Cvičení z termomechaniky Cvičení 3.
|
|
- Jaroslava Vávrová
- před 6 lety
- Počet zobrazení:
Transkript
1 Příklad 1 1kg plynu při izobarickém ohřevu o 710 [ C] z teploty 40[ C] vykonal práci 184,5 [kj.kg -1 ]. Vypočítejte molovou hmotnost plynu, množství přivedeného tepla a změnu vnitřní energie ΔT = 710 [K] a 12 = 184, [J. kg 1 ] t 1 = 40 [ C] = 313,15 [K] r = 287,04 [J. kg 1. K 1 ] Q 12 =? [J] M =? [kg. mol 1 ] Řešení: Na začátku řešení je třeba říci, že se jedná o 1 kg látky, tedy můžeme používat měrné jednotky během výpočtu. Budeme vycházet ze základní rovnice pro entalpii: dh = du + p. dv + v. dp Pro izobarický děj nám člen v. dp vypadne a víme, že člen p. dv = da. Rovnice teda nabyde tvaru: dh = du + da Z předchozího také víme, že dh = c p. ΔT a du = c v. ΔT. Rovnici tedy upravíme do tvaru: Přeuspořádáme členy: Z Mayerova vztahu víme, že c p c v = r, tedy: c p. ΔT = c v. ΔT + a 12 c p. ΔT c v. ΔT = a 12 ΔT(c p c v ) = a 12 r. ΔT = a 12 Taky platí, že r = R M R M. ΔT = a 12 R. ΔT M = = 0,032 [kg. mol 1 ] a 12 Jedná se o kyslík (O 2), tedy o dvouatomový plyn a tedy κ = 1,4. Množství přivedeného tepla při izobarickém ději se rovná velikosti změny entalpie: 1
2 q 12 = h 12 = c p. (T 2 T 1 ) Opět úpravou Mayerovy rovnice můžeme přepsat rovnici do tvaru: q 12 = κ. r κ 1. (T 2 T 1 ) Jelikož už máme vyjádřenou molární hmotnost, tak můžeme vyjádřit i specifickou plynovou konstantu r: Množství přivedeného tepla je tedy: q 12 = Změna vnitřní energie je tedy rovna dle rovnice: Δu = r = R M = 8,314 0,32 = 259,8 [J. kg 1 K 1 ] κ. r 1,4. 259,8. ΔT = κ 1 1, = [J. kg 1 ] r 259,8. ΔT = κ 1 1, = [J. kg 1 ] Pozor!!!! V tomto případě změna vnitřní energie není rovna velikosti technické práce!!!! Velikost technické práce je nulová!!!! Změna vnitřní energie je ale přesto nenulová, protože vnitřní energie je funkcí teploty!!! Příklad 2 Ve válci kompresoru se sacím objemem 4.3 [l] se izotermicky stlačuje vzduch z [MPa] na 0.34 [MPa]. Určete hmotnostní průtok vzduchu, objem po stlačení, potřebnou práci a výkon kompresoru, jestliže se kompresor otáčí 500 [ot.min -1 ]. sací objem tlak - vstup tlak - výstup teplota V S = 4,3 [l] = 0,096 [Mpa] = 0,34 [Mpa] t = 20 [ C] otáčky n = 500 [ot. min 1 ] r vzduch r = [J. kg 1 K 1 ] Rozbor zadání: V prvním řade, je třeba si uvědomit, že jde o izotermický děj, jak je napsáno v zadání. Pak je nutné si uvědomit, na co je zaměřené zadání (co se má vypočítat) a v jakých jednotkách bude výsledek. Hmotnostní průtok vzduchu m =? [kg. s 1 ]; objem po stlačení V 2 =? [m 3 ] a potřebnou práci a výkon kompresoru. U posledních bodů, je dobré se zastavit a uvědomit si některá fakta. Prvním je, že při izotermickém ději je technická práce rovna absolutní a 12 = a t12 =? [J]. Druhým faktem je, že se jedná o kompresor, tedy práce se musí dodávat. Dodávaná práce má záporné znamínko. Záporný výsledek by měl tedy vyjít, když 2
