Zpracování studie týkající se průzkumu vlastností statistických proměnných a vztahů mezi nimi.

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Zpracování studie týkající se průzkumu vlastností statistických proměnných a vztahů mezi nimi."

Transkript

1 SEMINÁRNÍ PRÁCE

2 Zadání: Data: Statistické metody: Zpracování studie týkající se průzkumu vlastností statistických proměnných a vztahů mezi nimi. Minimálně 6 proměnných o 30 pozorováních (z toho 2 proměnné kategoriální, alespoň 2 proměnné číselné spojité a 2 proměnné číselné nespojité). 1) Vypočítejte a popište základní charakteristiky jedné číselné spojité a jedné číselné nespojité proměnné, nakreslete vhodné grafy. 2) Pro zkoumání vztahů mezi proměnnými použijte: a) kontingenční tabulku b) analýzu rozptylu (nepovinné) c) korelační tabulku d) jednoduchou regresní analýzu e) vícenásobnou regresní analýzu 3) Výsledky okomentujte a doplňte vhodnými grafy. Průzkum dovolených, strávených v zahraničí v roce 2006, provedený v obci Vysoké Mýto Pozorování Cestovní kancelář Destinace Délka pobytu v zahraničí Věk Cena pobytu v zahraničí Měsíční příjem 1 žádná Chorvatsko ,00 Kč ,00 Kč 2 žádná Irsko ,00 Kč ,00 Kč 3 CK Union Francie ,00 Kč 9 400,00 Kč 4 CK Sunny Day Španělsko ,00 Kč ,00 Kč 5 žádná Norsko ,00 Kč ,00 Kč 6 CK Sunny Day Chorvatsko ,00 Kč ,00 Kč 7 CK Jiří Kalousek Španělsko ,00 Kč ,00 Kč 8 žádná Francie ,00 Kč ,00 Kč 9 CK Uion Chorvatsko ,00 Kč ,00 Kč 10 žádná Norsko ,00 Kč ,00 Kč 11 CK Sunny Day Španělsko ,00 Kč ,00 Kč 12 žádná Francie ,00 Kč ,00 Kč 13 žádná Chorvatsko ,00 Kč ,00 Kč 14 CK Union Francie ,00 Kč ,00 Kč 15 CK Union Španělsko ,00 Kč ,00 Kč 16 CK Jiří Kalousek Chorvatsko ,00 Kč ,00 Kč 17 CK Sunny Day Francie ,00 Kč ,00 Kč 18 CK Union Norsko ,00 Kč ,00 Kč 19 CK Jiří Kalousek Španělsko ,00 Kč ,00 Kč 20 žádná Irsko ,00 Kč ,00 Kč 21 CK Jiří Kalousek Francie ,00 Kč ,00 Kč 22 žádná Chorvatsko ,00 Kč ,00 Kč 23 CK Sunny Day Španělsko ,00 Kč ,00 Kč 24 CK Union Francie ,00 Kč ,00 Kč 25 CK Jiří Kalousek Španělsko ,00 Kč ,00 Kč 26 žádná Chorvatsko ,00 Kč ,00 Kč 27 CK Union Norsko ,00 Kč ,00 Kč 28 žádná Francie ,00 Kč ,00 Kč 29 CK Union Chorvatsko ,00 Kč ,00 Kč 30 CK Sunny Day Španělsko ,00 Kč ,00 Kč

3 1) Vypočítejte a popište základní charakteristiky jedné číselné nespojité a jedné číselné spojité proměnné, nakreslete vhodné grafy. Pozorování Délka pobytu v zahraničí Cena pobytu v zahraničí Pozorování Délka pobytu v zahraničí Cena pobytu v zahraničí ,00 Kč ,00 Kč ,00 Kč ,00 Kč ,00 Kč ,00 Kč ,00 Kč ,00 Kč ,00 Kč ,00 Kč ,00 Kč ,00 Kč ,00 Kč ,00 Kč ,00 Kč ,00 Kč ,00 Kč ,00 Kč ,00 Kč ,00 Kč ,00 Kč ,00 Kč ,00 Kč ,00 Kč ,00 Kč ,00 Kč ,00 Kč ,00 Kč ,00 Kč ,00 Kč a) Délka pobytu v zahraničí číselná nespojitá proměnná One-Way Frequencies délka pobytu Frequency Percent Cumulative Frequency Cumulative Percent Původně nesetříděná data jsme uspořádali do tabulky rozdělení četností. Z ní můžeme vyvodit např. následující závěry: - v souboru jsou 2 osoby, které strávili v zahraničí 5 dní, 10 osob, které pobývali v zahraničí 10 dní, 4 osoby, které strávili v cizině11 dní atd. - osoby, které pobývali na dovolené 5 dní tvoří 6,67% všech dotázaných osob, osoby, které strávili v zahraničí 10 dní, tvoří 33,33% všech dotázaných atd.

4 - 2 osoby strávili v zahraničí 5 dní, což je 6, 67% všech dotázaných, 12 osob strávilo v zahraničí 5 nebo 10 dní, což je 40 % všech dotázaných, ani jedna osoba nestrávila v zahraničí více než 29 dní, což znamená, že všechny dotázané osoby pobývali v zahraničí 29 a méně dní. Tento graf znázorňuje vertikální sloupcový graf četností pro znak délka pobytu v zahraničí. V následujících tabulkách se uvádějí míry úrovně a to v tomto pořadí: - největší hodnota, aritmetický průměr, nejmenší hodnota, dolní kvartil, medián, horní kvartil, variační rozpětí, výběrová směrodatná odchylka, součet a výběrový rozptyl Jak vidíme, maximální doba strávená v zahraničí je 29 dní, a nejkratší 5 dní. V průměru stráví lidé v zahraničí 12,6 dní. Variační rozpětí, které se vypočítá jako rozdíl nejvyšší a nejmenší hodnoty, je 24. Směrodatná odchylka je 5,282 dní. Umocníme-li směrodatnou odchylku, dostaneme rozptyl. Rozptyl je tedy 27,9. Dolní kvartil odděluje čtvrtinu nejnižších hodnot znaku délka pobytu a jeho hodnota je 10 dní. Medián neboli prostřední hodnota je 50 % kvantil, který člení statistický soubor na dvě stejně četné poloviny, je v našem případě 11 dní. Horní kvartil odděluje 75 % nejnižších hodnot znaku od zbývajících 25 % hodnot znaku a v našem případě je 13 dní. Celkem všech 30 dotázaných osob strávilo v roce 2006 v zahraničí 378 dní. Analysis Variable : délka pobytu Maximum Mean Minimum Lower Quartile Median Upper Quartile Analysis Variable : délka pobytu Range Std Dev Sum Variance

5 Krabičkový graf, který vidíme níže, nám znázorňuje extrémní hodnoty souboru a kvartily. Spodní horizontální čára určuje dolní kvartil, střední je medián a nejvyšší znázorňuje horní kvartil. Hodnoty délky pobytu se pohybují nejvíce v oblasti krabičky a dále podél vertikální úsečky. Body, které vidíme na obou stranách grafu nejsou spojeny úsečkou, protože mezi poslední hodnotou na úsečce a těmito body nejsou žádné hodnoty. Jsou to extrémní hodnoty, které mohou zkreslovat například průměrnou délku pobytu v zahraničí. Proto je objektivnějším hodnocením medián než aritmetický průměr. b) Cena pobytu v zahraničí číselná spojitá proměnná Původně nesetříděná data jsem opět uspořádala do tabulky intervalových rozdělení četností. Interval Cena pobytu v zahraničí Četnost Kumulativní četnost (hranice intervalu) Střed intervalu dolní horní absolutni relativni absolutní relativní , , , , , , , , , , , ,000 Celkem x x x 30 1,000 x x Z tabulky můžeme vyvodit např. následující závěry: - v souboru je 14 osob, jež zaplatily za pobyt v zahraničí od do Kč, 2 osoby, které zaplatily od do Kč, 2 osoby, které dovolená stála v rozmezí od až Kč atd. - osoby, které zaplatily za dovolenou od do Kč tvoří 26,7% všech dotázaných osob, osoby, které zaplatily od do Kč tvoří 6,7 % atd osob, zaplatilo za pobyt od do Kč, což je 46,7% všech dotázaných, 26 osob zaplatilo od do Kč, což je 86,7 % všech dotázaných, ani jedna osoba nezaplatila za pobyt v zahraničí více než Kč, což znamená, že všech 30 dotázaných osob zaplatilo za pobyt v zahraničí Kč a méně.

