusí být nezávislé.

Náhodné veličiny jsou nekorelované, neexistuje mezi nimi korelační vztah. Když jsou X; Y nekorelované, nemusí být nezávislé. 1. Korelační analýza V životě většinou nesledujeme pouze jeden statistický znak. Sledujeme více statistických znaků zároveň. Kromě vlastností statistických znaků nás zajímá také jejich těsnost (velikost,

Více

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D.

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D. Testování statistických hypotéz Ing. Michal Dorda, Ph.D. Testování normality Př. : Při simulaci provozu na křižovatce byla získána data o mezerách mezi přijíždějícími vozidly v [s]. Otestujte na hladině

Více

Testování předpokladů pro metodu chain-ladder. Seminář z aktuárských věd Petra Španihelová

Testování předpokladů pro metodu chain-ladder. Seminář z aktuárských věd Petra Španihelová Testování předpokladů pro metodu chain-ladder Seminář z aktuárských věd 4. 11. 2016 Petra Španihelová Obsah Datová struktura Posouzení dat Předpoklady metody chain-ladder dle T. Macka Běžná lineární regrese

Více

Analýza dat z dotazníkových šetření

Analýza dat z dotazníkových šetření Analýza dat z dotazníkových šetření Cvičení 6. Rozsah výběru Př. Určete minimální rozsah výběru pro proměnnou věk v souboru dovolena, jestliže 95% interval spolehlivost průměru proměnné nemá být širší

Více

Parametry hledáme tak, aby součet čtverců odchylek byl minimální. Řešením podle teorie je =

Parametry hledáme tak, aby součet čtverců odchylek byl minimální. Řešením podle teorie je = Příklad 1 Metodou nejmenších čtverců nalezněte odhad lineární regresní funkce popisující závislost mezi výnosy pšenice a množstvím použitého hnojiva na základě hodnot výběrového souboru uvedeného v tabulce.

Více

Statistická analýza jednorozměrných dat

Statistická analýza jednorozměrných dat Statistická analýza jednorozměrných dat Prof. RNDr. Milan Meloun, DrSc. Univerzita Pardubice, Pardubice 31.ledna 2011 Tato prezentace je spolufinancována Evropským sociálním fondem a státním rozpočtem

Více

Statistika. Testování hypotéz statistická indukce Úvod do problému. Roman Biskup

Statistika. Testování hypotéz statistická indukce Úvod do problému. Roman Biskup Statistika Testování hypotéz statistická indukce Úvod do problému Roman Biskup (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at)email.cz 21. února 2012 Statistika by Birom

Více

Statistická analýza jednorozměrných dat

Statistická analýza jednorozměrných dat Statistická analýza jednorozměrných dat Prof. RNDr. Milan Meloun, DrSc. Univerzita Pardubice, Pardubice 31.ledna 2011 Tato prezentace je spolufinancována Evropským sociálním fondem a státním rozpočtem

Více

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK211 Základy ekonometrie ZS 2015/16 Cvičení 7: Časově řady, autokorelace LENKA FIŘTOVÁ KATEDRA EKONOMETRIE, FAKULTA INFORMATIKY A STATISTIKY VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE 1. Časové řady Data: HDP.wf1

Více

Statistické metody v ekonomii. Ing. Michael Rost, Ph.D.

Statistické metody v ekonomii. Ing. Michael Rost, Ph.D. Statistické metody v ekonomii Ing. Michael Rost, Ph.D. Jihočeská univerzita v Českých Budějovicích Test χ 2 v kontingenční tabulce typu 2 2 Jde vlastně o speciální případ χ 2 testu pro čtyřpolní tabulku.

Více

Uloha B - Kvantitativní test. Radek Kubica A7B39TUR. B1 Radek Kubica Kvantitativní testování Stránka 1

Uloha B - Kvantitativní test. Radek Kubica A7B39TUR. B1 Radek Kubica Kvantitativní testování Stránka 1 Uloha B - Kvantitativní test Radek Kubica A7B39TUR B1 Radek Kubica Kvantitativní testování 26.4.2014 Stránka 1 Obsah Úvod... 3 Nezávislé proměnné... 3 Závislé proměnné... 3 Popis uživatelů pro tento testování...

Více

Pravděpodobnost a statistika, Biostatistika pro kombinované studium. Tutoriál č. 5: Bodové a intervalové odhady, testování hypotéz.