3 užijeme hranice integrálu v pořadí 1-2 (dle obrázku) a tudíž lze předpokládat, že výkon vyjde v záporných hodnotách. Hmotnostní průtok vzduchu kompresorem je množství vzduchu, které prochází kompresorem za jednotku času (v základních jednotkách to bude kg.s -1 ). K proudění vzduchu na vstupu do kompresoru dojde následkem otáčení lopatek. Tedy výpočet pro hmotnostní průtok se bude řídit rovnicí: m = m. n V klidovém stavu má kompresor tzv. sací objem v našem případě je to V S = 4,3 [l] = 4, [m 3 ]. Ze stavové rovnice je možné vypočítat hmotnost vzduchu na vstupu: m =. V 1 r. T 1. V 1 = m. r. T 1 = 0, , ,04.293,15 = 4, [kg] Hmotnost i otáčky jsou teď známé, tudíž můžeme vypočítat hmotnostní tok vzduchu. Je třeba dbát na to, že v zadání jsou zadány otáčky za minutu, musí se tedy převést na sekundové otáčky n = 500[ot. min 1 ] = [ot. s 1 ]. Hmotnostní tok vzduchu kompresorem bude: m = m. n = 4, = 0,041[kg. s 1 ] Objem po stlačení v případě izotermického děje je možno vypočítat z rovnice:. V 1 =. V 2 0, V 2 = V 1 = 4,3.10 0, = [m 3 ] V případě izotermického děje se výpočet velikosti měrné práce kompresoru řídí rovnicemi pro měrnou absolutní práci a pro měrnou technickou práci: v 2 v 2 r. T a 12 = p. dv = dv = r. T v a t12 = v. dp = r. T p dp = r. T 1 p dv v 2 1 v dv 3 v = r. T[ln v] 2 v1 = r. T. ln v 2 p = r. T[ln p] 2 p1 = r. T. ln = r. T. ln Jelikož už známe i velikost koncového objemu, je možné si zvolit kteroukoli rovnici. Rovnice uvedené výše jsou pro měrné veličiny, což znamená, že je nutné násobit ještě hmotností!!!! Pro výpočet technické práce bude tedy platit: A t12 = m. a t12 = m. r. T. ln = 4, , ,15. ln 0, = 522 [J] 0, a t12 = 106,4 [kj]
4 Pro kontrolu je možné udělat výpočet i s poměrem objemů: A 12 = m. a 12 = m. r. T. ln v 2 = 4, , ,15. ln 4, = 522 [J] a 12 = 106,4 [kj] Poznámka!!! V obou případech se výsledky shodují a v obou případech jsou záporné, což se shoduje s předpokladem při počátečních úvahách. Výkon kompresoru se tedy určí za vztahu: Příklad 3 P = m. a t [kg. s 1. J. kg 1 ][J. s 1 ][W] P = 0,041. ( 106, ) = 4362 [W] Pod pístem spočívajícím na zarážkách je vzduch o obejmu 0,3 [m 3 ], tlaku 0,15 [MPa], teplotě 20 [ C]. Přívodem tepla začne tlak plynu pod pístem stoupat a při hodnotě 0,3 [MPa] se tlaková síla působící na píst vyrovná s tíhou pístu a píst začne stoupat, dokud se objem vzduchu pod pístem nezvětší o trojnásobek původního objemu. Vypočítejte konečnou teplotu vzduchu po expanzi, vykonanou absolutní a technickou práci a množství tepla nutné pro vykonání změny. Proveďte kontrolu pomocí prvé věty termodynamické. V 1 = V 2 = 0,3[m 3 ] = 0,15[MPa] = 0, [Pa] t 1 = 20[ C] = 293,15 [K] = p 3 = 0,3[MPa] = 