1/5. 9. Kompresory a pneumatické motory. Příklad: 9.1, 9.2, 9.3, 9.4, 9.5, 9.6, 9.7, 9.8, 9.9, 9.10, 9.11, 9.12, 9.13, 9.14, 9.15, 9.16, 9.
|
|
- David Němec
- před 9 lety
- Počet zobrazení:
Transkript
1 1/5 9. Kompresory a pneumatické motory Příklad: 9.1, 9.2, 9.3, 9.4, 9.5, 9.6, 9.7, 9.8, 9.9, 9.10, 9.11, 9.12, 9.13, 9.14, 9.15, 9.16, 9.17 Příklad 9.1 Dvojčinný vzduchový kompresor bez škodného prostoru, pracující beze ztrát, nasává při 100 otáčkách za minutu V o = 500 m 3 /h vzduchu o tlaku p 1 = 0,098 MPa a stlačuje jej isotermicky na 0,882 MPa. Jaká je práce potřebná ke stlačení 1 kg vzduchu, celkový příkon kompresoru, odvedené teplo, zdvihový objem, práce na 1 zdvih a střední indikovaný tlak? [a k = -182,2 kj/kg, q od = -182,2 kj/kg, P = 29,8 kw, a k = -896 kj/zdvih, V z = 0,04165 m 3, p i,stř = 0,2 MPa] Příklad 9.2 Dvoustupňový kompresor nasává 0,0533 m 3 /s vzduchu o teplotě t 1 = 20 C a tlaku p 1 = 0,1 MPa a stlačuje jej na tlak p 2 = 1 MPa. Určete celkový příkon kompresoru a množství chladicí vody pro mezichladič, je-li poměr tlaků u obou stupňů stejný, celková účinnost každého stupně je 0,75, komprese v obou stupních je adiabatická (κ = 1,4). Teplota chladící vody na vstupu do mezichladiče je 15 C, na výstupu 25 C. [ P =18,5 kw, m H2O = 1, kg/s] Příklad 9.3 Dvojstupňový dvojčinný vzduchový kompresor bez škodného prostoru, pracující beze ztrát, nasává za hod. 500 m 3 vzduchu o tlaku 0,098 MPa a teplotě 17 C a stlačuje jej polytropicky ( exponent n = 1,3 ) na 0,882 MPa při 1,667 otáčkách ze vteřinu. V chladiči mezi oběma stupni se vzduch ochladí na 17 C. Jaká je celková práce kompresoru, celkový příkon, teplo odvedené při kompresi, teplo odvedené vodou v mezichladiči, zdvihové objemy nízkotlakého a vysokotlakého válce a střední indikovaný tlak? [A k = -33,9 kw, P = 34 kw, Q kompr = - 6,56 kw, Q chl = -14 kw, V ZN = 0,416 m 3, V ZV = 0,0139 m 3, p istř = 0,244 MPa] Příklad 9.4 Kompresor nasává 250 m 3 vzduchu za hodinu při sacím tlaku 0,89 MPa a teplotě 25 C a stlačuje jej polytropicky (exponent n = 1,2) na tlak 0,785 MPa. Kolik kg vody 10 C teplé se spotřebuje ke chlazení válce kompresoru, je-li dovolené ohřátí vody 10 K? [m H2O = 577 kg/h] Příklad 9.5 Kompresor nasává 200 m 3 /h vzduchu o tlaku p 1 = 0,098 MPa a teplotě t 1 = 27 C a stlačuje jej na tlak p 2 = 0,785 MPa. Určete teplotu na výstupu z kompresoru, objem stlačeného vzduchu, teoretický výkon kompresoru, je-li komprese a) isotermická, b) adiabatická, c) polytropická s exponentem n = 1,3. [p a = 11,3 kw, P b = 15,4 kw, Pc = 14,55 kw ]
2 2/5 Příklad 9.6 Dvoustupňový kompresor nasává vzduch o teplotě t 1 = 20 C a tlaku 0,0981 MPa a stlačuje jej na tlak p 2 = 6 MPa. Určete výkon motoru pro pohon kompresoru a množství chladící vody pro oba stupně kompresorů a pro mezichladič, je-li poměr výstupních a vstupních tlaků u obou stupňů stejný a účinnost každého stupně je rovna 0,7. Teplota chladící vody se zvýší o 15 K. Komprese v obou stupních je polytropická s exponentem n = 1,3. Výkon kompresoru V = 0,14 m 3 /s. Řešení : t 1 = 20 C; p 1 = 0,0981 MPa, p 2 = 6 MPa, η k = 0,7, t H2O = 15 K; n =1,3; V = 0,14 m 3 /s ; P NT =?, P VT =?, m NT =?, m VT =?, m MCH =?
