Zpracování studie týkající se průzkumu vlastností statistických proměnných a vztahů mezi nimi.

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Zpracování studie týkající se průzkumu vlastností statistických proměnných a vztahů mezi nimi."

Transkript

1 SEMINÁRNÍ PRÁCE

2 Zadání: Data: Statistické metody: Zpracování studie týkající se průzkumu vlastností statistických proměnných a vztahů mezi nimi. Minimálně 6 proměnných o 30 pozorováních (z toho 2 proměnné kategoriální, alespoň 2 proměnné číselné spojité a 2 proměnné číselné nespojité). 1) Vypočítejte a popište základní charakteristiky jedné číselné spojité a jedné číselné nespojité proměnné, nakreslete vhodné grafy. 2) Pro zkoumání vztahů mezi proměnnými použijte: a) kontingenční tabulku b) analýzu rozptylu (nepovinné) c) korelační tabulku d) jednoduchou regresní analýzu e) vícenásobnou regresní analýzu 3) Výsledky okomentujte a doplňte vhodnými grafy. Průzkum dovolených, strávených v zahraničí v roce 2006, provedený v obci Vysoké Mýto Pozorování Cestovní kancelář Destinace Délka pobytu v zahraničí Věk Cena pobytu v zahraničí Měsíční příjem 1 žádná Chorvatsko ,00 Kč ,00 Kč 2 žádná Irsko ,00 Kč ,00 Kč 3 CK Union Francie ,00 Kč 9 400,00 Kč 4 CK Sunny Day Španělsko ,00 Kč ,00 Kč 5 žádná Norsko ,00 Kč ,00 Kč 6 CK Sunny Day Chorvatsko ,00 Kč ,00 Kč 7 CK Jiří Kalousek Španělsko ,00 Kč ,00 Kč 8 žádná Francie ,00 Kč ,00 Kč 9 CK Uion Chorvatsko ,00 Kč ,00 Kč 10 žádná Norsko ,00 Kč ,00 Kč 11 CK Sunny Day Španělsko ,00 Kč ,00 Kč 12 žádná Francie ,00 Kč ,00 Kč 13 žádná Chorvatsko ,00 Kč ,00 Kč 14 CK Union Francie ,00 Kč ,00 Kč 15 CK Union Španělsko ,00 Kč ,00 Kč 16 CK Jiří Kalousek Chorvatsko ,00 Kč ,00 Kč 17 CK Sunny Day Francie ,00 Kč ,00 Kč 18 CK Union Norsko ,00 Kč ,00 Kč 19 CK Jiří Kalousek Španělsko ,00 Kč ,00 Kč 20 žádná Irsko ,00 Kč ,00 Kč 21 CK Jiří Kalousek Francie ,00 Kč ,00 Kč 22 žádná Chorvatsko ,00 Kč ,00 Kč 23 CK Sunny Day Španělsko ,00 Kč ,00 Kč 24 CK Union Francie ,00 Kč ,00 Kč 25 CK Jiří Kalousek Španělsko ,00 Kč ,00 Kč 26 žádná Chorvatsko ,00 Kč ,00 Kč 27 CK Union Norsko ,00 Kč ,00 Kč 28 žádná Francie ,00 Kč ,00 Kč 29 CK Union Chorvatsko ,00 Kč ,00 Kč 30 CK Sunny Day Španělsko ,00 Kč ,00 Kč

3 1) Vypočítejte a popište základní charakteristiky jedné číselné nespojité a jedné číselné spojité proměnné, nakreslete vhodné grafy. Pozorování Délka pobytu v zahraničí Cena pobytu v zahraničí Pozorování Délka pobytu v zahraničí Cena pobytu v zahraničí ,00 Kč ,00 Kč ,00 Kč ,00 Kč ,00 Kč ,00 Kč ,00 Kč ,00 Kč ,00 Kč ,00 Kč ,00 Kč ,00 Kč ,00 Kč ,00 Kč ,00 Kč ,00 Kč ,00 Kč ,00 Kč ,00 Kč ,00 Kč ,00 Kč ,00 Kč ,00 Kč ,00 Kč ,00 Kč ,00 Kč ,00 Kč ,00 Kč ,00 Kč ,00 Kč a) Délka pobytu v zahraničí číselná nespojitá proměnná One-Way Frequencies délka pobytu Frequency Percent Cumulative Frequency Cumulative Percent Původně nesetříděná data jsme uspořádali do tabulky rozdělení četností. Z ní můžeme vyvodit např. následující závěry: - v souboru jsou 2 osoby, které strávili v zahraničí 5 dní, 10 osob, které pobývali v zahraničí 10 dní, 4 osoby, které strávili v cizině11 dní atd. - osoby, které pobývali na dovolené 5 dní tvoří 6,67% všech dotázaných osob, osoby, které strávili v zahraničí 10 dní, tvoří 33,33% všech dotázaných atd.

4 - 2 osoby strávili v zahraničí 5 dní, což je 6, 67% všech dotázaných, 12 osob strávilo v zahraničí 5 nebo 10 dní, což je 40 % všech dotázaných, ani jedna osoba nestrávila v zahraničí více než 29 dní, což znamená, že všechny dotázané osoby pobývali v zahraničí 29 a méně dní. Tento graf znázorňuje vertikální sloupcový graf četností pro znak délka pobytu v zahraničí. V následujících tabulkách se uvádějí míry úrovně a to v tomto pořadí: - největší hodnota, aritmetický průměr, nejmenší hodnota, dolní kvartil, medián, horní kvartil, variační rozpětí, výběrová směrodatná odchylka, součet a výběrový rozptyl Jak vidíme, maximální doba strávená v zahraničí je 29 dní, a nejkratší 5 dní. V průměru stráví lidé v zahraničí 12,6 dní. Variační rozpětí, které se vypočítá jako rozdíl nejvyšší a nejmenší hodnoty, je 24. Směrodatná odchylka je 5,282 dní. Umocníme-li směrodatnou odchylku, dostaneme rozptyl. Rozptyl je tedy 27,9. Dolní kvartil odděluje čtvrtinu nejnižších hodnot znaku délka pobytu a jeho hodnota je 10 dní. Medián neboli prostřední hodnota je 50 % kvantil, který člení statistický soubor na dvě stejně četné poloviny, je v našem případě 11 dní. Horní kvartil odděluje 75 % nejnižších hodnot znaku od zbývajících 25 % hodnot znaku a v našem případě je 13 dní. Celkem všech 30 dotázaných osob strávilo v roce 2006 v zahraničí 378 dní. Analysis Variable : délka pobytu Maximum Mean Minimum Lower Quartile Median Upper Quartile Analysis Variable : délka pobytu Range Std Dev Sum Variance

5 Krabičkový graf, který vidíme níže, nám znázorňuje extrémní hodnoty souboru a kvartily. Spodní horizontální čára určuje dolní kvartil, střední je medián a nejvyšší znázorňuje horní kvartil. Hodnoty délky pobytu se pohybují nejvíce v oblasti krabičky a dále podél vertikální úsečky. Body, které vidíme na obou stranách grafu nejsou spojeny úsečkou, protože mezi poslední hodnotou na úsečce a těmito body nejsou žádné hodnoty. Jsou to extrémní hodnoty, které mohou zkreslovat například průměrnou délku pobytu v zahraničí. Proto je objektivnějším hodnocením medián než aritmetický průměr. b) Cena pobytu v zahraničí číselná spojitá proměnná Původně nesetříděná data jsem opět uspořádala do tabulky intervalových rozdělení četností. Interval Cena pobytu v zahraničí Četnost Kumulativní četnost (hranice intervalu) Střed intervalu dolní horní absolutni relativni absolutní relativní , , , , , , , , , , , ,000 Celkem x x x 30 1,000 x x Z tabulky můžeme vyvodit např. následující závěry: - v souboru je 14 osob, jež zaplatily za pobyt v zahraničí od do Kč, 2 osoby, které zaplatily od do Kč, 2 osoby, které dovolená stála v rozmezí od až Kč atd. - osoby, které zaplatily za dovolenou od do Kč tvoří 26,7% všech dotázaných osob, osoby, které zaplatily od do Kč tvoří 6,7 % atd osob, zaplatilo za pobyt od do Kč, což je 46,7% všech dotázaných, 26 osob zaplatilo od do Kč, což je 86,7 % všech dotázaných, ani jedna osoba nezaplatila za pobyt v zahraničí více než Kč, což znamená, že všech 30 dotázaných osob zaplatilo za pobyt v zahraničí Kč a méně.

