Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.

Rozměr: px
Začít zobrazení ze stránky:

Download "Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz"

Transkript

1

2 Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.

3 Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.

4 Pravděpodobnost a matematická statistika týden ( ) Data, typy dat, variabilita, frekvenční analýza (histogramy, četnosti absolutní, relativní, prosté, kumulativní), základní statistické charakteristiky (průměr, výběr.rozptyl, minimum, maximum, medián, kvartily, boxplot), sešikmenná rozdělení (vzájemná poloha mediánu a střední hodnoty), chvosty, kvantily 2. týden ( ) Princip statistické indukce, výběr, vlastnosti výběru, experiment. Náhodná veličina, rozdělení pravděpodobnosti a jeho souvislost s histogramem. Pravděpodobnost, pravidla pro počítání s pravděpodobností, podmíněná pravděpodobnost, závislost náhodných veličin. 3.týden ( ) Využití závislosti při stanovení pravděpodobnosti - věta o úplné pravděpodobnosti a Bayesova věta 4.týden ( ) Rozdělení chyb měření - normální rozdělení a počítání s ním. Odhady parametrů normálního rozdělení. Intervaly spolehlivosti pro normální data. Jednovýběrové testy o střední hodnotě 5.týden ( ) Výběrový poměr jako odhad pravděpodobnosti sledovaného jevu. Alternativní rozdělení, binomické rozdělení. Intervalový odhad výběrového poměru. Výběry s vracením a bez vracení (binomické a hypergeometrické rozdělení) 6.týden ( ) odpadá 7.týden ( ) Poruchy v čase (Poissonův proces). Poissonovo rozdělení, exponenciální rozdělení, jeho výhody a nevýhody, modelování doby do poruchy pomocí Weibullova rozdělení, lognormálního rozdělení, případně useknuté normální rozdělení. 8.týden ( ) Testy dobré shody, Q-Q graf (pouze vysvětlení), testy normality. Některé neparametrické testy 9.týden ( ) Dvě náhodné veličiny - srovnání dvou výběrů (dvouvýběrové testy) 10. týden ( ) Dvě náhodné veličiny. Dvourozměrné četnosti jako odhad dvourozměrného rozdělení, frekvenční tabulka. Marginální rozdělení (vše pouze diskrétně s tabulkou) 11. týden ( ) Závislost náhodných veličin, míry závislosti (kovariance, korelace), test významnosti korelačního koeficientu 12. týden ( ) Regrese, lineární regresní model (přímková, kvadratická, polynomická regrese), analýza reziduí, pásy spolehlivosti 13. týden ( ) Více výběrů, jednoduché třídění, ANOVA. 14. týden ( ) Rezerva, opakování, testy normality (náhrada za )

5 Tato přednáška je na

6 X : X 1,X 2,...,X n Y : Y 1,Y 2,...,Y m X N(µ X, σ 2 X) Y N(µ Y, σ 2 Y ) Odhady středních hodnot: X = 1 n Odhady rozptylů: s 2 X = 1 n 1 n i=1 X i (X X) 2, s 2 Y = 1 n 1 Ȳ = 1 m n i=1 Y i (Y Ȳ ) 2

7 Dvě nezávislá měření X : X 1,X 2,...,X n Y : Y 1,Y 2,...,Y m X N(µ X, σ 2 X) Y N(µ Y, σ 2 Y ) Odhady středních hodnot: X = 1 n Odhady rozptylů: s 2 X = 1 n 1 n i=1 X i (X X) 2, s 2 Y = 1 n 1 Ȳ = 1 m n i=1 Y i (Y Ȳ ) 2

8 Dvě nezávislá měření X : X 1,X 2,...,X n Y : Y 1,Y 2,...,Y m X N(µ X, σ 2 X) Y N(µ Y, σ 2 Y ) oba parametry v obou případech známe Odhady středních hodnot: X = 1 n Odhady rozptylů: s 2 X = 1 n 1 n i=1 X i (X X) 2, s 2 Y = 1 n 1 Ȳ = 1 m n i=1 Y i (Y Ȳ ) 2

9 Dvě nezávislá měření X : X 1,X 2,...,X n Y : Y 1,Y 2,...,Y m X N(µ X, σ 2 X) Y N(µ Y, σ 2 Y ) oba parametry v obou případech známe známe střední hodnoty a neznáme rozptyly Odhady středních hodnot: X = 1 n Odhady rozptylů: s 2 X = 1 n 1 n i=1 X i (X X) 2, s 2 Y = 1 n 1 Ȳ = 1 m n i=1 Y i (Y Ȳ ) 2

10 Dvě nezávislá měření X : X 1,X 2,...,X n Y : Y 1,Y 2,...,Y m X N(µ X, σ 2 X) Y N(µ Y, σ 2 Y ) oba parametry v obou případech známe známe střední hodnoty a neznáme rozptyly známe rozptyly a neznáme střední hodnoty Odhady středních hodnot: X = 1 n Odhady rozptylů: s 2 X = 1 n 1 n i=1 X i (X X) 2, s 2 Y = 1 n 1 Ȳ = 1 m n i=1 Y i (Y Ȳ ) 2

11 Dvě nezávislá měření X : X 1,X 2,...,X n Y : Y 1,Y 2,...,Y m X N(µ X, σ 2 X) Y N(µ Y, σ 2 Y ) oba parametry v obou případech známe známe střední hodnoty a neznáme rozptyly známe rozptyly a neznáme střední hodnoty žádný z parametrů neznáme Odhady středních hodnot: X = 1 n Odhady rozptylů: s 2 X = 1 n 1 n i=1 X i (X X) 2, s 2 Y = 1 n 1 Ȳ = 1 m n i=1 Y i (Y Ȳ ) 2

12 X : X 1,X 2,...,X n Y : Y 1,Y 2,...,Y m X N(µ X, σ 2 X) Y N(µ Y, σ 2 Y ) X : X 1,X 2,...,X n Y : Y 1,Y 2,..., Y n

13 Dvě nezávislá měření X : X 1,X 2,...,X n Y : Y 1,Y 2,...,Y m X N(µ X, σ 2 X) Y N(µ Y, σ 2 Y ) X : X 1,X 2,...,X n Y : Y 1,Y 2,..., Y n

14 Dvě nezávislá měření X : X 1,X 2,...,X n Y : Y 1,Y 2,...,Y m test shody rozptylů X N(µ X, σ 2 X) Y N(µ Y, σ 2 Y ) X : X 1,X 2,...,X n Y : Y 1,Y 2,..., Y n

15 Dvě nezávislá měření X : X 1,X 2,...,X n Y : Y 1,Y 2,...,Y m X N(µ X, σ 2 X) Y N(µ Y, σ 2 Y ) test shody rozptylů test shody středních hodnot při stejných rozptylech X : X 1,X 2,...,X n Y : Y 1,Y 2,..., Y n

16 Dvě nezávislá měření X : X 1,X 2,...,X n Y : Y 1,Y 2,...,Y m X N(µ X, σ 2 X) Y N(µ Y, σ 2 Y ) test shody rozptylů test shody středních hodnot při stejných rozptylech test shody středních hodnot při nestejných rozptylech X : X 1,X 2,...,X n Y : Y 1,Y 2,..., Y n

17 Dvě nezávislá měření X : X 1,X 2,...,X n Y : Y 1,Y 2,...,Y m X N(µ X, σ 2 X) Y N(µ Y, σ 2 Y ) test shody rozptylů test shody středních hodnot při stejných rozptylech test shody středních hodnot při nestejných rozptylech Dvě závislá měření X : X 1,X 2,...,X n Y : Y 1,Y 2,..., Y n

18 Dvě nezávislá měření X : X 1,X 2,...,X n Y : Y 1,Y 2,...,Y m X N(µ X, σ 2 X) Y N(µ Y, σ 2 Y ) test shody rozptylů test shody středních hodnot při stejných rozptylech test shody středních hodnot při nestejných rozptylech Dvě závislá měření X : X 1,X 2,...,X n párový test shody středních hodnot Y : Y 1,Y 2,..., Y n