0, [Pa] V 3 = 3. V 1 = 0,9[m 3 ] r = 287,04 [J. kg 1. K 1 ] A 13 =? [J] A t13 =? [J] Q 12 =? [J] Řešení: Před řešením příkladu je třeba si uvědomit, že nejde o jeden samostatný děj. Odpovědi, o jaký děje jde, je třeba hledat v zadání příkladu. V zadání se objeví věta: tlaková síla působící na píst vyrovná s tíhou pístu a píst začne stoupat, to znamená, že před tím, než se píst pohne, dojde k nějaké změně. Jakožto poloha pístu se nezmění, nezmění se ani objem ale teplo se přivádí. To znamená, že dojde k izochorické změně. Pak píst začne stoupat a objem se zvětší na trojnásobek původního objemu. Při stálém přívodu se předpokládá i nárůst teploty, tedy se musí jednat o izobarický děj. Celkový děj se tedy bude skládat z jedné izochorické a jedné izobarické změny. 4
5 Pak je nutno si uvědomit, které veličiny není nutno určit výpočtem, ale plynou ze zadání. První změnou je změna izochorická. To znamená, že tlak i teplota budou na konci děje vyšší, ale objem zůstane konstantní tj. V 1 = V 2 = 0,3[m 3 ]. Pak ze zadání je patrné, že koncový objem bude třikrát větší než původní, tedy V 3 = 3. V 1. V zadání je také uvedeno, že velikost tíhové síly pístu se vyrovná s velikostí tlakové síly při hodnotě 0,3 [MPa]. To znamená, že tlak na konci izochorického a na začátku izobarického děje bude 0,3 [MPa]. Bude tedy platit = 0,3[MPa] a tedy = p 3 = 0,3 [MPa]. V zadaní není udána hmotnost vzduchu pod válcem, tedy budeme uvažovat hmotnost m. Jelikož z pod pístu žádný vzduch neuniká, můžeme uvažovat zákon zachování hmoty, a tedy hmotnost vzduchu bude stejná na konci i na začátku děje. Můžeme si ji tedy vyjádřit z rovnice pro počáteční stav:. V 1 = m. r. T 1 m =. V 1 = 0, ,3 = 0,535 [kg] r. T 1 287, ,15 Pro výpočet konečné teploty pak můžeme této skutečnosti využít a můžeme napsat:. V 1 r. T 1 = p 3. V 3 r. T 3 Při uvažování stejného plynu se z rovnice může vyjmout i r:. V 1 = p 3. V 3 T 1 T 3 Pak teplota na konci děje bude rovna: T 3 = T 1. p 3. V 3 = 293,15.0, ,9. V 1 0, = 1758,9 [K]. 0,3 Absolutní práce A 13 se pak může vyjádřit ve tvaru: Poznámka: Používá se rovnou tvar s velikými písmeny, protože se objemy udávají přímo v m 3. Z rozměrové analýzy pak plyne, že Pa. m 3 = N m 2. m3 = N. m = J Technická práce A t13: V 3 A 13 = A 23 = p. dv =. (V 3 V 2 ) = 0, (0,9 0,3) = 180[kJ] V 2 A t13 = V. dp = V 1. ( ) = V 1. ( ) = 0,3. (0,15 0,30) = 45[kJ] Z teorie bylo patrné, že množství přivedeného tepla při izochorickém ději se rovná velikosti změny vnitřní energie ΔU 12 = m. c v (T 2 T 1 ) (jenom mezi body 1-2 je izochorický děj) a množství přivedeného tepla při izobarickém ději se rovná velikosti změny entalpie ΔH 23 = m. c p. (T 3 T 2 ) (jenom mezi body 2-3 je izobarický děj). Pozor na zadávání teplot!!! Respektujte zadání!!! Z toho je patrné, že množství přivedeného tepla bude rovna: Q 13 = ΔU 12 + ΔH 23 Q 13 = m. c v. (T 2 T 1 ) + m. c p. (T 3 T 2 ) 5