6 V následujících tabulkách se uvádějí míry úrovně a to v tomto pořadí: - největší hodnota, aritmetický průměr, nejmenší hodnota, dolní kvartil, medián, horní kvartil, variační rozpětí, výběrová směrodatná odchylka, součet a výběrový rozptyl Jak vidíme, maximální cena pobytu činí Kč, a nejnižší Kč. V průměru zaplatí lidé za pobyt v zahraničí 9 596,47 Kč. Variační rozpětí, které se vypočítá jako rozdíl nejvyšší a nejmenší hodnoty, je Kč. Směrodatná odchylka je 5 439,08 Kč. Umocníme-li směrodatnou odchylku, dostaneme rozptyl. Rozptyl je tedy ,95. Dolní kvartil odděluje čtvrtinu nejnižších hodnot znaku cena pobytu a jeho hodnota je Kč. Medián neboli prostřední hodnota je 50 % kvantil, který člení statistický soubor na dvě stejně četné poloviny, je v našem případě Kč. Horní kvartil odděluje 75 % nejnižších hodnot znaku od zbývajících 25 % hodnot znaku a je Kč. Celkem všech 30 dotázaných osob zaplatilo v roce 2006 za pobyt v zahraničí Kč. Analysis Variable : cena pobytu Maximum Mean Minimum Lower Quartile Median Upper Quartile Analysis Variable : cena pobytu Range Std Dev Sum Variance Krabičkový graf, který vidíme níže, nám opět znázorňuje extrémní hodnoty souboru a kvartily. Spodní horizontální čára určuje dolní kvartil, střední je medián a nejvyšší znázorňuje horní kvartil. Hodnoty délky pobytu se pohybují nejvíce v oblasti krabičky a dále podél vertikální úsečky. Body, které vidíme na v horní části grafu nejsou spojeny úsečkou, protože mezi poslední hodnotou na úsečce a těmito body nejsou žádné hodnoty. Jsou to extrémní hodnoty, které mohou zkreslovat například průměrnou cenu pobytu v zahraničí. Proto je objektivnějším hodnocením medián než aritmetický průměr.

7 2) Kontingenční tabulka analýza kategoriálních dat Na základě průzkumu provedeného u vybraných 30 osob, které vycestovaly v roce 2006 do ciziny byla sestavena následující kontingenční tabulka. Destinace/CK CK Jiří Kalousek (1) CK Sunny Day (2) CK Union (3) Žádná CK (4) Celkem Přímořské (1) Poznávací (2) Celkem Francie, Chorvatsko a Španělsko sloučíme do skupiny přímořské destinace a Norsko a Irsko do skupiny poznávací destinace. Máme rozhodnout, zda výběr cestovní kanceláře závisí na vybrané destinaci. Table Analysis Frequency Expected Col Pct Table of radek by sloupec sloupec radek Total Total Na prvním místě v buňce jsou zobrazeny sdružené absolutní četnosti, na druhém očekávané četnosti a na třetím místě jsou zobrazeny sdružené relativní četnosti v procentech. Pomocí Chí-kvadrát testu testujeme hypotézu H 0 : výběr cestovní kanceláře nezávisí na vybrané destinaci. Alternativní hypotéza je H 1 : non H 0.

8 V této tabulce nalezneme výsledek testované hypotézy. Statistics for Table of radek by sloupec Statistic Value Prob Chi-Square Likelihood Ratio Chi-Square Mantel-Haenszel Chi- Square Phi Coefficient Contingency Coefficient Cramer's V Sample Size = 30 Hodnota v řádku Chi-Square a sloupci Value udává hodnotu testového kritéria a je tedy 4,7159. Hodnota ve sloupci Prob je vyšší než 0,05, tj. 0,1938, a proto na 5% hladně významnosti testovanou hypotézu H 0 nezamítáme. Výběr cestovní kanceláře nezávisí na vybrané destinaci. 3) Korelační tabulka korelační analýza Předmětem korelační analýzy je zkoumání lineárních vztahů mezi dvěma nebo více proměnnými. Mírou těsnosti těchto vztahů jsou korelační koeficienty. Korelační koeficient může nabývat hodnot z intervalu <-1, +1>, přičemž znaménko určuje směr závislosti. Hodnoty blízké nule znamenají slabou lineární závislost mezi pozorovanými hodnotami proměnných X 1 a X 2, hodnoty blízké +1 znamenají vysokou kladnou korelaci (body odpovídající dvojicím X 1 a X 2 leží v blízkosti přímky s kladnou směrnicí), hodnoty blízké -1 znamenají vysokou zápornou korelaci (body odpovídající dvojicím hodnot X 1 a X 2 leží v blízkosti přímky se zápornou směrnicí). Máme výběr 30 obyvatel města Vysoké Mýto, kteří v roce 2006 vycestovali do zahraničí. Zajímá nás jak spolu souvisí délka pobytu v zahraničí s cenou pobytu. Délka pobytu v zahraničí Cena pobytu v zahraničí Délka pobytu v zahraničí Cena pobytu v zahraničí ,00 Kč ,00 Kč ,00 Kč ,00 Kč ,00 Kč ,00 Kč ,00 Kč ,00 Kč ,00 Kč ,00 Kč ,00 Kč ,00 Kč ,00 Kč ,00 Kč ,00 Kč ,00 Kč ,00 Kč ,00 Kč ,00 Kč ,00 Kč ,00 Kč ,00 Kč ,00 Kč ,00 Kč ,00 Kč ,00 Kč ,00 Kč ,00 Kč ,00 Kč ,00 Kč

9 Testovaná hypotéza H 0 : ς = 0 (neexistuje lineární vztah mezi X 1 a X 2 ) Alternativní hypotéza H 1 : ς 0 (existuje lineární vztah mezi X 1 a X 2 ) 1 With Variables: cena pobytu 1 Variables: delka pobytu Pearson Correlation Coefficients, N = 30 Prob > r under H0: Rho=0 delka pobytu cena pobytu <.0001 V tabulce je uvedena hodnota korelačního koeficientu (0,73516) a P-hodnota (<.0001), která odpovídá hodnotě testové statistiky. Protože α = 0,05 je větší než P-value, testovanou hypotézu H 0 zamítáme. Jak je vidět mezi proměnnými délka pobytu a cena pobytu lze pozorovat přímou silnou lineární závislost (korelaci), což vyplývá i z grafu uvedeného níže. Lze tedy říci, že s rostoucími hodnotami jedné proměnné střední hodnota druhé proměnné také roste.

10 Hodnoty korelačního koeficientu a test hypotézy H 0 : ς = 0 proti H 1 : ς 0 lze určit i z výstupu lineární regrese. Pokud cena pobytu je vysvětlovaná proměnná a délka pobytu je vysvětlující proměnná, pak dostaneme tyto výstupy: Dependent Variable: cena pobytu Parameter Estimates Variable Parameter Estimate Standard Error t Value Pr > t Intercept delka pobytu <.0001 Z tabulky odečteme hodnotu regresního koeficientu b 12 = 826, Korelační koeficient souvisí s koeficientem determinace modelu regresní přímky. Absolutní hodnotu korelačního koeficientu dostaneme odmocněním koeficientu determinace, který je uveden v následující tabulce. Root MSE R-Square Dependent Mean Adj R-Sq Coeff Var Korelační koeficient: r = R 2 = 0,5405 = 0, Z hodnoty koeficientu determinace plyne, že modelem regresní přímky je vysvětleno 54,05 % variability závislé proměnné (cena pobytu). Pokud za vysvětlovanou proměnnou zvolíme délku pobytu a vysvětlující proměnnou bude cena pobytu, pak obdržíme tyto výstupy: Dependent Variable: delka pobytu Parameter Estimates Variable Parameter Estimate Standard Error t Value Pr > t Intercept <.0001 cena pobytu <.0001 Z tabulky odečteme hodnotu regresního koeficientu b 21 = 0, Korelační koeficient souvisí s koeficientem determinace modelu regresní přímky. Absolutní hodnotu korelačního koeficientu dostaneme odmocněním koeficientu determinace, který je uveden v následující tabulce.

11 Root MSE R-Square Dependent Mean Adj R-Sq Coeff Var Korelační koeficient: r = R 2 = 0,5405 = 0, Z hodnoty koeficientu determinace opět plyne, že modelem regresní přímky je vysvětleno 54,05 % variability závislé proměnné (délka pobytu). Závěrem lze shrnout: Korelační koeficient je symetrickou mírou lineární závislosti a jeho odhad získáme odmocněním koeficientu determinace modelu regresní přímky, případně doplněním záporného znaménka. Závisle proměnnou přitom může být kterákoli ze dvou uvažovaných proměnných. K testu hypotézy H 0 : ς = 0 proti H 1 : ς 0 můžeme použít ekvivalentní test H 0 : βj = 0 proti H 1 : βj 0, jehož výsledek najdeme na příslušném výstupu lineární regrese. 4) Jednoduchou regresní analýza Cílem regresní analýzy je nalezení vztahu mezi vysvětlovanou nebo závisle proměnnou Y a jednou nebo více vysvětlujícími proměnnými (nezávisle proměnnými) X 1, X 2,, X k a konstrukce vhodného modelu. Nejznámější charakteristikou kvality regresního modelu je koeficient determinace R 2. Koeficient determinace nabývá hodnot z intervalu <0;1> a udává, jakou část celkové variability pozorovaných hodnot lze vysvětlit daným modelem. Každý dotázaný je již vydělávající osobou. Chceme zjistit, zda cena, kterou vybrané osoby zaplatily za pobyt v zahraničí závisí na výši jejich měsíčních příjmů. a) Regresní přímka: y=β 0 + β 1 + ε Dependent Variable: cena pobytu Parameter Estimates Variable Parameter Estimate Standard Error t Value Pr > t Intercept mesícní príjem <.0001 Tabulka obsahuje odhady parametrů regresní přímky, směrodatné chyby těchto odhadů, hodnoty testové statistiky při testování hypotéz H 0 : β j = 0 proti H 1 : β j 0 pro j = 0, 1, příslušné P-hodnoty a meze intervalů spolehlivosti pro β j. β 0 = -3609,16087 β 1 = 0,81965 P-Value = 0,2050 0,05 H 0 nezamítáme, β0 je statisticky nevýznamný parametr P-Value <.0001, tj. 0 0,05 H 0 zamítáme, β1 je statistiky významný parametr Tato funkce (přímka) není vhodná pro vystižení závislosti.