3 3/5 Poměr tlaků v obou stupních Teplota t 1 = t 1 = 20 C Objem V 1 = V 1 = V = 0,14 m 3 /s Potřebný příkon pro stlačení vzduchu v NT stupni pro VT stupeň P VT = P NT = 36, W Výkony motorů pro oba stupně Teplota na konci komprese v obou stupních Tepelný tok odváděný z obou stupňů při kompresi Množství chladicí vody pro NT (VT) stupeň kompresoru Tepelný tok, odvádění vzduchu v mezichladiči Množství chladící vody pro mezichladič Celkové potřebné množství chladící vody m H2O = m H2O NT + m H2O VT + m H2O MCH = 0, , ,4655 = 0,6844 kg/s Příklad 9.7
4 4/5 Nasáté množství kompresoru je 50 m 3 /h o výtlačném tlaku 0,785 MPa. Kompresor je chlazen vodou tak, že kompresi můžeme považovat za isotermickou. a) určete teoretický výkon motoru pro pohon kompresoru, je-li účinnost kompresoru 0,6 b) jaké je potřebné množství chladicí vody ke chlazení kompresoru, je-li ohřátí vody 6 K. Tlak okolního vzduchu je 0,098 MPa. [P = 37,8 kw, m H2O = 3250 kg/h] Příklad 9.8 Kompresor nasává 500 m 3 /h atmosférického vzduchu o tlaku p 1 = 0,098 MPa a teplotě t 1 = 20 C a stlačuje jej na p 2 = 0,785 MPa. Nejprve nebyl kompresor chlazen, po spuštění chlazení byla komprese polytropická s exponentem n = 1,3. Určete roční úsporu elektrické energie, pracoval-li kompresor 12 hodin denně s účinností η K = 0,7. [A = MJ] Příklad 9.9 Dvojstupňový pístový kompresor o výkonu V o = 800 m 3 /h nasává vzduch o teplotě t 1 = 15 C a tlaku p 1 = 0,098 MPa a stlačuje jej na tlak p 2 = 2,94 MPa. Komprese je polytropická a exponentem n = 1,3. Poměr tlaku je v obou stupních stejný. Stanovte úsporu elektrické energie při zařazení mezichladiče vzduchu, je-li sací teplota v obou stupních 15 C a účinnost η k = 0,7. [A = 2845 MJ] Příklad 9.10 Třístupňový kompresor o výkonu 250 kg/h vzduchu o tlaku p 4 = 7,85 MPa nasává vzduch o teplotě t o = 17 C a tlaku p o = 0,093 MPa. Určete teoreticky výkon motoru pro pohon kompresoru a teplo odvedené v mezichladičích. Komprese je adiabatická. [P = 31,9 kw, Q MCH = W] Příklad 9.11 Kompresor nasává 200 kg/h vzduchu o tlaku p o = 0,098 MPa a teplotě t o = 15 C a stlačuje jej na tlak 0,98 MPa. Zpočátku pracoval kompresor s exponentem n = 1,3, později se zvýšilo chlazení válce tak, že exponent n = 1,2. Určete roční úsporu nafty, jestliže kompresor pracoval 280 dní za rok po 20 hodinách denně, účinnost motoru je 0,08 a výhřevnost paliva - nafty Z = kj/kg. [m = 7930 kg/rok] Příklad 9.12 Určete příkon motoru pro pohon odstředivého kompresoru o výkonu 3,67 m 3 /s. Parametry nasávaného vzduchu t 1 = 20 C, p 1 = 0,098 MPa, teplota stlačeného vzduchu t 2 = 50 C, rychlost na výstupu z kompresoru w 2 =50 m/s, měrná tepelná kapacita vzduchu c p = 1 kj/ (kg.k), mechanická účinnostη m = 0,95. [P = 128 kw]
5 5/5 Příklad 9.13 Při snížení množství vody pro chlazeni válce kompresoru vzrostla teplota stlačeného vzduchu na výstupu z kompresoru ze 100 C na 150 C. Počáteční teplota (teplota v sání) zůstala stejná t o = 17 C. Sací tlak p o = 0,098 MPa, výtlačný tlak p 1 = 0,44 MPa. Jak se změní příkon motoru pro pohon kompresoru? [ o 6 %] Příklad 9.14 Kolika stupňový je kompresor, jsou-li parametry nasávaného vzduchu p 1 = 0,098 MPa, t 1 = 27 C, stlačeného vzduchu p 2 = 20,6 MPa, nemá-li být teplota stlačeného vzduchu vyšší než 150 C? [ n s = 5 ] Příklad 9.15 Kyslíkový kompresor stlačuje kyslík z tlaku p 1 = 0,098 MPa a teploty t 1 = 17 C na tlak p 2 = 0,343 MPa. Určete příkon motoru pro pohon kompresoru, je-li adiabatická účinnost η ad = 0,83 a stlačené množství V= 200 m 3 /h. [P= 23,4 kw] Příklad 9.16 Pneumatický motor o výkonu P = 30 kw spotřebuje 612 kg/h vzduchu o tlaku p 1 = 1,96 MPa a teplotě t 1 = 30 C. Určete výstupní tlak, jeli expanze v motoru adiabatická. [p 2 = 0,098 MPa ] Příklad 9.17 Stav vzduchu vstupujícího do pneumatického motoru je zadán tlakem p 1 = 0,98 MPa a teplotou t 1 = 15 C. Expanze je adiabatická na p 2 = 0,098 MPa. Určete spotřebu vzduchu, je-li výkon motoru P = 10 kw. Určete také výkon, je-li poměrné plnění ϕ = 0,7 při stejné spotřebě vzduchu! Jaká je v obou případech teplota na konci expanze? Zobrazte děj do diagramu p-v v obou případech! [m =258 kg/h, P = 9,8 kw, t 2 = -123 C, t 2 = -102 C]
1/6. 2. Stavová rovnice, plynová konstanta, Avogadrův zákon, kilomol plynu
1/6 2. Stavová rovnice, plynová konstanta, Avogadrův zákon, kilomol plynu Příklad: 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 2.10, 2.11, 2.12, 2.13, 2.14, 2.15, 2.16, 2.17, 2.18, 2.19, 2.20, 2.21, 2.22,
Domácí práce č.1. Jak dlouho vydrží palivo motocyklu Jawa 50 Pionýr, pojme-li jeho nádrž 3,5 litru paliva o hustote 750kg m 3 a
Domácí práce č.1 Jak dlouho vydrží palivo motocyklu Jawa 50 Pionýr, pojme-li jeho nádrž 3,5 litru paliva o hustote 750kg m 3 a motor beží pri 5000ot min 1 s výkonem 1.5kW. Motor má vrtání 38 mm a zdvih
12. Termomechanika par, Clausius-Clapeyronova rovnice, parní tabulky, základni termodynamické děje v oblasti par