6 V následujících tabulkách se uvádějí míry úrovně a to v tomto pořadí: - největší hodnota, aritmetický průměr, nejmenší hodnota, dolní kvartil, medián, horní kvartil, variační rozpětí, výběrová směrodatná odchylka, součet a výběrový rozptyl Jak vidíme, maximální cena pobytu činí Kč, a nejnižší Kč. V průměru zaplatí lidé za pobyt v zahraničí 9 596,47 Kč. Variační rozpětí, které se vypočítá jako rozdíl nejvyšší a nejmenší hodnoty, je Kč. Směrodatná odchylka je 5 439,08 Kč. Umocníme-li směrodatnou odchylku, dostaneme rozptyl. Rozptyl je tedy ,95. Dolní kvartil odděluje čtvrtinu nejnižších hodnot znaku cena pobytu a jeho hodnota je Kč. Medián neboli prostřední hodnota je 50 % kvantil, který člení statistický soubor na dvě stejně četné poloviny, je v našem případě Kč. Horní kvartil odděluje 75 % nejnižších hodnot znaku od zbývajících 25 % hodnot znaku a je Kč. Celkem všech 30 dotázaných osob zaplatilo v roce 2006 za pobyt v zahraničí Kč. Analysis Variable : cena pobytu Maximum Mean Minimum Lower Quartile Median Upper Quartile Analysis Variable : cena pobytu Range Std Dev Sum Variance Krabičkový graf, který vidíme níže, nám opět znázorňuje extrémní hodnoty souboru a kvartily. Spodní horizontální čára určuje dolní kvartil, střední je medián a nejvyšší znázorňuje horní kvartil. Hodnoty délky pobytu se pohybují nejvíce v oblasti krabičky a dále podél vertikální úsečky. Body, které vidíme na v horní části grafu nejsou spojeny úsečkou, protože mezi poslední hodnotou na úsečce a těmito body nejsou žádné hodnoty. Jsou to extrémní hodnoty, které mohou zkreslovat například průměrnou cenu pobytu v zahraničí. Proto je objektivnějším hodnocením medián než aritmetický průměr.

7 2) Kontingenční tabulka analýza kategoriálních dat Na základě průzkumu provedeného u vybraných 30 osob, které vycestovaly v roce 2006 do ciziny byla sestavena následující kontingenční tabulka. Destinace/CK CK Jiří Kalousek (1) CK Sunny Day (2) CK Union (3) Žádná CK (4) Celkem Přímořské (1) Poznávací (2) Celkem Francie, Chorvatsko a Španělsko sloučíme do skupiny přímořské destinace a Norsko a Irsko do skupiny poznávací destinace. Máme rozhodnout, zda výběr cestovní kanceláře závisí na vybrané destinaci. Table Analysis Frequency Expected Col Pct Table of radek by sloupec sloupec radek Total Total Na prvním místě v buňce jsou zobrazeny sdružené absolutní četnosti, na druhém očekávané četnosti a na třetím místě jsou zobrazeny sdružené relativní četnosti v procentech. Pomocí Chí-kvadrát testu testujeme hypotézu H 0 : výběr cestovní kanceláře nezávisí na vybrané destinaci. Alternativní hypotéza je H 1 : non H 0.

8 V této tabulce nalezneme výsledek testované hypotézy. Statistics for Table of radek by sloupec Statistic Value Prob Chi-Square Likelihood Ratio Chi-Square Mantel-Haenszel Chi- Square Phi Coefficient Contingency Coefficient Cramer's V Sample Size = 30 Hodnota v řádku Chi-Square a sloupci Value udává hodnotu testového kritéria a je tedy 4,7159. Hodnota ve sloupci Prob je vyšší než 0,05, tj. 0,1938, a proto na 5% hladně významnosti testovanou hypotézu H 0 nezamítáme. Výběr cestovní kanceláře nezávisí na vybrané destinaci. 3) Korelační tabulka korelační analýza Předmětem korelační analýzy je zkoumání lineárních vztahů mezi dvěma nebo více proměnnými. Mírou těsnosti těchto vztahů jsou korelační koeficienty. Korelační koeficient může nabývat hodnot z intervalu <-1, +1>, přičemž znaménko určuje směr závislosti. Hodnoty blízké nule znamenají slabou lineární závislost mezi pozorovanými hodnotami proměnných X 1 a X 2, hodnoty blízké +1 znamenají vysokou kladnou korelaci (body odpovídající dvojicím X 1 a X 2 leží v blízkosti přímky s kladnou směrnicí), hodnoty blízké -1 znamenají vysokou zápornou korelaci (body odpovídající dvojicím hodnot X 1 a X 2 leží v blízkosti přímky se zápornou směrnicí). Máme výběr 30 obyvatel města Vysoké Mýto, kteří v roce 2006 vycestovali do zahraničí. Zajímá nás jak spolu souvisí délka pobytu v zahraničí s cenou pobytu. Délka pobytu v zahraničí Cena pobytu v zahraničí Délka pobytu v zahraničí Cena pobytu v zahraničí ,00 Kč ,00 Kč ,00 Kč ,00 Kč ,00 Kč ,00 Kč ,00 Kč ,00 Kč ,00 Kč ,00 Kč ,00 Kč ,00 Kč ,00 Kč ,00 Kč ,00 Kč ,00 Kč ,00 Kč ,00 Kč ,00 Kč ,00 Kč ,00 Kč ,00 Kč ,00 Kč ,00 Kč ,00 Kč ,00 Kč ,00 Kč ,00 Kč ,00 Kč ,00 Kč

9 Testovaná hypotéza H 0 : ς = 0 (neexistuje lineární vztah mezi X 1 a X 2 ) Alternativní hypotéza H 1 : ς 0 (existuje lineární vztah mezi X 1 a X 2 ) 1 With Variables: cena pobytu 1 Variables: delka pobytu Pearson Correlation Coefficients, N = 30 Prob > r under H0: Rho=0 delka pobytu cena pobytu <.0001 V tabulce je uvedena hodnota korelačního koeficientu (0,73516) a P-hodnota (<.0001), která odpovídá hodnotě testové statistiky. Protože α = 0,05 je větší než P-value, testovanou hypotézu H 0 zamítáme. Jak je vidět mezi proměnnými délka pobytu a cena pobytu lze pozorovat přímou silnou lineární závislost (korelaci), což vyplývá i z grafu uvedeného níže. Lze tedy říci, že s rostoucími hodnotami jedné proměnné střední hodnota druhé proměnné také roste.

10 Hodnoty korelačního koeficientu a test hypotézy H 0 : ς = 0 proti H 1 : ς 0 lze určit i z výstupu lineární regrese. Pokud cena pobytu je vysvětlovaná proměnná a délka pobytu je vysvětlující proměnná, pak dostaneme tyto výstupy: Dependent Variable: cena pobytu Parameter Estimates Variable Parameter Estimate Standard Error t Value Pr > t Intercept delka pobytu <.0001 Z tabulky odečteme hodnotu regresního koeficientu b 12 = 826, Korelační koeficient souvisí s koeficientem determinace modelu regresní přímky. Absolutní hodnotu korelačního koeficientu dostaneme odmocněním koeficientu determinace, který je uveden v následující tabulce. Root MSE R-Square Dependent Mean Adj R-Sq Coeff Var Korelační koeficient: r = R 2 = 0,5405 = 0, Z hodnoty koeficientu determinace plyne, že modelem regresní přímky je vysvětleno 54,05 % variability závislé proměnné (cena pobytu). Pokud za vysvětlovanou proměnnou zvolíme délku pobytu a vysvětlující proměnnou bude cena pobytu, pak obdržíme tyto výstupy: Dependent Variable: delka pobytu Parameter Estimates Variable Parameter Estimate Standard Error t Value Pr > t Intercept <.0001 cena pobytu <.0001 Z tabulky odečteme hodnotu regresního koeficientu b 21 = 0, Korelační koeficient souvisí s koeficientem determinace modelu regresní přímky. Absolutní hodnotu korelačního koeficientu dostaneme odmocněním koeficientu determinace, který je uveden v následující tabulce.