19 Dvě nezávislá měření X : X 1,X 2,...,X n Y : Y 1,Y 2,...,Y m X N(µ X, σ 2 X) Y N(µ Y, σ 2 Y ) test shody rozptylů test shody středních hodnot při stejných rozptylech test shody středních hodnot při nestejných rozptylech Dvě závislá měření X : X 1,X 2,...,X n Y : Y 1,Y 2,..., Y n párová pozorování párový test shody středních hodnot

20 nulová hypotéza : alternativní hypotéza: testová statistika : hladina významnosti: H 0 : σx 2 = σy 2 H A : σx 2 = σy 2 F = s2 X α s 2 Y F-test H0 nezamítneme, když pro dané α bude F α/2 (n 1,m 1) <F <F α/2 (n 1,m 1)

21 1) Srovnání rozptylů dvou nezávislých měření nulová hypotéza : alternativní hypotéza: testová statistika : hladina významnosti: H 0 : σx 2 = σy 2 H A : σx 2 = σy 2 F = s2 X α s 2 Y F-test H0 nezamítneme, když pro dané α bude F α/2 (n 1,m 1) <F <F α/2 (n 1,m 1)

22 1) Srovnání rozptylů dvou nezávislých měření Liší se statisticky významně dvě nezávislá měření z hlediska velikosti rozptylu? nulová hypotéza : alternativní hypotéza: testová statistika : hladina významnosti: H 0 : σx 2 = σy 2 H A : σx 2 = σy 2 F = s2 X α s 2 Y F-test H0 nezamítneme, když pro dané α bude F α/2 (n 1,m 1) <F <F α/2 (n 1,m 1)

23 1) Srovnání rozptylů dvou nezávislých měření Liší se statisticky významně dvě nezávislá měření z hlediska velikosti rozptylu? Lze považovat rozptyl dvou nezávislých měření za shodný při dané hladině významnosti? nulová hypotéza : alternativní hypotéza: testová statistika : hladina významnosti: H 0 : σx 2 = σy 2 H A : σx 2 = σy 2 F = s2 X α s 2 Y F-test H0 nezamítneme, když pro dané α bude F α/2 (n 1,m 1) <F <F α/2 (n 1,m 1)

24 1) Srovnání rozptylů dvou nezávislých měření Liší se statisticky významně dvě nezávislá měření z hlediska velikosti rozptylu? Lze považovat rozptyl dvou nezávislých měření za shodný při dané hladině významnosti? nulová hypotéza : alternativní hypotéza: testová statistika : hladina významnosti: H 0 : σx 2 = σy 2 H A : σx 2 = σy 2 F = s2 X α s 2 Y F-test Fisherovo-Snedecorovo rozdělení F(n-1, m-1) H0 nezamítneme, když pro dané α bude F α/2 (n 1,m 1) <F <F α/2 (n 1,m 1)

25 - Dvouvýběrový t-test nulová hypotéza : alternativní hypotéza: testová statistika : hladina významnosti: H 0 : µ X = µ Y H A : µ X = µ Y T = X Ȳ α s X Ȳ (oboustranná)

26 2) Srovnání středních hodnot dvou nezávislých měření - Dvouvýběrový t-test nulová hypotéza : alternativní hypotéza: testová statistika : hladina významnosti: H 0 : µ X = µ Y H A : µ X = µ Y T = X Ȳ α s X Ȳ (oboustranná)

27 2) Srovnání středních hodnot dvou nezávislých měření - Dvouvýběrový t-test Liší se statisticky významně dvě nezávislá měření z hlediska jejich střední hodnoty? nulová hypotéza : alternativní hypotéza: testová statistika : hladina významnosti: H 0 : µ X = µ Y H A : µ X = µ Y T = X Ȳ α s X Ȳ (oboustranná)

28 2) Srovnání středních hodnot dvou nezávislých měření - Dvouvýběrový t-test Liší se statisticky významně dvě nezávislá měření z hlediska jejich střední hodnoty? Lze považovat střední hodnoty dvou nezávislých měření za shodné při dané hladině významnosti? nulová hypotéza : alternativní hypotéza: testová statistika : hladina významnosti: H 0 : µ X = µ Y H A : µ X = µ Y T = X Ȳ α s X Ȳ (oboustranná)

29 2) Srovnání středních hodnot dvou nezávislých měření - Dvouvýběrový t-test Liší se statisticky významně dvě nezávislá měření z hlediska jejich střední hodnoty? Lze považovat střední hodnoty dvou nezávislých měření za shodné při dané hladině významnosti? Lze od sebe statisticky významně odlišit dvě nezávislá měření podle jejich jejich střední hodnoty? nulová hypotéza : alternativní hypotéza: testová statistika : hladina významnosti: H 0 : µ X = µ Y H A : µ X = µ Y T = X Ȳ α s X Ȳ (oboustranná)

30 - Dvouvýběrový t-test nulová hypotéza : alternativní hypotéza: testová statistika : hladina významnosti: H 0 : µ X = µ Y H A : µ X = µ Y T = X Ȳ α s X Ȳ (oboustranná) pokud σ 2 X = σ 2 Y pokud σ 2 X = σ 2 Y dvouvýběrový t-test se stejnými rozptyly dvouvýběrový t-test s nestejnými rozptyly

31 2) Srovnání středních hodnot dvou nezávislých měření - Dvouvýběrový t-test nulová hypotéza : alternativní hypotéza: testová statistika : hladina významnosti: H 0 : µ X = µ Y H A : µ X = µ Y T = X Ȳ α s X Ȳ (oboustranná) pokud σ 2 X = σ 2 Y pokud σ 2 X = σ 2 Y dvouvýběrový t-test se stejnými rozptyly dvouvýběrový t-test s nestejnými rozptyly

32 - Dvouvýběrový t-test pokud σx 2 = σy 2 = σ 2 s 2 X Ȳ = s2 X + s 2 Ȳ = s2 X n + s2 Y m = 1 = s 2 n + 1 m + n = s 2 m n.m dále odhadneme s 2 ze všech naměřených hodnot: s 2 1 n = (X i n + m 2 X) m 2 + (Y i Ȳ )2 = i=1 i=1 1 (n 1)s 2 X +(m 1)s 2 Y tedy: s 2 X Ȳ = n + m 2 n + m nm(n + m 2) (n 1)s 2 X +(m 1)s 2 Y

33 2) Srovnání středních hodnot dvou nezávislých měření - Dvouvýběrový t-test pokud σx 2 = σy 2 = σ 2 s 2 X Ȳ = s2 X + s 2 Ȳ = s2 X n + s2 Y m = 1 = s 2 n + 1 m + n = s 2 m n.m dále odhadneme s 2 ze všech naměřených hodnot: s 2 1 n = (X i n + m 2 X) m 2 + (Y i Ȳ )2 = i=1 i=1 1 (n 1)s 2 X +(m 1)s 2 Y tedy: s 2 X Ȳ = n + m 2 n + m nm(n + m 2) (n 1)s 2 X +(m 1)s 2 Y

34 - Dvouvýběrový t-test pokud σx 2 = σy 2, testová statistika bude mít tvar: X T = Ȳ nm(n + m 2) (n 1)s 2 X +(m 1)s 2 n + m Y ta má t-rozdělení (Studentovo rozdělení) pravděpodobnosti o (n+m-2) stupních volnosti. H0 nezamítneme, když pro dané α bude T t α (n + m 2) kde t α (n + m 2) je (oboustranná) α -kritická hodnota t-rozdělení o (n+m-2) stupních volnosti.

35 2) Srovnání středních hodnot dvou nezávislých měření - Dvouvýběrový t-test pokud σx 2 = σy 2, testová statistika bude mít tvar: X T = Ȳ nm(n + m 2) (n 1)s 2 X +(m 1)s 2 n + m Y ta má t-rozdělení (Studentovo rozdělení) pravděpodobnosti o (n+m-2) stupních volnosti. H0 nezamítneme, když pro dané α bude T t α (n + m 2) kde t α (n + m 2) je (oboustranná) α -kritická hodnota t-rozdělení o (n+m-2) stupních volnosti.

