Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.

Rozměr: px
Začít zobrazení ze stránky:

Download "Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz"

Transkript

1

2 Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.

3 Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.

4 Pravděpodobnost a matematická statistika týden ( ) Data, typy dat, variabilita, frekvenční analýza (histogramy, četnosti absolutní, relativní, prosté, kumulativní), základní statistické charakteristiky (průměr, výběr.rozptyl, minimum, maximum, medián, kvartily, boxplot), sešikmenná rozdělení (vzájemná poloha mediánu a střední hodnoty), chvosty, kvantily 2. týden ( ) Princip statistické indukce, výběr, vlastnosti výběru, experiment. Náhodná veličina, rozdělení pravděpodobnosti a jeho souvislost s histogramem. Pravděpodobnost, pravidla pro počítání s pravděpodobností, podmíněná pravděpodobnost, závislost náhodných veličin. 3.týden ( ) Využití závislosti při stanovení pravděpodobnosti - věta o úplné pravděpodobnosti a Bayesova věta 4.týden ( ) Rozdělení chyb měření - normální rozdělení a počítání s ním. Odhady parametrů normálního rozdělení. Intervaly spolehlivosti pro normální data. Jednovýběrové testy o střední hodnotě 5.týden ( ) Výběrový poměr jako odhad pravděpodobnosti sledovaného jevu. Alternativní rozdělení, binomické rozdělení. Intervalový odhad výběrového poměru. Výběry s vracením a bez vracení (binomické a hypergeometrické rozdělení) 6.týden ( ) odpadá 7.týden ( ) Poruchy v čase (Poissonův proces). Poissonovo rozdělení, exponenciální rozdělení, jeho výhody a nevýhody, modelování doby do poruchy pomocí Weibullova rozdělení, lognormálního rozdělení, případně useknuté normální rozdělení. 8.týden ( ) Testy dobré shody, Q-Q graf (pouze vysvětlení), testy normality. Některé neparametrické testy 9.týden ( ) Dvě náhodné veličiny - srovnání dvou výběrů (dvouvýběrové testy) 10. týden ( ) Dvě náhodné veličiny. Dvourozměrné četnosti jako odhad dvourozměrného rozdělení, frekvenční tabulka. Marginální rozdělení (vše pouze diskrétně s tabulkou) 11. týden ( ) Závislost náhodných veličin, míry závislosti (kovariance, korelace), test významnosti korelačního koeficientu 12. týden ( ) Regrese, lineární regresní model (přímková, kvadratická, polynomická regrese), analýza reziduí, pásy spolehlivosti 13. týden ( ) Více výběrů, jednoduché třídění, ANOVA. 14. týden ( ) Rezerva, opakování, testy normality (náhrada za )

5 Tato přednáška je na

6 X : X 1,X 2,...,X n Y : Y 1,Y 2,...,Y m X N(µ X, σ 2 X) Y N(µ Y, σ 2 Y ) Odhady středních hodnot: X = 1 n Odhady rozptylů: s 2 X = 1 n 1 n i=1 X i (X X) 2, s 2 Y = 1 n 1 Ȳ = 1 m n i=1 Y i (Y Ȳ ) 2

7 Dvě nezávislá měření X : X 1,X 2,...,X n Y : Y 1,Y 2,...,Y m X N(µ X, σ 2 X) Y N(µ Y, σ 2 Y ) Odhady středních hodnot: X = 1 n Odhady rozptylů: s 2 X = 1 n 1 n i=1 X i (X X) 2, s 2 Y = 1 n 1 Ȳ = 1 m n i=1 Y i (Y Ȳ ) 2

8 Dvě nezávislá měření X : X 1,X 2,...,X n Y : Y 1,Y 2,...,Y m X N(µ X, σ 2 X) Y N(µ Y, σ 2 Y ) oba parametry v obou případech známe Odhady středních hodnot: X = 1 n Odhady rozptylů: s 2 X = 1 n 1 n i=1 X i (X X) 2, s 2 Y = 1 n 1 Ȳ = 1 m n i=1 Y i (Y Ȳ ) 2

9 Dvě nezávislá měření X : X 1,X 2,...,X n Y : Y 1,Y 2,...,Y m X N(µ X, σ 2 X) Y N(µ Y, σ 2 Y ) oba parametry v obou případech známe známe střední hodnoty a neznáme rozptyly Odhady středních hodnot: X = 1 n Odhady rozptylů: s 2 X = 1 n 1 n i=1 X i (X X) 2, s 2 Y = 1 n 1 Ȳ = 1 m n i=1 Y i (Y Ȳ ) 2

10 Dvě nezávislá měření X : X 1,X 2,...,X n Y : Y 1,Y 2,...,Y m X N(µ X, σ 2 X) Y N(µ Y, σ 2 Y ) oba parametry v obou případech známe známe střední hodnoty a neznáme rozptyly známe rozptyly a neznáme střední hodnoty Odhady středních hodnot: X = 1 n Odhady rozptylů: s 2 X = 1 n 1 n i=1 X i (X X) 2, s 2 Y = 1 n 1 Ȳ = 1 m n i=1 Y i (Y Ȳ ) 2

11 Dvě nezávislá měření X : X 1,X 2,...,X n Y : Y 1,Y 2,...,Y m X N(µ X, σ 2 X) Y N(µ Y, σ 2 Y ) oba parametry v obou případech známe známe střední hodnoty a neznáme rozptyly známe rozptyly a neznáme střední hodnoty žádný z parametrů neznáme Odhady středních hodnot: X = 1 n Odhady rozptylů: s 2 X = 1 n 1 n i=1 X i (X X) 2, s 2 Y = 1 n 1 Ȳ = 1 m n i=1 Y i (Y Ȳ ) 2

12 X : X 1,X 2,...,X n Y : Y 1,Y 2,...,Y m X N(µ X, σ 2 X) Y N(µ Y, σ 2 Y ) X : X 1,X 2,...,X n Y : Y 1,Y 2,..., Y n

13 Dvě nezávislá měření X : X 1,X 2,...,X n Y : Y 1,Y 2,...,Y m X N(µ X, σ 2 X) Y N(µ Y, σ 2 Y ) X : X 1,X 2,...,X n Y : Y 1,Y 2,..., Y n

14 Dvě nezávislá měření X : X 1,X 2,...,X n Y : Y 1,Y 2,...,Y m test shody rozptylů X N(µ X, σ 2 X) Y N(µ Y, σ 2 Y ) X : X 1,X 2,...,X n Y : Y 1,Y 2,..., Y n

15 Dvě nezávislá měření X : X 1,X 2,...,X n Y : Y 1,Y 2,...,Y m X N(µ X, σ 2 X) Y N(µ Y, σ 2 Y ) test shody rozptylů test shody středních hodnot při stejných rozptylech X : X 1,X 2,...,X n Y : Y 1,Y 2,..., Y n

16 Dvě nezávislá měření X : X 1,X 2,...,X n Y : Y 1,Y 2,...,Y m X N(µ X, σ 2 X) Y N(µ Y, σ 2 Y ) test shody rozptylů test shody středních hodnot při stejných rozptylech test shody středních hodnot při nestejných rozptylech X : X 1,X 2,...,X n Y : Y 1,Y 2,..., Y n

17 Dvě nezávislá měření X : X 1,X 2,...,X n Y : Y 1,Y 2,...,Y m X N(µ X, σ 2 X) Y N(µ Y, σ 2 Y ) test shody rozptylů test shody středních hodnot při stejných rozptylech test shody středních hodnot při nestejných rozptylech Dvě závislá měření X : X 1,X 2,...,X n Y : Y 1,Y 2,..., Y n

18 Dvě nezávislá měření X : X 1,X 2,...,X n Y : Y 1,Y 2,...,Y m X N(µ X, σ 2 X) Y N(µ Y, σ 2 Y ) test shody rozptylů test shody středních hodnot při stejných rozptylech test shody středních hodnot při nestejných rozptylech Dvě závislá měření X : X 1,X 2,...,X n párový test shody středních hodnot Y : Y 1,Y 2,..., Y n