11 Root MSE R-Square Dependent Mean Adj R-Sq Coeff Var Korelační koeficient: r = R 2 = 0,5405 = 0, Z hodnoty koeficientu determinace opět plyne, že modelem regresní přímky je vysvětleno 54,05 % variability závislé proměnné (délka pobytu). Závěrem lze shrnout: Korelační koeficient je symetrickou mírou lineární závislosti a jeho odhad získáme odmocněním koeficientu determinace modelu regresní přímky, případně doplněním záporného znaménka. Závisle proměnnou přitom může být kterákoli ze dvou uvažovaných proměnných. K testu hypotézy H 0 : ς = 0 proti H 1 : ς 0 můžeme použít ekvivalentní test H 0 : βj = 0 proti H 1 : βj 0, jehož výsledek najdeme na příslušném výstupu lineární regrese. 4) Jednoduchou regresní analýza Cílem regresní analýzy je nalezení vztahu mezi vysvětlovanou nebo závisle proměnnou Y a jednou nebo více vysvětlujícími proměnnými (nezávisle proměnnými) X 1, X 2,, X k a konstrukce vhodného modelu. Nejznámější charakteristikou kvality regresního modelu je koeficient determinace R 2. Koeficient determinace nabývá hodnot z intervalu <0;1> a udává, jakou část celkové variability pozorovaných hodnot lze vysvětlit daným modelem. Každý dotázaný je již vydělávající osobou. Chceme zjistit, zda cena, kterou vybrané osoby zaplatily za pobyt v zahraničí závisí na výši jejich měsíčních příjmů. a) Regresní přímka: y=β 0 + β 1 + ε Dependent Variable: cena pobytu Parameter Estimates Variable Parameter Estimate Standard Error t Value Pr > t Intercept mesícní príjem <.0001 Tabulka obsahuje odhady parametrů regresní přímky, směrodatné chyby těchto odhadů, hodnoty testové statistiky při testování hypotéz H 0 : β j = 0 proti H 1 : β j 0 pro j = 0, 1, příslušné P-hodnoty a meze intervalů spolehlivosti pro β j. β 0 = -3609,16087 β 1 = 0,81965 P-Value = 0,2050 0,05 H 0 nezamítáme, β0 je statisticky nevýznamný parametr P-Value <.0001, tj. 0 0,05 H 0 zamítáme, β1 je statistiky významný parametr Tato funkce (přímka) není vhodná pro vystižení závislosti.

12 b) Parabola: Y i = β 0 + β 1 x i + β 2 x i 2 Dependent Variable: cena pobytu Parameter Estimates Variable Parameter Estimate Standard Error t Value Pr > t Intercept mesicni prijem mesicni prijem Tabulka obsahuje odhady parametrů regresní paraboly, směrodatné chyby těchto odhadů, hodnoty testové statistiky při testování hypotéz H 0 : βj = 0 proti H 1 : βj 0 pro j = 0, 1, 2, příslušné P-hodnoty a meze intervalů spolehlivosti pro βj. β 0 = β 1 = 0,81965 β 2 = 0, P-Value = 0,2912 0,05 H 0 nezamítáme, β0 je statisticky nevýznamný parametr P-Value = 0,4222 0,05 H 0 nezamítáme, β1 je statistiky nevýznamný parametr P-Value = 0,1570 0,05 H 0 nezamítáme, β2 je statistiky nevýznamný parametr Tato funkce (parabola) není vhodná pro vystižení závislosti. 3) Exponenciála: Y i = β 0 x β 1 x i ln Y i = ln β 0 x x i ln β 1 Results Dependent Variable: ln cena pobytu Parameter Estimates Variable Parameter Estimate Standard Error t Value Pr > t Intercept <.0001 mesicni prijem <.0001 Tabulka obsahuje odhady parametrů regresní paraboly, směrodatné chyby těchto odhadů, hodnoty testové statistiky transformovaného exponenciálního modelu při testování hypotéz H 0 : β j = 0 proti H 1 : β j 0 pro j = 0, 1, příslušné P-hodnoty a meze intervalů spolehlivosti pro β j. β 0 = 7,85797 β 1 = 0, P-Value = < ,05 H 0 zamítáme, β 0 je statisticky významný parametr P-Value = < ,05 H 0 zamítáme, β 1 je statisticky významný parametr Tato funkce (exponenciála) je vhodná pro vystižení závislosti.

13 ln Y i = 7, , x i Y i = exp (7, , x i ) Analysis of Variance Source Sum of Squares Mean Square F Value Pr > F Model <.0001 Error Corrected Total Testové kritérium F-Value = 21,26. P-Value = <.0001, tj. 0 0,05 testovanou hypotézu o nezávislosti H 0 zamítáme. Cena, kterou vybrané osoby zaplatily za pobyt v zahraničí závisí na výši měsíčního příjmu těchto osob. Jak moc? Root MSE R-Square Dependent Mean Adj R-Sq Coeff Var Koeficient determinace R 2 = 0,4315. To znamená, že tento model vysvětluje 43,15 % celkové variability závisle proměnné. Dependent Variable: ln cena pobytu Durbin-Watson D Number of Observations 30 1st Order Autocorrelation Durbin-Watsonův test testuje nezávislost reziduí. Je-li výsledná hodnota blízká číslu 2 (jako je tomu v našem případě, kdy D-W = 1,940), rezidua nejsou autokorelovaná (nejsou vzájemně lineárně závisle) a model byl zvolen správně. Níže je uvedeno grafické znázornění závislosti.

14 Regression Analysis Plots 4) Hyperbola: Y = b 0 + b 1 1/x Dependent Variable: cena pobytu Parameter Estimates Variable Parameter Estimate Standard Error t Value Pr > t Intercept <.0001 inv_mesicni prijem Tabulka obsahuje odhady parametrů regresní hyperboly, směrodatné chyby těchto odhadů, hodnoty testové statistiky transformovaného exponenciálního modelu při testování hypotéz H 0 : β j = 0 proti H 1 : β j 0 pro j = 0, 1, příslušné P-hodnoty a meze intervalů spolehlivosti pro β j. β 0 = β 1 = P-Value = <.0001, tj. 0 0,05 H 0 zamítáme, β 0 je statisticky významný parametr P-Value = 0,0005 0,05 H 0 zamítáme, β 1 je statisticky významný parametr Tato funkce (hyperbola) je vhodná pro vystižení závislosti. Y i = x i

15 Analysis of Variance Source Sum of Squares Mean Square F Value Pr > F Model Error Corrected Total Testové kritérium F-Value = 15,77. P-Value = 0,0005 0,05 testovanou hypotézu o nezávislosti H 0 zamítáme. Cena, kterou vybrané osoby zaplatily za pobyt v zahraničí závisí na výši měsíčního příjmu těchto osob. Jak moc? Root MSE R-Square Dependent Mean Adj R-Sq Coeff Var Koeficient determinace R 2 = 0,3602. To znamená, že tímto modelem je vysvětleno 36,02 % celkové variability závisle proměnné. Dependent Variable: cena pobytu Durbin-Watson D Number of Observations 30 1st Order Autocorrelation Durbin-Watsonův test testuje nezávislost reziduí. Je-li výsledná hodnota blízká číslu 2 (jako je tomu v našem případě, kdy D-W = 1,500), rezidua nejsou autokorelovaná (nejsou vzájemně lineárně závisle) a model byl zvolen správně. Níže je uvedeno grafické znázornění závislosti.

16 Regression Analysis Plots 5) Logaritmická regrese: Y = b 0 + b 1 ln(x) Dependent Variable: cena pobytu Parameter Estimates Variable Parameter Estimate Standard Error t Value Pr > t Intercept ln_mesicni prijem Tabulka obsahuje odhady parametrů logaritmické regrese, směrodatné chyby těchto odhadů, hodnoty testové statistiky transformovaného exponenciálního modelu při testování hypotéz H 0 : β j = 0 proti H 1 : β j 0 pro j = 0, 1, příslušné P-hodnoty a meze intervalů spolehlivosti pro β j. β 0 = β 1 = P-Value = 0,0003 0,05 H 0 zamítáme, β 0 je statisticky významný parametr P-Value = 0,0001 0,05 H 0 zamítáme, β 1 je statisticky významný parametr Tato funkce (logaritmická) je vhodná pro vystižení závislosti. Y = ln(x)

17 Analysis of Variance Source Sum of Squares Mean Square F Value Pr > F Model Error Corrected Total Testové kritérium F-Value = 20,22. P-Value = 0,0001 0,05 testovanou hypotézu o nezávislosti H 0 zamítáme. Cena, kterou vybrané osoby zaplatily za pobyt v zahraničí závisí na výši měsíčního příjmu těchto osob. Jak moc? Root MSE R-Square Dependent Mean Adj R-Sq Coeff Var Koeficient determinace R 2 = 0,4193. To znamená, že tímto modelem je vysvětleno 41,93 % celkové variability závisle proměnné. Dependent Variable: cena pobytu Durbin-Watson D Number of Observations 30 1st Order Autocorrelation Durbin-Watsonův test testuje nezávislost reziduí. Je-li výsledná hodnota blízká číslu 2 (jako je tomu v našem případě, kdy D-W = 1,585), rezidua nejsou autokorelovaná (nejsou vzájemně lineárně závisle) a model byl zvolen správně.