36 pokud σ 2 X = σ 2 Y - Dvouvýběrový t-test, testová statistika bude mít tvar: X T = Ȳ 1 n s2 X + 1 m s2 Y a má rozdělení, které je směsí t-rozdělení o (n-1) a (m-1) stupních volnosti. H0 nezamítneme, když pro dané α bude splněna nerovnost T At α (n 1) + Bt α (m 1), kde A a B jsou váhy, A+B=1. A = 1 n s2 X 1 n s2 X + 1 m s2 Y, B = 1 m s2 Y 1 n s2 X + 1 m s2 Y

37 2) Srovnání středních hodnot dvou nezávislých měření - Dvouvýběrový t-test pokud σ 2 X = σ 2 Y, testová statistika bude mít tvar: X T = Ȳ 1 n s2 X + 1 m s2 Y a má rozdělení, které je směsí t-rozdělení o (n-1) a (m-1) stupních volnosti. H0 nezamítneme, když pro dané α bude splněna nerovnost T At α (n 1) + Bt α (m 1), kde A a B jsou váhy, A+B=1. A = 1 n s2 X 1 n s2 X + 1 m s2 Y, B = 1 m s2 Y 1 n s2 X + 1 m s2 Y

38 X : X 1,X 2,...,X n Y : Y 1,Y 2,..., Y n X N(µ X, σ 2 X) Y N(µ Y, σ 2 Y ) Z 1 = X 1 Y 1, Z 2 = X 2 Y 2,..., Z n = X n Y n, Z N(µ X µ Y, σ 2 Z) H 0 : µ X = µ Y H A : µ X = µ Y H 0 : µ Z =0 H A : µ Z =0

39 3) Párový test shody středních hodnot dvou závislých měření X : X 1,X 2,...,X n Y : Y 1,Y 2,..., Y n X N(µ X, σ 2 X) Y N(µ Y, σ 2 Y ) Z 1 = X 1 Y 1, Z 2 = X 2 Y 2,..., Z n = X n Y n, Z N(µ X µ Y, σ 2 Z) H 0 : µ X = µ Y H A : µ X = µ Y H 0 : µ Z =0 H A : µ Z =0

40 3) Párový test shody středních hodnot dvou závislých měření pozorování stejné veličiny před a po nějakém zásahu X : X 1,X 2,...,X n Y : Y 1,Y 2,..., Y n X N(µ X, σ 2 X) Y N(µ Y, σ 2 Y ) Z 1 = X 1 Y 1, Z 2 = X 2 Y 2,..., Z n = X n Y n, Z N(µ X µ Y, σ 2 Z) H 0 : µ X = µ Y H A : µ X = µ Y H 0 : µ Z =0 H A : µ Z =0

41 3) Párový test shody středních hodnot dvou závislých měření pozorování stejné veličiny před a po nějakém zásahu měření stejných obektů za různých podmínek X : X 1,X 2,...,X n Y : Y 1,Y 2,..., Y n X N(µ X, σ 2 X) Y N(µ Y, σ 2 Y ) Z 1 = X 1 Y 1, Z 2 = X 2 Y 2,..., Z n = X n Y n, Z N(µ X µ Y, σ 2 Z) H 0 : µ X = µ Y H A : µ X = µ Y H 0 : µ Z =0 H A : µ Z =0

42 3) Párový test shody středních hodnot dvou závislých měření pozorování stejné veličiny před a po nějakém zásahu měření stejných obektů za různých podmínek měření stejné veličiny ve dvou různých časech X : X 1,X 2,...,X n Y : Y 1,Y 2,..., Y n X N(µ X, σ 2 X) Y N(µ Y, σ 2 Y ) Z 1 = X 1 Y 1, Z 2 = X 2 Y 2,..., Z n = X n Y n, Z N(µ X µ Y, σ 2 Z) H 0 : µ X = µ Y H A : µ X = µ Y H 0 : µ Z =0 H A : µ Z =0

43 3) Párový test shody středních hodnot dvou závislých měření pozorování stejné veličiny před a po nějakém zásahu měření stejných obektů za různých podmínek měření stejné veličiny ve dvou různých časech... X : X 1,X 2,...,X n Y : Y 1,Y 2,..., Y n X N(µ X, σ 2 X) Y N(µ Y, σ 2 Y ) Z 1 = X 1 Y 1, Z 2 = X 2 Y 2,..., Z n = X n Y n, Z N(µ X µ Y, σ 2 Z) H 0 : µ X = µ Y H A : µ X = µ Y H 0 : µ Z =0 H A : µ Z =0

44 H 0 : µ Z = a H A : µ Z = a T = Z a n s Z T má t-rozdělení (Studentovo rozdělení) pravděpodobnosti o (n-1) stupních volnosti. H0 nezamítneme, když pro dané α bude T t α (n 1) kde t α (n 1) je (oboustranná) α-kritická hodnota t-rozdělení o (n-1) stupních volnosti.

45 3) Párový test shody středních hodnot dvou závislých měření H 0 : µ Z = a H A : µ Z = a T = Z a s Z n T má t-rozdělení (Studentovo rozdělení) pravděpodobnosti o (n-1) stupních volnosti. H0 nezamítneme, když pro dané α bude T t α (n 1) kde t α (n 1) je (oboustranná) α-kritická hodnota t-rozdělení o (n-1) stupních volnosti.

46 dolní nebo horní jednostranná alternativa : H 0 : µ X = µ Y H A : µ X <µ Y H 0 : µ X = µ Y H A : µ X >µ Y H0 nezamítneme, když pro dané α bude buď T< t α (n 1) nebo T>t α (n 1) kde t α (n 1) je (jednostranná) α -kritická hodnota t-rozdělení o (n-1) stupních volnosti. oboustranná α-kritická hodnota je (1 α/2) -kvantil t 1 α/2 (n 1) jednostranná α -kritická hodnota je (1 α) -kvantil t 1 α (n 1)

47 Jednostranné testy dolní nebo horní jednostranná alternativa : H 0 : µ X = µ Y H A : µ X <µ Y H 0 : µ X = µ Y H A : µ X >µ Y H0 nezamítneme, když pro dané α bude buď T< t α (n 1) nebo T>t α (n 1) kde t α (n 1) je (jednostranná) α -kritická hodnota t-rozdělení o (n-1) stupních volnosti. oboustranná α-kritická hodnota je (1 α/2) -kvantil t 1 α/2 (n 1) jednostranná α -kritická hodnota je (1 α) -kvantil t 1 α (n 1)

48 Příklad: Byly měřeny odchylky od požadované délky 4m ocelových tyčí od dvou dodavatelů. Odchylky jsou uvedeny v cm. Lze považovat délky tyčí od různých dodavatelů za shodné na hladině významnosti 5%? > x [1] [7] [13] [19] [25] [31] [37] [43] [49] [55] [61] [67] [73] [79] [85] [91] [97] [103] [109] [115] Dodavatel X:

49 Příklad: Byly měřeny odchylky od požadované délky 4m ocelových tyčí od dvou dodavatelů. Odchylky jsou uvedeny v cm. Lze považovat délky tyčí od různých dodavatelů za shodné na hladině významnosti 5%? > y [1] [7] [13] [19] [25] [31] [37] [43] [49] [55] [61] [67] [73] [79] [85] [91] [97] Dodavatel Y:

50 Příklad: Byly měřeny odchylky od požadované délky 4m ocelových tyčí od dvou dodavatelů. Odchylky jsou uvedeny v cm. 1) Vizualizace dat: Box&Whiskers diagram X Y

51 Příklad: Byly měřeny odchylky od požadované délky 4m ocelových tyčí od dvou dodavatelů. Odchylky jsou uvedeny v cm. 2) Srovnání rozptylů: F-test > var.test(x,y) F test to compare two variances data: x and y F = , num df = 119, denom df = 99, p- value = alternative hypothesis: true ratio of variances is not equal to 1 95 percent confidence interval: sample estimates: ratio of variances => nulovou hypotézu nezamítáme, rozptyly se statisticky významně neliší