6 Do rovnice je nutno dopočítat ještě teplotu T 2, tedy z předchozího bude platit pro T 2: T 2 = T 1.. V 2 = 293,15.0, ,3. V 1 0, = 586,3 [K]. 0,3 Q 13 = m. [c v. (T 2 T 1 ) + c p (T 3 T 2 )] r Q 13 = m. [ κ 1. (T r. κ 2 T 1 ) + κ 1 (T 3 T 2 )] Q 13 = 0,535. [ 287,04 287,04.1,4. (586,3 293,15) + (1759,9 586,3)] 1,4 1 1,4 1 Q 13 = 743 [kj] Tento postup je časově náročný, navíc zahrnuje možnost numerické chyby. Také je třeba dbát na správné zadávání teplot při řešení!!!! Převeďme kontrolu za pomoci první věty termodynamické Jeden z tvarů první věty termodynamické definuje množství přivedeného tepla jako součet změny vnitřní energie a vykonané absolutní práce: Poznámka: Za zmínku stojí, jak se tady zadávají teploty. Velikost absolutní práce se v předchozím počítala na celý děj, tedy i změna vnitřní energie je se musí počítat pro celý děj. Z toho plyne, že v rovnici pro výpočet vnitřní energie bude zadán rozdíl teplot (T 3 T 1 ). Výpočet bude tedy následující: Q 13 = ΔU 13 + A 13 r ΔU 13 = m. c v. (T 3 T 1 ) = m. κ 1. (T 3 T 1 ) = 0, ,04. (1758,9 293,15) = 562,7[kJ] 1,4 1 Q 13 = 562, = 743[kJ] Pro druhý tvar prvního zákona termodynamiky pak dostáváme: Q 13 = ΔH 13 + A t13 κ. r ΔH 13 = m. c p. (T 3 T 1 ) = m. κ 1. (T 1,4. 287,04 3 T 1 ) = m.. (1758,9 293,15) = 787,8[kJ] 1,4 1 Q 13 = 787,8 45 = 743[kJ] 6
Poznámky k cvičením z termomechaniky Cvičení 3.
Vnitřní energie U Vnitřní energie U je stavová veličina U = U (p, V, T), ale závisí pouze na teplotě (experiment Gay-Lussac / Joule) U = f(t) Pro měrnou vnitřní energii (tedy pro vnitřní energii jednoho
Cvičení z termomechaniky Cvičení 2. Stanovte objem nádoby, ve které je uzavřený dusík o hmotnosti 20 [kg], teplotě 15 [ C] a tlaku 10 [MPa].
Příklad 1 Stanovte objem nádoby, ve které je uzavřený dusík o hmotnosti 20 [kg], teplotě 15 [ C] a tlaku 10 [MPa]. m 20[kg], t 15 [ C] 288.15 [K], p 10 [MPa] 10.10 6 [Pa], R 8314 [J. kmol 1. K 1 ] 8,314
Cvičení z termomechaniky Cvičení 7.
Příklad 1 Vypočítejte účinnost a výkon Humpreyoho spalovacího cyklu bez regenerace, když látkou porovnávacího oběhu je vzduch. Cyklus nakreslete v p-v a T-s diagramu. Dáno: T 1 = 300 [K]; τ = T 1 = 4;
VYBRANÉ STATĚ Z PROCESNÍHO INŢENÝRSTVÍ cvičení 12
UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY VYBRANÉ STATĚ Z PROCESNÍHO INŢENÝRSTVÍ cvičení 2 Termodynamika reálných plynů část 2 Hana Charvátová, Dagmar Janáčová Zlín 203 Tento studijní
Cvičení z termomechaniky Cvičení 5.
Příklad V komresoru je kontinuálně stlačován objemový tok vzduchu *m 3.s- + o telotě 0 * C+ a tlaku 0, *MPa+ na tlak 0,7 *MPa+. Vyočtěte objemový tok vzduchu vystuujícího z komresoru, jeho telotu a říkon
Cvičení z termomechaniky Cvičení 8.