19 Dvě nezávislá měření X : X 1,X 2,...,X n Y : Y 1,Y 2,...,Y m X N(µ X, σ 2 X) Y N(µ Y, σ 2 Y ) test shody rozptylů test shody středních hodnot při stejných rozptylech test shody středních hodnot při nestejných rozptylech Dvě závislá měření X : X 1,X 2,...,X n Y : Y 1,Y 2,..., Y n párová pozorování párový test shody středních hodnot

20 nulová hypotéza : alternativní hypotéza: testová statistika : hladina významnosti: H 0 : σx 2 = σy 2 H A : σx 2 = σy 2 F = s2 X α s 2 Y F-test H0 nezamítneme, když pro dané α bude F α/2 (n 1,m 1) <F <F α/2 (n 1,m 1)

21 1) Srovnání rozptylů dvou nezávislých měření nulová hypotéza : alternativní hypotéza: testová statistika : hladina významnosti: H 0 : σx 2 = σy 2 H A : σx 2 = σy 2 F = s2 X α s 2 Y F-test H0 nezamítneme, když pro dané α bude F α/2 (n 1,m 1) <F <F α/2 (n 1,m 1)

22 1) Srovnání rozptylů dvou nezávislých měření Liší se statisticky významně dvě nezávislá měření z hlediska velikosti rozptylu? nulová hypotéza : alternativní hypotéza: testová statistika : hladina významnosti: H 0 : σx 2 = σy 2 H A : σx 2 = σy 2 F = s2 X α s 2 Y F-test H0 nezamítneme, když pro dané α bude F α/2 (n 1,m 1) <F <F α/2 (n 1,m 1)

23 1) Srovnání rozptylů dvou nezávislých měření Liší se statisticky významně dvě nezávislá měření z hlediska velikosti rozptylu? Lze považovat rozptyl dvou nezávislých měření za shodný při dané hladině významnosti? nulová hypotéza : alternativní hypotéza: testová statistika : hladina významnosti: H 0 : σx 2 = σy 2 H A : σx 2 = σy 2 F = s2 X α s 2 Y F-test H0 nezamítneme, když pro dané α bude F α/2 (n 1,m 1) <F <F α/2 (n 1,m 1)

24 1) Srovnání rozptylů dvou nezávislých měření Liší se statisticky významně dvě nezávislá měření z hlediska velikosti rozptylu? Lze považovat rozptyl dvou nezávislých měření za shodný při dané hladině významnosti? nulová hypotéza : alternativní hypotéza: testová statistika : hladina významnosti: H 0 : σx 2 = σy 2 H A : σx 2 = σy 2 F = s2 X α s 2 Y F-test Fisherovo-Snedecorovo rozdělení F(n-1, m-1) H0 nezamítneme, když pro dané α bude F α/2 (n 1,m 1) <F <F α/2 (n 1,m 1)

25 - Dvouvýběrový t-test nulová hypotéza : alternativní hypotéza: testová statistika : hladina významnosti: H 0 : µ X = µ Y H A : µ X = µ Y T = X Ȳ α s X Ȳ (oboustranná)

26 2) Srovnání středních hodnot dvou nezávislých měření - Dvouvýběrový t-test nulová hypotéza : alternativní hypotéza: testová statistika : hladina významnosti: H 0 : µ X = µ Y H A : µ X = µ Y T = X Ȳ α s X Ȳ (oboustranná)

27 2) Srovnání středních hodnot dvou nezávislých měření - Dvouvýběrový t-test Liší se statisticky významně dvě nezávislá měření z hlediska jejich střední hodnoty? nulová hypotéza : alternativní hypotéza: testová statistika : hladina významnosti: H 0 : µ X = µ Y H A : µ X = µ Y T = X Ȳ α s X Ȳ (oboustranná)

28 2) Srovnání středních hodnot dvou nezávislých měření - Dvouvýběrový t-test Liší se statisticky významně dvě nezávislá měření z hlediska jejich střední hodnoty? Lze považovat střední hodnoty dvou nezávislých měření za shodné při dané hladině významnosti? nulová hypotéza : alternativní hypotéza: testová statistika : hladina významnosti: H 0 : µ X = µ Y H A : µ X = µ Y T = X Ȳ α s X Ȳ (oboustranná)

29 2) Srovnání středních hodnot dvou nezávislých měření - Dvouvýběrový t-test Liší se statisticky významně dvě nezávislá měření z hlediska jejich střední hodnoty? Lze považovat střední hodnoty dvou nezávislých měření za shodné při dané hladině významnosti? Lze od sebe statisticky významně odlišit dvě nezávislá měření podle jejich jejich střední hodnoty? nulová hypotéza : alternativní hypotéza: testová statistika : hladina významnosti: H 0 : µ X = µ Y H A : µ X = µ Y T = X Ȳ α s X Ȳ (oboustranná)

30 - Dvouvýběrový t-test nulová hypotéza : alternativní hypotéza: testová statistika : hladina významnosti: H 0 : µ X = µ Y H A : µ X = µ Y T = X Ȳ α s X Ȳ (oboustranná) pokud σ 2 X = σ 2 Y pokud σ 2 X = σ 2 Y dvouvýběrový t-test se stejnými rozptyly dvouvýběrový t-test s nestejnými rozptyly

31 2) Srovnání středních hodnot dvou nezávislých měření - Dvouvýběrový t-test nulová hypotéza : alternativní hypotéza: testová statistika : hladina významnosti: H 0 : µ X = µ Y H A : µ X = µ Y T = X Ȳ α s X Ȳ (oboustranná) pokud σ 2 X = σ 2 Y pokud σ 2 X = σ 2 Y dvouvýběrový t-test se stejnými rozptyly dvouvýběrový t-test s nestejnými rozptyly

32 - Dvouvýběrový t-test pokud σx 2 = σy 2 = σ 2 s 2 X Ȳ = s2 X + s 2 Ȳ = s2 X n + s2 Y m = 1 = s 2 n + 1 m + n = s 2 m n.m dále odhadneme s 2 ze všech naměřených hodnot: s 2 1 n = (X i n + m 2 X) m 2 + (Y i Ȳ )2 = i=1 i=1 1 (n 1)s 2 X +(m 1)s 2 Y tedy: s 2 X Ȳ = n + m 2 n + m nm(n + m 2) (n 1)s 2 X +(m 1)s 2 Y

33 2) Srovnání středních hodnot dvou nezávislých měření - Dvouvýběrový t-test pokud σx 2 = σy 2 = σ 2 s 2 X Ȳ = s2 X + s 2 Ȳ = s2 X n + s2 Y m = 1 = s 2 n + 1 m + n = s 2 m n.m dále odhadneme s 2 ze všech naměřených hodnot: s 2 1 n = (X i n + m 2 X) m 2 + (Y i Ȳ )2 = i=1 i=1 1 (n 1)s 2 X +(m 1)s 2 Y tedy: s 2 X Ȳ = n + m 2 n + m nm(n + m 2) (n 1)s 2 X +(m 1)s 2 Y

34 - Dvouvýběrový t-test pokud σx 2 = σy 2, testová statistika bude mít tvar: X T = Ȳ nm(n + m 2) (n 1)s 2 X +(m 1)s 2 n + m Y ta má t-rozdělení (Studentovo rozdělení) pravděpodobnosti o (n+m-2) stupních volnosti. H0 nezamítneme, když pro dané α bude T t α (n + m 2) kde t α (n + m 2) je (oboustranná) α -kritická hodnota t-rozdělení o (n+m-2) stupních volnosti.

35 2) Srovnání středních hodnot dvou nezávislých měření - Dvouvýběrový t-test pokud σx 2 = σy 2, testová statistika bude mít tvar: X T = Ȳ nm(n + m 2) (n 1)s 2 X +(m 1)s 2 n + m Y ta má t-rozdělení (Studentovo rozdělení) pravděpodobnosti o (n+m-2) stupních volnosti. H0 nezamítneme, když pro dané α bude T t α (n + m 2) kde t α (n + m 2) je (oboustranná) α -kritická hodnota t-rozdělení o (n+m-2) stupních volnosti.