12 b) Parabola: Y i = β 0 + β 1 x i + β 2 x i 2 Dependent Variable: cena pobytu Parameter Estimates Variable Parameter Estimate Standard Error t Value Pr > t Intercept mesicni prijem mesicni prijem Tabulka obsahuje odhady parametrů regresní paraboly, směrodatné chyby těchto odhadů, hodnoty testové statistiky při testování hypotéz H 0 : βj = 0 proti H 1 : βj 0 pro j = 0, 1, 2, příslušné P-hodnoty a meze intervalů spolehlivosti pro βj. β 0 = β 1 = 0,81965 β 2 = 0, P-Value = 0,2912 0,05 H 0 nezamítáme, β0 je statisticky nevýznamný parametr P-Value = 0,4222 0,05 H 0 nezamítáme, β1 je statistiky nevýznamný parametr P-Value = 0,1570 0,05 H 0 nezamítáme, β2 je statistiky nevýznamný parametr Tato funkce (parabola) není vhodná pro vystižení závislosti. 3) Exponenciála: Y i = β 0 x β 1 x i ln Y i = ln β 0 x x i ln β 1 Results Dependent Variable: ln cena pobytu Parameter Estimates Variable Parameter Estimate Standard Error t Value Pr > t Intercept <.0001 mesicni prijem <.0001 Tabulka obsahuje odhady parametrů regresní paraboly, směrodatné chyby těchto odhadů, hodnoty testové statistiky transformovaného exponenciálního modelu při testování hypotéz H 0 : β j = 0 proti H 1 : β j 0 pro j = 0, 1, příslušné P-hodnoty a meze intervalů spolehlivosti pro β j. β 0 = 7,85797 β 1 = 0, P-Value = < ,05 H 0 zamítáme, β 0 je statisticky významný parametr P-Value = < ,05 H 0 zamítáme, β 1 je statisticky významný parametr Tato funkce (exponenciála) je vhodná pro vystižení závislosti.

13 ln Y i = 7, , x i Y i = exp (7, , x i ) Analysis of Variance Source Sum of Squares Mean Square F Value Pr > F Model <.0001 Error Corrected Total Testové kritérium F-Value = 21,26. P-Value = <.0001, tj. 0 0,05 testovanou hypotézu o nezávislosti H 0 zamítáme. Cena, kterou vybrané osoby zaplatily za pobyt v zahraničí závisí na výši měsíčního příjmu těchto osob. Jak moc? Root MSE R-Square Dependent Mean Adj R-Sq Coeff Var Koeficient determinace R 2 = 0,4315. To znamená, že tento model vysvětluje 43,15 % celkové variability závisle proměnné. Dependent Variable: ln cena pobytu Durbin-Watson D Number of Observations 30 1st Order Autocorrelation Durbin-Watsonův test testuje nezávislost reziduí. Je-li výsledná hodnota blízká číslu 2 (jako je tomu v našem případě, kdy D-W = 1,940), rezidua nejsou autokorelovaná (nejsou vzájemně lineárně závisle) a model byl zvolen správně. Níže je uvedeno grafické znázornění závislosti.

14 Regression Analysis Plots 4) Hyperbola: Y = b 0 + b 1 1/x Dependent Variable: cena pobytu Parameter Estimates Variable Parameter Estimate Standard Error t Value Pr > t Intercept <.0001 inv_mesicni prijem Tabulka obsahuje odhady parametrů regresní hyperboly, směrodatné chyby těchto odhadů, hodnoty testové statistiky transformovaného exponenciálního modelu při testování hypotéz H 0 : β j = 0 proti H 1 : β j 0 pro j = 0, 1, příslušné P-hodnoty a meze intervalů spolehlivosti pro β j. β 0 = β 1 = P-Value = <.0001, tj. 0 0,05 H 0 zamítáme, β 0 je statisticky významný parametr P-Value = 0,0005 0,05 H 0 zamítáme, β 1 je statisticky významný parametr Tato funkce (hyperbola) je vhodná pro vystižení závislosti. Y i = x i

15 Analysis of Variance Source Sum of Squares Mean Square F Value Pr > F Model Error Corrected Total Testové kritérium F-Value = 15,77. P-Value = 0,0005 0,05 testovanou hypotézu o nezávislosti H 0 zamítáme. Cena, kterou vybrané osoby zaplatily za pobyt v zahraničí závisí na výši měsíčního příjmu těchto osob. Jak moc? Root MSE R-Square Dependent Mean Adj R-Sq Coeff Var Koeficient determinace R 2 = 0,3602. To znamená, že tímto modelem je vysvětleno 36,02 % celkové variability závisle proměnné. Dependent Variable: cena pobytu Durbin-Watson D Number of Observations 30 1st Order Autocorrelation Durbin-Watsonův test testuje nezávislost reziduí. Je-li výsledná hodnota blízká číslu 2 (jako je tomu v našem případě, kdy D-W = 1,500), rezidua nejsou autokorelovaná (nejsou vzájemně lineárně závisle) a model byl zvolen správně. Níže je uvedeno grafické znázornění závislosti.

16 Regression Analysis Plots 5) Logaritmická regrese: Y = b 0 + b 1 ln(x) Dependent Variable: cena pobytu Parameter Estimates Variable Parameter Estimate Standard Error t Value Pr > t Intercept ln_mesicni prijem Tabulka obsahuje odhady parametrů logaritmické regrese, směrodatné chyby těchto odhadů, hodnoty testové statistiky transformovaného exponenciálního modelu při testování hypotéz H 0 : β j = 0 proti H 1 : β j 0 pro j = 0, 1, příslušné P-hodnoty a meze intervalů spolehlivosti pro β j. β 0 = β 1 = P-Value = 0,0003 0,05 H 0 zamítáme, β 0 je statisticky významný parametr P-Value = 0,0001 0,05 H 0 zamítáme, β 1 je statisticky významný parametr Tato funkce (logaritmická) je vhodná pro vystižení závislosti. Y = ln(x)

17 Analysis of Variance Source Sum of Squares Mean Square F Value Pr > F Model Error Corrected Total Testové kritérium F-Value = 20,22. P-Value = 0,0001 0,05 testovanou hypotézu o nezávislosti H 0 zamítáme. Cena, kterou vybrané osoby zaplatily za pobyt v zahraničí závisí na výši měsíčního příjmu těchto osob. Jak moc? Root MSE R-Square Dependent Mean Adj R-Sq Coeff Var Koeficient determinace R 2 = 0,4193. To znamená, že tímto modelem je vysvětleno 41,93 % celkové variability závisle proměnné. Dependent Variable: cena pobytu Durbin-Watson D Number of Observations 30 1st Order Autocorrelation Durbin-Watsonův test testuje nezávislost reziduí. Je-li výsledná hodnota blízká číslu 2 (jako je tomu v našem případě, kdy D-W = 1,585), rezidua nejsou autokorelovaná (nejsou vzájemně lineárně závisle) a model byl zvolen správně.