Příklad Vzduch o tlaku,5 [MPa] a teplotě 27 [ C] vytéká Lavalovou dýzou do prostředí o tlaku 0,7 [MPa]. Nejužší průřez dýzy má průměr 0,04 [m]. Za jakou dobu vyteče 250 [kg] vzduchu a jaká bude výtoková
Termodynamika 2. UJOP Hostivař 2014
Termodynamika 2 UJOP Hostivař 2014 Skupenské teplo tání/tuhnutí je (celkové) teplo, které přijme pevná látka při přechodu na kapalinu během tání nebo naopak Značka Veličina Lt J Nedochází při něm ke změně
Dynamika proudících plynů
Dynamika proudících plynů Při výpočtech se budeme zabývat prouděním ideálních plynů. Jejich vlastnosti již byly popsány na předchozích přednáškách/cvičeních. Při proudění ideálního plynu si zavedeme ještě
IDEÁLNÍ PLYN. Stavová rovnice
IDEÁLNÍ PLYN Stavová rovnice Ideální plyn ) rozměry molekul jsou zanedbatelné vzhledem k jejich vzdálenostem 2) molekuly plynu na sebe působí jen při vzájemných srážkách 3) všechny srážky jsou dokonale
Jednotlivým bodům (n,2,a,e,k) z blokového schématu odpovídají body na T-s a h-s diagramu:
Elektroenergetika 1 (A1B15EN1) 3. cvičení Příklad 1: Rankin-Clausiův cyklus Vypočtěte tepelnou účinnost teoretického Clausius-Rankinova parního oběhu, jsou-li admisní parametry páry tlak p a = 80.10 5
Ideální plyn. Stavová rovnice Děje v ideálním plynu Práce plynu, Kruhový děj, Tepelné motory
Struktura a vlastnosti plynů Ideální plyn Vlastnosti ideálního plynu: Ideální plyn Stavová rovnice Děje v ideálním plynu Práce plynu, Kruhový děj, epelné motory rozměry molekul jsou ve srovnání se střední
Cvičení z termomechaniky Cvičení 7 Seminář z termomechaniky
Příklad 1 Plynová turbína pracuje dle Ericsson-Braytonova oběhu. Kompresor nasává 0,05 [kg.s- 1 ] vzduchu (individuální plynová konstanta 287,04 [J.kg -1 K -1 ]; Poissonova konstanta 1,4 o tlaku 0,12 [MPa]
12. Termomechanika par, Clausiova-Clapeyronova rovnice, parní tabulky, základni termodynamické děje v oblasti par
1/18 12. Termomechanika par, Clausiova-Clapeyronova rovnice, parní tabulky, základni termodynamické děje v oblasti par Příklad: 12.1, 12.2, 12.3, 12.4, 12.5, 12.6, 12.7, 12.8, 12.9, 12.10, 12.11, 12.12,
Poznámky k cvičením z termomechaniky Cvičení 10.
Příklad 1 Topné těleso o objemu 0,5 [m 3 ], naplněné sytou párou o tlaku 0,15 [MPa], bylo odstaveno. Po nějaké době vychladlo na teplotu 30 C. Určete množství uvolněného tepla a konečný stav páry v tělese.
1/6. 2. Stavová rovnice, plynová konstanta, Avogadrův zákon, kilomol plynu
1/6 2. Stavová rovnice, plynová konstanta, Avogadrův zákon, kilomol plynu Příklad: 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 2.10, 2.11, 2.12, 2.13, 2.14, 2.15, 2.16, 2.17, 2.18, 2.19, 2.20, 2.21, 2.22,
3.5 Tepelné děje s ideálním plynem stálé hmotnosti, izotermický děj
3.5 Tepelné děje s ideálním plynem stálé hmotnosti, izotermický děj a) tepelný děj přechod plynu ze stavu 1 do stavu tepelnou výměnou nebo konáním práce dále uvaž., že hmotnost plynu m = konst. a navíc
Poznámky k cvičením z termomechaniky Cvičení 4. Postulát, že nedochází k výměně tepla má dopad na první větu termodynamickou
Adiabatická změna: Při adiabatickém ději nedochází k výměně tepla s okolím, tedy platí: dq = 0; dq = 0 () Postulát, že nedochází k výměně tepla má dopad na první větu termodynamickou Pro její první tvar:
Fyzikální chemie. 1.2 Termodynamika
Fyzikální chemie. ermodynamika Mgr. Sylvie Pavloková Letní semestr 07/08 děj izotermický izobarický izochorický konstantní V ermodynamika rvní termodynamický zákon (zákon zachování energie): U Q + W izotermický
Blokové schéma Clausius-Rankinova (C-R) cyklu s přihříváním páry je na obrázku.