36 pokud σ 2 X = σ 2 Y - Dvouvýběrový t-test, testová statistika bude mít tvar: X T = Ȳ 1 n s2 X + 1 m s2 Y a má rozdělení, které je směsí t-rozdělení o (n-1) a (m-1) stupních volnosti. H0 nezamítneme, když pro dané α bude splněna nerovnost T At α (n 1) + Bt α (m 1), kde A a B jsou váhy, A+B=1. A = 1 n s2 X 1 n s2 X + 1 m s2 Y, B = 1 m s2 Y 1 n s2 X + 1 m s2 Y

37 2) Srovnání středních hodnot dvou nezávislých měření - Dvouvýběrový t-test pokud σ 2 X = σ 2 Y, testová statistika bude mít tvar: X T = Ȳ 1 n s2 X + 1 m s2 Y a má rozdělení, které je směsí t-rozdělení o (n-1) a (m-1) stupních volnosti. H0 nezamítneme, když pro dané α bude splněna nerovnost T At α (n 1) + Bt α (m 1), kde A a B jsou váhy, A+B=1. A = 1 n s2 X 1 n s2 X + 1 m s2 Y, B = 1 m s2 Y 1 n s2 X + 1 m s2 Y

38 X : X 1,X 2,...,X n Y : Y 1,Y 2,..., Y n X N(µ X, σ 2 X) Y N(µ Y, σ 2 Y ) Z 1 = X 1 Y 1, Z 2 = X 2 Y 2,..., Z n = X n Y n, Z N(µ X µ Y, σ 2 Z) H 0 : µ X = µ Y H A : µ X = µ Y H 0 : µ Z =0 H A : µ Z =0

39 3) Párový test shody středních hodnot dvou závislých měření X : X 1,X 2,...,X n Y : Y 1,Y 2,..., Y n X N(µ X, σ 2 X) Y N(µ Y, σ 2 Y ) Z 1 = X 1 Y 1, Z 2 = X 2 Y 2,..., Z n = X n Y n, Z N(µ X µ Y, σ 2 Z) H 0 : µ X = µ Y H A : µ X = µ Y H 0 : µ Z =0 H A : µ Z =0

40 3) Párový test shody středních hodnot dvou závislých měření pozorování stejné veličiny před a po nějakém zásahu X : X 1,X 2,...,X n Y : Y 1,Y 2,..., Y n X N(µ X, σ 2 X) Y N(µ Y, σ 2 Y ) Z 1 = X 1 Y 1, Z 2 = X 2 Y 2,..., Z n = X n Y n, Z N(µ X µ Y, σ 2 Z) H 0 : µ X = µ Y H A : µ X = µ Y H 0 : µ Z =0 H A : µ Z =0

41 3) Párový test shody středních hodnot dvou závislých měření pozorování stejné veličiny před a po nějakém zásahu měření stejných obektů za různých podmínek X : X 1,X 2,...,X n Y : Y 1,Y 2,..., Y n X N(µ X, σ 2 X) Y N(µ Y, σ 2 Y ) Z 1 = X 1 Y 1, Z 2 = X 2 Y 2,..., Z n = X n Y n, Z N(µ X µ Y, σ 2 Z) H 0 : µ X = µ Y H A : µ X = µ Y H 0 : µ Z =0 H A : µ Z =0

42 3) Párový test shody středních hodnot dvou závislých měření pozorování stejné veličiny před a po nějakém zásahu měření stejných obektů za různých podmínek měření stejné veličiny ve dvou různých časech X : X 1,X 2,...,X n Y : Y 1,Y 2,..., Y n X N(µ X, σ 2 X) Y N(µ Y, σ 2 Y ) Z 1 = X 1 Y 1, Z 2 = X 2 Y 2,..., Z n = X n Y n, Z N(µ X µ Y, σ 2 Z) H 0 : µ X = µ Y H A : µ X = µ Y H 0 : µ Z =0 H A : µ Z =0

43 3) Párový test shody středních hodnot dvou závislých měření pozorování stejné veličiny před a po nějakém zásahu měření stejných obektů za různých podmínek měření stejné veličiny ve dvou různých časech... X : X 1,X 2,...,X n Y : Y 1,Y 2,..., Y n X N(µ X, σ 2 X) Y N(µ Y, σ 2 Y ) Z 1 = X 1 Y 1, Z 2 = X 2 Y 2,..., Z n = X n Y n, Z N(µ X µ Y, σ 2 Z) H 0 : µ X = µ Y H A : µ X = µ Y H 0 : µ Z =0 H A : µ Z =0

44 H 0 : µ Z = a H A : µ Z = a T = Z a n s Z T má t-rozdělení (Studentovo rozdělení) pravděpodobnosti o (n-1) stupních volnosti. H0 nezamítneme, když pro dané α bude T t α (n 1) kde t α (n 1) je (oboustranná) α-kritická hodnota t-rozdělení o (n-1) stupních volnosti.

45 3) Párový test shody středních hodnot dvou závislých měření H 0 : µ Z = a H A : µ Z = a T = Z a s Z n T má t-rozdělení (Studentovo rozdělení) pravděpodobnosti o (n-1) stupních volnosti. H0 nezamítneme, když pro dané α bude T t α (n 1) kde t α (n 1) je (oboustranná) α-kritická hodnota t-rozdělení o (n-1) stupních volnosti.

46 dolní nebo horní jednostranná alternativa : H 0 : µ X = µ Y H A : µ X <µ Y H 0 : µ X = µ Y H A : µ X >µ Y H0 nezamítneme, když pro dané α bude buď T< t α (n 1) nebo T>t α (n 1) kde t α (n 1) je (jednostranná) α -kritická hodnota t-rozdělení o (n-1) stupních volnosti. oboustranná α-kritická hodnota je (1 α/2) -kvantil t 1 α/2 (n 1) jednostranná α -kritická hodnota je (1 α) -kvantil t 1 α (n 1)

47 Jednostranné testy dolní nebo horní jednostranná alternativa : H 0 : µ X = µ Y H A : µ X <µ Y H 0 : µ X = µ Y H A : µ X >µ Y H0 nezamítneme, když pro dané α bude buď T< t α (n 1) nebo T>t α (n 1) kde t α (n 1) je (jednostranná) α -kritická hodnota t-rozdělení o (n-1) stupních volnosti. oboustranná α-kritická hodnota je (1 α/2) -kvantil t 1 α/2 (n 1) jednostranná α -kritická hodnota je (1 α) -kvantil t 1 α (n 1)

48 Příklad: Byly měřeny odchylky od požadované délky 4m ocelových tyčí od dvou dodavatelů. Odchylky jsou uvedeny v cm. Lze považovat délky tyčí od různých dodavatelů za shodné na hladině významnosti 5%? > x [1] [7] [13] [19] [25] [31] [37] [43] [49] [55] [61] [67] [73] [79] [85] [91] [97] [103] [109] [115] Dodavatel X:

49 Příklad: Byly měřeny odchylky od požadované délky 4m ocelových tyčí od dvou dodavatelů. Odchylky jsou uvedeny v cm. Lze považovat délky tyčí od různých dodavatelů za shodné na hladině významnosti 5%? > y [1] [7] [13] [19] [25] [31] [37] [43] [49] [55] [61] [67] [73] [79] [85] [91] [97] Dodavatel Y:

50 Příklad: Byly měřeny odchylky od požadované délky 4m ocelových tyčí od dvou dodavatelů. Odchylky jsou uvedeny v cm. 1) Vizualizace dat: Box&Whiskers diagram X Y

51 Příklad: Byly měřeny odchylky od požadované délky 4m ocelových tyčí od dvou dodavatelů. Odchylky jsou uvedeny v cm. 2) Srovnání rozptylů: F-test > var.test(x,y) F test to compare two variances data: x and y F = , num df = 119, denom df = 99, p- value = alternative hypothesis: true ratio of variances is not equal to 1 95 percent confidence interval: sample estimates: ratio of variances => nulovou hypotézu nezamítáme, rozptyly se statisticky významně neliší

52 Příklad: Byly měřeny odchylky od požadované délky 4m ocelových tyčí od dvou dodavatelů. Odchylky jsou uvedeny v cm. 3) Srovnání středních hodnot: dvouvýběrový t-test se shodnými rozptyly > t.test(x,y, var.equal=t) Two Sample t- test data: x and y t = , df = 218, p- value = alternative hypothesis: true difference in means is not equal to 0 95 percent confidence interval: sample estimates: mean of x mean of y => nulovou hypotézu nezamítáme, střední hodnoty se statisticky významně neliší