1/2 1. Určovací veličiny pracovní látky 2. Stavová rovnice, plynová konstanta, Avogadrův zákon, kilomol plynu 3. Směsi plynů, měrné tepelné kapacity plynů 4. První termodynamický zákon 5. Základní vratné
KOMPRESORY F 1 F 2. F 3 V 1 p 1. V 2 p 2 V 3 p 3
KOMPRESORY F 1 F 2 F 3 V 1 p 1 V 2 p 2 V 3 p 3 1 KOMPRESORY V kompresorech se mění mechanická nebo kinetická energie v energii tlakovou, při čemž se vyvíjí teplo. Kompresory jsou stroje tepelné, se zřetelem
12. Termomechanika par, Clausiova-Clapeyronova rovnice, parní tabulky, základni termodynamické děje v oblasti par
1/18 12. Termomechanika par, Clausiova-Clapeyronova rovnice, parní tabulky, základni termodynamické děje v oblasti par Příklad: 12.1, 12.2, 12.3, 12.4, 12.5, 12.6, 12.7, 12.8, 12.9, 12.10, 12.11, 12.12,
VYBRANÉ STATĚ Z PROCESNÍHO INŢENÝRSTVÍ cvičení 12
UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY VYBRANÉ STATĚ Z PROCESNÍHO INŢENÝRSTVÍ cvičení 2 Termodynamika reálných plynů část 2 Hana Charvátová, Dagmar Janáčová Zlín 203 Tento studijní
3. Výroba stlačeného vzduchu - kompresory
echatronika 02 - Pneumatika 1 z 5 3. Výroba stlačeného - kompresory Kompresory jsou stroje ke stlačování (kompresi), neboli zvýšení jeho tlaku Mění mechanickou energii motoru (otáčivého pohybu) na tlakovou
Příklad 1: Bilance turbíny. Řešení:
Příklad 1: Bilance turbíny Spočítejte, kolik kg páry za sekundu je potřeba pro dosažení výkonu 100 MW po dobu 1 sek. Vstupní teplota a tlak do turbíny jsou 560 C a 16 MPa, výstupní teplota mokré páry za
SPALOVACÍ MOTORY. - vznětové = samovznícením. - dvoudobé. - kapalinou. - dvouřadé s válci do V - vodorovné - ležaté. - vstřikové
SPALOVACÍ MOTORY Druhy spalovacích motorů rozdělení podle způsobu zapalování podle počtu dob oběhu podle chlazení - zážehové = zvláštním zdrojem (svíčkou) - vznětové = samovznícením - čtyřdobé - dvoudobé
3. Výroba stlačeného vzduchu - kompresory
zapis_pneumatika_kompresory - Strana 1 z 6 3. Výroba stlačeného vzduchu - kompresory Kompresory jsou stroje ke stlačování ( #1 ) vzduchu, neboli zvýšení jeho tlaku Mění mechanickou energii motoru (otáčivého
Ideální plyn. Stavová rovnice Děje v ideálním plynu Práce plynu, Kruhový děj, Tepelné motory
Struktura a vlastnosti plynů Ideální plyn Vlastnosti ideálního plynu: Ideální plyn Stavová rovnice Děje v ideálním plynu Práce plynu, Kruhový děj, epelné motory rozměry molekul jsou ve srovnání se střední
19. a 20. PÍSTOVÉ SPALOVACÍ MOTORY ZÁŽEHOVÉ A VZNĚTOVÉ 19. and 20. PETROL AND DIESEL PISTONE COMBUSTION ENGINES
19. a 20. PÍSTOVÉ SPALOVACÍ MOTORY ZÁŽEHOVÉ A VZNĚTOVÉ 19. and 20. PETROL AND DIESEL PISTONE COMBUSTION ENGINES ROZDĚLENÍ SPLAOVACÍCH MOTORŮ mechanická funkčnost pístové nebo rotační Spalovací motor pracuje
Jednotlivým bodům (n,2,a,e,k) z blokového schématu odpovídají body na T-s a h-s diagramu:
Elektroenergetika 1 (A1B15EN1) 3. cvičení Příklad 1: Rankin-Clausiův cyklus Vypočtěte tepelnou účinnost teoretického Clausius-Rankinova parního oběhu, jsou-li admisní parametry páry tlak p a = 80.10 5
STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJNICKÁ A STŘEDNÍ ODBORNÁ ŠKOLA PROFESORA ŠVEJCARA, PLZEŇ, KLATOVSKÁ 109. Josef Gruber MECHANIKA VI
STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJNICKÁ A STŘEDNÍ ODBORNÁ ŠKOLA PROFESORA ŠVEJCARA, PLZEŇ, KLATOVSKÁ 109 Josef Gruber MECHANIKA VI TERMOMECHANIKA PRACOVNÍ SEŠIT Vytvořeno v rámci Operačního programu Vzdělávání
Zpracování teorie 2010/11 2011/12
Zpracování teorie 2010/11 2011/12 Cykly Děje Proudění (turbíny) počet v: roce 2010/11 a roce 2011/12 Chladící zařízení (nakreslete cyklus a nakreslete schéma)... zde 13 + 2 (15) Izochorický děj páry (nakreslit
Blokové schéma Clausius-Rankinova (C-R) cyklu s přihříváním páry je na obrázku.
Elektroenergetika 1 (A1B15EN1) 4. cvičení Příklad 1: Přihřívání páry Teoretický parní oběh s přihříváním páry pracuje s následujícími parametry: Admisní tlak páry p a = 10 MPa a teplota t a = 530 C. Tlak
Procesy ve spalovacích motorech
Procesy ve spalovacích motorech Spalovací motory přeměňují energii chemicky vázanou v palivu na mechanickou práci. Výkon, který motory vytvářejí, vzniká přeměnou chemické energie vázané v palivu na teplo
6. Jaký je výkon vařiče, který ohřeje 1 l vody o 40 C během 5 minut? Měrná tepelná kapacita vody je W)
TEPLO 1. Na udržení stále teploty v místnosti se za hodinu spotřebuje 4,2 10 6 J tepla. olik vody proteče radiátorem ústředního topení za hodinu, jestliže má voda při vstupu do radiátoru teplotu 80 ºC
Základy procesního inženýrství. Stroje na dopravu a stlačování vzdušniny
Základy procesního inženýrství Stroje na dopravu a stlačování vzdušniny 28.2.2017 1 Doprava a stlačování vzdušniny Kompresní poměr: tlak na výstupu/tlak na vstupu Ventilátory - kompresní poměr 1.1 Dmychadla
Pístové spalovací motory-pevné části
Předmět: Ročník: Vytvořil: Datum: Silniční vozidla třetí NĚMEC V. 28.8.2013 Definice spalovacího motoru Název zpracovaného celku: Pístové spalovací motory-pevné části Spalovací motory jsou tepelné stroje,
Blokové schéma Clausius-Rankinova (C-R) cyklu s přihříváním páry je na obrázku.