18 Níže je uvedeno grafické znázornění závislosti. Regression Analysis Plots Závěr: ejvhodnější regresní funkcí pro modelování závislosti ceny pobytu na výši měsíčních příjmů je exponenciála. 5) Vícenásobnou regresní analýza Zkoumá závislost y nejen na vysvětlující proměnné x 1 ale též na dalších vysvětlujících proměnných x 2, x 3, x 4, Jsou dána data o délce pobytu v zahraničí, věku osob a měsíčním příjmu. Chceme zjistit, zda délka pobytu v zahraničí závisí na ostatních proměnných. Délka pobytu v zahraničí (y) Věk (x 1 ) Měsíční příjem (x 2 ) Délka pobytu v zahraničí (y) Věk (x 1 ) Měsíční příjem (x 2 ) ,00 Kč ,00 Kč ,00 Kč ,00 Kč ,00 Kč ,00 Kč ,00 Kč ,00 Kč ,00 Kč ,00 Kč ,00 Kč ,00 Kč ,00 Kč ,00 Kč ,00 Kč ,00 Kč ,00 Kč ,00 Kč ,00 Kč ,00 Kč ,00 Kč ,00 Kč ,00 Kč ,00 Kč ,00 Kč ,00 Kč ,00 Kč ,00 Kč ,00 Kč ,00 Kč

19 Testovaná hypotéza H 0 : I 2 = 0 (nezávislost) Alternativní hypotéza H 1 : I 2 0 (závislost) Y i = β 0 + βyx 1.x 2 X 1 + βyx 2.x 1 X 2 + ε i Dependent Variable: delka pobytu Parameter Estimates Variable Parameter Estimate Standard Error t Value Pr > t Intercept vek mesicni prijem Z tabulky můžeme opět vyčíst hodnoty regresních parametrů. β 0 = 6,69860 P-Value = 0,2120 0,05 H 0 nezamítáme, β 0 je statisticky nevýznamný parametr β 1 = - 0,06740 P-Value = 0,4498 0,05 H 0 nezamítáme, β 1 je statisticky nevýznamný parametr β 2 = 0, P-Value = 0,0143 0,05 H 0 zamítáme, β 2 je statisticky významný parametr Parametry β 0 a β 1 musíme z modelu vyřadit, jelikož jsou statisticky nevýznamné. Nejprve vyřadíme konstantu β 0. Tím získáme následující hodnoty: Dependent Variable: delka pobytu Parameter Estimates Variable Parameter Estimate Standard Error t Value Pr > t vek mesicni prijem <.0001 Protože proměnná β 1 i nadále zůstává statisticky nevýznamná, musíme jí také vyřadit z modelu. Nyní již zbývá v modelu jen vysvětlující proměnná měsíční příjem. β 2 = 0, (VIZ níže) P-Value <.0001, tj. 0 0,05 H 0 zamítáme, β 2 je statisticky významný parametr

20 Dependent Variable: delka pobytu Parameter Estimates Variable Parameter Estimate Standard Error t Value Pr > t mesicni prijem <.0001 Y i = 0, X 2 + ε i Analysis of Variance Source Sum of Squares Mean Square F Value Pr > F Model <.0001 Error Uncorrected Total Testové kritérium F-Value = 250,86. P-Value <.0001, tj. 0 0,05 testovanou hypotézu o nezávislosti H 0 zamítáme. Délka pobytu v zahraničí závisí pouze na výši měsíčního příjmu. Jak moc? Root MSE R-Square Dependent Mean Adj R-Sq Coeff Var Koeficient determinace R 2 = 0,8964. To znamená, že tento model vysvětluje 89,64 % celkové variability závisle proměnné. Dependent Variable: delka pobytu Durbin-Watson D Number of Observations 30 1st Order Autocorrelation Durbin-Watsonův test testuje nezávislost reziduí. Je-li výsledná hodnota blízká číslu 2 (jako je tomu v našem případě, kdy D-W = 2,402), rezidua nejsou autokorelovaná (nejsou vzájemně lineárně závisle) a model byl zvolen správně.

(motto: An unsophisticated forecaster uses statistics as a drunken man uses lamp-posts - for support rather than for illumination.

(motto: An unsophisticated forecaster uses statistics as a drunken man uses lamp-posts - for support rather than for illumination. Neparametricke testy (motto: An unsophisticated forecaster uses statistics as a drunken man uses lamp-posts - for support rather than for illumination. Andrew Lang) 1. Příklad V následující tabulce jsou

Více

V tabulce jsou uvedeny roční náklady na údržbu (v dolarech) a cena domu (v tis. dolarů).

V tabulce jsou uvedeny roční náklady na údržbu (v dolarech) a cena domu (v tis. dolarů). 1. Příklad V tabulce jsou uvedeny roční náklady na údržbu (v dolarech) a cena domu (v tis. dolarů). Náklady 835 63 240 1005 184 213 313 658 195 545 Cena 136 24 52 143 42 43 67 106 61 99 a.) Modelujte závislost

Více

Stav Svobodný Rozvedený Vdovec. Svobodná 37 10 6. Rozvedená 8 12 8. Vdova 5 8 6

Stav Svobodný Rozvedený Vdovec. Svobodná 37 10 6. Rozvedená 8 12 8. Vdova 5 8 6 1. Příklad Byly sledovány rodinné stavy nevěst a ženichů při uzavírání sňatků a byla vytvořena následující tabulka četností. Stav Svobodný Rozvedený Vdovec Svobodná 37 10 6 Rozvedená 8 12 8 Vdova 5 8 6

Více

4ST201 STATISTIKA CVIČENÍ Č. 10

4ST201 STATISTIKA CVIČENÍ Č. 10 4ST201 STATISTIKA CVIČENÍ Č. 10 regresní analýza - vícenásobná lineární regrese korelační analýza Př. 10.1 Máte zadaný výstup regresní analýzy závislosti závisle proměnné Y na nezávisle proměnné X. Doplňte

Více

KGG/STG Statistika pro geografy

KGG/STG Statistika pro geografy KGG/STG Statistika pro geografy 10. Mgr. David Fiedor 27. dubna 2015 Nelineární závislost - korelační poměr užití v případě, kdy regresní čára není přímka, ale je vyjádřena složitější matematickou funkcí

Více

Teorie časových řad Test 2 Varianta A HODNOCENÍ (max. 45 bodů z 50 možných)

Teorie časových řad Test 2 Varianta A HODNOCENÍ (max. 45 bodů z 50 možných) Teorie časových řad Test 2 Varianta A HODNOCENÍ (max. 45 bodů z 50 možných) 1. SPECIFIKACE (12 bodů): (1) Graf průběhu proměnných (1) Obě řady se chovají stejně, lze předpokládat jejich lineární vztah

Více

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK Základy ekonometrie Odhad klasického lineárního regresního modelu II Cvičení 3 Zuzana Dlouhá Klasický lineární regresní model - zadání příkladu Soubor: CV3_PR.xls Data: y = maloobchodní obrat potřeb

Více

Analýza dat z dotazníkových šetření

Analýza dat z dotazníkových šetření Analýza dat z dotazníkových šetření Cvičení 6. Rozsah výběru Př. Určete minimální rozsah výběru pro proměnnou věk v souboru dovolena, jestliže 95% interval spolehlivost průměru proměnné nemá být širší

Více

STATISTIKA MIGRANTŮ PRO REGIONY V MORAVSKOSLEZSKÉM KRAJI A PRO KRAJ V OBDOBÍ 1992-2005

STATISTIKA MIGRANTŮ PRO REGIONY V MORAVSKOSLEZSKÉM KRAJI A PRO KRAJ V OBDOBÍ 1992-2005 VYSOKÁ ŠKOLA BÁŇSKÁ - TECHNICKÁ UNIVERZITA OSTRAVA Hornicko-geologická fakulta institut geoinformatiky STATISTIKA MIGRANTŮ PRO REGIONY V MORAVSKOSLEZSKÉM KRAJI A PRO KRAJ V OBDOBÍ 1992-2005 Speciální metody

Více

Zadání Máme data hdp.wf1, která najdete zde: Bodová předpověď: Intervalová předpověď:

Zadání Máme data hdp.wf1, která najdete zde:  Bodová předpověď: Intervalová předpověď: Predikce Text o predikci pro upřesnění pro ty, které zajímá, kde se v EViews všechna ta čísla berou. Ruční výpočty u průběžného testu nebudou potřeba. Co bude v závěrečném testu, to nevím. Ale přečíst

Více

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK211 Základy ekonometrie ZS 2015/16 Cvičení 7: Časově řady, autokorelace LENKA FIŘTOVÁ KATEDRA EKONOMETRIE, FAKULTA INFORMATIKY A STATISTIKY VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE 1. Časové řady Data: HDP.wf1

Více

V praxi pracujeme s daty nominálními (nabývají pouze dvou hodnot), kategoriálními (nabývají více

V praxi pracujeme s daty nominálními (nabývají pouze dvou hodnot), kategoriálními (nabývají více 9 Vícerozměrná data a jejich zpracování 9.1 Vícerozměrná data a vícerozměrná rozdělení Při zpracování vícerozměrných dat, hledáme souvislosti mezi dvěmi, případně více náhodnými veličinami. V praxi pracujeme

Více

ÚKOL 2 1886 22 5,77 5,00 5 2,531,003,056 -,869,113

ÚKOL 2 1886 22 5,77 5,00 5 2,531,003,056 -,869,113 ÚKOL 2 Jméno a příjmení: UČO: Imatrik. ročník: Úkol 2.1: V souboru EVS99_cvicny.sav zjistěte, zdali rozložení názoru na to, kdo by měl být odpovědný za zajištění bydlení (proměnná q54h), je normální. Řešte

Více

Karta předmětu prezenční studium

Karta předmětu prezenční studium Karta předmětu prezenční studium Název předmětu: Číslo předmětu: 545-0250 Garantující institut: Garant předmětu: Ekonomická statistika Institut ekonomiky a systémů řízení RNDr. Radmila Sousedíková, Ph.D.