18 Níže je uvedeno grafické znázornění závislosti. Regression Analysis Plots Závěr: ejvhodnější regresní funkcí pro modelování závislosti ceny pobytu na výši měsíčních příjmů je exponenciála. 5) Vícenásobnou regresní analýza Zkoumá závislost y nejen na vysvětlující proměnné x 1 ale též na dalších vysvětlujících proměnných x 2, x 3, x 4, Jsou dána data o délce pobytu v zahraničí, věku osob a měsíčním příjmu. Chceme zjistit, zda délka pobytu v zahraničí závisí na ostatních proměnných. Délka pobytu v zahraničí (y) Věk (x 1 ) Měsíční příjem (x 2 ) Délka pobytu v zahraničí (y) Věk (x 1 ) Měsíční příjem (x 2 ) ,00 Kč ,00 Kč ,00 Kč ,00 Kč ,00 Kč ,00 Kč ,00 Kč ,00 Kč ,00 Kč ,00 Kč ,00 Kč ,00 Kč ,00 Kč ,00 Kč ,00 Kč ,00 Kč ,00 Kč ,00 Kč ,00 Kč ,00 Kč ,00 Kč ,00 Kč ,00 Kč ,00 Kč ,00 Kč ,00 Kč ,00 Kč ,00 Kč ,00 Kč ,00 Kč

19 Testovaná hypotéza H 0 : I 2 = 0 (nezávislost) Alternativní hypotéza H 1 : I 2 0 (závislost) Y i = β 0 + βyx 1.x 2 X 1 + βyx 2.x 1 X 2 + ε i Dependent Variable: delka pobytu Parameter Estimates Variable Parameter Estimate Standard Error t Value Pr > t Intercept vek mesicni prijem Z tabulky můžeme opět vyčíst hodnoty regresních parametrů. β 0 = 6,69860 P-Value = 0,2120 0,05 H 0 nezamítáme, β 0 je statisticky nevýznamný parametr β 1 = - 0,06740 P-Value = 0,4498 0,05 H 0 nezamítáme, β 1 je statisticky nevýznamný parametr β 2 = 0, P-Value = 0,0143 0,05 H 0 zamítáme, β 2 je statisticky významný parametr Parametry β 0 a β 1 musíme z modelu vyřadit, jelikož jsou statisticky nevýznamné. Nejprve vyřadíme konstantu β 0. Tím získáme následující hodnoty: Dependent Variable: delka pobytu Parameter Estimates Variable Parameter Estimate Standard Error t Value Pr > t vek mesicni prijem <.0001 Protože proměnná β 1 i nadále zůstává statisticky nevýznamná, musíme jí také vyřadit z modelu. Nyní již zbývá v modelu jen vysvětlující proměnná měsíční příjem. β 2 = 0, (VIZ níže) P-Value <.0001, tj. 0 0,05 H 0 zamítáme, β 2 je statisticky významný parametr

20 Dependent Variable: delka pobytu Parameter Estimates Variable Parameter Estimate Standard Error t Value Pr > t mesicni prijem <.0001 Y i = 0, X 2 + ε i Analysis of Variance Source Sum of Squares Mean Square F Value Pr > F Model <.0001 Error Uncorrected Total Testové kritérium F-Value = 250,86. P-Value <.0001, tj. 0 0,05 testovanou hypotézu o nezávislosti H 0 zamítáme. Délka pobytu v zahraničí závisí pouze na výši měsíčního příjmu. Jak moc? Root MSE R-Square Dependent Mean Adj R-Sq Coeff Var Koeficient determinace R 2 = 0,8964. To znamená, že tento model vysvětluje 89,64 % celkové variability závisle proměnné. Dependent Variable: delka pobytu Durbin-Watson D Number of Observations 30 1st Order Autocorrelation Durbin-Watsonův test testuje nezávislost reziduí. Je-li výsledná hodnota blízká číslu 2 (jako je tomu v našem případě, kdy D-W = 2,402), rezidua nejsou autokorelovaná (nejsou vzájemně lineárně závisle) a model byl zvolen správně.

V tabulce jsou uvedeny roční náklady na údržbu (v dolarech) a cena domu (v tis. dolarů).

V tabulce jsou uvedeny roční náklady na údržbu (v dolarech) a cena domu (v tis. dolarů). 1. Příklad V tabulce jsou uvedeny roční náklady na údržbu (v dolarech) a cena domu (v tis. dolarů). Náklady 835 63 240 1005 184 213 313 658 195 545 Cena 136 24 52 143 42 43 67 106 61 99 a.) Modelujte závislost

Více

Stav Svobodný Rozvedený Vdovec. Svobodná 37 10 6. Rozvedená 8 12 8. Vdova 5 8 6

Stav Svobodný Rozvedený Vdovec. Svobodná 37 10 6. Rozvedená 8 12 8. Vdova 5 8 6 1. Příklad Byly sledovány rodinné stavy nevěst a ženichů při uzavírání sňatků a byla vytvořena následující tabulka četností. Stav Svobodný Rozvedený Vdovec Svobodná 37 10 6 Rozvedená 8 12 8 Vdova 5 8 6

Více

4ST201 STATISTIKA CVIČENÍ Č. 10

4ST201 STATISTIKA CVIČENÍ Č. 10 4ST201 STATISTIKA CVIČENÍ Č. 10 regresní analýza - vícenásobná lineární regrese korelační analýza Př. 10.1 Máte zadaný výstup regresní analýzy závislosti závisle proměnné Y na nezávisle proměnné X. Doplňte

Více

KGG/STG Statistika pro geografy

KGG/STG Statistika pro geografy KGG/STG Statistika pro geografy 10. Mgr. David Fiedor 27. dubna 2015 Nelineární závislost - korelační poměr užití v případě, kdy regresní čára není přímka, ale je vyjádřena složitější matematickou funkcí

Více

Analýza dat z dotazníkových šetření

Analýza dat z dotazníkových šetření Analýza dat z dotazníkových šetření Cvičení 6. Rozsah výběru Př. Určete minimální rozsah výběru pro proměnnou věk v souboru dovolena, jestliže 95% interval spolehlivost průměru proměnné nemá být širší

Více

STATISTIKA MIGRANTŮ PRO REGIONY V MORAVSKOSLEZSKÉM KRAJI A PRO KRAJ V OBDOBÍ 1992-2005

STATISTIKA MIGRANTŮ PRO REGIONY V MORAVSKOSLEZSKÉM KRAJI A PRO KRAJ V OBDOBÍ 1992-2005 VYSOKÁ ŠKOLA BÁŇSKÁ - TECHNICKÁ UNIVERZITA OSTRAVA Hornicko-geologická fakulta institut geoinformatiky STATISTIKA MIGRANTŮ PRO REGIONY V MORAVSKOSLEZSKÉM KRAJI A PRO KRAJ V OBDOBÍ 1992-2005 Speciální metody

Více

6. Lineární regresní modely

6. Lineární regresní modely 6. Lineární regresní modely 6.1 Jednoduchá regrese a validace 6.2 Testy hypotéz v lineární regresi 6.3 Kritika dat v regresním tripletu 6.4 Multikolinearita a polynomy 6.5 Kritika modelu v regresním tripletu

Více

V praxi pracujeme s daty nominálními (nabývají pouze dvou hodnot), kategoriálními (nabývají více

V praxi pracujeme s daty nominálními (nabývají pouze dvou hodnot), kategoriálními (nabývají více 9 Vícerozměrná data a jejich zpracování 9.1 Vícerozměrná data a vícerozměrná rozdělení Při zpracování vícerozměrných dat, hledáme souvislosti mezi dvěmi, případně více náhodnými veličinami. V praxi pracujeme

Více

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK211 Základy ekonometrie ZS 2015/16 Cvičení 7: Časově řady, autokorelace LENKA FIŘTOVÁ KATEDRA EKONOMETRIE, FAKULTA INFORMATIKY A STATISTIKY VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE 1. Časové řady Data: HDP.wf1

Více

ÚKOL 2 1886 22 5,77 5,00 5 2,531,003,056 -,869,113

ÚKOL 2 1886 22 5,77 5,00 5 2,531,003,056 -,869,113 ÚKOL 2 Jméno a příjmení: UČO: Imatrik. ročník: Úkol 2.1: V souboru EVS99_cvicny.sav zjistěte, zdali rozložení názoru na to, kdo by měl být odpovědný za zajištění bydlení (proměnná q54h), je normální. Řešte

Více

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická

Více

Regresní a korelační analýza

Regresní a korelační analýza Přednáška STATISTIKA II - EKONOMETRIE Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Regresní analýza Cíl regresní analýzy: stanovení formy (trendu, tvaru, průběhu)

Více

Pokud data zadáme přes "Commands" okno: SDF1$X1<-c(1:15) //vytvoření řady čísel od 1 do 15 SDF1$Y1<-c(1.5,3,4.5,5,6,8,9,11,13,14,15,16,18.

Pokud data zadáme přes Commands okno: SDF1$X1<-c(1:15) //vytvoření řady čísel od 1 do 15 SDF1$Y1<-c(1.5,3,4.5,5,6,8,9,11,13,14,15,16,18. Regresní analýza; transformace dat Pro řešení vztahů mezi proměnnými kontinuálního typu používáme korelační a regresní analýzy. Korelace se používá pokud nelze určit "kauzalitu". Regresní analýza je určena

Více

C V I Č E N Í ZE STATISTIKY PRO BIOLOGY:

C V I Č E N Í ZE STATISTIKY PRO BIOLOGY: C V I Č E N Í ZE STATISTIKY PRO BIOLOGY: S B Í R K A P Ř Í K L A D Ů (VERZE 1.3) Martin Duchoslav Olomouc 2004 Předložený text reprezentuje výběr příkladů, které doplňují přednášky a cvičení kurzu Základy

Více

Analýza rozptylu. Statistika II. Jiří Neubauer. Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.