Příklad 1: Přihřívání páry Teoretický parní oběh s přihříváním páry pracuje s následujícími parametry: Admisní tlak páry p a = 10 MPa a teplota t a = 530 C. Tlak páry po expanzi ve vysokotlaké části turbíny
FYZIKA I cvičení, FMT 2. POHYB LÁTKY
FYZIKA I cvičení, FMT 2.1 Kinematika hmotných částic 2. POHYB LÁTKY 2.1.1 2.1.2 2.1.3 2.1.4 2.1.5 2.1.6 Těleso při volném pádu urazí v poslední sekundě dvě třetiny své dráhy. Určete celkovou dráhu volného
Termomechanika 5. přednáška
Termomechanika 5. přednáška Miroslav Holeček, Jan Vychytil Upozornění: Tato prezentace slouží výhradně pro výukové účely Fakulty strojní Západočeské univerzity v Plzni. Byla sestavena autory s využitím
MODERNÍ TECHNOLOGIE A DLOUHOLETÁ ZKUŠENOST
MODERNÍ TECHNOLOGIE A DLOUHOLETÁ ZKUŠENOST RV, RK VODOKRUŽNÉ VÝVĚVY A KOMPRESORY SIGMA PUMPY HRANICE, s.r.o. Tovární č.p. 65, 5 Hranice I - Město, Česká republika tel.: 5 66, fax: 5 66 e-mail: sigmapumpy@sigmapumpy.com
Příloha-výpočet motoru
Příloha-výpočet motoru 1.Zadané parametry motoru: vrtání d : 77mm zdvih z: 87mm kompresní poměr ε : 10.6 atmosférický tlak p 1 : 98000Pa teplota nasávaného vzduchu T 1 : 353.15K adiabatický exponent κ
Digitální učební materiál
Digitální učební materiál Číslo projektu Označení materiálu Název školy Autor Tematická oblast Ročník Anotace Metodický pokyn Zhotoveno CZ.1.07/1.5.00/34.0061 VY_32_ INOVACE_E.3.20 Integrovaná střední
Inovace a zkvalitnění výuky prostřednictvím ICT. DVOUDOBÝ ZÁŽEHOVÝ MOTOR Ing. Petr Plšek Číslo: VY_32_INOVACE_ 08-11 Anotace:
Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1 Šablona: Název: Téma: Autor: Inovace a zkvalitnění výuky prostřednictvím ICT Pístové stroje DVOUDOBÝ ZÁŽEHOVÝ MOTOR Ing. Petr Plšek
3.5 Tepelné děje s ideálním plynem stálé hmotnosti, izotermický děj
3.5 Tepelné děje s ideálním plynem stálé hmotnosti, izotermický děj a) tepelný děj přechod plynu ze stavu 1 do stavu tepelnou výměnou nebo konáním práce dále uvaž., že hmotnost plynu m = konst. a navíc
Příklady k opakování TERMOMECHANIKY
Příklady k opakování TERMOMECHANIKY P1) Jaký teoretický výkon musí mít elektrický vařič, aby se 12,5 litrů vody o teplotě 14 C za 15 minuty ohřálo na teplotu 65 C, jestliže hustota vody je 1000 kg.m -3
RV, RK SIGMA PUMPY HRANICE A KOMPRESORY 426 2.98 71.01
SIGMA PUMPY HRANICE VODOKRUŽNÉ VÝVĚVY A KOMPRESORY RV, RK SIGMA PUMPY HRANICE, s.r.o. Tovární 65, 75 Hranice tel.: 6/6, fax: 6/ 57 Email: sigmahra@sigmahra.cz 6.9 7. Použití Vývěvy RV se používají v mnoha
Kogenerační jednotka se spalovací turbínou o výkonu 2500 kw. Stanislav Veselý, Alexander Tóth
KOTLE A ENERGETICKÁ ZAŘÍZENÍ 2011 BRNO 14.3. až 26.3. 2011 Kogenerační jednotka se spalovací turbínou o výkonu 2500 kw Stanislav Veselý, Alexander Tóth EKOL, spol. s r.o., Brno Kogenerační jednotka se
MAZACÍ SOUSTAVA MOTORU
MAZACÍ SOUSTAVA MOTORU Hlavním úkolem mazací soustavy je zásobovat všechna kluzná uložení dostatečným množstvím oleje o příslušné teplotě (viskozitě) a tlaku. Standardní je oběhové tlakové mazání). Potřebné
Cvičení z termomechaniky Cvičení 3.
Příklad 1 1kg plynu při izobarickém ohřevu o 710 [ C] z teploty 40[ C] vykonal práci 184,5 [kj.kg -1 ]. Vypočítejte molovou hmotnost plynu, množství přivedeného tepla a změnu vnitřní energie ΔT = 710 [K]
Komponenta Vzorce a popis symbol propojení Hydraulický válec jednočinný. d: A: F s: p provoz.: v: Q přítok: s: t: zjednodušeně:
Plánování a projektování hydraulických zařízení se provádí podle nejrůznějších hledisek, přičemž jsou hydraulické elementy voleny podle požadovaných funkčních procesů. Nejdůležitějším předpokladem k tomu
III/2 Inovace a zkvalitnění výuky prostřednictvím ICT. Pracovní list č.2 k prezentaci Zdroje tlakového vzduchu
Číslo projektu CZ.1.07/1.5.00/34.0514 Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Tematická oblast Technologie montáží, vy_32_inovace_ma_21_04 Autor Ing.