Více

6. Lineární regresní modely

6. Lineární regresní modely 6. Lineární regresní modely 6.1 Jednoduchá regrese a validace 6.2 Testy hypotéz v lineární regresi 6.3 Kritika dat v regresním tripletu 6.4 Multikolinearita a polynomy 6.5 Kritika modelu v regresním tripletu

Více

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická

Více

AVDAT Klasický lineární model, metoda nejmenších

AVDAT Klasický lineární model, metoda nejmenších AVDAT Klasický lineární model, metoda nejmenších čtverců Josef Tvrdík Katedra informatiky Přírodovědecká fakulta Ostravská univerzita Lineární model y i = β 0 + β 1 x i1 + + β k x ik + ε i (1) kde y i

Více

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 010 1.týden (0.09.-4.09. ) Data, typy dat, variabilita, frekvenční analýza

Více

Pokud data zadáme přes "Commands" okno: SDF1$X1<-c(1:15) //vytvoření řady čísel od 1 do 15 SDF1$Y1<-c(1.5,3,4.5,5,6,8,9,11,13,14,15,16,18.

Pokud data zadáme přes Commands okno: SDF1$X1<-c(1:15) //vytvoření řady čísel od 1 do 15 SDF1$Y1<-c(1.5,3,4.5,5,6,8,9,11,13,14,15,16,18. Regresní analýza; transformace dat Pro řešení vztahů mezi proměnnými kontinuálního typu používáme korelační a regresní analýzy. Korelace se používá pokud nelze určit "kauzalitu". Regresní analýza je určena

Více

Regresní a korelační analýza

Regresní a korelační analýza Přednáška STATISTIKA II - EKONOMETRIE Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Regresní analýza Cíl regresní analýzy: stanovení formy (trendu, tvaru, průběhu)

Více

C V I Č E N Í ZE STATISTIKY PRO BIOLOGY:

C V I Č E N Í ZE STATISTIKY PRO BIOLOGY: C V I Č E N Í ZE STATISTIKY PRO BIOLOGY: S B Í R K A P Ř Í K L A D Ů (VERZE 1.3) Martin Duchoslav Olomouc 2004 Předložený text reprezentuje výběr příkladů, které doplňují přednášky a cvičení kurzu Základy

Více

a) Základní informace o souboru Statistika: Základní statistika a tabulky: Popisné statistiky: Detaily

a) Základní informace o souboru Statistika: Základní statistika a tabulky: Popisné statistiky: Detaily Testování hypotéz Testování hypotéz jsou klasické statistické úsudky založené na nějakém apriorním předpokladu. Vyslovíme-li předpoklad o hodnotě neznámého parametru nebo o zákonu rozdělení sledované náhodné

Více

Analýza rozptylu. Statistika II. Jiří Neubauer. Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.

Analýza rozptylu. Statistika II. Jiří Neubauer. Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob. ANOVA Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz ANOVA ANOVA je nástroj pro zkoumání vztahu mezi vysvětlovanými a vysvětlujícími proměnnými.

Více

Analýza rozptylu. Přednáška STATISTIKA II - EKONOMETRIE. Jiří Neubauer

Analýza rozptylu. Přednáška STATISTIKA II - EKONOMETRIE. Jiří Neubauer ANOVA Přednáška STATISTIKA II - EKONOMETRIE Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz ANOVA ANOVA je nástroj pro zkoumání vztahu mezi vysvětlovanými a vysvětlujícími

Více

TECHNICKÁ UNIVERZITA V LIBERCI SEMESTRÁLNÍ PRÁCE

TECHNICKÁ UNIVERZITA V LIBERCI SEMESTRÁLNÍ PRÁCE TECHNICKÁ UNIVERZITA V LIBERCI Ekonomická fakulta Studentská 2 461 17 Liberec 1 SEMESTRÁLNÍ PRÁCE STATISTICKÝ ROZBOR DAT Z DOTAZNÍKOVÝCH ŠETŘENÍ Gabriela Dlasková, Veronika Bukovinská Sára Kroupová, Dagmar

Více

Pomůcka pro cvičení: 3. semestr Bc studia

Pomůcka pro cvičení: 3. semestr Bc studia Pomůcka pro cvičení: 3. semestr Bc studia Statistika Základní pojmy balíček: Statistics Pro veškeré výpočty je třeba načíst balíček Statistic. Při řešení můžeme použít proceduru infolevel[statistics]:=1,

Více

Zápočtová práce STATISTIKA I

Zápočtová práce STATISTIKA I Zápočtová práce STATISTIKA I Obsah: - úvodní stránka - charakteristika dat (původ dat, důvod zpracování,...) - výpis naměřených hodnot (v tabulce) - zpracování dat (buď bodové nebo intervalové, podle charakteru

Více

Biostatistika a matematické metody epidemiologie- stručné studijní texty

Biostatistika a matematické metody epidemiologie- stručné studijní texty Biostatistika a matematické metody epidemiologie- stručné studijní texty Bohumír Procházka, SZÚ Praha 1 Co můžeme sledovat Pro charakteristiku nebo vlastnost, kterou chceme sledovat zvolíme termín jev.

Více

TECHNICKÁ UNIVERZITA V LIBERCI EKONOMICKÁ FAKULTA

TECHNICKÁ UNIVERZITA V LIBERCI EKONOMICKÁ FAKULTA TECHNICKÁ UNIVERZITA V LIBERCI EKONOMICKÁ FAKULTA Semestrální práce Semestrální práce z předmětu Statistický rozbor dat z dotazníkového šetření Vypracoval: Bonaconzová, Bryknarová, Milkovičová, Škrdlová

Více

VÍCEROZMĚRNÝ STATISTICKÝ SOUBOR

VÍCEROZMĚRNÝ STATISTICKÝ SOUBOR KORELACE A REGRESE 1 Vytvořeno s podporou projektu Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny společného základu (reg. č. CZ.1.07/..00/8.001)

Více

Organizační pokyny k přednášce. Matematická statistika. Přehled témat. Co je statistika?

Organizační pokyny k přednášce. Matematická statistika. Přehled témat. Co je statistika? Organizační pokyny k přednášce Matematická statistika 2012 2013 Šárka Hudecová Katedra pravděpodobnosti a matematické statistiky Matematicko-fyzikální fakulta UK hudecova@karlin.mff.cuni.cz http://www.karlin.mff.cuni.cz/

Více

Semestrální projekt. do předmětu Statistika. Vypracoval: Adam Mlejnek 2-36. Oponenti: Patrik Novotný 2-36. Jakub Nováček 2-36. Click here to buy 2

Semestrální projekt. do předmětu Statistika. Vypracoval: Adam Mlejnek 2-36. Oponenti: Patrik Novotný 2-36. Jakub Nováček 2-36. Click here to buy 2 Semestrální projekt do předmětu Statistika Vypracoval: Adam Mlejnek 2-36 Oponenti: Patrik Novotný 2-36 Jakub Nováček 2-36 Úvod Pro vypracování projektu do předmětu statistika jsem si zvolil průzkum kvality

Více

ADDS cvičení 7. Pavlína Kuráňová

ADDS cvičení 7. Pavlína Kuráňová ADDS cvičení 7 Pavlína Kuráňová Analyzujte závislost věku obyvatel na místě kde nejčastěji tráví dovolenou. (dotazník dovolená, sloupce Jaký je Váš věk a Kde nejčastěji trávíte dovolenou) Analyzujte závislost

Více

PŘÍLOHA A. METODA NEJMENŠÍCH ČTVERCŮ PRODEJ BYTŮ. Příloha A. Metoda nejmenších čtverců Prodej bytů

PŘÍLOHA A. METODA NEJMENŠÍCH ČTVERCŮ PRODEJ BYTŮ. Příloha A. Metoda nejmenších čtverců Prodej bytů PŘÍLOHA A. METODA NEJMENŠÍCH ČTVERCŮ PRODEJ BYTŮ Příloha A Metoda nejmenších čtverců Prodej bytů i PŘÍLOHA A. METODA NEJMENŠÍCH ČTVERCŮ PRODEJ BYTŮ 1 2 3 TOT. 1 7 33 40 2 1 18 125 144 2.5 1 72 73 3.5 1

Více

PSY117/454 Statistická analýza dat v psychologii Přednáška 10

PSY117/454 Statistická analýza dat v psychologii Přednáška 10 PSY117/454 Statistická analýza dat v psychologii Přednáška 10 TESTY PRO NOMINÁLNÍ A ORDINÁLNÍ PROMĚNNÉ NEPARAMETRICKÉ METODY... a to mělo, jak sám vidíte, nedozírné následky. Smrť Analýza četností hodnot

Více

Univerzita Pardubice Fakulta chemicko technologická Katedra analytické chemie Licenční studium Management systému jakosti

Univerzita Pardubice Fakulta chemicko technologická Katedra analytické chemie Licenční studium Management systému jakosti Univerzita Pardubice Fakulta chemicko technologická Katedra analytické chemie Licenční studium Management systému jakosti 2.1 Tvorba lineárních regresních modelů při analýze dat Autor práce: Přednášející:

Více

Korelační a regresní analýza

Korelační a regresní analýza Korelační a regresní analýza Analýza závislosti v normálním rozdělení Pearsonův (výběrový) korelační koeficient: r = s XY s X s Y, kde s XY = 1 n (x n 1 i=0 i x )(y i y ), s X (s Y ) je výběrová směrodatná

Více

STATISTICA Téma 8. Regresní a korelační analýza, regrese prostá

STATISTICA Téma 8. Regresní a korelační analýza, regrese prostá STATISTICA Téma 8. Regresní a korelační analýza, regrese prostá 1) Lineární i nelineární regrese prostá, korelace Naeditujeme data viz obr. 1. Obr. 1 V menu Statistika zvolíme submenu Pokročilé lineární/nelineární

Více

Z mých cvičení dostalo jedničku 6 studentů, dvojku 8 studentů, trojku 16 studentů a čtyřku nebo omluveno 10 studentů.