Pravděpodobnost a statistika, Biostatistika pro kombinované studium. Tutoriál č. 5: Bodové a intervalové odhady, testování hypotéz. Pravděpodobnost a statistika, Biostatistika pro kombinované studium Letní semestr 2015/2016 Tutoriál č. 5: Bodové a intervalové odhady, testování hypotéz Jan Kracík jan.kracik@vsb.cz Obsah: Výběrová rozdělení

Více

Korelační a regresní analýza

Korelační a regresní analýza Korelační a regresní analýza Analýza závislosti v normálním rozdělení Pearsonův (výběrový) korelační koeficient: r = s XY s X s Y, kde s XY = 1 n (x n 1 i=0 i x )(y i y ), s X (s Y ) je výběrová směrodatná

Více

AKM CVIČENÍ. Opakování maticové algebry. Mějme matice A, B regulární, potom : ( AB) = B A

AKM CVIČENÍ. Opakování maticové algebry. Mějme matice A, B regulární, potom : ( AB) = B A AKM - 1-2 CVIČENÍ Opakování maticové algebry Mějme matice A, B regulární, potom : ( AB) = B A 1 1 ( A ) = ( A ) ( A ) = A ( A + B) = A + B 1 1 1 ( AB) = B A, kde A je řádu mxn a B nxk Čtvercová matice

Více

AVDAT Geometrie metody nejmenších čtverců

AVDAT Geometrie metody nejmenších čtverců AVDAT Geometrie metody nejmenších čtverců Josef Tvrdík Katedra informatiky Přírodovědecká fakulta Ostravská univerzita Lineární model klasický lineární regresní model odhad parametrů MNČ y = Xβ + ε, ε

Více

Regresní analýza. Eva Jarošová

Regresní analýza. Eva Jarošová Regresní analýza Eva Jarošová 1 Obsah 1. Regresní přímka 2. Možnosti zlepšení modelu 3. Testy v regresním modelu 4. Regresní diagnostika 5. Speciální využití Lineární model 2 1. Regresní přímka 3 nosnost

Více

Analýza rozptylu. Podle počtu analyzovaných faktorů rozlišujeme jednofaktorovou, dvoufaktorovou a vícefaktorovou analýzu rozptylu.

Analýza rozptylu. Podle počtu analyzovaných faktorů rozlišujeme jednofaktorovou, dvoufaktorovou a vícefaktorovou analýzu rozptylu. Analýza rozptylu Analýza rozptylu umožňuje ověřit významnost rozdílu mezi výběrovými průměry většího počtu náhodných výběrů, umožňuje posoudit vliv různých faktorů. Podle počtu analyzovaných faktorů rozlišujeme

Více

2 ) 4, Φ 1 (1 0,005)

2 ) 4, Φ 1 (1 0,005) Příklad 1 Ze zásilky velkého rozsahu byl náhodně vybrán soubor obsahující 1000 kusů. V tomto souboru bylo zjištěno 26 kusů nekvalitních. Rozhodněte, zda je možné s 99% jistotou tvrdit, že zásilka obsahuje

Více

Problematika analýzy rozptylu. Ing. Michael Rost, Ph.D.

Problematika analýzy rozptylu. Ing. Michael Rost, Ph.D. Problematika analýzy rozptylu Ing. Michael Rost, Ph.D. Úvod do problému Již umíte testovat shodu dvou středních hodnot prostřednictvím t-testů. Otázka: Jaké předpoklady musí být splněny, abyste mohli použít

Více

Úvodem Dříve les než stromy 3 Operace s maticemi

Úvodem Dříve les než stromy 3 Operace s maticemi Obsah 1 Úvodem 13 2 Dříve les než stromy 17 2.1 Nejednoznačnost terminologie 17 2.2 Volba metody analýzy dat 23 2.3 Přehled vybraných vícerozměrných metod 25 2.3.1 Metoda hlavních komponent 26 2.3.2 Faktorová

Více

Testování statistických hypotéz

Testování statistických hypotéz Testování statistických hypotéz Na základě náhodného výběru, který je reprezentativním vzorkem základního souboru (který přesně neznáme, k němuž se ale daná statistická hypotéza váže), potřebujeme ověřit,

Více

PSY117/454 Statistická analýza dat v psychologii Přednáška 10

PSY117/454 Statistická analýza dat v psychologii Přednáška 10 PSY117/454 Statistická analýza dat v psychologii Přednáška 10 TESTY PRO NOMINÁLNÍ A ORDINÁLNÍ PROMĚNNÉ NEPARAMETRICKÉ METODY... a to mělo, jak sám vidíte, nedozírné následky. Smrť Analýza četností hodnot

Více

Matematické modelování Náhled do ekonometrie. Lukáš Frýd

Matematické modelování Náhled do ekonometrie. Lukáš Frýd Matematické modelování Náhled do ekonometrie Lukáš Frýd Výnos akcie vs. Výnos celého trhu - CAPM model r it = r ft + β 1. (r mt r ft ) r it r ft = α 0 + β 1. (r mt r ft ) + ε it Ekonomický (finanční model)