Příklad 1: Přihřívání páry Teoretický parní oběh s přihříváním páry pracuje s následujícími parametry: Admisní tlak páry p a = 10 MPa a teplota t a = 530 C. Tlak páry po expanzi ve vysokotlaké části turbíny
9. Struktura a vlastnosti plynů
9. Struktura a vlastnosti plynů Osnova: 1. Základní pojmy 2. Střední kvadratická rychlost 3. Střední kinetická energie molekuly plynu 4. Stavová rovnice ideálního plynu 5. Jednoduché děje v plynech a)
Cvičení z termomechaniky Cvičení 6.
Příklad 1: Pacovní látkou v poovnávacím smíšeném oběhu spalovacího motou je vzduch o hmotnosti 1 [kg]. Počáteční tlak je 0,981.10 5 [Pa] při teplotě 30 [ C]. Kompesní pomě je 7, stupeň zvýšení tlaku 2
1/5. 9. Kompresory a pneumatické motory. Příklad: 9.1, 9.2, 9.3, 9.4, 9.5, 9.6, 9.7, 9.8, 9.9, 9.10, 9.11, 9.12, 9.13, 9.14, 9.15, 9.16, 9.
1/5 9. Kompresory a pneumatické motory Příklad: 9.1, 9.2, 9.3, 9.4, 9.5, 9.6, 9.7, 9.8, 9.9, 9.10, 9.11, 9.12, 9.13, 9.14, 9.15, 9.16, 9.17 Příklad 9.1 Dvojčinný vzduchový kompresor bez škodného prostoru,
Cvičení z termomechaniky Cvičení 5.
Příklad V kompresoru je kotiuálě stlačová objemový tok vzduchu [m 3.s- ] o teplotě 20 [ C] a tlaku 0, [MPa] a tlak 0,7 [MPa]. Vypočtěte objemový tok vzduchu vystupujícího z kompresoru, jeho teplotu a příko
Teplo, práce a 1. věta termodynamiky
eplo, práce a. věta termodynamiky eplo ( tepelná energie) Nyní již víme, že látka (plyn) s vyšší teplotou obsahuje částice (molekuly), které se pohybují s vyššími rychlostmi a můžeme posoudit, co se stane
Elektroenergetika 1. Termodynamika a termodynamické oběhy
Termodynamika a termodynamické oběhy Termodynamika Popisuje procesy, které zahrnují změny teploty, přeměny energie a vzájemný vztah mezi tepelnou energií a mechanickou prací Opakování fyziky Termodynamický
Elektroenergetika 1. Termodynamika
Elektroenergetika 1 Termodynamika Termodynamika Popisuje procesy, které zahrnují změny teploty, přeměny energie a vzájemný vztah mezi tepelnou energií a mechanickou prací Opakování fyziky Termodynamický
6. Jaký je výkon vařiče, který ohřeje 1 l vody o 40 C během 5 minut? Měrná tepelná kapacita vody je W)
TEPLO 1. Na udržení stále teploty v místnosti se za hodinu spotřebuje 4,2 10 6 J tepla. olik vody proteče radiátorem ústředního topení za hodinu, jestliže má voda při vstupu do radiátoru teplotu 80 ºC
Příklad 1: Bilance turbíny. Řešení:
Příklad 1: Bilance turbíny Spočítejte, kolik kg páry za sekundu je potřeba pro dosažení výkonu 100 MW po dobu 1 sek. Vstupní teplota a tlak do turbíny jsou 560 C a 16 MPa, výstupní teplota mokré páry za
VÝHODY A NEVÝHODY PNEUMATICKÝCH MECHANISMŮ
VÝHODY A NEVÝHODY PNEUMATICKÝCH MECHANISMŮ Výhody: medium (vzduch) se nachází všude kolem nás možnost využití centrální výroby stlačeného vzduchu v závodě kompresor nemusí pracovat nepřetržitě (stlačený
Blokové schéma Clausius-Rankinova (C-R) cyklu s přihříváním páry je na obrázku.