52 Příklad: Byly měřeny odchylky od požadované délky 4m ocelových tyčí od dvou dodavatelů. Odchylky jsou uvedeny v cm. 3) Srovnání středních hodnot: dvouvýběrový t-test se shodnými rozptyly > t.test(x,y, var.equal=t) Two Sample t- test data: x and y t = , df = 218, p- value = alternative hypothesis: true difference in means is not equal to 0 95 percent confidence interval: sample estimates: mean of x mean of y => nulovou hypotézu nezamítáme, střední hodnoty se statisticky významně neliší

53 Příklad: Byla měřena rychlost reakce operátorů před a po speciálním cvičení v sekundách. Mělo cvičení statisticky významný vliv na rychlost? 1) Data: > pred_cvicenim [1] [7] [13] [19] [25] [31] [37] [43] [49] [55] [61] [67] [73] [79] [85] [91] [97] [103] [109] [115]

54 Příklad: Byla měřena rychlost reakce operátorů před a po speciálním cvičení v sekundách. Mělo cvičení statisticky významný vliv na rychlost? 1) Data: > po_cviceni [1] [7] [13] [19] [25] [31] [37] [43] [49] [55] [61] [67] [73] [79] [85] [91] [97] [103] [109] [115]

55 Příklad: Byla měřena rychlost reakce operátorů před a po speciálním cvičení v sekundách. Mělo cvičení statisticky významný vliv na rychlost? 2) Grafické zobrazení

56 Dvě náhodné veličiny Příklad: Byla měřena rychlost reakce operátorů před a po speciálním cvičení v sekundách. Mělo cvičení statisticky významný vliv na rychlost? 3) Rozdíl: > rozdil = pred_cvicenim - po_cviceni > rozdil [1] [7] [13] [19] [25] [31] [37] [43] [49] [55] [61] [67] [73] [79] [85] [91] [97] [103] [109] [115]

57 Příklad: Byla měřena rychlost reakce operátorů před a po speciálním cvičení v sekundách. Mělo cvičení statisticky významný vliv na rychlost? 3) Rozdíl:

58 Příklad: Byla měřena rychlost reakce operátorů před a po speciálním cvičení v sekundách. Mělo cvičení statisticky významný vliv na rychlost? 4) Párový t-test: > t.test(rozdil, mu=0) One Sample t- test data: rozdil t = , df = 119, p- value = 9.54e- 05 alternative hypothesis: true mean is not equal to 0 95 percent confidence interval: sample estimates: mean of x => nulovou hypotézu zamítáme, cvičení mělo vliv a rychlost reakce se statisticky významně zvýšila

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 010 1.týden (0.09.-4.09. ) Data, typy dat, variabilita, frekvenční analýza

Více

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 2010 1.týden (20.09.-24.09. ) Data, typy dat, variabilita, frekvenční analýza

Více

II. Statistické metody vyhodnocení kvantitativních dat Gejza Dohnal

II. Statistické metody vyhodnocení kvantitativních dat Gejza Dohnal Základy navrhování průmyslových experimentů DOE II. Statistické metody vyhodnocení kvantitativních dat Gejza Dohnal! Testování statistických hypotéz kvalitativní odezva kvantitativní chí-kvadrát test homogenity,

Více

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 2010 1.týden (20.09.-24.09. ) Data, typy dat, variabilita, frekvenční analýza

Více

STATISTIKA A INFORMATIKA - bc studium OZW, 1.roč. (zkušební otázky)

STATISTIKA A INFORMATIKA - bc studium OZW, 1.roč. (zkušební otázky) STATISTIKA A INFORMATIKA - bc studium OZW, 1.roč. (zkušební otázky) 1) Význam a využití statistiky v biologických vědách a veterinárním lékařství ) Rozdělení znaků (veličin) ve statistice 3) Základní a

Více

UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11.

UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11. UNIVERZITA OBRANY Fakulta ekonomiky a managementu Aplikace STAT1 Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 Jiří Neubauer, Marek Sedlačík, Oldřich Kříž 3. 11. 2012 Popis a návod k použití aplikace

Více

letní semestr 2012 Katedra pravděpodobnosti a matematické statistiky Matematicko-fyzikální fakulta Univerzity Karlovy Matematická statistika

letní semestr 2012 Katedra pravděpodobnosti a matematické statistiky Matematicko-fyzikální fakulta Univerzity Karlovy Matematická statistika Šárka Hudecová Katedra pravděpodobnosti a matematické statistiky Matematicko-fyzikální fakulta Univerzity Karlovy letní semestr 2012 Opakování t- vs. neparametrické Wilcoxonův jednovýběrový test Opakování

Více

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@niax.cz Pravděodobnost a matematická statistika 2010 1.týden (20.09.-24.09. ) Data, tyy dat, variabilita, frekvenční analýza

Více

diskriminaci žen letní semestr 2012 1 = výrok, o jehož pravdivosti chceme rozhodnout tvrzení o populaci, o jehož platnosti rozhodujeme

diskriminaci žen letní semestr 2012 1 = výrok, o jehož pravdivosti chceme rozhodnout tvrzení o populaci, o jehož platnosti rozhodujeme motivační příklad Párový Párový Příklad (Platová diskriminace) firma provedla šetření s cílem zjistit, zda dochází k platové diskriminaci žen Šárka Hudecová Katedra pravděpodobnosti a matematické statistiky

Více

31. 3. 2014, Brno Hanuš Vavrčík Základy statistiky ve vědě

31. 3. 2014, Brno Hanuš Vavrčík Základy statistiky ve vědě 31. 3. 2014, Brno Hanuš Vavrčík Základy statistiky ve vědě Motto Statistika nuda je, má však cenné údaje. strana 3 Statistické charakteristiky Charakteristiky polohy jsou kolem ní seskupeny ostatní hodnoty

Více

Zápočtová práce STATISTIKA I

Zápočtová práce STATISTIKA I Zápočtová práce STATISTIKA I Obsah: - úvodní stránka - charakteristika dat (původ dat, důvod zpracování,...) - výpis naměřených hodnot (v tabulce) - zpracování dat (buď bodové nebo intervalové, podle charakteru

Více

Příklady na testy hypotéz o parametrech normálního rozdělení

Příklady na testy hypotéz o parametrech normálního rozdělení Příklady na testy hypotéz o parametrech normálního rozdělení. O životnosti 75W žárovky (v hodinách) je známo, že má normální rozdělení s = 5h. Pro náhodný výběr 0 žárovek byla stanovena průměrná životnost

Více

676 + 4 + 100 + 196 + 0 + 484 + 196 + 324 + 64 + 324 = = 2368

676 + 4 + 100 + 196 + 0 + 484 + 196 + 324 + 64 + 324 = = 2368 Příklad 1 Je třeba prověřit, zda lze na 5% hladině významnosti pokládat za prokázanou hypotézu, že střední doba výroby výlisku je 30 sekund. Přitom 10 náhodně vybraných výlisků bylo vyráběno celkem 540

Více

4ST201 STATISTIKA CVIČENÍ Č. 7

4ST201 STATISTIKA CVIČENÍ Č. 7 4ST201 STATISTIKA CVIČENÍ Č. 7 testování hypotéz parametrické testy test hypotézy o střední hodnotě test hypotézy o relativní četnosti test o shodě středních hodnot testování hypotéz v MS Excel neparametrické

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

Cvičení ze statistiky - 9. Filip Děchtěrenko

Cvičení ze statistiky - 9. Filip Děchtěrenko Cvičení ze statistiky - 9 Filip Děchtěrenko Minule bylo.. Dobrali jsme normální rozdělení Tyhle termíny by měly být známé: Inferenční statistika Konfidenční intervaly Z-test Postup při testování hypotéz

Více

Statistické testování hypotéz II

Statistické testování hypotéz II PSY117/454 Statistická analýza dat v psychologii Přednáška 9 Statistické testování hypotéz II Přehled testů, rozdíly průměrů, velikost účinku, síla testu Základní výzkumné otázky/hypotézy 1. Stanovení

Více

Testování hypotéz. Analýza dat z dotazníkových šetření. Kuranova Pavlina

Testování hypotéz. Analýza dat z dotazníkových šetření. Kuranova Pavlina Testování hypotéz Analýza dat z dotazníkových šetření Kuranova Pavlina Statistická hypotéza Možné cíle výzkumu Srovnání účinnosti různých metod Srovnání výsledků různých skupin Tzn. prokázání rozdílů mezi

Více

Porovnání dvou výběrů

Porovnání dvou výběrů Porovnání dvou výběrů Menu: QCExpert Porovnání dvou výběrů Tento modul je určen pro podrobnou analýzu dvou datových souborů (výběrů). Modul poskytuje dva postupy analýzy: porovnání dvou nezávislých výběrů

Více

Tématické okruhy pro státní závěrečné zkoušky. bakalářské studium. studijní obor "Management jakosti"

Tématické okruhy pro státní závěrečné zkoušky. bakalářské studium. studijní obor Management jakosti Tématické okruhy pro státní závěrečné zkoušky bakalářské studium studijní obor "Management jakosti" školní rok 2013/2014 Management jakosti A 1. Pojem jakosti a význam managementu jakosti v současném období.