Z mých cvičení dostalo jedničku 6 studentů, dvojku 8 studentů, trojku 16 studentů a čtyřku nebo omluveno 10 studentů. Neparametricke testy (motto: Hypotézy jsou lešením, které se staví před budovu a pak se strhává, je-li budova postavena. Jsou nutné pro vědeckou práci, avšak skutečný vědec nepokládá hypotézy za předmětnou

Více

Některé zákony rozdělení pravděpodobnosti. 1. Binomické rozdělení

Některé zákony rozdělení pravděpodobnosti. 1. Binomické rozdělení Přednáška 5/1 Některé zákony rozdělení pravděpodobnosti 1. Binomické rozdělení Předpoklady: (a) pst výskytu jevu A v jediném pokuse P (A) = π, (b) je uskutečněno n pokusů, (c) pokusy jsou nezávislé, tj.

Více

Ilustrační příklad odhadu LRM v SW Gretl

Ilustrační příklad odhadu LRM v SW Gretl Ilustrační příklad odhadu LRM v SW Gretl Podkladové údaje Korelační matice Odhad lineárního regresního modelu (LRM) Verifikace modelu PEF ČZU Praha Určeno pro posluchače předmětu Ekonometrie Needitovaná

Více

Analýza dat na PC I.

Analýza dat na PC I. CENTRUM BIOSTATISTIKY A ANALÝZ Lékařská a Přírodovědecká fakulta, Masarykova univerzita Analýza dat na PC I. Popisná analýza v programu Statistica IBA výuka Základní popisná statistika Popisná statistika

Více

Parametry hledáme tak, aby součet čtverců odchylek byl minimální. Řešením podle teorie je =

Parametry hledáme tak, aby součet čtverců odchylek byl minimální. Řešením podle teorie je = Příklad 1 Metodou nejmenších čtverců nalezněte odhad lineární regresní funkce popisující závislost mezi výnosy pšenice a množstvím použitého hnojiva na základě hodnot výběrového souboru uvedeného v tabulce.

Více

6. T e s t o v á n í h y p o t é z

6. T e s t o v á n í h y p o t é z 6. T e s t o v á n í h y p o t é z Na základě hodnot z realizace náhodného výběru činíme rozhodnutí o platnosti hypotézy o hodnotách parametrů rozdělení nebo o jeho vlastnostech. Používáme k tomu vhodně

Více

31. 3. 2014, Brno Hanuš Vavrčík Základy statistiky ve vědě

31. 3. 2014, Brno Hanuš Vavrčík Základy statistiky ve vědě 31. 3. 2014, Brno Hanuš Vavrčík Základy statistiky ve vědě Motto Statistika nuda je, má však cenné údaje. strana 3 Statistické charakteristiky Charakteristiky polohy jsou kolem ní seskupeny ostatní hodnoty

Více

Regresní analýza. Eva Jarošová

Regresní analýza. Eva Jarošová Regresní analýza Eva Jarošová 1 Obsah 1. Regresní přímka 2. Možnosti zlepšení modelu 3. Testy v regresním modelu 4. Regresní diagnostika 5. Speciální využití Lineární model 2 1. Regresní přímka 3 nosnost

Více

Dynamické metody pro predikci rizika

Dynamické metody pro predikci rizika Dynamické metody pro predikci rizika 1 Úvod do analýzy časových řad Časová řada konečná posloupnost reálných hodnot určitého sledovaného ukazatele měřeného v určitých časových intervalech okamžikové např

Více

AVDAT Geometrie metody nejmenších čtverců

AVDAT Geometrie metody nejmenších čtverců AVDAT Geometrie metody nejmenších čtverců Josef Tvrdík Katedra informatiky Přírodovědecká fakulta Ostravská univerzita Lineární model klasický lineární regresní model odhad parametrů MNČ y = Xβ + ε, ε

Více

Kurz SPSS: Jednoduchá analýza dat. Jiří Šafr

Kurz SPSS: Jednoduchá analýza dat. Jiří Šafr Kurz SPSS: Jednoduchá analýza dat Jiří Šafr vytvořeno 29. 6. 2009 Dva základní typy statistiky 1. Popisná statistika: metody pro zjišťování a sumarizaci informací grfy, tabulky, popisné chrakteristiky

Více

Výrobní produkce divizí Ice Cream Po lo ha plane t Rozložený výse ový 3D graf Bublinový graf Histogram t s tn e ídy

Výrobní produkce divizí Ice Cream Po lo ha plane t Rozložený výse ový 3D graf Bublinový graf Histogram t s tn e ídy Výrobní produkce divizí Ice Cream Polo ha planet Rozložený výsečový 3D graf Bublinový graf Ice Cream 1 15% Ice Cream 2 12% Ice Cream 3 18% Ice Cream 4 20% Statistika 40 30 20 Ice Cream 6 19% Ice Cream

Více

4ST201 STATISTIKA CVIČENÍ Č. 8

4ST201 STATISTIKA CVIČENÍ Č. 8 4ST201 STATISTIKA CVIČENÍ Č. 8 analýza závislostí kontingenční tabulky test závislosti v kontingenční tabulce analýza rozptylu regresní analýza lineární regrese Analýza závislostí Budeme ověřovat existenci

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

KOMBINATORIKA, PRAVDĚPODOBNOST, STATISTIKA. Charakteristiky variability. Mgr. Jakub Němec. VY_32_INOVACE_M4r0120

KOMBINATORIKA, PRAVDĚPODOBNOST, STATISTIKA. Charakteristiky variability. Mgr. Jakub Němec. VY_32_INOVACE_M4r0120 KOMBINATORIKA, PRAVDĚPODOBNOST, STATISTIKA Charakteristiky variability Mgr. Jakub Němec VY_32_INOVACE_M4r0120 CHARAKTERISTIKY VARIABILITY Charakteristika variability se určuje pouze u kvantitativních znaků.

Více

LEKCE 02a UNIVARIAČNÍ ANALÝZA KATEGORIZOVANÝCH DAT

LEKCE 02a UNIVARIAČNÍ ANALÝZA KATEGORIZOVANÝCH DAT LEKCE 02a UNIVARIAČNÍ ANALÝZA KATEGORIZOVANÝCH DAT 1 Základní statistickou úlohou je popis stavu základního souboru Východiskem je většinou výběrový soubor (odvozujeme popis základního souboru z popisu

Více

{ } ( 2) Příklad: Test nezávislosti kategoriálních znaků

{ } ( 2) Příklad: Test nezávislosti kategoriálních znaků Příklad: Test nezávislosti kategoriálních znaků Určete na hladině významnosti 5 % na základě dat zjištěných v rámci dotazníkového šetření ve Šluknově, zda existuje závislost mezi pohlavím respondenta a

Více

Využití software ITEMAN k položkové analýze a analýze výsledků testů

Využití software ITEMAN k položkové analýze a analýze výsledků testů 11. konference ČAPV Sociální a kulturní souvislosti výchovy a vzdělávání Využití software ITEMAN k položkové analýze a analýze výsledků testů Petr Byčkovský, Marie Marková Postup při návrhu a ověření testu

Více

Regresní a korelační analýza

Regresní a korelační analýza Regresní a korelační analýza Mějme dvojici proměnných, které spolu nějak souvisí. x je nezávisle (vysvětlující) proměnná y je závisle (vysvětlovaná) proměnná Chceme zjistit funkční závislost y = f(x).