53 Příklad: Byla měřena rychlost reakce operátorů před a po speciálním cvičení v sekundách. Mělo cvičení statisticky významný vliv na rychlost? 1) Data: > pred_cvicenim [1] [7] [13] [19] [25] [31] [37] [43] [49] [55] [61] [67] [73] [79] [85] [91] [97] [103] [109] [115]

54 Příklad: Byla měřena rychlost reakce operátorů před a po speciálním cvičení v sekundách. Mělo cvičení statisticky významný vliv na rychlost? 1) Data: > po_cviceni [1] [7] [13] [19] [25] [31] [37] [43] [49] [55] [61] [67] [73] [79] [85] [91] [97] [103] [109] [115]

55 Příklad: Byla měřena rychlost reakce operátorů před a po speciálním cvičení v sekundách. Mělo cvičení statisticky významný vliv na rychlost? 2) Grafické zobrazení

56 Dvě náhodné veličiny Příklad: Byla měřena rychlost reakce operátorů před a po speciálním cvičení v sekundách. Mělo cvičení statisticky významný vliv na rychlost? 3) Rozdíl: > rozdil = pred_cvicenim - po_cviceni > rozdil [1] [7] [13] [19] [25] [31] [37] [43] [49] [55] [61] [67] [73] [79] [85] [91] [97] [103] [109] [115]

57 Příklad: Byla měřena rychlost reakce operátorů před a po speciálním cvičení v sekundách. Mělo cvičení statisticky významný vliv na rychlost? 3) Rozdíl:

58 Příklad: Byla měřena rychlost reakce operátorů před a po speciálním cvičení v sekundách. Mělo cvičení statisticky významný vliv na rychlost? 4) Párový t-test: > t.test(rozdil, mu=0) One Sample t- test data: rozdil t = , df = 119, p- value = 9.54e- 05 alternative hypothesis: true mean is not equal to 0 95 percent confidence interval: sample estimates: mean of x => nulovou hypotézu zamítáme, cvičení mělo vliv a rychlost reakce se statisticky významně zvýšila

UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11.

UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11. UNIVERZITA OBRANY Fakulta ekonomiky a managementu Aplikace STAT1 Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 Jiří Neubauer, Marek Sedlačík, Oldřich Kříž 3. 11. 2012 Popis a návod k použití aplikace

Více

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@niax.cz Pravděodobnost a matematická statistika 2010 1.týden (20.09.-24.09. ) Data, tyy dat, variabilita, frekvenční analýza

Více

31. 3. 2014, Brno Hanuš Vavrčík Základy statistiky ve vědě

31. 3. 2014, Brno Hanuš Vavrčík Základy statistiky ve vědě 31. 3. 2014, Brno Hanuš Vavrčík Základy statistiky ve vědě Motto Statistika nuda je, má však cenné údaje. strana 3 Statistické charakteristiky Charakteristiky polohy jsou kolem ní seskupeny ostatní hodnoty

Více

diskriminaci žen letní semestr 2012 1 = výrok, o jehož pravdivosti chceme rozhodnout tvrzení o populaci, o jehož platnosti rozhodujeme

diskriminaci žen letní semestr 2012 1 = výrok, o jehož pravdivosti chceme rozhodnout tvrzení o populaci, o jehož platnosti rozhodujeme motivační příklad Párový Párový Příklad (Platová diskriminace) firma provedla šetření s cílem zjistit, zda dochází k platové diskriminaci žen Šárka Hudecová Katedra pravděpodobnosti a matematické statistiky

Více

Cvičení ze statistiky - 9. Filip Děchtěrenko

Cvičení ze statistiky - 9. Filip Děchtěrenko Cvičení ze statistiky - 9 Filip Děchtěrenko Minule bylo.. Dobrali jsme normální rozdělení Tyhle termíny by měly být známé: Inferenční statistika Konfidenční intervaly Z-test Postup při testování hypotéz

Více

4ST201 STATISTIKA CVIČENÍ Č. 7

4ST201 STATISTIKA CVIČENÍ Č. 7 4ST201 STATISTIKA CVIČENÍ Č. 7 testování hypotéz parametrické testy test hypotézy o střední hodnotě test hypotézy o relativní četnosti test o shodě středních hodnot testování hypotéz v MS Excel neparametrické

Více

676 + 4 + 100 + 196 + 0 + 484 + 196 + 324 + 64 + 324 = = 2368

676 + 4 + 100 + 196 + 0 + 484 + 196 + 324 + 64 + 324 = = 2368 Příklad 1 Je třeba prověřit, zda lze na 5% hladině významnosti pokládat za prokázanou hypotézu, že střední doba výroby výlisku je 30 sekund. Přitom 10 náhodně vybraných výlisků bylo vyráběno celkem 540

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

Testování hypotéz. Analýza dat z dotazníkových šetření. Kuranova Pavlina

Testování hypotéz. Analýza dat z dotazníkových šetření. Kuranova Pavlina Testování hypotéz Analýza dat z dotazníkových šetření Kuranova Pavlina Statistická hypotéza Možné cíle výzkumu Srovnání účinnosti různých metod Srovnání výsledků různých skupin Tzn. prokázání rozdílů mezi

Více

Statistické testování hypotéz II

Statistické testování hypotéz II PSY117/454 Statistická analýza dat v psychologii Přednáška 9 Statistické testování hypotéz II Přehled testů, rozdíly průměrů, velikost účinku, síla testu Základní výzkumné otázky/hypotézy 1. Stanovení

Více

Porovnání dvou výběrů

Porovnání dvou výběrů Porovnání dvou výběrů Menu: QCExpert Porovnání dvou výběrů Tento modul je určen pro podrobnou analýzu dvou datových souborů (výběrů). Modul poskytuje dva postupy analýzy: porovnání dvou nezávislých výběrů

Více

STATISTIKA. Inovace předmětu. Obsah. 1. Inovace předmětu STATISTIKA... 2 2. Sylabus pro předmět STATISTIKA... 3 3. Pomůcky... 7

STATISTIKA. Inovace předmětu. Obsah. 1. Inovace předmětu STATISTIKA... 2 2. Sylabus pro předmět STATISTIKA... 3 3. Pomůcky... 7 Inovace předmětu STATISTIKA Obsah 1. Inovace předmětu STATISTIKA... 2 2. Sylabus pro předmět STATISTIKA... 3 3. Pomůcky... 7 1 1. Inovace předmětu STATISTIKA Předmět Statistika se na bakalářském oboru

Více

Vysoká škola báňská technická univerzita Ostrava. Fakulta elektrotechniky a informatiky

Vysoká škola báňská technická univerzita Ostrava. Fakulta elektrotechniky a informatiky Vysoká škola báňská technická univerzita Ostrava Fakulta elektrotechniky a informatiky Bankovní účty (semestrální projekt statistika) Tomáš Hejret (hej124) 18.5.2013 Úvod Cílem tohoto projektu, zadaného

Více

Nadstavba pro statistické výpočty Statistics ToolBox obsahuje více než 200 m-souborů které podporují výpočty v následujících oblastech.

Nadstavba pro statistické výpočty Statistics ToolBox obsahuje více než 200 m-souborů které podporují výpočty v následujících oblastech. Statistics ToolBox Nadstavba pro statistické výpočty Statistics ToolBox obsahuje více než 200 m-souborů které podporují výpočty v následujících oblastech. [manual ST] 1. PROBABILITY DISTRIBUTIONS Statistics

Více

STATISTICKÉ TESTY VÝZNAMNOSTI

STATISTICKÉ TESTY VÝZNAMNOSTI STATISTICKÉ TESTY VÝZNAMNOSTI jsou statistické postupy, pomocí nichž ověřujeme, zda mezi proměnnými existuje vztah (závislost, rozdíl). Pokud je výsledek šetření statisticky významný (signifikantní), znamená

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

Úvodem Dříve les než stromy 3 Operace s maticemi

Úvodem Dříve les než stromy 3 Operace s maticemi Obsah 1 Úvodem 13 2 Dříve les než stromy 17 2.1 Nejednoznačnost terminologie 17 2.2 Volba metody analýzy dat 23 2.3 Přehled vybraných vícerozměrných metod 25 2.3.1 Metoda hlavních komponent 26 2.3.2 Faktorová

Více

Korelační a regresní analýza

Korelační a regresní analýza Korelační a regresní analýza Analýza závislosti v normálním rozdělení Pearsonův (výběrový) korelační koeficient: r = s XY s X s Y, kde s XY = 1 n (x n 1 i=0 i x )(y i y ), s X (s Y ) je výběrová směrodatná

Více

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D.