Analýza rozptylu. Statistika II. Jiří Neubauer. Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob. ANOVA Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz ANOVA ANOVA je nástroj pro zkoumání vztahu mezi vysvětlovanými a vysvětlujícími proměnnými.

Více

Analýza rozptylu. Přednáška STATISTIKA II - EKONOMETRIE. Jiří Neubauer

Analýza rozptylu. Přednáška STATISTIKA II - EKONOMETRIE. Jiří Neubauer ANOVA Přednáška STATISTIKA II - EKONOMETRIE Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz ANOVA ANOVA je nástroj pro zkoumání vztahu mezi vysvětlovanými a vysvětlujícími

Více

a) Základní informace o souboru Statistika: Základní statistika a tabulky: Popisné statistiky: Detaily

a) Základní informace o souboru Statistika: Základní statistika a tabulky: Popisné statistiky: Detaily Testování hypotéz Testování hypotéz jsou klasické statistické úsudky založené na nějakém apriorním předpokladu. Vyslovíme-li předpoklad o hodnotě neznámého parametru nebo o zákonu rozdělení sledované náhodné

Více

VÍCEROZMĚRNÝ STATISTICKÝ SOUBOR

VÍCEROZMĚRNÝ STATISTICKÝ SOUBOR KORELACE A REGRESE 1 Vytvořeno s podporou projektu Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny společného základu (reg. č. CZ.1.07/..00/8.001)

Více

Biostatistika a matematické metody epidemiologie- stručné studijní texty

Biostatistika a matematické metody epidemiologie- stručné studijní texty Biostatistika a matematické metody epidemiologie- stručné studijní texty Bohumír Procházka, SZÚ Praha 1 Co můžeme sledovat Pro charakteristiku nebo vlastnost, kterou chceme sledovat zvolíme termín jev.

Více

Semestrální projekt. do předmětu Statistika. Vypracoval: Adam Mlejnek 2-36. Oponenti: Patrik Novotný 2-36. Jakub Nováček 2-36. Click here to buy 2

Semestrální projekt. do předmětu Statistika. Vypracoval: Adam Mlejnek 2-36. Oponenti: Patrik Novotný 2-36. Jakub Nováček 2-36. Click here to buy 2 Semestrální projekt do předmětu Statistika Vypracoval: Adam Mlejnek 2-36 Oponenti: Patrik Novotný 2-36 Jakub Nováček 2-36 Úvod Pro vypracování projektu do předmětu statistika jsem si zvolil průzkum kvality

Více

PŘÍLOHA A. METODA NEJMENŠÍCH ČTVERCŮ PRODEJ BYTŮ. Příloha A. Metoda nejmenších čtverců Prodej bytů

PŘÍLOHA A. METODA NEJMENŠÍCH ČTVERCŮ PRODEJ BYTŮ. Příloha A. Metoda nejmenších čtverců Prodej bytů PŘÍLOHA A. METODA NEJMENŠÍCH ČTVERCŮ PRODEJ BYTŮ Příloha A Metoda nejmenších čtverců Prodej bytů i PŘÍLOHA A. METODA NEJMENŠÍCH ČTVERCŮ PRODEJ BYTŮ 1 2 3 TOT. 1 7 33 40 2 1 18 125 144 2.5 1 72 73 3.5 1

Více

ADDS cvičení 7. Pavlína Kuráňová

ADDS cvičení 7. Pavlína Kuráňová ADDS cvičení 7 Pavlína Kuráňová Analyzujte závislost věku obyvatel na místě kde nejčastěji tráví dovolenou. (dotazník dovolená, sloupce Jaký je Váš věk a Kde nejčastěji trávíte dovolenou) Analyzujte závislost

Více

Organizační pokyny k přednášce. Matematická statistika. Přehled témat. Co je statistika?

Organizační pokyny k přednášce. Matematická statistika. Přehled témat. Co je statistika? Organizační pokyny k přednášce Matematická statistika 2012 2013 Šárka Hudecová Katedra pravděpodobnosti a matematické statistiky Matematicko-fyzikální fakulta UK hudecova@karlin.mff.cuni.cz http://www.karlin.mff.cuni.cz/

Více

STATISTICA Téma 8. Regresní a korelační analýza, regrese prostá

STATISTICA Téma 8. Regresní a korelační analýza, regrese prostá STATISTICA Téma 8. Regresní a korelační analýza, regrese prostá 1) Lineární i nelineární regrese prostá, korelace Naeditujeme data viz obr. 1. Obr. 1 V menu Statistika zvolíme submenu Pokročilé lineární/nelineární

Více

Některé zákony rozdělení pravděpodobnosti. 1. Binomické rozdělení

Některé zákony rozdělení pravděpodobnosti. 1. Binomické rozdělení Přednáška 5/1 Některé zákony rozdělení pravděpodobnosti 1. Binomické rozdělení Předpoklady: (a) pst výskytu jevu A v jediném pokuse P (A) = π, (b) je uskutečněno n pokusů, (c) pokusy jsou nezávislé, tj.

Více

Ilustrační příklad odhadu LRM v SW Gretl

Ilustrační příklad odhadu LRM v SW Gretl Ilustrační příklad odhadu LRM v SW Gretl Podkladové údaje Korelační matice Odhad lineárního regresního modelu (LRM) Verifikace modelu PEF ČZU Praha Určeno pro posluchače předmětu Ekonometrie Needitovaná

Více

Korelační a regresní analýza

Korelační a regresní analýza Korelační a regresní analýza Analýza závislosti v normálním rozdělení Pearsonův (výběrový) korelační koeficient: r = s XY s X s Y, kde s XY = 1 n (x n 1 i=0 i x )(y i y ), s X (s Y ) je výběrová směrodatná

Více

31. 3. 2014, Brno Hanuš Vavrčík Základy statistiky ve vědě

31. 3. 2014, Brno Hanuš Vavrčík Základy statistiky ve vědě 31. 3. 2014, Brno Hanuš Vavrčík Základy statistiky ve vědě Motto Statistika nuda je, má však cenné údaje. strana 3 Statistické charakteristiky Charakteristiky polohy jsou kolem ní seskupeny ostatní hodnoty

Více

Kurz SPSS: Jednoduchá analýza dat. Jiří Šafr

Kurz SPSS: Jednoduchá analýza dat. Jiří Šafr Kurz SPSS: Jednoduchá analýza dat Jiří Šafr vytvořeno 29. 6. 2009 Dva základní typy statistiky 1. Popisná statistika: metody pro zjišťování a sumarizaci informací grfy, tabulky, popisné chrakteristiky

Více

Dynamické metody pro predikci rizika

Dynamické metody pro predikci rizika Dynamické metody pro predikci rizika 1 Úvod do analýzy časových řad Časová řada konečná posloupnost reálných hodnot určitého sledovaného ukazatele měřeného v určitých časových intervalech okamžikové např

Více

4ST201 STATISTIKA CVIČENÍ Č. 8

4ST201 STATISTIKA CVIČENÍ Č. 8 4ST201 STATISTIKA CVIČENÍ Č. 8 analýza závislostí kontingenční tabulky test závislosti v kontingenční tabulce analýza rozptylu regresní analýza lineární regrese Analýza závislostí Budeme ověřovat existenci

Více

PSY117/454 Statistická analýza dat v psychologii Přednáška 10

PSY117/454 Statistická analýza dat v psychologii Přednáška 10 PSY117/454 Statistická analýza dat v psychologii Přednáška 10 TESTY PRO NOMINÁLNÍ A ORDINÁLNÍ PROMĚNNÉ NEPARAMETRICKÉ METODY... a to mělo, jak sám vidíte, nedozírné následky. Smrť Analýza četností hodnot

Více

6. T e s t o v á n í h y p o t é z

6. T e s t o v á n í h y p o t é z 6. T e s t o v á n í h y p o t é z Na základě hodnot z realizace náhodného výběru činíme rozhodnutí o platnosti hypotézy o hodnotách parametrů rozdělení nebo o jeho vlastnostech. Používáme k tomu vhodně

Více

KOMBINATORIKA, PRAVDĚPODOBNOST, STATISTIKA. Charakteristiky variability. Mgr. Jakub Němec. VY_32_INOVACE_M4r0120

KOMBINATORIKA, PRAVDĚPODOBNOST, STATISTIKA. Charakteristiky variability. Mgr. Jakub Němec. VY_32_INOVACE_M4r0120 KOMBINATORIKA, PRAVDĚPODOBNOST, STATISTIKA Charakteristiky variability Mgr. Jakub Němec VY_32_INOVACE_M4r0120 CHARAKTERISTIKY VARIABILITY Charakteristika variability se určuje pouze u kvantitativních znaků.