Tep e e p l e né n é str st o r j o e e z po p h o l h ed e u d u zákl zá ad a n d í n h í o h o kur ku su r su fyzi f ky 3. 3 Poznámky k přednášce
Tepelné stroje z pohledu základního kursu fyziky. Poznámky k přednášce osnova. Idealizované tepelné cykly strojů s vnitřním spalováním, Ottův cyklus, Dieselův cyklus, Atkinsonův cyklus,. Způsob výměny
ská vozidla Čerpadla pro hasičsk Albert Ziegler GmbH & Co.KG by Albert Ziegler GmbH & Co. KG Version 2002_02 (9/9)
Čerpadla pro hasičsk ská vozidla Albert Ziegler GmbH & Co.KG by Albert Ziegler GmbH & Co. KG Version 2002_02 (9/9) Odstřediv edivá čerpadla Označen ení čerpadel FP 16/8-1 HH HH = Vysokotlakéčerpadlo H
Cvičení z termomechaniky Cvičení 5.
Příklad V kompresoru je kotiuálě stlačová objemový tok vzduchu [m 3.s- ] o teplotě 20 [ C] a tlaku 0, [MPa] a tlak 0,7 [MPa]. Vypočtěte objemový tok vzduchu vystupujícího z kompresoru, jeho teplotu a příko
POHONNÉ JEDNOTKY. Energie SPALOVACÍ MOTOR. Chemická ELEKTROMOTOR. Elektrická. Mechanická energie HYDROMOTOR. Tlaková. Ztráty
Energie Chemická Elektrická Tlaková POHONNÉ JEDNOTKY SPALOVACÍ MOTOR ELEKTROMOTOR HYDROMOTOR Mechanická energie Ztráty POHONNÉ JEDNOTKY - TRANSFORMÁTOR ENERGIE 20013/2014 Pohonné jednotky I. SCHOLZ 1 SPALOVACÍ
Termomechanika 5. přednáška Michal Hoznedl
Termomechanika 5. přednáška Michal Hoznedl Upozornění: Tato prezentace slouží výhradně pro výukové účely Fakulty strojní Západočeské univerzity v Plzni. Byla sestavena autory s využitím citovaných zdrojů
Z ûehovè a vznïtovè motory
2. KAPITOLA Z ûehovè a vznïtovè motory 2. V automobilech se používají pístové motory. Ty pracují v určitém cyklu, který obsahuje výměnu a spálení směsi paliva se vzdušným kyslíkem. Cyklus probíhá ve čtyřech
Identifikátor materiálu: ICT 2 51
Identifikátor materiálu: ICT 2 51 Registrační číslo projektu Název projektu Název příjemce podpory název materiálu (DUM) Anotace Autor Jazyk Očekávaný výstup Klíčová slova Druh učebního materiálu Druh
10. Práce plynu, tepelné motory
0. Práce plynu, tepelné motory Práce plynu: Plyn uzavřený v nádobě s pohyblivým pístem působí na píst tlakovou silou F a při zvětšování objemu koná práci W. Při zavedení práce vykonané plynem W = -W, lze
TEPLO A TEPELNÉ STROJE
TEPLO A TEPELNÉ STROJE STROJE A ZAŘÍZENÍ ČÁSTI A MECHANISMY STROJŮ ENERGIE,, PRÁCE A TEPLO Energie - z řeckého energia: aktivita, činnost. Ve strojírenské praxi se projevuje jako dominantní energie mechanická.
Zvyšování vstupních parametrů
CARNOTIZACE Zvyšování vstupních parametrů TTT + vyšší tepelná účinnost ZVYŠOVÁNÍ ÚČINNOSTI R-C CYKLU - roste vlhkost páry na konci expanze (snížení η td, příp. eroze lopatek) - vyšší tlaky = větší nároky
[381 m/s] 12. Ocelovou součást o hmotnosti m z = 4 kg, měrném teple c z = 420 J/kgK, zahřátou na teplotu t z = 900 C ponoříme do olejové lázně o
3 - Termomechanika 1. Hustota vzduchu při tlaku p l = 0,2 MPa a teplotě t 1 = 27 C je ρ l = 2,354 kg/m 3. Jaká je jeho hustota ρ 0 při tlaku p 0 = 0,1MPa a teplotě t 0 = 0 C [1,29 kg/m 3 ] 2. Určete objem
Termodynamika 2. UJOP Hostivař 2014
Termodynamika 2 UJOP Hostivař 2014 Skupenské teplo tání/tuhnutí je (celkové) teplo, které přijme pevná látka při přechodu na kapalinu během tání nebo naopak Značka Veličina Lt J Nedochází při něm ke změně
IV. KRUHOVÝ DĚJ S IDEÁLNÍM PLYNEM, TEPELNÉ MOTORY
IV. KRUHOVÝ DĚJ S IDEÁLNÍM PLYNEM, TEPELNÉ MOTORY vynález parního stroje a snaha o zvýšení jeho účinnosti vedly k podrobnému studiu tepelných dějů, při nichž plyn nebo pára konají práci velký význam pro
Příklady k zápočtu molekulová fyzika a termodynamika
Příklady k zápočtu molekulová fyzika a termodynamika 1. Do vody o teplotě t 1 70 C a hmotnosti m 1 1 kg vhodíme kostku ledu o teplotě t 2 10 C a hmotnosti m 2 2 kg. Do soustavy vzápětí přilijeme další
Tento dokument vznikl v rámci projektu Využití e-learningu k rozvoji klíčových kompetencí reg. č.: CZ.1.07/1.1.38/01.0021.