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D. Testování statistických hypotéz Ing. Michal Dorda, Ph.D. Testování normality Př. : Při simulaci provozu na křižovatce byla získána data o mezerách mezi přijíždějícími vozidly v [s]. Otestujte na hladině

Více

Statistika. Regresní a korelační analýza Úvod do problému. Roman Biskup

Statistika. Regresní a korelační analýza Úvod do problému. Roman Biskup Statistika Regresní a korelační analýza Úvod do problému Roman Biskup Jihočeská univerzita v Českých Budějovicích Ekonomická fakulta (Zemědělská fakulta) Katedra aplikované matematiky a informatiky 2008/2009

Více

Testování hypotéz. 1 Jednovýběrové testy. 90/2 odhad času

Testování hypotéz. 1 Jednovýběrové testy. 90/2 odhad času Testování hypotéz 1 Jednovýběrové testy 90/ odhad času V podmínkách naprostého odloučení má voák prokázat schopnost orientace v čase. Úkolem voáka e provést odhad časového intervalu 1 hodiny bez hodinek

Více

5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza

5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5.1 Vícerozměrná data a vícerozměrná rozdělení Při zpracování vícerozměrných dat se hledají souvislosti mezi dvěma, případně

Více

Stručný úvod do vybraných zredukovaných základů statistické analýzy dat

Stručný úvod do vybraných zredukovaných základů statistické analýzy dat Stručný úvod do vybraných zredukovaných základů statistické analýzy dat Statistika nuda je, má však cenné údaje. Neklesejme na mysli, ona nám to vyčíslí. Z pohádky Princové jsou na draka Populace (základní

Více

Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie STATISTICKÉ ZPRACOVÁNÍ EXPERIMENTÁLNÍCH DAT

Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie STATISTICKÉ ZPRACOVÁNÍ EXPERIMENTÁLNÍCH DAT Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie STATISTICKÉ ZPRACOVÁNÍ EXPERIMENTÁLNÍCH DAT STATISTICKÁ ANALÝZA JEDNOROZMĚRNÝCH DAT Seminární práce 1 Brno, 2002 Ing. Pavel

Více

Testy pro porovnání vlastností dvou skupin

Testy pro porovnání vlastností dvou skupin Testy pro porovnání vlastností dvou skupin Petr Pošík Části dokumentu jsou převzaty (i doslovně) z Mirko Navara: Pravděpodobnost a matematická statistika, https://cw.felk.cvut.cz/lib/exe/fetch.php/courses/a6m33ssl/pms_print.pdf

Více

PSY117/454 Statistická analýza dat v psychologii Přednáška 10

PSY117/454 Statistická analýza dat v psychologii Přednáška 10 PSY117/454 Statistická analýza dat v psychologii Přednáška 10 TESTY PRO NOMINÁLNÍ A ORDINÁLNÍ PROMĚNNÉ NEPARAMETRICKÉ METODY... a to mělo, jak sám vidíte, nedozírné následky. Smrť Analýza četností hodnot

Více

Příklad 1. Korelační pole. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 13

Příklad 1. Korelační pole. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 13 Příklad 1 Máme k dispozici výsledky prvního a druhého testu deseti sportovců. Na hladině významnosti 0,05 prověřte, zda jsou výsledky testů kladně korelované. 1.test : 7, 8, 10, 4, 14, 9, 6, 2, 13, 5 2.test

Více

LINEÁRNÍ REGRESE. Lineární regresní model

LINEÁRNÍ REGRESE. Lineární regresní model LINEÁRNÍ REGRESE Chemometrie I, David MILDE Lineární regresní model 1 Typy závislosti 2 proměnných FUNKČNÍ VZTAH: 2 závisle proměnné: určité hodnotě x odpovídá jediná hodnota y. KORELACE: 2 náhodné (nezávislé)

Více

Testování hypotéz. 4. přednáška 6. 3. 2010

Testování hypotéz. 4. přednáška 6. 3. 2010 Testování hypotéz 4. přednáška 6. 3. 2010 Základní pojmy Statistická hypotéza Je tvrzení o vlastnostech základního souboru, o jehož pravdivosti se chceme přesvědčit. Předem nevíme, zda je pravdivé nebo

Více

t-test, Studentův párový test Ing. Michael Rost, Ph.D.

t-test, Studentův párový test Ing. Michael Rost, Ph.D. Testování hypotéz: dvouvýběrový t-test, Studentův párový test Ing. Michael Rost, Ph.D. Úvod do problému... Již známe jednovýběrový t-test, při kterém jsme měli k dispozici pouze jeden výběr. Můžeme se

Více

ROZDĚLENÍ NÁHODNÝCH VELIČIN

ROZDĚLENÍ NÁHODNÝCH VELIČIN ROZDĚLENÍ NÁHODNÝCH VELIČIN 1 Vytvořeno s podporou projektu Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny společného základu (reg. č. CZ.1.07/2.2.00/28.0021)

Více

MĚŘENÍ STATISTICKÝCH ZÁVISLOSTÍ

MĚŘENÍ STATISTICKÝCH ZÁVISLOSTÍ MĚŘENÍ STATISTICKÝCH ZÁVISLOSTÍ v praxi u jednoho prvku souboru se často zkoumá více veličin, které mohou na sobě různě záviset jednorozměrný výběrový soubor VSS X vícerozměrným výběrovým souborem VSS

Více

Pozn. přeskakuji zde popisnou statistiku, jinak by měla být součástí každé analýzy.

Pozn. přeskakuji zde popisnou statistiku, jinak by měla být součástí každé analýzy. Pozn. přeskakuji zde popisnou statistiku, jinak by měla být součástí každé analýzy. Z pastí na daném území byla odhadnuta abundance několika druhů: myšice lesní 250, myšice křovinná 200, hraboš polní 150,

Více

Modul Analýza síly testu Váš pomocník při analýze dat.

Modul Analýza síly testu Váš pomocník při analýze dat. 6..0 Modul Analýza síly testu Váš pomocník při analýze dat. Power Analysis and Interval Estimation Analýza síly testu Odhad velikosti vzorku Pokročilé techniky pro odhad intervalu spolehlivosti Rozdělení

Více

You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com)

You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com) Závislost náhodných veličin Úvod Předchozí přednášky: - statistické charakteristiky jednoho výběrového nebo základního souboru - vztahy mezi výběrovým a základním souborem - vztahy statistických charakteristik

Více

4ST201 STATISTIKA CVIČENÍ Č. 10

4ST201 STATISTIKA CVIČENÍ Č. 10 4ST201 STATISTIKA CVIČENÍ Č. 10 regresní analýza - vícenásobná lineární regrese korelační analýza Př. 10.1 Máte zadaný výstup regresní analýzy závislosti závisle proměnné Y na nezávisle proměnné X. Doplňte

Více

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK211 Základy ekonometrie ZS 2015/16 Cvičení 7: Časově řady, autokorelace LENKA FIŘTOVÁ KATEDRA EKONOMETRIE, FAKULTA INFORMATIKY A STATISTIKY VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE 1. Časové řady Data: HDP.wf1

Více

Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu

Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu K čemu slouží statistika Popisuje velké soubory dat pomocí charakteristických čísel (popisná statistika). Hledá skryté zákonitosti v souborech

Více

Statistické metody v ekonomii. Ing. Michael Rost, Ph.D.

Statistické metody v ekonomii. Ing. Michael Rost, Ph.D. Statistické metody v ekonomii Ing. Michael Rost, Ph.D. Jihočeská univerzita v Českých Budějovicích Test χ 2 v kontingenční tabulce typu 2 2 Jde vlastně o speciální případ χ 2 testu pro čtyřpolní tabulku.