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta strojního inženýrství Ústav strojírenské technologie odbor slévárenství. Ing. Martin Svadbík

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta strojního inženýrství Ústav strojírenské technologie odbor slévárenství. Ing. Martin Svadbík VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta strojního inženýrství Ústav strojírenské technologie odbor slévárenství Ing. Martin Svadbík OBJEMOVÉ MODELY JAKO NOVÝ PROSTŘEDEK KE STANOVENÍ VÝROBNÍCH ČASŮ VE SLÉVÁRENSTVÍ

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

Charakteristiky kategoriálních veličin. Absolutní četnosti (FREQUENCY)

Charakteristiky kategoriálních veličin. Absolutní četnosti (FREQUENCY) Charakteristiky kategoriálních veličin Absolutní četnosti (FREQUENCY) Charakteristiky kategoriálních veličin Relativní četnosti Charakteristiky kategoriálních veličin Relativní četnosti Charakteristiky

Více

Robust 2010 31. ledna 5. února 2010, Králíky

Robust 2010 31. ledna 5. února 2010, Králíky Modelování rozdělení ročních příjmů českých domácností J. Bartošová 1 M. Forbelská 2 1 Katedra managementu informací Fakulta managementu v Jindřichově Hradci Vysoká škola ekonomická v Praze 2 Ústav matematiky

Více

Statistické metody v marketingu. Ing. Michael Rost, Ph.D.

Statistické metody v marketingu. Ing. Michael Rost, Ph.D. Statistické metody v marketingu Ing. Michael Rost, Ph.D. Jihočeská univerzita v Českých Budějovicích Regresní analýza doplnění základů Vzhledem k požadavku Vašich kolegů zařazuji doplňující partii o regresní

Více

{ } ( 2) Příklad: Test nezávislosti kategoriálních znaků

{ } ( 2) Příklad: Test nezávislosti kategoriálních znaků Příklad: Test nezávislosti kategoriálních znaků Určete na hladině významnosti 5 % na základě dat zjištěných v rámci dotazníkového šetření ve Šluknově, zda existuje závislost mezi pohlavím respondenta a

Více

6. Lineární regresní modely

6. Lineární regresní modely 6. Lineární regresní modely 6.1 Jednoduchá regrese a validace 6.2 Testy hypotéz v lineární regresi 6.3 Kritika dat v regresním tripletu 6.4 Multikolinearita a polynomy 6.5 Kritika modelu v regresním tripletu

Více

Hledání závislostí technologických a nákladových charakteristik při tavení oceli na elektrických obloukových pecích

Hledání závislostí technologických a nákladových charakteristik při tavení oceli na elektrických obloukových pecích Hledání závislostí technologických a nákladových charakteristik při tavení oceli na elektrických obloukových pecích Firková, L. 1), Kafka, V. 2), Figala, V. 3), Herzán, M. 4), Nykodýmová, V. 5) 1) VŠB

Více

Analýza dat z dotazníkových šetření. Zdrojová data: dotazník http://www.vyplnto.cz/realizovane-pruzkumy/konzumace-ryb-a-rybich-vyrob/

Analýza dat z dotazníkových šetření. Zdrojová data: dotazník http://www.vyplnto.cz/realizovane-pruzkumy/konzumace-ryb-a-rybich-vyrob/ Analýza dat z dotazníkových šetření Cvičení 3. - Jednorozměrné třídění Zdrojová data: dotazník http://www.vyplnto.cz/realizovane-pruzkumy/konzumace-ryb-a-rybich-vyrob/ - Seznamte se s dotazníkem a strukturou

Více

1. Alternativní rozdělení A(p) (Bernoulli) je diskrétní rozdělení, kdy. p(0) = P (X = 0) = 1 p, p(1) = P (X = 1) = p, 0 < p < 1.

1. Alternativní rozdělení A(p) (Bernoulli) je diskrétní rozdělení, kdy. p(0) = P (X = 0) = 1 p, p(1) = P (X = 1) = p, 0 < p < 1. 2. Některá důležitá rozdělení Diskrétní rozdělení. Alternativní rozdělení Ap) Bernoulli) je diskrétní rozdělení, kdy náhodná veličina X nabývá pouze dvou hodnot a a pro její pravděpodobnostní funkci platí:

Více

Analýza dat s využitím MS Excel

Analýza dat s využitím MS Excel Analýza dat s využitím MS Excel Seminář aplikované statistiky Martina Litschmannová Několik fíglů na úvod Absolutní vs. relativní adresování změna pomocí F4 =$H$20 =H$20 =$H20 =H20 Posun po souvislé oblasti

Více

Moderní regresní metody. Petr Šmilauer Biologická fakulta JU České Budějovice (c) 1998-2007

Moderní regresní metody. Petr Šmilauer Biologická fakulta JU České Budějovice (c) 1998-2007 Moderní regresní metody Petr Šmilauer Biologická fakulta JU České Budějovice (c) 1998-2007 Obsah Úvod... 5 1 Klasický lineární model a analýza variance... 7 Motivační příklad... 7 Fitování klasického lineárního

Více

Metodologie pro Informační studia a knihovnictví 2

Metodologie pro Informační studia a knihovnictví 2 Metodologie pro Informační studia a knihovnictví 2 Modul 5: Popis nekategorizovaných dat Co se dozvíte v tomto modulu? Kdy používat modus, průměr a medián. Co je to směrodatná odchylka. Jak popsat distribuci

Více

Národníinformačnístředisko pro podporu jakosti

Národníinformačnístředisko pro podporu jakosti Národníinformačnístředisko pro podporu jakosti OVĚŘOVÁNÍ PŘEDPOKLADU NORMALITY Doc. Ing. Eva Jarošová, CSc. Ing. Jan Král Používané metody statistické testy: Chí-kvadrát test dobré shody Kolmogorov -Smirnov

Více

Literatura učebnice z minulého semestru Jarošová, Pecáková sbírka příkladů pro statistiku B (2000 a novější)

Literatura učebnice z minulého semestru Jarošová, Pecáková sbírka příkladů pro statistiku B (2000 a novější) 1. přednáška Literatura učebnice z minulého semestru Jarošová, Pecáková sbírka příkladů pro statistiku B (2000 a novější) 1. Testování hypotéz H0 testovaná (nulová) hypotéza H1 alternativní hypotéza (dvoustranná,

Více

Analýza akciových indexů USA a Velké Británie, zkoumání možnosti predikce pomocí vývoje HDP. Josef Rajdl josef_rajdl@canada.com

Analýza akciových indexů USA a Velké Británie, zkoumání možnosti predikce pomocí vývoje HDP. Josef Rajdl josef_rajdl@canada.com Analýza akciových indexů USA a Velké Británie, zkoumání možnosti predikce pomocí vývoje HDP Josef Rajdl josef_rajdl@canada.com Obsah: Úvod...1 Dílčí analýza časových řad...2 Analýza závislosti...6 Dodatek:

Více

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK211 Základy ekonometrie ZS 2014/15 Cvičení 5: Vícenásobná regrese, multikolinearita LENKA FIŘTOVÁ KATEDRA EKONOMETRIE, FAKULTA INFORMATIKY A STATISTIKY VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE 1. Jednoduchá

Více

Testování hypotéz a měření asociace mezi proměnnými

Testování hypotéz a měření asociace mezi proměnnými Testování hypotéz a měření asociace mezi proměnnými Testování hypotéz Nulová a alternativní hypotéza většina statistických analýz zahrnuje různá porovnání, hledání vztahů, efektů Tvrzení, že efekt je nulový,

Více

Příloha P.1 Mapa větrných oblastí

Příloha P.1 Mapa větrných oblastí Příloha P.1 Mapa větrných oblastí P.1.1 Úvod Podle metodiky Eurokódů se velikost zatížení větrem odvozuje z výchozí hodnoty základní rychlosti větru, definované jako střední rychlost větru v intervalu

Více

"Competitivness in the EU Challenge for the V4 countries" Nitra, May 17-18, 2006

Competitivness in the EU Challenge for the V4 countries Nitra, May 17-18, 2006 ANALÝZA ROZPTYLU JAKO ZÁKLADNÍ METODA MNOHONÁSOBNÉHO POROVNÁVÁNÍ STŘEDNÍCH HODNOT V RŮZNÝCH SOFTWAROVÝCH PRODUKTECH ANALYSIS OF VARIANCE AS A PRIMARY METHOD OF MULTIPLE COMPARISON OF EXPECTED VALUES IN