Více

Tématické okruhy pro státní závěrečné zkoušky. bakalářské studium. studijní obor "Management jakosti"

Tématické okruhy pro státní závěrečné zkoušky. bakalářské studium. studijní obor Management jakosti Tématické okruhy pro státní závěrečné zkoušky bakalářské studium studijní obor "Management jakosti" školní rok 2009/2010 Management jakosti A 1. Pojem jakosti a význam managementu jakosti v současném období.

Více

STATISTIKA. Inovace předmětu. Obsah. 1. Inovace předmětu STATISTIKA... 2 2. Sylabus pro předmět STATISTIKA... 3 3. Pomůcky... 7

STATISTIKA. Inovace předmětu. Obsah. 1. Inovace předmětu STATISTIKA... 2 2. Sylabus pro předmět STATISTIKA... 3 3. Pomůcky... 7 Inovace předmětu STATISTIKA Obsah 1. Inovace předmětu STATISTIKA... 2 2. Sylabus pro předmět STATISTIKA... 3 3. Pomůcky... 7 1 1. Inovace předmětu STATISTIKA Předmět Statistika se na bakalářském oboru

Více

Nadstavba pro statistické výpočty Statistics ToolBox obsahuje více než 200 m-souborů které podporují výpočty v následujících oblastech.

Nadstavba pro statistické výpočty Statistics ToolBox obsahuje více než 200 m-souborů které podporují výpočty v následujících oblastech. Statistics ToolBox Nadstavba pro statistické výpočty Statistics ToolBox obsahuje více než 200 m-souborů které podporují výpočty v následujících oblastech. [manual ST] 1. PROBABILITY DISTRIBUTIONS Statistics

Více

Katedra matematické analýzy a aplikací matematiky, Přírodovědecká fakulta, UP v Olomouci

Katedra matematické analýzy a aplikací matematiky, Přírodovědecká fakulta, UP v Olomouci Zpracování dat v edukačních vědách - Testování hypotéz Kamila Fačevicová Katedra matematické analýzy a aplikací matematiky, Přírodovědecká fakulta, UP v Olomouci Obsah seminářů 5.11. Úvod do matematické

Více

Základy biostatistiky II. Veřejné zdravotnictví 3.LF UK - II

Základy biostatistiky II. Veřejné zdravotnictví 3.LF UK - II Základy biostatistiky II Veřejné zdravotnictví 3.LF UK - II Teoretické rozložení-matematické modely rozložení Naměřená data Výběrové rozložení Teoretické rozložení 1 e 2 x 2 Teoretické rozložení-matematické

Více

Plánovací diář a Google Calendar

Plánovací diář a Google Calendar České vysoké učení technické v Praze FAKULTA ELEKTROTECHNICKÁ Kvantitativní test uživatelského rozhraní Plánovací diář a Google Calendar Semestrální práce do předmětu Testování uživatelského rozhraní LS

Více

1. Číselné posloupnosti - Definice posloupnosti, základní vlastnosti, operace s posloupnostmi, limita posloupnosti, vlastnosti limit posloupností,

1. Číselné posloupnosti - Definice posloupnosti, základní vlastnosti, operace s posloupnostmi, limita posloupnosti, vlastnosti limit posloupností, KMA/SZZS1 Matematika 1. Číselné posloupnosti - Definice posloupnosti, základní vlastnosti, operace s posloupnostmi, limita posloupnosti, vlastnosti limit posloupností, operace s limitami. 2. Limita funkce

Více

Testování statistických hypotéz

Testování statistických hypotéz Testování statistických hypotéz Na základě náhodného výběru, který je reprezentativním vzorkem základního souboru (který přesně neznáme, k němuž se ale daná statistická hypotéza váže), potřebujeme ověřit,

Více

Náhodná veličina a rozdělení pravděpodobnosti

Náhodná veličina a rozdělení pravděpodobnosti 3.2 Náhodná veličina a rozdělení pravděpodobnosti Bůh hraje se světem hru v kostky. Jsou to ale falešné kostky. Naším hlavním úkolem je zjistit, podle jakých pravidel byly označeny, a pak toho využít pro

Více

KGG/STG Statistika pro geografy

KGG/STG Statistika pro geografy KGG/STG Statistika pro geografy 9. Korelační analýza Mgr. David Fiedor 20. dubna 2015 Analýza závislostí v řadě geografických disciplín studujeme jevy, u kterých vyšetřujeme nikoliv pouze jednu vlastnost

Více

STATISTICKÉ TESTY VÝZNAMNOSTI

STATISTICKÉ TESTY VÝZNAMNOSTI STATISTICKÉ TESTY VÝZNAMNOSTI jsou statistické postupy, pomocí nichž ověřujeme, zda mezi proměnnými existuje vztah (závislost, rozdíl). Pokud je výsledek šetření statisticky významný (signifikantní), znamená

Více

Vysoká škola báňská technická univerzita Ostrava. Fakulta elektrotechniky a informatiky

Vysoká škola báňská technická univerzita Ostrava. Fakulta elektrotechniky a informatiky Vysoká škola báňská technická univerzita Ostrava Fakulta elektrotechniky a informatiky Bankovní účty (semestrální projekt statistika) Tomáš Hejret (hej124) 18.5.2013 Úvod Cílem tohoto projektu, zadaného

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

Tématické okruhy pro státní závěrečné zkoušky. magisterské studium

Tématické okruhy pro státní závěrečné zkoušky. magisterské studium Tématické okruhy pro státní závěrečné zkoušky magisterské studium studijní obor "Řízení jakosti" školní rok 2009/2010 Management jakosti A 1. Koncepce managementu jakosti, charakteristiky a účel, normy

Více

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D.

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D. Testování statistických hypotéz Ing. Michal Dorda, Ph.D. Testování normality Př. : Při simulaci provozu na křižovatce byla získána data o mezerách mezi přijíždějícími vozidly v [s]. Otestujte na hladině

Více

Testování statistických hypotéz

Testování statistických hypotéz Testování statistických hypotéz 1 Testování statistických hypotéz 1 Statistická hypotéza a její test V praxi jsme nuceni rozhodnout, zda nějaké tvrzeni o parametrech náhodných veličin nebo o veličině samotné

Více

TECHNICKÁ UNIVERZITA V LIBERCI EKONOMICKÁ FAKULTA

TECHNICKÁ UNIVERZITA V LIBERCI EKONOMICKÁ FAKULTA TECHNICKÁ UNIVERZITA V LIBERCI EKONOMICKÁ FAKULTA Semestrální práce Semestrální práce z předmětu Statistický rozbor dat z dotazníkového šetření Vypracoval: Bonaconzová, Bryknarová, Milkovičová, Škrdlová