Více

Zpracování studie týkající se průzkumu vlastností statistických proměnných a vztahů mezi nimi.

Zpracování studie týkající se průzkumu vlastností statistických proměnných a vztahů mezi nimi. SEMINÁRNÍ PRÁCE Zadání: Data: Statistické metody: Zpracování studie týkající se průzkumu vlastností statistických proměnných a vztahů mezi nimi. Minimálně 6 proměnných o 30 pozorováních (z toho 2 proměnné

Více

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1 Logistická regrese Menu: QCExpert Regrese Logistická Modul Logistická regrese umožňuje analýzu dat, kdy odezva je binární, nebo frekvenční veličina vyjádřená hodnotami 0 nebo 1, případně poměry v intervalu

Více

MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ

MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ Má-li analytický výsledek objektivně vypovídat o chemickém složení vzorku, musí splňovat určitá kriteria: Mezinárodní metrologický slovník (VIM 3),

Více

Cvičení 9: Neparametrické úlohy o mediánech

Cvičení 9: Neparametrické úlohy o mediánech Cvičení 9: Neparametrické úlohy o mediánech Úkol 1.: Párový znaménkový test a párový Wilcoxonův test Při zjišťování kvality jedné složky půdy se používají dvě metody označené A a B. Výsledky: Vzorek 1

Více

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D. 1

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D. 1 Testování statistických hypotéz Ing. Michal Dorda, Ph.D. 1 Úvodní poznámky Statistickou hypotézou rozumíme hypotézu o populaci (základním souboru) např.: Střední hodnota základního souboru je rovna 100.

Více

PRAVDĚPODOBNOST A STATISTIKA aneb Krátký průvodce skripty [1] a [2]

PRAVDĚPODOBNOST A STATISTIKA aneb Krátký průvodce skripty [1] a [2] PRAVDĚPODOBNOST A STATISTIKA aneb Krátký průvodce skripty [1] a [2] Použitá literatura: [1]: J.Reif, Z.Kobeda: Úvod do pravděpodobnosti a spolehlivosti, ZČU Plzeň, 2004 (2. vyd.) [2]: J.Reif: Metody matematické

Více

Normální (Gaussovo) rozdělení

Normální (Gaussovo) rozdělení Normální (Gaussovo) rozdělení Normální (Gaussovo) rozdělení popisuje vlastnosti náhodné spojité veličiny, která vzniká složením různých náhodných vlivů, které jsou navzájem nezávislé, kterých je velký

Více

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004.

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Testování hypotéz na základě jednoho a dvou výběrů 1 1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/004. Testování hypotéz Pokud nás zajímá zda platí, či neplatí tvrzení o určitém parametru,

Více

KGG/STG Statistika pro geografy

KGG/STG Statistika pro geografy KGG/STG Statistika pro geografy 10. Mgr. David Fiedor 27. dubna 2015 Nelineární závislost - korelační poměr užití v případě, kdy regresní čára není přímka, ale je vyjádřena složitější matematickou funkcí

Více

Statistické metody uţívané při ověřování platnosti hypotéz

Statistické metody uţívané při ověřování platnosti hypotéz Statistické metody uţívané při ověřování platnosti hypotéz Hypotéza Domněnka, předpoklad Nejčastěji o rozdělení, středních hodnotách, závislostech, Hypotézy ve vědeckém výzkumu pracovní, věcné hypotézy

Více

Normy ČSN a ČSN ISO z oblasti aplikované statistiky (stav aktualizovaný k 1.1.2008)

Normy ČSN a ČSN ISO z oblasti aplikované statistiky (stav aktualizovaný k 1.1.2008) Normy ČSN a ČSN ISO z oblasti aplikované statistiky (stav aktualizovaný k 1.1.2008) Ing. Vratislav Horálek, DrSc., předseda TNK 4 při ČNI 1 Terminologické normy [1] ČSN ISO 3534-1:1994 Statistika Slovník

Více

E(X) = np D(X) = np(1 p) 1 2p np(1 p) (n + 1)p 1 ˆx (n + 1)p. A 3 (X) =

E(X) = np D(X) = np(1 p) 1 2p np(1 p) (n + 1)p 1 ˆx (n + 1)p. A 3 (X) = Základní rozdělení pravděpodobnosti Diskrétní rozdělení pravděpodobnosti. Pojem Náhodná veličina s Binomickým rozdělením Bi(n, p), kde n je přirozené číslo, p je reálné číslo, < p < má pravděpodobnostní

Více

Testování hypotéz Biolog Statistik: Matematik: Informatik:

Testování hypotéz Biolog Statistik: Matematik: Informatik: Testování hypotéz Biolog, Statistik, Matematik a Informatik na safari. Zastaví džíp a pozorují dalekohledem. Biolog "Podívejte se! Stádo zeber! A mezi nimi bílá zebra! To je fantastické! " "Existují bílé

Více

Analýza rozptylu. Statistika II. Jiří Neubauer. Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.

Analýza rozptylu. Statistika II. Jiří Neubauer. Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob. ANOVA Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz ANOVA ANOVA je nástroj pro zkoumání vztahu mezi vysvětlovanými a vysvětlujícími proměnnými.

Více

Předpoklad o normalitě rozdělení je zamítnut, protože hodnota testovacího kritéria χ exp je vyšší než tabulkový 2

Předpoklad o normalitě rozdělení je zamítnut, protože hodnota testovacího kritéria χ exp je vyšší než tabulkový 2 Na úloze ukážeme postup analýzy velkého výběru s odlehlými prvky pro určení typu rozdělení koncentrace kyseliny močové u 50 dárců krve. Jaká je míra polohy a rozptýlení uvedeného výběru? Z grafických diagnostik

Více

Kurz SPSS: Jednoduchá analýza dat. Jiří Šafr

Kurz SPSS: Jednoduchá analýza dat. Jiří Šafr Kurz SPSS: Jednoduchá analýza dat Jiří Šafr vytvořeno 29. 6. 2009 Dva základní typy statistiky 1. Popisná statistika: metody pro zjišťování a sumarizaci informací grfy, tabulky, popisné chrakteristiky

Více

Průzkumová analýza dat

Průzkumová analýza dat Průzkumová analýza dat Proč zkoumat data? Základ průzkumové analýzy dat položil John Tukey ve svém díle Exploratory Data Analysis (odtud zkratka EDA). Často se stává, že data, se kterými pracujeme, se

Více

Simulace. Simulace dat. Parametry

Simulace. Simulace dat. Parametry Simulace Simulace dat Menu: QCExpert Simulace Simulace dat Tento modul je určen pro generování pseudonáhodných dat s danými statistickými vlastnostmi. Nabízí čtyři typy rozdělení: normální, logaritmicko-normální,

Více

Národníinformačnístředisko pro podporu jakosti

Národníinformačnístředisko pro podporu jakosti Národníinformačnístředisko pro podporu jakosti OVĚŘOVÁNÍ PŘEDPOKLADU NORMALITY Doc. Ing. Eva Jarošová, CSc. Ing. Jan Král Používané metody statistické testy: Chí-kvadrát test dobré shody Kolmogorov -Smirnov

Více

10. Předpovídání - aplikace regresní úlohy

10. Předpovídání - aplikace regresní úlohy 10. Předpovídání - aplikace regresní úlohy Regresní úloha (analýza) je označení pro statistickou metodu, pomocí nichž odhadujeme hodnotu náhodné veličiny (tzv. závislé proměnné, cílové proměnné, regresandu

Více

A7B39TUR Úloha B Kvantitativní testování ZS 2013/2014 Software MS Office Word a Open Office Writer

A7B39TUR Úloha B Kvantitativní testování ZS 2013/2014 Software MS Office Word a Open Office Writer A7B39TUR Úloha B Kvantitativní testování ZS 2013/2014 Software MS Office Word a Open Office Writer Vypracoval: Peter Šourek ( sourepet@fel.cvut.cz ) Obsah 1Úvod...3 1.1Cíl testování...3 1.2Proměnné...3

Více

Přednáška 9. Testy dobré shody. Grafická analýza pro ověření shody empirického a teoretického rozdělení

Přednáška 9. Testy dobré shody. Grafická analýza pro ověření shody empirického a teoretického rozdělení Přednáška 9 Testy dobré shody Grafická analýza pro ověření shody empirického a teoretického rozdělení χ 2 test dobré shody ověření, zda jsou relativní četnosti jednotlivých variant rovny číslům π 01 ;

Více

Praktická statistika. Petr Ponížil Eva Kutálková

Praktická statistika. Petr Ponížil Eva Kutálková Praktická statistika Petr Ponížil Eva Kutálková Zápis výsledků měření Předpokládejme, že známe hodnotu napětí U = 238,9 V i její chybu 3,3 V. Hodnotu veličiny zapíšeme na tolik míst, aby až poslední bylo

Více

1 Popisná statistika. 1.1 Základní pojmy. 1.2 Třídění dat. Četnosti. Grafické znázornění. Rozdělení znaků. Statistika I

1 Popisná statistika. 1.1 Základní pojmy. 1.2 Třídění dat. Četnosti. Grafické znázornění. Rozdělení znaků. Statistika I Statistika I 1 Popisná statistika 1.1 Základní pojmy Statistický soubor konečná množina prvků, které jsou nositeli určitého hromadného jevu Rozsah s.s. počet prvků množiny Statistické jednotky prvky s.s.