Více

Zpracování a vyhodnocování analytických dat

Zpracování a vyhodnocování analytických dat Zpracování a vyhodnocování analytických dat naměřená data Zpracování a statistická analýza dat analytické výsledky Naměř ěřená data jedna hodnota 5,00 mg (bod 1D) navážka, odměřený objem řada dat 15,8;

Více

Regresní a korelační analýza

Regresní a korelační analýza Regresní a korelační analýza Závslost příčnná (kauzální). Závslostí pevnou se označuje případ, kdy výskytu jednoho jevu nutně odpovídá výskyt druhé jevu (a často naopak). Z pravděpodobnostního hledska

Více

LINEÁRNÍ REGRESE. Lineární regresní model

LINEÁRNÍ REGRESE. Lineární regresní model LINEÁRNÍ REGRESE Chemometrie I, David MILDE Lineární regresní model 1 Typy závislosti 2 proměnných FUNKČNÍ VZTAH: 2 závisle proměnné: určité hodnotě x odpovídá jediná hodnota y. KORELACE: 2 náhodné (nezávislé)

Více

Statistika. Program R. popisná (deskriptivní) statistika popis konkrétních dat. induktivní (konfirmatorní) statistika. popisná statistika

Statistika. Program R. popisná (deskriptivní) statistika popis konkrétních dat. induktivní (konfirmatorní) statistika. popisná statistika Statistika Cvičení z matematické statistiky na PřF Šárka Hudecová Katedra pravděpodobnosti a matematické statistiky Matematicko-fyzikální fakulta Univerzity Karlovy léto 2012 Základní dělení popisná (deskriptivní)

Více

Testování hypotéz. 1 Jednovýběrové testy. 90/2 odhad času

Testování hypotéz. 1 Jednovýběrové testy. 90/2 odhad času Testování hypotéz 1 Jednovýběrové testy 90/ odhad času V podmínkách naprostého odloučení má voák prokázat schopnost orientace v čase. Úkolem voáka e provést odhad časového intervalu 1 hodiny bez hodinek

Více

05/29/08 cvic5.r. cv5.dat <- read.csv("cvic5.csv")

05/29/08 cvic5.r. cv5.dat <- read.csv(cvic5.csv) Zobecněné lineární modely Úloha 5: Vzdělání a zájem o politiku cv5.dat

Více

Nadstavba pro statistické výpočty Statistics ToolBox obsahuje více než 200 m-souborů které podporují výpočty v následujících oblastech.

Nadstavba pro statistické výpočty Statistics ToolBox obsahuje více než 200 m-souborů které podporují výpočty v následujících oblastech. Statistics ToolBox Nadstavba pro statistické výpočty Statistics ToolBox obsahuje více než 200 m-souborů které podporují výpočty v následujících oblastech. [manual ST] 1. PROBABILITY DISTRIBUTIONS Statistics

Více

Simulace systému hromadné obsluhy Nejčastější chyby v semestrálních pracích

Simulace systému hromadné obsluhy Nejčastější chyby v semestrálních pracích Simulace systému hromadné obsluhy Nejčastější chyby v semestrálních pracích Nedostatešný popis systému a jeho modelu vstupy S výstupy Systém Část prostředí, kterou lze od jeho okolí oddělit fyzickou nebo

Více

veličin, deskriptivní statistika Ing. Michael Rost, Ph.D.

veličin, deskriptivní statistika Ing. Michael Rost, Ph.D. Vybraná rozdělení spojitých náhodných veličin, deskriptivní statistika Ing. Michael Rost, Ph.D. Třídění Základním zpracováním dat je jejich třídění. Jde o uspořádání získaných dat, kde volba třídícího

Více

Příklad 2: Určení cihlářských surovin na základě chemické silikátové analýzy

Příklad 2: Určení cihlářských surovin na základě chemické silikátové analýzy Příklad 2: Určení cihlářských surovin na základě chemické silikátové analýzy Zadání: Deponie nadložních jílových sedimentů SHP byla testována za účelem využití v cihlářské výrobě. Z deponie bylo odebráno

Více

UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11.

UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11. UNIVERZITA OBRANY Fakulta ekonomiky a managementu Aplikace STAT1 Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 Jiří Neubauer, Marek Sedlačík, Oldřich Kříž 3. 11. 2012 Popis a návod k použití aplikace

Více

Přednáška 5. Výběrová šetření, Exploratorní analýza

Přednáška 5. Výběrová šetření, Exploratorní analýza Přednáška 5 Výběrová šetření, Exploratorní analýza Pravděpodobnost vs. statistika Výběrová šetření aneb jak získat výběrový soubor Exploratorní statistika aneb jak popsat výběrový soubor Typy proměnných

Více

Příklad 1. Korelační pole. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 13

Příklad 1. Korelační pole. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 13 Příklad 1 Máme k dispozici výsledky prvního a druhého testu deseti sportovců. Na hladině významnosti 0,05 prověřte, zda jsou výsledky testů kladně korelované. 1.test : 7, 8, 10, 4, 14, 9, 6, 2, 13, 5 2.test

Více

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK211 Základy ekonometrie ZS 2014/15 Cvičení 6: Dummy proměnné, úvod do časových řad LENKA FIŘTOVÁ KATEDRA EKONOMETRIE, FAKULTA INFORMATIKY A STATISTIKY VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE 1. Multikolinearita

Více

Simulace. Simulace dat. Parametry

Simulace. Simulace dat. Parametry Simulace Simulace dat Menu: QCExpert Simulace Simulace dat Tento modul je určen pro generování pseudonáhodných dat s danými statistickými vlastnostmi. Nabízí čtyři typy rozdělení: normální, logaritmicko-normální,

Více

Statistické testování hypotéz II

Statistické testování hypotéz II PSY117/454 Statistická analýza dat v psychologii Přednáška 9 Statistické testování hypotéz II Přehled testů, rozdíly průměrů, velikost účinku, síla testu Základní výzkumné otázky/hypotézy 1. Stanovení

Více

Zpracování náhodného výběru. Ing. Michal Dorda, Ph.D.

Zpracování náhodného výběru. Ing. Michal Dorda, Ph.D. Zpracování náhodného výběru popisná statistika Ing. Michal Dorda, Ph.D. Základní pojmy Úkolem statistiky je na základě vlastností výběrového souboru usuzovat o vlastnostech celé populace. Populace(základní

Více

www.scio.cz, s.r.o. Zpracovali Jan Synek, Václav Otřísal 15. září 2008

www.scio.cz, s.r.o. Zpracovali Jan Synek, Václav Otřísal 15. září 2008 ÚVOD PREDIKČNÍ VALIDITA TESTU OSP VÝSLEDKY ANALÝZY www.scio.cz, s.r.o. Zpracovali Jan Synek, Václav Otřísal 15. září 2008 Predikční validita naznačuje, do jaké míry je jedna proměnná schopna předpovědět

Více

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1 Logistická regrese Menu: QCExpert Regrese Logistická Modul Logistická regrese umožňuje analýzu dat, kdy odezva je binární, nebo frekvenční veličina vyjádřená hodnotami 0 nebo 1, případně poměry v intervalu

Více

6 TESTY HYPOTÉZ NEPARAMETRICKÉ TESTY

6 TESTY HYPOTÉZ NEPARAMETRICKÉ TESTY Elena Mielcová, Radmila Stoklasová a Jaroslav Ramík; Statistické programy 6 TESTY HYPOTÉZ NEPARAMETRICKÉ TESTY RYCHLÝ NÁHLED DO KAPITOLY Kapitola obsahuje přehled neparametrických testů, které nalezneme

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

z dat nasbíraných v letech 1959 1994. Ke zpracování dat byl použit statistický software R. Základní model poptávkové funkce, ze kterého vycházíme,

z dat nasbíraných v letech 1959 1994. Ke zpracování dat byl použit statistický software R. Základní model poptávkové funkce, ze kterého vycházíme, Úloha 1: V naší studii se zabýváme poptávkovou funkcí životního pojištění, vycházíme z dat nasbíraných v letech 1959 1994. Ke zpracování dat byl použit statistický software R. Základní model poptávkové

Více

TEPELNÁ ZÁTĚŽ, TEPLOTNÍ REKORDY A SDĚLOVACÍ PROSTŘEDKY

TEPELNÁ ZÁTĚŽ, TEPLOTNÍ REKORDY A SDĚLOVACÍ PROSTŘEDKY Rožnovský, J., Litschmann, T. (ed.): XIV. Česko-slovenská bioklimatologická konference, Lednice na Moravě 2.-4. září 2002, ISBN 80-85813-99-8, s. 242-253 TEPELNÁ ZÁTĚŽ, TEPLOTNÍ REKORDY A SDĚLOVACÍ PROSTŘEDKY

Více

Matematická statistika

Matematická statistika Matematická statistika Daniel Husek Gymnázium Rožnov pod Radhoštěm, 8. A8 Dne 12. 12. 2010 v Rožnově pod Radhoštěm Osnova Strana 1) Úvod 3 2) Historie matematické statistiky 4 3) Základní pojmy matematické