Více

Úvodem Dříve les než stromy 3 Operace s maticemi

Úvodem Dříve les než stromy 3 Operace s maticemi Obsah 1 Úvodem 13 2 Dříve les než stromy 17 2.1 Nejednoznačnost terminologie 17 2.2 Volba metody analýzy dat 23 2.3 Přehled vybraných vícerozměrných metod 25 2.3.1 Metoda hlavních komponent 26 2.3.2 Faktorová

Více

Korelační a regresní analýza

Korelační a regresní analýza Korelační a regresní analýza Analýza závislosti v normálním rozdělení Pearsonův (výběrový) korelační koeficient: r = s XY s X s Y, kde s XY = 1 n (x n 1 i=0 i x )(y i y ), s X (s Y ) je výběrová směrodatná

Více

Statistická analýza jednorozměrných dat

Statistická analýza jednorozměrných dat Statistická analýza jednorozměrných dat Prof. RNDr. Milan Meloun, DrSc. Univerzita Pardubice, Pardubice 31.ledna 2011 Tato prezentace je spolufinancována Evropským sociálním fondem a státním rozpočtem

Více

Stručný úvod do vybraných zredukovaných základů statistické analýzy dat

Stručný úvod do vybraných zredukovaných základů statistické analýzy dat Stručný úvod do vybraných zredukovaných základů statistické analýzy dat Statistika nuda je, má však cenné údaje. Neklesejme na mysli, ona nám to vyčíslí. Z pohádky Princové jsou na draka Populace (základní

Více

Testování hypotéz. 1 Jednovýběrové testy. 90/2 odhad času

Testování hypotéz. 1 Jednovýběrové testy. 90/2 odhad času Testování hypotéz 1 Jednovýběrové testy 90/ odhad času V podmínkách naprostého odloučení má voák prokázat schopnost orientace v čase. Úkolem voáka e provést odhad časového intervalu 1 hodiny bez hodinek

Více

Statistika. Regresní a korelační analýza Úvod do problému. Roman Biskup

Statistika. Regresní a korelační analýza Úvod do problému. Roman Biskup Statistika Regresní a korelační analýza Úvod do problému Roman Biskup Jihočeská univerzita v Českých Budějovicích Ekonomická fakulta (Zemědělská fakulta) Katedra aplikované matematiky a informatiky 2008/2009

Více

(motto: An unsophisticated forecaster uses statistics as a drunken man uses lamp-posts - for support rather than for illumination.

(motto: An unsophisticated forecaster uses statistics as a drunken man uses lamp-posts - for support rather than for illumination. Neparametricke testy (motto: An unsophisticated forecaster uses statistics as a drunken man uses lamp-posts - for support rather than for illumination. Andrew Lang) 1. Příklad V následující tabulce jsou

Více

Testy pro porovnání vlastností dvou skupin

Testy pro porovnání vlastností dvou skupin Testy pro porovnání vlastností dvou skupin Petr Pošík Části dokumentu jsou převzaty (i doslovně) z Mirko Navara: Pravděpodobnost a matematická statistika, https://cw.felk.cvut.cz/lib/exe/fetch.php/courses/a6m33ssl/pms_print.pdf

Více

Jednovýběrový Wilcoxonův test a jeho asymptotická varianta (neparametrická obdoba jednovýběrového t-testu)

Jednovýběrový Wilcoxonův test a jeho asymptotická varianta (neparametrická obdoba jednovýběrového t-testu) Jednovýběrový Wilcoxonův test a jeho asymptotická varianta (neparametrická obdoba jednovýběrového t-testu) Frank Wilcoxon (1892 1965): Americký statistik a chemik Nechť X 1,..., X n je náhodný výběr ze

Více

PARAMETRICKÉ TESTY. 1) Měření Etalonu. Dataset - mereni_etalonu.sta - 9 měření etalonu srovnáváme s PŘEDPOKLÁDANOU HODNOTOU 10.

PARAMETRICKÉ TESTY. 1) Měření Etalonu. Dataset - mereni_etalonu.sta - 9 měření etalonu srovnáváme s PŘEDPOKLÁDANOU HODNOTOU 10. PARAMETRICKÉ TESTY Testujeme rovnost průměru - předpokladem normální rozdělení I) Jednovýběrový t-test 1) Měření Etalonu. Dataset - mereni_etalonu.sta - 9 měření etalonu srovnáváme s PŘEDPOKLÁDANOU HODNOTOU

Více

Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie STATISTICKÉ ZPRACOVÁNÍ EXPERIMENTÁLNÍCH DAT

Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie STATISTICKÉ ZPRACOVÁNÍ EXPERIMENTÁLNÍCH DAT Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie STATISTICKÉ ZPRACOVÁNÍ EXPERIMENTÁLNÍCH DAT STATISTICKÁ ANALÝZA JEDNOROZMĚRNÝCH DAT Seminární práce 1 Brno, 2002 Ing. Pavel

Více

PSY117/454 Statistická analýza dat v psychologii Přednáška 10

PSY117/454 Statistická analýza dat v psychologii Přednáška 10 PSY117/454 Statistická analýza dat v psychologii Přednáška 10 TESTY PRO NOMINÁLNÍ A ORDINÁLNÍ PROMĚNNÉ NEPARAMETRICKÉ METODY... a to mělo, jak sám vidíte, nedozírné následky. Smrť Analýza četností hodnot

Více

Příklad 1. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 11

Příklad 1. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 11 Příklad 1 Vyhláška Ministerstva zdravotnictví předpokládala, že doba dojezdu k pacientovi od nahlášení požadavku nepřekročí 17 minut. Hodnoty deseti náhodně vybraných dob příjezdu sanitky k nemocnému byly:

Více

Návrh a vyhodnocení experimentu

Návrh a vyhodnocení experimentu Návrh a vyhodnocení experimentu Návrh a vyhodnocení experimentů v procesech vývoje a řízení kvality vozidel Ing. Bohumil Kovář, Ph.D. FD ČVUT Ústav aplikované matematiky kovar@utia.cas.cz Mladá Boleslav

Více

LINEÁRNÍ REGRESE. Lineární regresní model

LINEÁRNÍ REGRESE. Lineární regresní model LINEÁRNÍ REGRESE Chemometrie I, David MILDE Lineární regresní model 1 Typy závislosti 2 proměnných FUNKČNÍ VZTAH: 2 závisle proměnné: určité hodnotě x odpovídá jediná hodnota y. KORELACE: 2 náhodné (nezávislé)

Více

15. T e s t o v á n í h y p o t é z

15. T e s t o v á n í h y p o t é z 15. T e s t o v á n í h y p o t é z Na základě hodnot náhodného výběru činíme rozhodnutí o platnosti hypotézy o hodnotách parametrů rozdělení nebo o jeho vlastnostech. Rozeznáváme dva základní typy testů:

Více

Příklad 1. Korelační pole. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 13

Příklad 1. Korelační pole. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 13 Příklad 1 Máme k dispozici výsledky prvního a druhého testu deseti sportovců. Na hladině významnosti 0,05 prověřte, zda jsou výsledky testů kladně korelované. 1.test : 7, 8, 10, 4, 14, 9, 6, 2, 13, 5 2.test

Více

5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza

5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5.1 Vícerozměrná data a vícerozměrná rozdělení Při zpracování vícerozměrných dat se hledají souvislosti mezi dvěma, případně

Více

ROZDĚLENÍ NÁHODNÝCH VELIČIN

ROZDĚLENÍ NÁHODNÝCH VELIČIN ROZDĚLENÍ NÁHODNÝCH VELIČIN 1 Vytvořeno s podporou projektu Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny společného základu (reg. č. CZ.1.07/2.2.00/28.0021)

Více

Intervalové Odhady Parametrů II Testování Hypotéz

Intervalové Odhady Parametrů II Testování Hypotéz Parametrů II Testování Hypotéz Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc. Katedra počítačových systémů Katedra teoretické informatiky Fakulta informačních technologií České vysoké učení

Více

Analýza a prezentace dat. Název Data analysis and presentation Způsob ukončení * přednášek týdně 2 hod.