Více

Me neˇ nezˇ minimum ze statistiky Michaela S ˇ edova KPMS MFF UK Principy medicı ny zalozˇene na du kazech a za klady veˇdecke prˇı pravy 1 / 76

Me neˇ nezˇ minimum ze statistiky Michaela S ˇ edova KPMS MFF UK Principy medicı ny zalozˇene na du kazech a za klady veˇdecke prˇı pravy 1 / 76 1 / 76 Méně než minimum ze statistiky Michaela Šedová KPMS MFF UK Principy medicíny založené na důkazech a základy vědecké přípravy Příklad Studie syndromu náhodného úmrtí dětí. Dvě skupiny: Děti, které

Více

Analýza dat z dotazníkových šetření

Analýza dat z dotazníkových šetření Analýza dat z dotazníkových šetření Cvičení 6. Rozsah výběru Př. Určete minimální rozsah výběru pro proměnnou věk v souboru dovolena, jestliže 95% interval spolehlivost průměru proměnné nemá být širší

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

marek.pomp@vsb.cz http://homel.vsb.cz/~pom68

marek.pomp@vsb.cz http://homel.vsb.cz/~pom68 Statistika B (151-0303) Marek Pomp ZS 2014 marek.pomp@vsb.cz http://homel.vsb.cz/~pom68 Cvičení: Pavlína Kuráňová & Marek Pomp Podmínky pro úspěšné ukončení zápočet 45 bodů, min. 23 bodů, dvě zápočtové

Více

STATISTIKA LS 2013. Garant předmětu: Ing. Martina Litschmannová, Ph.D. Přednášející: Ing. Martina Litschmannová, Ph.D.

STATISTIKA LS 2013. Garant předmětu: Ing. Martina Litschmannová, Ph.D. Přednášející: Ing. Martina Litschmannová, Ph.D. STATISTIKA LS 2013 Garant předmětu: Ing. Martina Litschmannová, Ph.D. Přednášející: Ing. Martina Litschmannová, Ph.D. Cvičící: Ing. Ondřej Grunt RNDr. Pavel Jahoda, Ph.D. Ing. Kateřina Janurová Mgr. Tereza

Více

Ilustrační příklad odhadu LRM v SW Gretl

Ilustrační příklad odhadu LRM v SW Gretl Ilustrační příklad odhadu LRM v SW Gretl Podkladové údaje Korelační matice Odhad lineárního regresního modelu (LRM) Verifikace modelu PEF ČZU Praha Určeno pro posluchače předmětu Ekonometrie Needitovaná

Více

Vícerozměrné statistické metody

Vícerozměrné statistické metody Vícerozměrné statistické metody Smysl a cíle vícerozměrné analýzy dat a modelování, vztah jednorozměrných a vícerozměrných statistických metod Jiří Jarkovský, Simona Littnerová Průběh výuky 13 přednášek

Více

T E O R I E C H Y B A V Y R O V N Á V A C Í P O

T E O R I E C H Y B A V Y R O V N Á V A C Í P O ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ, OBOR GEODÉZIE A KARTOGRAFIE KATEDRA VYŠŠÍ GEODÉZIE název předmětu T E O R I E C H Y B A V Y R O V N Á V A C Í P O Č E T 2 č. úlohy 6 název úlohy T

Více

VYUŽITÍ MATLAB WEB SERVERU PRO INTERNETOVOU VÝUKU ANALÝZY DAT A ŘÍZENÍ JAKOSTI

VYUŽITÍ MATLAB WEB SERVERU PRO INTERNETOVOU VÝUKU ANALÝZY DAT A ŘÍZENÍ JAKOSTI VYUŽITÍ MATLAB WEB SERVERU PRO INTERNETOVOU VÝUKU ANALÝZY DAT A ŘÍZENÍ JAKOSTI Aleš Linka 1, Petr Volf 2 1 Katedra textilních materiálů, FT TUL, 2 Katedra aplikované matematiky, FP TUL ABSTRAKT. Internetové

Více

Analýza rozptylu. Přednáška STATISTIKA II - EKONOMETRIE. Jiří Neubauer

Analýza rozptylu. Přednáška STATISTIKA II - EKONOMETRIE. Jiří Neubauer ANOVA Přednáška STATISTIKA II - EKONOMETRIE Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz ANOVA ANOVA je nástroj pro zkoumání vztahu mezi vysvětlovanými a vysvětlujícími

Více

VŠB Technická univerzita Ostrava

VŠB Technická univerzita Ostrava VŠB Technická univerzita Ostrava Fakulta elektrotechniky a informatiky JMÉNO STUDENTKY/STUDENTA: OSOBNÍ ČÍSLO: JMÉNO CVIČÍCÍ/CVIČÍCÍHO: PRAVDĚPODOBNOST A STATISTIKA Domácí úkoly Zadání 21 DATUM ODEVZDÁNÍ

Více

Program Statistica Base 9. Mgr. Karla Hrbáčková, Ph.D.

Program Statistica Base 9. Mgr. Karla Hrbáčková, Ph.D. Program Statistica Base 9 Mgr. Karla Hrbáčková, Ph.D. OBSAH KURZU obsluha jednotlivých nástrojů, funkce pro import dat z jiných aplikací, práce s popisnou statistikou, vytváření grafů, analýza dat, výstupní

Více

Měření závislosti statistických dat

Měření závislosti statistických dat 5.1 Měření závislosti statistických dat Každý pořádný astronom je schopen vám předpovědět, kde se bude nacházet daná hvězda půl hodiny před půlnocí. Ne každý je však téhož schopen předpovědět v případě

Více

Ukazka knihy z internetoveho knihkupectvi www.kosmas.cz

Ukazka knihy z internetoveho knihkupectvi www.kosmas.cz Ukazka knihy z internetoveho knihkupectvi www.kosmas.cz RNDr. Marie Budíková, Dr., Mgr. Maria Králová, Ph.D., Doc. RNDr. Bohumil Maroš, CSc. Průvodce základními statistickými metodami Vydala Grada Publishing,

Více

6. Lineární regresní modely

6. Lineární regresní modely 6. Lineární regresní modely 6.1 Jednoduchá regrese a validace 6.2 Testy hypotéz v lineární regresi 6.3 Kritika dat v regresním tripletu 6.4 Multikolinearita a polynomy 6.5 Kritika modelu v regresním tripletu

Více

VŠB Technická univerzita Ostrava BIOSTATISTIKA

VŠB Technická univerzita Ostrava BIOSTATISTIKA VŠB Technická univerzita Ostrava Fakulta elektrotechniky a informatiky JMÉNO STUDENTKY/STUDENTA: OSOBNÍ ČÍSLO: JMÉNO CVIČÍCÍ/CVIČÍCÍHO: BIOSTATISTIKA Zadání 11 DATUM ODEVZDÁNÍ DOMÁCÍ ÚKOL 1: DOMÁCÍ ÚKOL

Více

KALIBRACE. Definice kalibrace: mezinárodní metrologický slovník (VIM 3)

KALIBRACE. Definice kalibrace: mezinárodní metrologický slovník (VIM 3) KALIBRACE Chemometrie I, David MILDE Definice kalibrace: mezinárodní metrologický slovník (VIM 3) Činnost, která za specifikovaných podmínek v prvním kroku stanoví vztah mezi hodnotami veličiny s nejistotami

Více

Statistické metody. Martin Schindler KAP, tel. 48 535 2836, budova G. martin.schindler@tul.cz. naposledy upraveno: 9.