Více

Analýza dat z dotazníkových šetření. Zdrojová data: dotazník http://www.vyplnto.cz/realizovane-pruzkumy/konzumace-ryb-a-rybich-vyrob/

Analýza dat z dotazníkových šetření. Zdrojová data: dotazník http://www.vyplnto.cz/realizovane-pruzkumy/konzumace-ryb-a-rybich-vyrob/ Analýza dat z dotazníkových šetření Cvičení 3. - Jednorozměrné třídění Zdrojová data: dotazník http://www.vyplnto.cz/realizovane-pruzkumy/konzumace-ryb-a-rybich-vyrob/ - Seznamte se s dotazníkem a strukturou

Více

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 2010 1.týden (20.09.-24.09. ) Data, typy dat, variabilita, frekvenční analýza

Více

Semestrální práce. 3.3 Tvorba nelineárních regresních modelů v analýze dat

Semestrální práce. 3.3 Tvorba nelineárních regresních modelů v analýze dat Semestrální práce 1 3.3 Tvorba nelineárních regresních modelů v analýze dat Ing. Ján Lengyel, CSc. Centrální analytická laboratoř Ústav jaderného výzkumu Řež, a. s. Husinec Řež 130 250 68 Řež V Řeži, únor

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta strojního inženýrství Ústav strojírenské technologie odbor slévárenství. Ing. Martin Svadbík

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta strojního inženýrství Ústav strojírenské technologie odbor slévárenství. Ing. Martin Svadbík VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta strojního inženýrství Ústav strojírenské technologie odbor slévárenství Ing. Martin Svadbík OBJEMOVÉ MODELY JAKO NOVÝ PROSTŘEDEK KE STANOVENÍ VÝROBNÍCH ČASŮ VE SLÉVÁRENSTVÍ

Více

Popisná statistika. Komentované řešení pomocí MS Excel

Popisná statistika. Komentované řešení pomocí MS Excel Popisná statistika Komentované řešení pomocí MS Excel Vstupní data Máme k dispozici data o počtech bodů z 1. a 2. zápočtového testu z Matematiky I v zimním semestru 2015/2016 a to za všech 762 studentů,

Více

Analýza dat s využitím MS Excel

Analýza dat s využitím MS Excel Analýza dat s využitím MS Excel Seminář aplikované statistiky Martina Litschmannová Několik fíglů na úvod Absolutní vs. relativní adresování změna pomocí F4 =$H$20 =H$20 =$H20 =H20 Posun po souvislé oblasti

Více

Vysoká škola ekonomická v Praze

Vysoká škola ekonomická v Praze Vysoká škola ekonomická v Praze Fakulta informatiky a statistiky Studijní program: Kvantitativní metody v ekonomice Studijní obor: Statistické metody v ekonomii Autor bakalářské práce: Vedoucí bakalářské

Více

PSY117/454 Statistická analýza dat v psychologii. Zobrazení dvojrozměrných dat Bodový graf - Scatterplot Korelační koeficient

PSY117/454 Statistická analýza dat v psychologii. Zobrazení dvojrozměrných dat Bodový graf - Scatterplot Korelační koeficient PSY117/454 Statistická analýza dat v psychologii Zobrazení dvojrozměrných dat Bodový graf - Scatterplot Korelační koeficient Analýza vztahů mezi dvěma proměnnými Souvisí nějak? Výška a váha Známky u jednotlivých

Více

Kapitola IV. DESATERO PRO POROVNÁVÁNÍ VÝSLEDKŮ DVOU METOD. Luděk Dohnal. Desatero pro porovnávání výsledků dvou metod 21

Kapitola IV. DESATERO PRO POROVNÁVÁNÍ VÝSLEDKŮ DVOU METOD. Luděk Dohnal. Desatero pro porovnávání výsledků dvou metod 21 Desatero pro porovnávání výsledků dvou metod 21 Kapitola IV. DESATERO PRO POROVNÁVÁNÍ VÝSLEDKŮ DVOU METOD. Luděk Dohnal Následující text nemá být "návodem" k počítání nebo hodnocení. Pokouší se pouze zachytit

Více

Charakteristiky kategoriálních veličin. Absolutní četnosti (FREQUENCY)

Charakteristiky kategoriálních veličin. Absolutní četnosti (FREQUENCY) Charakteristiky kategoriálních veličin Absolutní četnosti (FREQUENCY) Charakteristiky kategoriálních veličin Relativní četnosti Charakteristiky kategoriálních veličin Relativní četnosti Charakteristiky

Více

Statistické metody v marketingu. Ing. Michael Rost, Ph.D.

Statistické metody v marketingu. Ing. Michael Rost, Ph.D. Statistické metody v marketingu Ing. Michael Rost, Ph.D. Jihočeská univerzita v Českých Budějovicích Regresní analýza doplnění základů Vzhledem k požadavku Vašich kolegů zařazuji doplňující partii o regresní

Více

Robust 2010 31. ledna 5. února 2010, Králíky

Robust 2010 31. ledna 5. února 2010, Králíky Modelování rozdělení ročních příjmů českých domácností J. Bartošová 1 M. Forbelská 2 1 Katedra managementu informací Fakulta managementu v Jindřichově Hradci Vysoká škola ekonomická v Praze 2 Ústav matematiky

Více

6. Lineární regresní modely

6. Lineární regresní modely 6. Lineární regresní modely 6.1 Jednoduchá regrese a validace 6.2 Testy hypotéz v lineární regresi 6.3 Kritika dat v regresním tripletu 6.4 Multikolinearita a polynomy 6.5 Kritika modelu v regresním tripletu

Více

Popisná statistika. Statistika pro sociology

Popisná statistika. Statistika pro sociology Popisná statistika Jitka Kühnová Statistika pro sociology 24. září 2014 Jitka Kühnová (GSTAT) Popisná statistika 24. září 2014 1 / 31 Outline 1 Základní pojmy 2 Typy statistických dat 3 Výběrové charakteristiky

Více

Příprava souboru dat a analýza

Příprava souboru dat a analýza UK FHS Řízení a supervize v sociálních a zdravotnických organizacích (LS 2007) Kvantitativní metody výzkumu v praxi PRAKTIKUM část 2 Příprava souboru dat a analýza Jiří Šafr jiri.safr@seznam.cz vytvořeno

Více

LEKCE02a ANALÝZA ROZLOŽENÍ KATEGORIZOVANÝCH DAT vzorový výsledek cvičení

LEKCE02a ANALÝZA ROZLOŽENÍ KATEGORIZOVANÝCH DAT vzorový výsledek cvičení SOC1/ LEKCE : ANALÝZA ROZLOŽENÍ KATEGORIZOVANÝCH A SPOJITÝCH DAT: LEKCEa ANALÝZA ROZLOŽENÍ KATEGORIZOVANÝCH DAT vzorový výsledek cvičení CVIČENÍ.1: Je česká populace věřící, nebo nevěřící? Tuto otázku

Více

Hledání závislostí technologických a nákladových charakteristik při tavení oceli na elektrických obloukových pecích

Hledání závislostí technologických a nákladových charakteristik při tavení oceli na elektrických obloukových pecích Hledání závislostí technologických a nákladových charakteristik při tavení oceli na elektrických obloukových pecích Firková, L. 1), Kafka, V. 2), Figala, V. 3), Herzán, M. 4), Nykodýmová, V. 5) 1) VŠB

Více

Vztah mezi počtem květů a celkovou biomasou rostliny

Vztah mezi počtem květů a celkovou biomasou rostliny Regrese a korelace Regrese versus korelace Regrese (regression)* popisuje vztah = závislost dvou a více kvantitativních (popř. ordinálních) proměnných formou funkční závislosti měří těsnost Korelace (correlation)

Více

1. Alternativní rozdělení A(p) (Bernoulli) je diskrétní rozdělení, kdy. p(0) = P (X = 0) = 1 p, p(1) = P (X = 1) = p, 0 < p < 1.