Tento dokument vznikl v rámci projektu Využití e-learningu k rozvoji klíčových kompetencí reg. č.: CZ.1.07/1.1.38/01.0021. Stroje na dopravu kapalin Čerpadla jsou stroje, které dopravují kapaliny a kašovité
PRI-TeO-PO3-05.13F Palivová soustava vznětového motoru - dopravní (podávací) čerpadla 2 / 5
1 DOPRAVNÍ (PODÁVACÍ) PALIVOVÁ ČERPADLA Zabezpečují dopravu paliva z palivové nádrže do plnicí komory vstřikovacího čerpadla. Druhy dopravních palivových čerpadel : pístová dopravní čerpadla jednočinné
Kontrolní otázky k 1. přednášce z TM
Kontrolní otázky k 1. přednášce z TM 1. Jak závisí hodnota izobarického součinitele objemové roztažnosti ideálního plynu na teplotě a jak na tlaku? Odvoďte. 2. Jak závisí hodnota izochorického součinitele
Cvičení z termomechaniky Cvičení 7 Seminář z termomechaniky
Příklad 1 Plynová turbína pracuje dle Ericsson-Braytonova oběhu. Kompresor nasává 0,05 [kg.s- 1 ] vzduchu (individuální plynová konstanta 287,04 [J.kg -1 K -1 ]; Poissonova konstanta 1,4 o tlaku 0,12 [MPa]
1/ Vlhký vzduch
1/5 16. Vlhký vzduch Příklad: 16.1, 16.2, 16.3, 16.4, 16.5, 16.6, 16.7, 16.8, 16.9, 16.10, 16.11, 16.12, 16.13, 16.14, 16.15, 16.16, 16.17, 16.18, 16.19, 16.20, 16.21, 16.22, 16.23 Příklad 16.1 Teplota
23_ 2 24_ 2 25_ 2 26_ 4 27_ 5 28_ 5 29_ 5 30_ 7 31_
Obsah 23_ Změny skupenství... 2 24_ Tání... 2 25_ Skupenské teplo tání... 2 26_ Anomálie vody... 4 27_ Vypařování... 5 28_ Var... 5 29_ Kapalnění... 5 30_ Jak určíš skupenství látky?... 7 31_ Tepelné motory:...
TRYSKOVÉ MOTORY. Turbínové motory. Bezturbínové motory. Raketové motory. Turbokompresorový motor (jednoproudový)
Turbínové motory TRYSKOVÉ MOTORY Turbokompresorové (jednoproudové) Turbodmychadlové (dvouproudové) Turbovrtulové Bezturbínové motory Náporové Raketové motory Na tuhé pohonné látky Na kapalné pohonné látky
F - Tepelné motory VARIACE
Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. VARIACE Tento dokument byl kompletně vytvořen, sestaven a vytištěn
zapaluje směs přeskočením jiskry mezi elektrodami motoru (93 C), chladí se válce a hlavy válců Druhy:
zapis_spalovaci_motory_208/2012 STR Gd 1 z 5 29.1.4. Zapalování Zajišťuje zapálení směsi ve válci ve správném okamžiku (s určitým ) #1 Zapalování magneto Bateriové cívkové zapalování a) #2 generátorem
VY_32_INOVACE_FY.15 SPALOVACÍ MOTORY II.
VY_32_INOVACE_FY.15 SPALOVACÍ MOTORY II. Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Jiří Kalous Základní a mateřská škola Bělá nad Radbuzou, 2011 Motory s vnitřním spalováním U těchto
a) Jaká je hodnota polytropického exponentu? ( 1,5257 )
Ponorka se potopí do 50 m. Na dně ponorky je výstupní tunel o průměru 70 cm a délce, m. Tunel je napojen na uzavřenou komoru o objemu 4 m. Po otevření vnějšího poklopu vnikne z části voda tunelem do komory.
Rekapitulace stavu techniky v přeplňování vznětových motorů a další vývoj D T
Rekapitulace stavu techniky v přeplňování vznětových motorů a další vývoj M S V MCH D T M S V MCHV Nejrozšířenější provedení zejména u vozidlových motorů. Špičkově lze dosáhnout až pe = 2,3 2,5 MPa při
(elektrickým nebo spalovacím) nebo lidskou #9. pro velké tlaky a menší průtoky
zapis_hydraulika_cerpadla - Strana 1 z 6 10. Čerpadla (#1 ) v hydraulických zařízeních slouží jako zdroj - také jim říkáme #2 #3 obecně slouží na #4 (čerpání, vytlačování) kapalin z jednoho místa na druhé
PLYNNÉ LÁTKY. Mgr. Jan Ptáčník - GJVJ - Fyzika - Termika - 2. ročník
PLYNNÉ LÁTKY Mgr. Jan Ptáčník - GJVJ - Fyzika - Termika - 2. ročník Ideální plyn Po molekulách ideálního plynu požadujeme: 1.Rozměry molekul ideálního plynu jsou ve srovnání se střední vzdáleností molekul
VYBRANÉ STATĚ Z PROCESNÍHO INŽENÝRSTVÍ cvičení 11
UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY VYBRANÉ STATĚ Z PROCESNÍHO INŽENÝRSTVÍ cvičení 11 Termodynamika reálných plynů část 1 Hana Charvátová, Dagmar Janáčová Zlín 2013 Tento studijní
Kontrola pístového kompresoru
Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1 Šablona: Název: Téma: Autor: Číslo: Anotace: Inovace a zkvalitnění výuky prostřednictvím ICT Kontrola a měření strojních zařízení
kompresory AIR CENTER kompresory nářadí úprava vzduchu rozvody Máme dostatek vzduchu pro každého. autorizovaný distributor
AIR CENTER Máme dostatek vzduchu pro každého. autorizovaný distributor kompresory nářadí úprava vzduchu rozvody BOBBY Výkonné pístové kompresory s určením pro řemeslníky a kutily Společné parametry řady
BILLER & BURDA s.r.o. AUTORIZOVANÝ PRODEJ A SERVIS KOMPRESORŮ ATLAS COPCO
BILLER & BURDA s.r.o. AUTORIZOVANÝ PRODEJ A SERVIS KOMPRESORŮ ATLAS COPCO Výroba stlačeného vzduchu z pohledu spotřeby energie Vzhledem k neustále se zvyšujícím cenám el. energie jsme připravili některá
KLIMATIZACE A PRŮMYSLOVÁ VZDUCHOTECHNIKA VYBRANÉ PŘÍKLADY KE CVIČENÍ I.