Elektroenergetika 1 (A1B15EN1) 4. cvičení Příklad 1: Přihřívání páry Teoretický parní oběh s přihříváním páry pracuje s následujícími parametry: Admisní tlak páry p a = 10 MPa a teplota t a = 530 C. Tlak
FYZIKA I cvičení, FMT 2. POHYB LÁTKY
FYZIKA I cvičení, FMT 2.1 Kinematika hmotných částic 2. POHYB LÁTKY 2.1.1 2.1.2 2.1.3 2.1.4 2.1.5 2.1.6 Těleso při volném pádu urazí v poslední sekundě dvě třetiny své dráhy. Určete celkovou dráhu volného
LOGO. Struktura a vlastnosti plynů Ideální plyn
Struktura a vlastnosti plynů Ideální plyn Ideální plyn Protože popsat chování plynů je nad naše možnosti, zavádíme zjednodušený model tzv. ideálního plynu, který má tyto vlastnosti: Částice ideálního plynu
Poznámky k semináři z termomechaniky Grafy vody a vodní páry
Příklad 1 Sytá pára o tlaku 1 [MPa] expanduje izotermicky na tlak 0,1 [MPa]. Znázorněte v diagramech vody a vodní páry. Jelikož se jedná o izotermický děj, je výhodné použít diagram T-s. Dále máme v zadání,
Přijímací zkouška na navazující magisterské studium 2017 Studijní program: Fyzika Studijní obory: FFUM
Přijímací zkouška na navazující magisterské studium 207 Studijní program: Fyzika Studijní obory: FFUM Varianta A Řešení příkladů pečlivě odůvodněte. Příklad (25 bodů) Nechť (a) Spočtěte lim n x n. (b)
Příklady k zápočtu molekulová fyzika a termodynamika
Příklady k zápočtu molekulová fyzika a termodynamika 1. Do vody o teplotě t 1 70 C a hmotnosti m 1 1 kg vhodíme kostku ledu o teplotě t 2 10 C a hmotnosti m 2 2 kg. Do soustavy vzápětí přilijeme další
Termochemie se zabývá tepelným zabarvením chemických reakcí Vychází z 1. termodynamického zákona. U změna vnitřní energie Q teplo W práce
Termochemie Termochemie se zabývá tepelným zabarvením chemických reakcí Vychází z 1. termodynamického zákona U = Q + W U změna vnitřní energie Q teplo W práce Teplo a práce dodané soustavě zvyšují její
12. Termomechanika par, Clausius-Clapeyronova rovnice, parní tabulky, základni termodynamické děje v oblasti par
1/2 1. Určovací veličiny pracovní látky 2. Stavová rovnice, plynová konstanta, Avogadrův zákon, kilomol plynu 3. Směsi plynů, měrné tepelné kapacity plynů 4. První termodynamický zákon 5. Základní vratné
Termodynamika. T [K ]=t [ 0 C] 273,15 T [ K ]= t [ 0 C] termodynamická teplota: Stavy hmoty. jednotka: 1 K (kelvin) = 1/273,16 část termodynamické
Termodynamika termodynamická teplota: Stavy hmoty jednotka: 1 K (kelvin) = 1/273,16 část termodynamické teploty trojného bodu vody (273,16 K = 0,01 o C). 0 o C = 273,15 K T [K ]=t [ 0 C] 273,15 T [ K ]=
PROCESY V TECHNICE BUDOV 8
UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY PROCESY V TECHNICE BUDOV 8 Dagmar Janáčová, Hana Charvátová Zlín 2013 Tento studijní materiál vznikl za finanční podpory Evropského sociálního
PLYNNÉ LÁTKY. Mgr. Jan Ptáčník - GJVJ - Fyzika - Termika - 2. ročník
PLYNNÉ LÁTKY Mgr. Jan Ptáčník - GJVJ - Fyzika - Termika - 2. ročník Ideální plyn Po molekulách ideálního plynu požadujeme: 1.Rozměry molekul ideálního plynu jsou ve srovnání se střední vzdáleností molekul
VYBRANÉ STATĚ Z PROCESNÍHO INŽENÝRSTVÍ cvičení 11
UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY VYBRANÉ STATĚ Z PROCESNÍHO INŽENÝRSTVÍ cvičení 11 Termodynamika reálných plynů část 1 Hana Charvátová, Dagmar Janáčová Zlín 2013 Tento studijní