Analýza a prezentace dat. Název Data analysis and presentation Způsob ukončení * přednášek týdně 2 hod. Identifikační karta modulu Kód modulu modulu povinný Jazyk výuky čeština v jazyce výuky Analýza a prezentace dat česky Analýza a prezentace dat anglicky Data analysis and presentation Způsob ukončení *

Více

t-test, Studentův párový test Ing. Michael Rost, Ph.D.

t-test, Studentův párový test Ing. Michael Rost, Ph.D. Testování hypotéz: dvouvýběrový t-test, Studentův párový test Ing. Michael Rost, Ph.D. Úvod do problému... Již známe jednovýběrový t-test, při kterém jsme měli k dispozici pouze jeden výběr. Můžeme se

Více

Pozn. přeskakuji zde popisnou statistiku, jinak by měla být součástí každé analýzy.

Pozn. přeskakuji zde popisnou statistiku, jinak by měla být součástí každé analýzy. Pozn. přeskakuji zde popisnou statistiku, jinak by měla být součástí každé analýzy. Z pastí na daném území byla odhadnuta abundance několika druhů: myšice lesní 250, myšice křovinná 200, hraboš polní 150,

Více

Parametry hledáme tak, aby součet čtverců odchylek byl minimální. Řešením podle teorie je =

Parametry hledáme tak, aby součet čtverců odchylek byl minimální. Řešením podle teorie je = Příklad 1 Metodou nejmenších čtverců nalezněte odhad lineární regresní funkce popisující závislost mezi výnosy pšenice a množstvím použitého hnojiva na základě hodnot výběrového souboru uvedeného v tabulce.

Více

Modul Analýza síly testu Váš pomocník při analýze dat.

Modul Analýza síly testu Váš pomocník při analýze dat. 6..0 Modul Analýza síly testu Váš pomocník při analýze dat. Power Analysis and Interval Estimation Analýza síly testu Odhad velikosti vzorku Pokročilé techniky pro odhad intervalu spolehlivosti Rozdělení

Více

Zpracování studie týkající se průzkumu vlastností statistických proměnných a vztahů mezi nimi.

Zpracování studie týkající se průzkumu vlastností statistických proměnných a vztahů mezi nimi. SEMINÁRNÍ PRÁCE Zadání: Data: Statistické metody: Zpracování studie týkající se průzkumu vlastností statistických proměnných a vztahů mezi nimi. Minimálně 6 proměnných o 30 pozorováních (z toho 2 proměnné

Více

Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu

Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu K čemu slouží statistika Popisuje velké soubory dat pomocí charakteristických čísel (popisná statistika). Hledá skryté zákonitosti v souborech

Více

Téma 22. Ondřej Nývlt

Téma 22. Ondřej Nývlt Téma 22 Ondřej Nývlt nyvlto1@fel.cvut.cz Náhodná veličina a náhodný vektor. Distribuční funkce, hustota a pravděpodobnostní funkce náhodné veličiny. Střední hodnota a rozptyl náhodné veličiny. Sdružené

Více

Testování hypotéz. 4. přednáška 6. 3. 2010

Testování hypotéz. 4. přednáška 6. 3. 2010 Testování hypotéz 4. přednáška 6. 3. 2010 Základní pojmy Statistická hypotéza Je tvrzení o vlastnostech základního souboru, o jehož pravdivosti se chceme přesvědčit. Předem nevíme, zda je pravdivé nebo

Více

Náhodné veličiny jsou nekorelované, neexistuje mezi nimi korelační vztah. Když jsou X; Y nekorelované, nemusí být nezávislé.

Náhodné veličiny jsou nekorelované, neexistuje mezi nimi korelační vztah. Když jsou X; Y nekorelované, nemusí být nezávislé. 1. Korelační analýza V životě většinou nesledujeme pouze jeden statistický znak. Sledujeme více statistických znaků zároveň. Kromě vlastností statistických znaků nás zajímá také jejich těsnost (velikost,

Více

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK211 Základy ekonometrie ZS 2015/16 Cvičení 7: Časově řady, autokorelace LENKA FIŘTOVÁ KATEDRA EKONOMETRIE, FAKULTA INFORMATIKY A STATISTIKY VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE 1. Časové řady Data: HDP.wf1

Více

Testování hypotéz testy o tvaru rozdělení. Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel

Testování hypotéz testy o tvaru rozdělení. Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Statistickou hypotézou se rozumí určité tvrzení o parametrech rozdělení zkoumané náhodné veličiny (µ, σ 2, π,

Více

PRAVDĚPODOBNOST A STATISTIKA aneb Krátký průvodce skripty [1] a [2]

PRAVDĚPODOBNOST A STATISTIKA aneb Krátký průvodce skripty [1] a [2] PRAVDĚPODOBNOST A STATISTIKA aneb Krátký průvodce skripty [1] a [2] Použitá literatura: [1]: J.Reif, Z.Kobeda: Úvod do pravděpodobnosti a spolehlivosti, ZČU Plzeň, 2004 (2. vyd.) [2]: J.Reif: Metody matematické

Více

Cvičení 9: Neparametrické úlohy o mediánech

Cvičení 9: Neparametrické úlohy o mediánech Cvičení 9: Neparametrické úlohy o mediánech Úkol 1.: Párový znaménkový test a párový Wilcoxonův test Při zjišťování kvality jedné složky půdy se používají dvě metody označené A a B. Výsledky: Vzorek 1

Více

MĚŘENÍ STATISTICKÝCH ZÁVISLOSTÍ

MĚŘENÍ STATISTICKÝCH ZÁVISLOSTÍ MĚŘENÍ STATISTICKÝCH ZÁVISLOSTÍ v praxi u jednoho prvku souboru se často zkoumá více veličin, které mohou na sobě různě záviset jednorozměrný výběrový soubor VSS X vícerozměrným výběrovým souborem VSS

Více

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004.

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Testování hypotéz na základě jednoho a dvou výběrů 1 1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/004. Testování hypotéz Pokud nás zajímá zda platí, či neplatí tvrzení o určitém parametru,

Více

KGG/STG Statistika pro geografy

KGG/STG Statistika pro geografy KGG/STG Statistika pro geografy 10. Mgr. David Fiedor 27. dubna 2015 Nelineární závislost - korelační poměr užití v případě, kdy regresní čára není přímka, ale je vyjádřena složitější matematickou funkcí

Více

Statistika. Teorie odhadu statistická indukce. Roman Biskup. (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at) .

Statistika. Teorie odhadu statistická indukce. Roman Biskup. (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at) . Statistika Teorie odhadu statistická indukce Intervalový odhad µ, σ 2 a π Roman Biskup (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at)email.cz 21. února 2012 Statistika

Více

Předpoklad o normalitě rozdělení je zamítnut, protože hodnota testovacího kritéria χ exp je vyšší než tabulkový 2

Předpoklad o normalitě rozdělení je zamítnut, protože hodnota testovacího kritéria χ exp je vyšší než tabulkový 2 Na úloze ukážeme postup analýzy velkého výběru s odlehlými prvky pro určení typu rozdělení koncentrace kyseliny močové u 50 dárců krve. Jaká je míra polohy a rozptýlení uvedeného výběru? Z grafických diagnostik

Více

Analýza rozptylu. Statistika II. Jiří Neubauer. Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.

Analýza rozptylu. Statistika II. Jiří Neubauer. Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob. ANOVA Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz ANOVA ANOVA je nástroj pro zkoumání vztahu mezi vysvětlovanými a vysvětlujícími proměnnými.

Více

You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com)

You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com) Závislost náhodných veličin Úvod Předchozí přednášky: - statistické charakteristiky jednoho výběrového nebo základního souboru - vztahy mezi výběrovým a základním souborem - vztahy statistických charakteristik

Více

Pravděpodobnost a statistika, Biostatistika pro kombinované studium. Tutoriál č. 5: Bodové a intervalové odhady, testování hypotéz.