1. Alternativní rozdělení A(p) (Bernoulli) je diskrétní rozdělení, kdy. p(0) = P (X = 0) = 1 p, p(1) = P (X = 1) = p, 0 < p < 1. 2. Některá důležitá rozdělení Diskrétní rozdělení. Alternativní rozdělení Ap) Bernoulli) je diskrétní rozdělení, kdy náhodná veličina X nabývá pouze dvou hodnot a a pro její pravděpodobnostní funkci platí:

Více

Literatura učebnice z minulého semestru Jarošová, Pecáková sbírka příkladů pro statistiku B (2000 a novější)

Literatura učebnice z minulého semestru Jarošová, Pecáková sbírka příkladů pro statistiku B (2000 a novější) 1. přednáška Literatura učebnice z minulého semestru Jarošová, Pecáková sbírka příkladů pro statistiku B (2000 a novější) 1. Testování hypotéz H0 testovaná (nulová) hypotéza H1 alternativní hypotéza (dvoustranná,

Více

Cvičení 9. Posudek únosnosti ohýbaného prutu metodou LHS v programu FREET. Software FREET Simulace metodou LHS

Cvičení 9. Posudek únosnosti ohýbaného prutu metodou LHS v programu FREET. Software FREET Simulace metodou LHS Pravděpodobnostní posuzování konstrukcí 4. ročník bakalářského studia obor Konstrukce staveb Cvičení 9 Posudek únosnosti ohýbaného prutu metodou LHS v programu FREET Software FREET Simulace metodou LHS

Více

Testování hypotéz o parametrech regresního modelu

Testování hypotéz o parametrech regresního modelu Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Lineární regresní model kde Y = Xβ + e, y 1 e 1 β y 2 Y =., e = e 2 x 11 x 1 1k., X =....... β 2,

Více

Metodologie pro Informační studia a knihovnictví 2

Metodologie pro Informační studia a knihovnictví 2 Metodologie pro Informační studia a knihovnictví 2 Modul 5: Popis nekategorizovaných dat Co se dozvíte v tomto modulu? Kdy používat modus, průměr a medián. Co je to směrodatná odchylka. Jak popsat distribuci

Více

STATISTIKA 1. Adam Čabla Katedra statistiky a pravděpodobnosti VŠE

STATISTIKA 1. Adam Čabla Katedra statistiky a pravděpodobnosti VŠE STATISTIKA 1 Adam Čabla Katedra statistiky a pravděpodobnosti VŠE KONTAKTY WWW: sites.google.com/site/adamcabla E-mail: adam.cabla@vse.cz Telefon: 777 701 783 NB367 na VŠE, konzultační hodiny: Pondělí

Více

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK211 Základy ekonometrie ZS 2014/15 Cvičení 5: Vícenásobná regrese, multikolinearita LENKA FIŘTOVÁ KATEDRA EKONOMETRIE, FAKULTA INFORMATIKY A STATISTIKY VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE 1. Jednoduchá

Více

Základy pravděpodobnosti a statistiky. Popisná statistika

Základy pravděpodobnosti a statistiky. Popisná statistika Základy pravděpodobnosti a statistiky Popisná statistika Josef Tvrdík Přírodovědecká fakulta, katedra informatiky josef.tvrdik@osu.cz konzultace v úterý 14.10 až 15.40 hod. Příklad ze života Cimrman, Smoljak/Svěrák,

Více

Testování hypotéz a měření asociace mezi proměnnými

Testování hypotéz a měření asociace mezi proměnnými Testování hypotéz a měření asociace mezi proměnnými Testování hypotéz Nulová a alternativní hypotéza většina statistických analýz zahrnuje různá porovnání, hledání vztahů, efektů Tvrzení, že efekt je nulový,

Více

Cvičení 12: Binární logistická regrese

Cvičení 12: Binární logistická regrese Cvičení 12: Binární logistická regrese Příklad: V roce 2014 konalo státní závěrečné zkoušky bakalářského studia na jisté fakultě 167 studentů. U každého studenta bylo zaznamenáno jeho pohlaví (0 žena,

Více

Moderní regresní metody. Petr Šmilauer Biologická fakulta JU České Budějovice (c) 1998-2007

Moderní regresní metody. Petr Šmilauer Biologická fakulta JU České Budějovice (c) 1998-2007 Moderní regresní metody Petr Šmilauer Biologická fakulta JU České Budějovice (c) 1998-2007 Obsah Úvod... 5 1 Klasický lineární model a analýza variance... 7 Motivační příklad... 7 Fitování klasického lineárního

Více

Národníinformačnístředisko pro podporu jakosti

Národníinformačnístředisko pro podporu jakosti Národníinformačnístředisko pro podporu jakosti OVĚŘOVÁNÍ PŘEDPOKLADU NORMALITY Doc. Ing. Eva Jarošová, CSc. Ing. Jan Král Používané metody statistické testy: Chí-kvadrát test dobré shody Kolmogorov -Smirnov

Více

Cvičící Kuba Kubina Kubinčák Body u závěrečného testu

Cvičící Kuba Kubina Kubinčák Body u závěrečného testu 1. Příklad U 12 studentů jsme sledovali počet dosažených bodů na závěrečném testu (od 0 do 60). Vždy 4 z těchto studentů chodili k jednomu ze 3 cvičících panu Kubovi, panu Kubinovi, nebo panu Kubinčákovi.

Více

MULTIFAKTOROVÁ ANALÝZA DOPRAVNÍ NEHODOVOSTI

MULTIFAKTOROVÁ ANALÝZA DOPRAVNÍ NEHODOVOSTI MULTIFAKTOROVÁ ANALÝZA DOPRAVNÍ NEHODOVOSTI metodika provádění Tato metodika byla zpracována v rámci výzkumného projektu Identifikace a řešení kritických míst a úseků v síti pozemních komunikací, které

Více

PŘÍLOHA 2. Těším se na spolupráci, Olga Kučerová (studentka psychologie, PedF Cuni)

PŘÍLOHA 2. Těším se na spolupráci, Olga Kučerová (studentka psychologie, PedF Cuni) PŘÍLOHA 1 Diktát: Boudy, dudy, hodiny, proutí, květiny, proudy, proudí, klobouk. Nyní budou podzimní (jarní) prázdniny. To je štěstí v neštěstí. Žáci cvičí na cvičištích. Na střeše sedí špačci a hledají

Více

Statistika. Program R. popisná (deskriptivní) statistika popis konkrétních dat. induktivní (konfirmatorní) statistika. popisná statistika

Statistika. Program R. popisná (deskriptivní) statistika popis konkrétních dat. induktivní (konfirmatorní) statistika. popisná statistika Statistika Cvičení z matematické statistiky na PřF Šárka Hudecová Katedra pravděpodobnosti a matematické statistiky Matematicko-fyzikální fakulta Univerzity Karlovy léto 2012 Základní dělení popisná (deskriptivní)

Více

Analýza akciových indexů USA a Velké Británie, zkoumání možnosti predikce pomocí vývoje HDP. Josef Rajdl josef_rajdl@canada.com

Analýza akciových indexů USA a Velké Británie, zkoumání možnosti predikce pomocí vývoje HDP. Josef Rajdl josef_rajdl@canada.com Analýza akciových indexů USA a Velké Británie, zkoumání možnosti predikce pomocí vývoje HDP Josef Rajdl josef_rajdl@canada.com Obsah: Úvod...1 Dílčí analýza časových řad...2 Analýza závislosti...6 Dodatek:

Více

odpovídá jedna a jen jedna hodnota jiných

odpovídá jedna a jen jedna hodnota jiných 8. Regresní a korelační analýza Problém: hledání, zkoumání a hodnocení souvislostí, závislostí mezi dvěma a více statistickými znaky (veličinami). Typy závislostí: pevné a volné Pevná závislost každé hodnotě

Více

Analýza variance (ANOVA) - jednocestná; faktor s pevným efektem; mnohonásobná srovnání

Analýza variance (ANOVA) - jednocestná; faktor s pevným efektem; mnohonásobná srovnání Analýza variance (ANOVA) - jednocestná; faktor s pevným efektem; mnohonásobná srovnání 1. Analýzu variance (ANOVu) používáme při studiu problémů, kdy máme závislou proměnou spojitého typu a nezávislé proměnné

Více

Číselné charakteristiky

Číselné charakteristiky . Číselné charakteristiky statistických dat Průměrný statistik se během svého života ožení s 1,75 ženami, které se ho snaží vytáhnout večer do společnosti,5 x týdně, ale pouze s 50% úspěchem. W. F. Miksch

Více

ANALÝZA DAT V R 3. POPISNÉ STATISTIKY, NÁHODNÁ VELIČINA. Mgr. Markéta Pavlíková Katedra pravděpodobnosti a matematické statistiky MFF UK

ANALÝZA DAT V R 3. POPISNÉ STATISTIKY, NÁHODNÁ VELIČINA. Mgr. Markéta Pavlíková Katedra pravděpodobnosti a matematické statistiky MFF UK ANALÝZA DAT V R 3. POPISNÉ STATISTIKY, NÁHODNÁ VELIČINA Mgr. Markéta Pavlíková Katedra pravděpodobnosti a matematické statistiky MFF UK www.biostatisticka.cz POPISNÉ STATISTIKY - OPAKOVÁNÍ jedna kvalitativní

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

1.1 Dva základní typy statistiky Popisná statistika (descriptive statistics) Inferenční statistika (inferential statistics)

1.1 Dva základní typy statistiky Popisná statistika (descriptive statistics) Inferenční statistika (inferential statistics) 1. PODSTATA STATISTIKY Původní význam - pouhé sbírání čísel (název z latinského status = stát, použití k označení vědy zabývající se sběrem informací o státu - o počtu obyvatel, ekonomice,...) Dnešní pojetí

Více

Metodologie pro Informační studia a knihovnictví 2

Metodologie pro Informační studia a knihovnictví 2 Metodologie pro Informační studia a knihovnictví 2 Modul V: Nekategorizovaná data Metodologie pro ISK 2, jaro 2014. Ladislava Z. Suchá Metodologie pro Informační studia a knihovnictví 2 Modul 5: Popis

Více