Více

Frekvenční analýza, čtyřpolní tabulky

Frekvenční analýza, čtyřpolní tabulky Frekvenční analýza, čtyřpolní tabulky V následujícím příkladě nás zajímá, zda sekání má pozitivní vliv na reprodukci studovaného druhu. V experimentu tedy máme dva druhy ošetření (sekané, nesekané) a pro

Více

1. Pravděpodobnost a statistika (MP leden 2010)

1. Pravděpodobnost a statistika (MP leden 2010) 1. Pravděpodobnost a statistika (MP leden 2010) Pravděpodobnost pojmy 1. Diskrétní pravděpodobnostní prostor(definice, vlastnosti, příklad). Diskrétní pravděpodobnostní prostor je trojice(ω, A, P), kde

Více

Zobecněná analýza rozptylu, více faktorů a proměnných

Zobecněná analýza rozptylu, více faktorů a proměnných Zobecněná analýza rozptylu, více faktorů a proměnných Menu: QCExpert Anova Více faktorů Zobecněná analýza rozptylu (ANalysis Of VAriance, ANOVA) umožňuje posoudit do jaké míry ovlivňují kvalitativní proměnné

Více

SYSTÉM TECHNICKO-EKONOMICKÉ ANALÝZY VÝROBY TEKUTÉHO KOVU - CESTA KE SNIŽOVÁNÍ NÁKLADŮ

SYSTÉM TECHNICKO-EKONOMICKÉ ANALÝZY VÝROBY TEKUTÉHO KOVU - CESTA KE SNIŽOVÁNÍ NÁKLADŮ SYSTÉM TECHNICKO-EKONOMICKÉ ANALÝZY VÝROBY TEKUTÉHO KOVU - CESTA KE SNIŽOVÁNÍ NÁKLADŮ FIGALA V. a), KAFKA V. b) a) VŠB-TU Ostrava, FMMI, katedra slévárenství, 17. listopadu 15, 708 33 b) RACIO&RACIO, Vnitřní

Více

INTRODUCTION TO MACHINE LEARNING (NPFL054) A template for Homework #2

INTRODUCTION TO MACHINE LEARNING (NPFL054) A template for Homework #2 INTRODUCTION TO MACHINE LEARNING (NPFL054) A template for Homework #2 Name: Petr Bělohlávek School year: 2015/2016 Provide answers for the exercises 1. (a) - (c), 2.(c), 2.(d.1-2), 2.(e.1-2) For each exercise,

Více

4.2.4.2 Fixed management model s mûfienou heterogenitou

4.2.4.2 Fixed management model s mûfienou heterogenitou 4.2.4.2 Fixed management model s mûfienou heterogenitou Odvození fixed management modelu s měřenou heterogenitou je založeno na tom, že managament, jak tento nepozorovaný fixní vstup nazývají Álvarez et

Více

Metodologie pro Informační studia a knihovnictví 2

Metodologie pro Informační studia a knihovnictví 2 Metodologie pro Informační studia a knihovnictví 2 Modul 7: Třídění druhého stupně. Kontingenční tabulky Co se dozvíte v tomto modulu? Co je třídění druhého stupně Jak vytvořit a interpretovat kontingenční

Více

Porovnání dvou výběrů

Porovnání dvou výběrů Porovnání dvou výběrů Menu: QCExpert Porovnání dvou výběrů Tento modul je určen pro podrobnou analýzu dvou datových souborů (výběrů). Modul poskytuje dva postupy analýzy: porovnání dvou nezávislých výběrů

Více

Měření závislosti statistických dat

Měření závislosti statistických dat 5.1 Měření závislosti statistických dat Každý pořádný astronom je schopen vám předpovědět, kde se bude nacházet daná hvězda půl hodiny před půlnocí. Ne každý je však téhož schopen předpovědět v případě

Více

Statistické metody v ekonomii. Ing. Michael Rost, Ph.D.

Statistické metody v ekonomii. Ing. Michael Rost, Ph.D. Statistické metody v ekonomii Ing. Michael Rost, Ph.D. Jihočeská univerzita v Českých Budějovicích Test χ 2 v kontingenční tabulce typu 2 2 Jde vlastně o speciální případ χ 2 testu pro čtyřpolní tabulku.

Více

Problém 1: Ceny nemovitostí Poznámkykřešení 1

Problém 1: Ceny nemovitostí Poznámkykřešení 1 Problém 1: Ceny nemovitostí Poznámkykřešení 1 Zadání 1.Majínemovitostiurčenékbydlenívyššícenutam,kdeječistšíovzduší?Pokudano,okolik? 2. Lze vztah mezi znečištěním a cenou, pokud existuje, vysvětlit tím,

Více

Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra matematiky. Bakalářská práce. Výsledky vstupních testů z matematiky a úspěšnost studia

Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra matematiky. Bakalářská práce. Výsledky vstupních testů z matematiky a úspěšnost studia Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra matematiky Bakalářská práce Výsledky vstupních testů z matematiky a úspěšnost studia Plzeň, 2014 Zuzana Rábová Prohlášení Prohlašuji, že

Více

TESTOVÁNÍ ZNALOSTÍ STŘEDOŠKOLSKÉ FYZIKY U STUDENTŮ 1.ROČNÍKŮ LÉKAŘSKÝCH FAKULT V ČR

TESTOVÁNÍ ZNALOSTÍ STŘEDOŠKOLSKÉ FYZIKY U STUDENTŮ 1.ROČNÍKŮ LÉKAŘSKÝCH FAKULT V ČR TESTOVÁNÍ ZNALOSTÍ STŘEDOŠKOLSKÉ FYZIKY U STUDENTŮ 1.ROČNÍKŮ LÉKAŘSKÝCH FAKULT V ČR Kymplová J 1, Kvašňák E 2, Běláček J 1, Mornstein V 3, Komarc M 1, Zeman J 1, Kubeš Z 4 1 Ústav biofyziky a informatiky

Více

Regresní analýza jednoduchá lineární regrese mnohonásobná lineární regrese logistická regrese

Regresní analýza jednoduchá lineární regrese mnohonásobná lineární regrese logistická regrese Regresní analýza jednoduchá lineární regrese mnohonásobná lineární regrese logistická regrese Regresní analýza korelační koeficient říká, že mezi dvěma proměnnými existuje souvislost - jsme schopni vyslovit

Více

Rozhodovací stromy a lesy

Rozhodovací stromy a lesy Rozhodovací stromy a lesy Klára Komprdová Leden 2012 Příprava a vydání této publikace byly podporovány projektem ESF č. CZ.1.07/2.2.00/07.0318 Víceoborová inovace studia Matematické biologie a státním

Více

Obsah. 3 Testy 31 3.1 z test... 32 3.2 z test 2... 33 3.3 t test... 34 3.4 t test 2s... 35

Obsah. 3 Testy 31 3.1 z test... 32 3.2 z test 2... 33 3.3 t test... 34 3.4 t test 2s... 35 Obsah 1 Popisná statistika 4 1.1 bas stat........................................ 5 1.2 mean.......................................... 6 1.3 meansq........................................ 7 1.4 sumsq.........................................

Více

2. Je dáno jevové pole (Ω;A) a na něm nezáporná normovaná funkce. Definujte distrubuční funkci náhodného vektoru.

2. Je dáno jevové pole (Ω;A) a na něm nezáporná normovaná funkce. Definujte distrubuční funkci náhodného vektoru. Varianta I 1. Definujte pravděpodobnostní funkci. 2. Je dáno jevové pole (Ω;A) a na něm nezáporná normovaná funkce. Definujte distrubuční funkci náhodného vektoru. 3. Definujte Fisher-Snedecorovo rozdělení.

Více

Funkce a vzorce v Excelu

Funkce a vzorce v Excelu Funkce a vzorce v Excelu Lektor: Ing. Martin Kořínek, Ph.D. Formátování tabulky V této kapitole si vysvětlíme, jak tabulku graficky zdokonalit, jak změnit nastavení šířky a případně výšky sloupců, jak

Více

Analýza přežití čertic a čertů

Analýza přežití čertic a čertů StatSoft Analýza přežití čertic a čertů Vzpomeňme si na pohádku s Čerty nejsou žerty. V ní Lucifer (dále jen Lůca) pověřil čerta Janka, aby přinesl Dorotu Máchalovou do pekla, poněvadž míra jejích hříchů

Více

Analýza kvantitativních dat: 1. Popisné statistiky a testování hypotéz

Analýza kvantitativních dat: 1. Popisné statistiky a testování hypotéz UK FHS Historická sociologie (LS 2010) Analýza kvantitativních dat: 1. Popisné statistiky a testování hypotéz Jiří Šafr jiri.safr(zavináč)seznam.cz vytvořeno 29. 6. 2009, poslední aktualizace 25. 5. 2010

Více