Pravděpodobnost a statistika, Biostatistika pro kombinované studium. Tutoriál č. 5: Bodové a intervalové odhady, testování hypotéz. Pravděpodobnost a statistika, Biostatistika pro kombinované studium Letní semestr 2015/2016 Tutoriál č. 5: Bodové a intervalové odhady, testování hypotéz Jan Kracík jan.kracik@vsb.cz Obsah: Výběrová rozdělení

Více

4ST201 STATISTIKA CVIČENÍ Č. 10

4ST201 STATISTIKA CVIČENÍ Č. 10 4ST201 STATISTIKA CVIČENÍ Č. 10 regresní analýza - vícenásobná lineární regrese korelační analýza Př. 10.1 Máte zadaný výstup regresní analýzy závislosti závisle proměnné Y na nezávisle proměnné X. Doplňte

Více

Průzkumová analýza dat

Průzkumová analýza dat Průzkumová analýza dat Proč zkoumat data? Základ průzkumové analýzy dat položil John Tukey ve svém díle Exploratory Data Analysis (odtud zkratka EDA). Často se stává, že data, se kterými pracujeme, se

Více

Simulace. Simulace dat. Parametry

Simulace. Simulace dat. Parametry Simulace Simulace dat Menu: QCExpert Simulace Simulace dat Tento modul je určen pro generování pseudonáhodných dat s danými statistickými vlastnostmi. Nabízí čtyři typy rozdělení: normální, logaritmicko-normální,

Více

Statistika, Biostatistika pro kombinované studium Letní semestr 2011/2012. Tutoriál č. 4: Exploratorní analýza. Jan Kracík

Statistika, Biostatistika pro kombinované studium Letní semestr 2011/2012. Tutoriál č. 4: Exploratorní analýza. Jan Kracík Statistika, Biostatistika pro kombinované studium Letní semestr 2011/2012 Tutoriál č. 4: Exploratorní analýza Jan Kracík jan.kracik@vsb.cz Statistika věda o získávání znalostí z empirických dat empirická

Více

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004.

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Prostá regresní a korelační analýza 1 1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Problematika závislosti V podstatě lze rozlišovat mezi závislostí nepodstatnou, čili náhodnou

Více

Statistické metody v ekonomii. Ing. Michael Rost, Ph.D.

Statistické metody v ekonomii. Ing. Michael Rost, Ph.D. Statistické metody v ekonomii Ing. Michael Rost, Ph.D. Jihočeská univerzita v Českých Budějovicích Test χ 2 v kontingenční tabulce typu 2 2 Jde vlastně o speciální případ χ 2 testu pro čtyřpolní tabulku.

Více

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D. 1

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D. 1 Testování statistických hypotéz Ing. Michal Dorda, Ph.D. 1 Úvodní poznámky Statistickou hypotézou rozumíme hypotézu o populaci (základním souboru) např.: Střední hodnota základního souboru je rovna 100.

Více

y = 0, ,19716x.

y = 0, ,19716x. Grafické ověřování a testování vybraných modelů 1 Grafické ověřování empirického rozdělení Při grafické analýze empirického rozdělení vycházíme z empirické distribuční funkce F n (x) příslušné k náhodnému

Více

Testování hypotéz Biolog Statistik: Matematik: Informatik:

Testování hypotéz Biolog Statistik: Matematik: Informatik: Testování hypotéz Biolog, Statistik, Matematik a Informatik na safari. Zastaví džíp a pozorují dalekohledem. Biolog "Podívejte se! Stádo zeber! A mezi nimi bílá zebra! To je fantastické! " "Existují bílé

Více

Kvantitativní testování virtuálních klávesnic na desktopu

Kvantitativní testování virtuálních klávesnic na desktopu Kvantitativní testování virtuálních klávesnic na desktopu Tomáš Jeníček Předmět testování uživatelského rozhraní Úvod Cílem tohoto testu bude porovnat dvě nejpoužívanější virtuální klávesnice na operačním

Více

A7B39TUR Úloha B Kvantitativní testování ZS 2013/2014 Software MS Office Word a Open Office Writer

A7B39TUR Úloha B Kvantitativní testování ZS 2013/2014 Software MS Office Word a Open Office Writer A7B39TUR Úloha B Kvantitativní testování ZS 2013/2014 Software MS Office Word a Open Office Writer Vypracoval: Peter Šourek ( sourepet@fel.cvut.cz ) Obsah 1Úvod...3 1.1Cíl testování...3 1.2Proměnné...3

Více

MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ

MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ Má-li analytický výsledek objektivně vypovídat o chemickém složení vzorku, musí splňovat určitá kriteria: Mezinárodní metrologický slovník (VIM 3),

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA ELEKTROTECHNICKÁ

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA ELEKTROTECHNICKÁ ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA ELEKTROTECHNICKÁ TESTOVÁNÍ UŽIVATELSKÝCH ROZHRANÍ A7B39TUR Kvantitativní test VERONIKA ČERNOHORSKÁ cernover@fel.cvut.cz Obsah Úvod... 3 Závislé a nezávislé

Více

Normální (Gaussovo) rozdělení

Normální (Gaussovo) rozdělení Normální (Gaussovo) rozdělení Normální (Gaussovo) rozdělení popisuje vlastnosti náhodné spojité veličiny, která vzniká složením různých náhodných vlivů, které jsou navzájem nezávislé, kterých je velký

Více

Určujeme neznámé hodnoty parametru základního souboru. Pomocí výběrové charakteristiky vypočtené z náhodného výběru.

Určujeme neznámé hodnoty parametru základního souboru. Pomocí výběrové charakteristiky vypočtené z náhodného výběru. 1 Statistické odhady Určujeme neznámé hodnoty parametru základního souboru. Pomocí výběrové charakteristiky vypočtené z náhodného výběru. Odhad lze provést jako: Bodový odhad o Jedna číselná hodnota Intervalový

Více

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1 Logistická regrese Menu: QCExpert Regrese Logistická Modul Logistická regrese umožňuje analýzu dat, kdy odezva je binární, nebo frekvenční veličina vyjádřená hodnotami 0 nebo 1, případně poměry v intervalu

Více

Rozdělení náhodné veličiny

Rozdělení náhodné veličiny Rozdělení náhodné veličiny Náhodná proměnná může mít - diskrétní rozdělení (nabývá jen určitých číselných hodnot) - spojité rozdělení (nabývá libovolných hodnot z určitého intervalu) Fyzikální veličiny

Více

Národníinformačnístředisko pro podporu jakosti

Národníinformačnístředisko pro podporu jakosti Národníinformačnístředisko pro podporu jakosti OVĚŘOVÁNÍ PŘEDPOKLADU NORMALITY Doc. Ing. Eva Jarošová, CSc. Ing. Jan Král Používané metody statistické testy: Chí-kvadrát test dobré shody Kolmogorov -Smirnov

Více

Uloha B - Kvantitativní test. Radek Kubica A7B39TUR. B1 Radek Kubica Kvantitativní testování Stránka 1

Uloha B - Kvantitativní test. Radek Kubica A7B39TUR. B1 Radek Kubica Kvantitativní testování Stránka 1 Uloha B - Kvantitativní test Radek Kubica A7B39TUR B1 Radek Kubica Kvantitativní testování 26.4.2014 Stránka 1 Obsah Úvod... 3 Nezávislé proměnné... 3 Závislé proměnné... 3 Popis uživatelů pro tento testování...

Více

Normy ČSN a ČSN ISO z oblasti aplikované statistiky (stav aktualizovaný k 1.1.2008)

Normy ČSN a ČSN ISO z oblasti aplikované statistiky (stav aktualizovaný k 1.1.2008) Normy ČSN a ČSN ISO z oblasti aplikované statistiky (stav aktualizovaný k 1.1.2008) Ing. Vratislav Horálek, DrSc., předseda TNK 4 při ČNI 1 Terminologické normy [1] ČSN ISO 3534-1:1994 Statistika Slovník

Více

Přednáška 9. Testy dobré shody. Grafická analýza pro ověření shody empirického a teoretického rozdělení

Přednáška 9. Testy dobré shody. Grafická analýza pro ověření shody empirického a teoretického rozdělení Přednáška 9 Testy dobré shody Grafická analýza pro ověření shody empirického a teoretického rozdělení χ 2 test dobré shody ověření, zda jsou relativní četnosti jednotlivých variant rovny číslům π 01 ;

Více