Statistické metody. Martin Schindler KAP, tel. 48 535 2836, budova G. martin.schindler@tul.cz. naposledy upraveno: 9. Statistické metody Matematika pro přírodní vědy přednášející: konzul. hodiny: e-mail: Martin Schindler KAP, tel. 48 535 2836, budova G po dohodě martin.schindler@tul.cz naposledy upraveno: 9. ledna 2015,

Více

Bodové a intervalové odhady parametrů v regresním modelu

Bodové a intervalové odhady parametrů v regresním modelu Bodové a intervalové odhady parametrů v regresním modelu 1 Odhady parametrů 11 Bodové odhady Mějme lineární regresní model (LRM) kde Y = y 1 y 2 y n, e = e 1 e 2 e n Y = Xβ + e, x 11 x 1k, X =, β = x n1

Více

Projekt z předmětu Statistika

Projekt z předmětu Statistika Projekt z předmětu Téma: Typologie hráče české nejvyšší hokejové soutěže VŠB-TU Ostrava:Fakulta Elektrotechniky a informatiky jaro 2011 Martin Dočkal doc068 dockal.martin@gmail.com 1 Obsah 2 Zadání...

Více

Pokud data zadáme přes "Commands" okno: SDF1$X1<-c(1:15) //vytvoření řady čísel od 1 do 15 SDF1$Y1<-c(1.5,3,4.5,5,6,8,9,11,13,14,15,16,18.

Pokud data zadáme přes Commands okno: SDF1$X1<-c(1:15) //vytvoření řady čísel od 1 do 15 SDF1$Y1<-c(1.5,3,4.5,5,6,8,9,11,13,14,15,16,18. Regresní analýza; transformace dat Pro řešení vztahů mezi proměnnými kontinuálního typu používáme korelační a regresní analýzy. Korelace se používá pokud nelze určit "kauzalitu". Regresní analýza je určena

Více

vzorek1 0.0033390 0.0047277 0.0062653 0.0077811 0.0090141... vzorek 30 0.0056775 0.0058778 0.0066916 0.0076192 0.0087291

vzorek1 0.0033390 0.0047277 0.0062653 0.0077811 0.0090141... vzorek 30 0.0056775 0.0058778 0.0066916 0.0076192 0.0087291 Vzorová úloha 4.16 Postup vícerozměrné kalibrace Postup vícerozměrné kalibrace ukážeme na úloze C4.10 Vícerozměrný kalibrační model kvality bezolovnatého benzinu. Dle následujících kroků na základě naměřených

Více

{ } ( 2) Příklad: Test nezávislosti kategoriálních znaků

{ } ( 2) Příklad: Test nezávislosti kategoriálních znaků Příklad: Test nezávislosti kategoriálních znaků Určete na hladině významnosti 5 % na základě dat zjištěných v rámci dotazníkového šetření ve Šluknově, zda existuje závislost mezi pohlavím respondenta a

Více

Statistika. Program R. popisná (deskriptivní) statistika popis konkrétních dat. induktivní (konfirmatorní) statistika. popisná statistika

Statistika. Program R. popisná (deskriptivní) statistika popis konkrétních dat. induktivní (konfirmatorní) statistika. popisná statistika Statistika Cvičení z matematické statistiky na PřF Šárka Hudecová Katedra pravděpodobnosti a matematické statistiky Matematicko-fyzikální fakulta Univerzity Karlovy léto 2012 Základní dělení popisná (deskriptivní)

Více

Statistická analýza dat podzemních vod. Statistical analysis of ground water data. Vladimír Sosna 1

Statistická analýza dat podzemních vod. Statistical analysis of ground water data. Vladimír Sosna 1 Statistická analýza dat podzemních vod. Statistical analysis of ground water data. Vladimír Sosna 1 1 ČHMÚ, OPZV, Na Šabatce 17, 143 06 Praha 4 - Komořany sosna@chmi.cz, tel. 377 256 617 Abstrakt: Referát

Více

Kontingenční tabulky, korelační koeficienty

Kontingenční tabulky, korelační koeficienty Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Mějme kategoriální proměnné X a Y. Vytvoříme tzv. kontingenční tabulku. Budeme tedy testovat hypotézu

Více

Střední hodnota a rozptyl náhodné. kvantilu. Ing. Michael Rost, Ph.D.

Střední hodnota a rozptyl náhodné. kvantilu. Ing. Michael Rost, Ph.D. Střední hodnota a rozptyl náhodné veličiny, vybraná rozdělení diskrétních a spojitých náhodných veličin, pojem kvantilu Ing. Michael Rost, Ph.D. Príklad Předpokládejme že máme náhodnou veličinu X která

Více

Modul Základní statistika

Modul Základní statistika Modul Základní statistika Menu: QCExpert Základní statistika Základní statistika slouží k předběžné analýze a diagnostice dat, testování předpokladů (vlastností dat), jejichž splnění je nutné pro použití

Více

6. Lineární regresní modely

6. Lineární regresní modely 6. Lineární regresní modely 6.1 Jednoduchá regrese a validace 6.2 Testy hypotéz v lineární regresi 6.3 Kritika dat v regresním tripletu 6.4 Multikolinearita a polynomy 6.5 Kritika modelu v regresním tripletu

Více

V praxi pracujeme s daty nominálními (nabývají pouze dvou hodnot), kategoriálními (nabývají více

V praxi pracujeme s daty nominálními (nabývají pouze dvou hodnot), kategoriálními (nabývají více 10 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 10.1 Vícerozměrná data a vícerozměrná rozdělení Při zpracování vícerozměrných dat, hledáme souvislosti mezi dvěma, případně

Více

VYUŽITÍ SIMULACE PŘI MODELOVÁNÍ PROVOZU NA SVÁŽNÉM PAHRBKU SEŘAĎOVACÍ STANICE

VYUŽITÍ SIMULACE PŘI MODELOVÁNÍ PROVOZU NA SVÁŽNÉM PAHRBKU SEŘAĎOVACÍ STANICE VYUŽITÍ SIMULACE PŘI MODELOVÁNÍ PROVOZU NA SVÁŽNÉM PAHRBKU SEŘAĎOVACÍ STANICE 1 Úvod Michal Dorda, Dušan Teichmann VŠB - TU Ostrava, Fakulta strojní, Institut dopravy Seřaďovací stanice jsou železniční

Více

Masarykova univerzita Ekonomicko správní fakulta. Statistika II

Masarykova univerzita Ekonomicko správní fakulta. Statistika II Masarykova univerzita Ekonomicko správní fakulta Statistika II distanční studijní opora Marie Budíková Brno 2006 Tento projekt byl realizován za finanční podpory Evropské unie v rámci programu SOCRATES

Více

Statistické metody v marketingu. Ing. Michael Rost, Ph.D.

Statistické metody v marketingu. Ing. Michael Rost, Ph.D. Statistické metody v marketingu Ing. Michael Rost, Ph.D. Jihočeská univerzita v Českých Budějovicích K pojmu distiribuční funkce Distribuční funkce je definována vztahem: F (x) = P (X x i ) Distribuční

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení ze 4ST201. Na případné faktické chyby v této prezentaci mě prosím upozorněte. Děkuji Tyto slidy berte pouze jako doplňkový materiál není v nich obsaženo

Více

Intervalový odhad. Interval spolehlivosti = intervalový odhad nějakého parametru s danou pravděpodobností = konfidenční interval pro daný parametr

Intervalový odhad. Interval spolehlivosti = intervalový odhad nějakého parametru s danou pravděpodobností = konfidenční interval pro daný parametr StatSoft Intervalový odhad Dnes se budeme zabývat neodmyslitelnou součástí statistiky a to intervaly v nejrůznějších podobách. Toto téma je také úzce spojeno s tématem testování hypotéz, a tedy plynule

Více