KLIMATIZACE A PRŮMYSLOVÁ VZDUCHOTECHNIKA VYBRANÉ PŘÍKLADY KE CVIČENÍ I. Ing. Jan Schwarzer, Ph.D.. Praha 2011 Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti 1 Obsah 1 Obsah... 2 2 Označení...3
Hrajte na jistotu. Karetní seriál My rozdáváme, Vy vyhráváte! Kvalitní mobilní kompresory za zvýhodněné ceny
Hrajte na jistotu My rozdáváme, Vy vyhráváte! Karetní seriál 2018 1 1. kolo Kvalitní mobilní kompresory za zvýhodněné ceny 1. 3. 30. 4 2018 UNM 210-8-25 W Obj. číslo: 1121160166 UNM 210-8-25 WXOF Obj.
LOPATKOVÉ STROJE LOPATKOVÉ STROJE
Předmět: Ročník: Vytvořil: Datum: STROJÍRENSTVÍ ČTVRTÝ BIROŠČÁKOVÁ I. 22. 11. 2013 Název zpracovaného celku: LOPATKOVÉ STROJE LOPATKOVÉ STROJE Lopatkové stroje jsou taková zařízení, ve kterých dochází
KOMPRESORY DMYCHADLA VENTILÁTORY
KOMPRESORY DMYCHADLA VENTILÁTORY STROJE PRO STLAČOVÁNÍ A DOPRAVU PLYNŮ Těmito stroji lze plynům dodat tlakovou a kinetickou energii. Základními parametry jsou dosažitelný přetlak na výstupu stroje p /MPa/
Centrum kompetence automobilového průmyslu Josefa Božka - AutoSympo a Kolokvium Božek až , Roztoky -
Popis obsahu balíčku WP 11: Návrh a optimalizace provozu inovačních motorů WP11:Návrh a optimalizace provozu inovačních motorů : EV/AV pro SVA prioritu [A] Vedoucí konsorcia podílející se na pracovním
piãkové vybavení stojaté nebo leïaté Stavební fiada UniMaster ST
KOMPRESORY STACIONÁRNÍ piãkové vybavení stojaté nebo leïaté Stavební fiada UniMaster ST Neomezená rozmanitost Zde naleznete vždy vhodný kompresor pro Vaše potřeby: na stojatém vzdušníku (STV), na ležatém
Konstrukce drážních motorů
Konstrukce drážních motorů Vodní okruhy spalovacího motoru ( objem vody cca 500 l ) 1. Popis hlavního okruhu V hlavním vodním okruhu je ochlazována voda kterou je chlazen spalovací motor a pláště turbodmychadel.
Digitální učební materiál
Digitální učební materiál Číslo projektu Označení materiálu Název školy Autor Tematická oblast Ročník Anotace Metodický pokyn Zhotoveno CZ.1.07/1.5.00/34.0061 VY_32_ INOVACE_E.3.18 Integrovaná střední
TEPELNÉ MOTORY (první část)
TEPELNÉ MOTORY (první část) A) Výklad: Tepelné motory: Tepelné motory jsou hnací stroje, které přeměňují část vnitřní energie paliva uvolněné hořením na energii pohybovou (tj. mechanickou). Obecný princip
KOEXPRO OSTRAVA, akciová společnost, U Cementárny 1303/16, 703 00 Ostrava Vítkovice, CZECH REPUBLIC ČERPACÍ TECHNIKA
KOEXPRO OSTRAVA, akciová společnost, U Cementárny 1303/16, 703 00 Ostrava Vítkovice, CZECH REPUBLIC ČERPACÍ TECHNIKA VŘETENOVÁ A PÍSTOVÁ ČERPADLA OSTATNÍ ČERPADLA A KOMPONENTY KOMPONENTY POTRUBNÍ DOPRAVY
Popis výukového materiálu
Popis výukového materiálu Číslo šablony III/2 Číslo materiálu VY_32_INOVACE_ SZ _ 20. 12. Autor: Ing. Luboš Veselý Datum vypracování: 28. 02. 2013 Předmět, ročník Tematický celek Téma Druh učebního materiálu
Hydrodynamické mechanismy
Hydrodynamické mechanismy Pracují s kapalným médiem (hydraulická kapalina na bázi ropného oleje) a využívají silových účinků, které provázejí změny proudění kapaliny. Zařazeny sem jsou pouze mechanismy
Atlas Copco Výrobní program. Divize Kompresory
Atlas Copco Výrobní program Divize Kompresory Kompresory se vstřikem oleje AUTOMAN Zdvihový objem Pístové kompresory chlazené 14,4 až 67,8 m 3 /h Max. pracovní přetlak 8, 11, 15 bar 1.5 až 7.5 kw Pístové
COPELAND SKROL KOMPRESORY
COPELAND SKROL KOMPRESORY Přehled vývoje výroby skrolů 1905 první patent konstrukce skrolu 1978 počátek vývojové koncepce u Copelandu 1986 příprava sériové výroby skrolu 1987 zahájení výroby klimatizační
Klimatizace NORDline AUS 09-25
Klimatizace NORDline AUS 09-25 Hodnoty jednotky při použití pro vytápění Podmínky měření 10 C/A20 C (100%) 7 C/A20 C (88%) A2 C/A20 C (54%) A7 C/A20 C (35%) A12 C/A20 C (15%) Výkon (kw) 2,723 2,303 1,519
Práce je doplněna především potřebnými grafy a schematy, v praxi nejčastěji používaných zařízení s četnými příklady na využívání odpadního tepla.
Úvod Účelem této práce je detailním způsobem seznámit především energetické auditory a pracovníky energetického poradenství o vybraných výrobách v odvětvích našeho průmyslu s nejčastěji se vyskytujícími
Spotřeba paliva a její měření je jedna z nejdůležitějších užitných vlastností vozidla. Měřit a uvádět spotřebu paliva je možno několika způsoby.