Více

Testování hypotéz. 1 Jednovýběrové testy. 90/2 odhad času

Testování hypotéz. 1 Jednovýběrové testy. 90/2 odhad času Testování hypotéz 1 Jednovýběrové testy 90/ odhad času V podmínkách naprostého odloučení má voák prokázat schopnost orientace v čase. Úkolem voáka e provést odhad časového intervalu 1 hodiny bez hodinek

Více

Přednáška XI. Asociace ve čtyřpolní tabulce a základy korelační analýzy

Přednáška XI. Asociace ve čtyřpolní tabulce a základy korelační analýzy Přednáška XI. Asociace ve čtyřpolní tabulce a základy korelační analýzy Relativní riziko a poměr šancí Princip korelace dvou náhodných veličin Korelační koeficienty Pearsonůva Spearmanův Korelace a kauzalita

Více

STATISTICKÉ HYPOTÉZY

STATISTICKÉ HYPOTÉZY STATISTICKÉ HYPOTÉZY ZÁKLADNÍ POJMY Bodové/intervalové odhady Maruška řešila hodnoty parametrů (průměr, rozptyl atd.) Zde bude Maruška dělat hypotézy (předpoklady) ohledně parametrů Z.S. Výsledek nebude

Více

JEDNOVÝBĚROVÉ TESTY. Komentované řešení pomocí programu Statistica

JEDNOVÝBĚROVÉ TESTY. Komentované řešení pomocí programu Statistica JEDNOVÝBĚROVÉ TESTY Komentované řešení pomocí programu Statistica Vstupní data Data umístěná v excelovském souboru překopírujeme do tabulky ve Statistice a pojmenujeme proměnné, viz prezentace k tématu

Více

Zobecněná analýza rozptylu, více faktorů a proměnných

Zobecněná analýza rozptylu, více faktorů a proměnných Zobecněná analýza rozptylu, více faktorů a proměnných Menu: QCExpert Anova Více faktorů Zobecněná analýza rozptylu (ANalysis Of VAriance, ANOVA) umožňuje posoudit do jaké míry ovlivňují kvalitativní proměnné

Více

Zápočtová práce STATISTIKA I

Zápočtová práce STATISTIKA I Zápočtová práce STATISTIKA I Obsah: - úvodní stránka - charakteristika dat (původ dat, důvod zpracování,...) - výpis naměřených hodnot (v tabulce) - zpracování dat (buď bodové nebo intervalové, podle charakteru

Více

Statistika. Regresní a korelační analýza Úvod do problému. Roman Biskup

Statistika. Regresní a korelační analýza Úvod do problému. Roman Biskup Statistika Regresní a korelační analýza Úvod do problému Roman Biskup Jihočeská univerzita v Českých Budějovicích Ekonomická fakulta (Zemědělská fakulta) Katedra aplikované matematiky a informatiky 2008/2009

Více

Intervalové Odhady Parametrů II Testování Hypotéz

Intervalové Odhady Parametrů II Testování Hypotéz Parametrů II Testování Hypotéz Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc. Katedra počítačových systémů Katedra teoretické informatiky Fakulta informačních technologií České vysoké učení

Více

31. 3. 2014, Brno Hanuš Vavrčík Základy statistiky ve vědě

31. 3. 2014, Brno Hanuš Vavrčík Základy statistiky ve vědě 31. 3. 2014, Brno Hanuš Vavrčík Základy statistiky ve vědě Motto Statistika nuda je, má však cenné údaje. strana 3 Statistické charakteristiky Charakteristiky polohy jsou kolem ní seskupeny ostatní hodnoty

Více

Analýza rozptylu. Statistika II. Jiří Neubauer. Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.

Analýza rozptylu. Statistika II. Jiří Neubauer. Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob. ANOVA Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz ANOVA ANOVA je nástroj pro zkoumání vztahu mezi vysvětlovanými a vysvětlujícími proměnnými.

Více

Me neˇ nezˇ minimum ze statistiky Michaela S ˇ edova KPMS MFF UK Principy medicı ny zalozˇene na du kazech a za klady veˇdecke prˇı pravy 1 / 33

Me neˇ nezˇ minimum ze statistiky Michaela S ˇ edova KPMS MFF UK Principy medicı ny zalozˇene na du kazech a za klady veˇdecke prˇı pravy 1 / 33 1 / 33 Méně než minimum ze statistiky Michaela Šedová KPMS MFF UK Principy medicíny založené na důkazech a základy vědecké přípravy Příklad Studie syndromu náhodného úmrtí dětí. Dvě skupiny: Děti, které

Více

Vymezení důležitých pojmů. nulová hypotéza, alternativní hypotéza testování hypotézy hladina významnosti (alfa) chyba I. druhu, chyba II.

Vymezení důležitých pojmů. nulová hypotéza, alternativní hypotéza testování hypotézy hladina významnosti (alfa) chyba I. druhu, chyba II. Testování hypotéz 1. vymezení důležitých pojmů 2. testování hypotéz o rozdílu průměrů 3. jednovýběrový t-test 4. t-test pro nezávislé výběry 5. t-test pro závislé výběry Vymezení důležitých pojmů nulová

Více

Kontingenční tabulky, korelační koeficienty

Kontingenční tabulky, korelační koeficienty Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Mějme kategoriální proměnné X a Y. Vytvoříme tzv. kontingenční tabulku. Budeme tedy testovat hypotézu

Více

Matematika III 10. týden Číselné charakteristiky střední hodnota, rozptyl, kovariance, korelace

Matematika III 10. týden Číselné charakteristiky střední hodnota, rozptyl, kovariance, korelace Matematika III 10. týden Číselné charakteristiky střední hodnota, rozptyl, kovariance, korelace Jan Slovák Masarykova univerzita Fakulta informatiky 28. 11 2. 12. 2016 Obsah přednášky 1 Literatura 2 Střední

Více

Aproximace binomického rozdělení normálním

Aproximace binomického rozdělení normálním Aproximace binomického rozdělení normálním Aproximace binomického rozdělení normálním Příklad Sybilla a Kassandra tvrdí, že mají telepatické schopnosti, a chtějí to dokázat následujícím pokusem: V jedné

Více

Rozhodnutí / Skutečnost platí neplatí Nezamítáme správně chyba 2. druhu Zamítáme chyba 1. druhu správně

Rozhodnutí / Skutečnost platí neplatí Nezamítáme správně chyba 2. druhu Zamítáme chyba 1. druhu správně Testování hypotéz Nechť,, je náhodný výběr z nějakého rozdělení s neznámými parametry. Máme dvě navzájem si odporující hypotézy o parametrech daného rozdělení: Nulová hypotéza parametry (případně jediný

Více

Příklad 1. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 11

Příklad 1. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 11 Příklad 1 Vyhláška Ministerstva zdravotnictví předpokládala, že doba dojezdu k pacientovi od nahlášení požadavku nepřekročí 17 minut. Hodnoty deseti náhodně vybraných dob příjezdu sanitky k nemocnému byly:

Více

Regresní a korelační analýza

Regresní a korelační analýza Regresní a korelační analýza Mějme dvojici proměnných, které spolu nějak souvisí. x je nezávisle (vysvětlující) proměnná y je závisle (vysvětlovaná) proměnná Chceme zjistit funkční závislost y = f(x).

Více

STATISTICKÉ TESTY VÝZNAMNOSTI

STATISTICKÉ TESTY VÝZNAMNOSTI STATISTICKÉ TESTY VÝZNAMNOSTI jsou statistické postupy, pomocí nichž ověřujeme, zda mezi proměnnými existuje vztah (závislost, rozdíl). Pokud je výsledek šetření statisticky významný (signifikantní), znamená

Více

Epidemiologické ukazatele. lních dat. analýza kategoriáln. Prof. RNDr. Jana Zvárová, DrSc. Záznam epidemiologických dat. a I E

Epidemiologické ukazatele. lních dat. analýza kategoriáln. Prof. RNDr. Jana Zvárová, DrSc. Záznam epidemiologických dat. a I E Testování statistických hypotéz z a analýza kategoriáln lních dat Prof. RNDr. Jana Zvárová, DrSc. Epidemiologické ukazatele Rizikový faktor Populace Přítomen Nepřítomen Celkem Nemocní a b a+b Kontroly

Více

A7B39TUR Úloha B Kvantitativní testování ZS 2013/2014 Software MS Office Word a Open Office Writer

A7B39TUR Úloha B Kvantitativní testování ZS 2013/2014 Software MS Office Word a Open Office Writer A7B39TUR Úloha B Kvantitativní testování ZS 2013/2014 Software MS Office Word a Open Office Writer Vypracoval: Peter Šourek ( sourepet@fel.cvut.cz ) Obsah 1Úvod...3 1.1Cíl testování...3 1.2Proměnné...3

Více

Úvod do analýzy rozptylu

Úvod do analýzy rozptylu Úvod do analýzy rozptylu Párovým t-testem se podařilo prokázat, že úprava režimu stravování a fyzické aktivity ve vybrané škole měla vliv na zlepšené hodnoty HDLcholesterolu u školáků. Pro otestování jsme

Více

You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com)

You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com) Testování statistických hypotéz Testování statistických hypotéz Princip: Ověřování určitého předpokladu zjišťujeme, zda zkoumaný výběr pochází ze základního souboru, který má určité rozdělení zjišťujeme,

Více