S Spotřeba paliva Spotřeba paliva a její měření je jedna z nejdůležitějších užitných vlastností vozidla. ěřit a uvádět spotřebu paliva je možno několika způsoby. S.1 Spotřeba a měrná spotřeba Spotřeba
Průmyslové pístové kompresory RL - RH - RK
Průmyslové pístové kompresory RL - RH - RK SPOLEHLIVÁ TECHNOLOGIE RL - RH - RK Kompresor přímo spojený s motorem řešení pro průmysl Vyzkoušená technologie, solidní konstrukce RL-RH-RK jsou kompresory přímo
NERO SUCHOBĚŽNÉ VÝVĚVY A KOMPRESORY VAKUUM BOHEMIA SUCHOBĚŽNÉ LAMELOVÉ VÝVĚVY ISO 9001:2001
VAKUUM BOHEMIA vývěvy, dmychadla, kompresory, vakuové systémy, servis a opravy VAKUUM BOHEMIA s.r.o. Lidická kolonie 47 586 01 Jihlava Tel.: +420 567 322 487 Fax: +420 567 330 560 www.vakuum-bohemia.cz
Jménem výboru odborné sekce Hydraulika a Pneumatika Vás vítá na semináři Tlakové zásobníky a chladiče pro hydrauliku.
Březen 2019 Back to Start Jménem výboru odborné sekce Hydraulika a Pneumatika Vás vítá na semináři Tlakové zásobníky a chladiče pro hydrauliku. Ing. Petr Jáchym jachym.petr@hydac.cz Novotného lávka 6.března
od 1,5 kw a nádoby 6 litrů až po 7,5 kw a nádoby 500 litrů
Pístové kompresory od 1,5 kw a nádoby 6 litrů až po 7,5 kw a nádoby 500 litrů SPOLEHLIVÁ TECHNOLOGIE Dlouhá historie kvalitních kompresorů VČERA DNES Kompresory MARK splňují nejvyšší standard v oblasti
Pístové kompresory. od 1,5 kw a nádoby 6 litrů až po 7,5 kw a nádoby 500 litrů SPOLEHLIVÁ TECHNOLOGIE
Pístové kompresory od 1,5 kw a nádoby 6 litrů až po 7,5 kw a nádoby 500 litrů SPOLEHLIVÁ TECHNOLOGIE Dlouhá historie kvalitních kompresorů VČERA DNES Kompresory MARK splňují nejvyšší standard v oblasti
Ústav automobilního a dopravního inženýrství PODPORA CVIČENÍ. Ing. Jan Vančura Ústav automobilního a dopravního inženýrství FSI VUTBR
PODPORA CVIČENÍ 1 Sací systém spalovacího motoru zabezpečuje přívod nové náplně do válců motoru. Vzduchu u motorů vznětových a u motorů zážehových s přímým vstřikem paliva do válce motoru. U motorů s vnější
TZB - VZDUCHOTECHNIKA
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ JIŘÍ HIRŠ, GÜNTER GEBAUER TZB - VZDUCHOTECHNIKA MODUL BT0-10 CHLAZENÍ PRO KLIMATIZACI STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU STUDIA Název
Série PRO LINE. Pístové kompresory
Série PRO LINE Pístové kompresory 2 Bezolejové kompresory s přímým pohonem Řada O20P Vysoce výkonné bezolejové pístové kompresory Bezpečnost žádný únik oleje Komfort pryžová rukojeť pro pohodlnější manipulaci
Popis výukového materiálu
Popis výukového materiálu Číslo šablony III/2 Číslo materiálu VY_32_INOVACE_ SZ_20.10. Autor: Ing. Luboš Veselý Datum vytvoření: 15. 02. 2013 Předmět, ročník Tematický celek Téma Druh učebního materiálu
CAS 32/8200/800-S3R. NA PODVOZKU T 815 PR2 6x6
CAS 32/8200/800-S3R NA PODVOZKU T 815 PR2 6x6 VŠEOBECNÝ POPIS Těžká cisterna na 3 nápravovém podvozku T815 PR-2. Čerpadlo nízkotlaké 3200 l/min 8200 l vody, 800 l pěnidla Posádka 1+3 Zásah vodou i pěnou
DOPRAVNÍ A ZDVIHACÍ STROJE
OBSAH 1 DOPRAVNÍ A ZDVIHACÍ STROJE (V. Kemka).............. 9 1.1 Zdvihadla a jeřáby....................................... 11 1.1.1 Rozdělení a charakteristika zdvihadel......................... 11 1.1.2
12. Tepelné stroj 12.1 Přeměna tepelné energie na práci Izotermické rozpínání plynu Adiabatické rozpínání plynu kruhovým dějem
1. Tepelné stroj 1.1 Přeměna tepelné energie na práci Mají-li plyny vysoký tlak a teplotu převládá v celkové vnitřní energii energie kinetická. Je-li plyn uzavřený ve válci s pohyblivým pístem, pak při
OUTdoor MGM 500 Zemní plyn - emise NOx < 500 mg/m3 @ 5%O2. V kontejneru. Typový list kogenerační jednotky s plynovým motorem MAN
Typový list kogenerační jednotky s plynovým motorem MAN V kontejneru OUTdoor MGM 500 Zemní plyn - emise NOx < 500 mg/m3 @ 5%O2 Specifikace dodávky Technické parametry Motor a generátor Řídící systém Bilance
Teplárenské cykly ZVYŠOVÁNÍ ÚČINNOSTI. Pavel Žitek
Teplárenské cykly ZVYŠOVÁNÍ ÚČINNOSTI 1 Zvyšování účinnosti R-C cyklu ZÁKLADNÍ POJMY Tepelná účinnost udává, jaké množství vloženého tepla se podaří přeměnit na užitečnou práci či elektrický výkon; vypovídá
CHLADÍCÍ ZAŘÍZENÍ. Obr. č. VIII-1 Kompresorový chladící oběh
CHLADÍCÍ ZAŘÍZENÍ 01. Zadání cvičení - proveďte měření tepelných výkonů chladícího kompresoru. Při měření respektujte ČSN 14 06 13. Ze změřených veličin vyhodnoťte hmotnostní chladivost, chladící výkon,