Příklady k opakování TERMOMECHANIKY
Příklady k opakování TERMOMECHANIKY P1) Jaký teoretický výkon musí mít elektrický vařič, aby se 12,5 litrů vody o teplotě 14 C za 15 minuty ohřálo na teplotu 65 C, jestliže hustota vody je 1000 kg.m -3
Termodynamika materiálů. Vztahy a přeměny různých druhů energie při termodynamických dějích podmínky nutné pro uskutečnění fázových přeměn
Termodynamika materiálů Vztahy a přeměny různých druhů energie při termodynamických dějích podmínky nutné pro uskutečnění fázových přeměn Důležité konstanty Standartní podmínky Avogadrovo číslo N A = 6,023.10
STRUKTURA A VLASTNOSTI PLYNŮ POJMY K ZOPAKOVÁNÍ. Testové úlohy varianta A
Škola: Autor: DUM: Vzdělávací obor: Tematický okruh: Téma: Masarykovo gymnázium Vsetín Mgr. Jitka Novosadová MGV_F_SS_3S3_D09_Z_OPAK_T_Plyny_T Člověk a příroda Fyzika Struktura a vlastnosti plynů Opakování
III. STRUKTURA A VLASTNOSTI PLYNŮ
III. STRUKTURA A VLASTNOSTI PLYNŮ 3.1 Ideální plyn a) ideální plyn model, předpoklady: 1. rozměry molekul malé (ve srovnání se střední vzdáleností molekul). molekuly na sebe navzálem silově nepůsobí (mimo
FYZIKÁLNÍ CHEMIE chemická termodynamika
FYZIKÁLNÍ CHEMIE chemická termodynamika ermodynamika jako vědní disciplína Základní zákony termodynamiky Práce, teplo a energie Vnitřní energie a entalpie Chemická termodynamika Definice termodynamiky
Zpracování teorie 2010/11 2011/12
Zpracování teorie 2010/11 2011/12 Cykly Děje Proudění (turbíny) počet v: roce 2010/11 a roce 2011/12 Chladící zařízení (nakreslete cyklus a nakreslete schéma)... zde 13 + 2 (15) Izochorický děj páry (nakreslit
Úloha č.1: Stanovení molární tepelné kapacity plynu za konstantního tlaku
Úloha č.1: Stanovení molární tepelné kapacity plynu za konstantního tlaku Teorie První termodynamický zákon je definován du dq dw (1) kde du je totální diferenciál vnitřní energie a dq a dw jsou neúplné
Termochemie { práce. Práce: W = s F nebo W = F ds. Objemová práce (p vn = vnìj¹í tlak): W = p vn dv. Vratný dìj: p = p vn (ze stavové rovnice) W =
Termochemie { práce Práce: W = s F nebo W = Objemová práce (p vn = vnìj¹í tlak): W = V2 V 1 p vn dv s2 Vratný dìj: p = p vn (ze stavové rovnice) W = V2 V 1 p dv s 1 F ds s.1 Diferenciální tvar: dw = pdv
Vlhký vzduch a jeho stav
Vlhký vzduch a jeho stav Příklad 3 Teplota vlhkého vzduchu je t = 22 C a jeho měrná vlhkost je x = 13, 5 g kg 1 a entalpii sv Určete jeho relativní vlhkost Řešení Vyjdeme ze vztahu pro měrnou vlhkost nenasyceného
Energie, její formy a měření
Energie, její formy a měření aneb Od volného pádu k E=mc 2 Přednášející: Martin Zápotocký Seminář Aplikace lékařské biofyziky 2014/5 Definice energie Energos (ἐνεργός) = pracující, aktivní; ergon = práce
nafty protéká kruhovým potrubím o průměru d za jednu sekundu jestliže rychlost proudění nafty v potrubí je v. Jaký je hmotnostní průtok m τ
HYDRODYNAMIKA 5.37 Jaké objemové nmožství nafty protéká kruhovým potrubím o průměru d za jednu sekundu jestliže rychlost proudění nafty v potrubí je v. Jaký je hmotnostní průtok m τ. d 0mm v 0.3ms.850kgm
5.4 Adiabatický děj Polytropický děj Porovnání dějů Základy tepelných cyklů První zákon termodynamiky pro cykly 42 6.
OBSAH Předmluva 9 I. ZÁKLADY TERMODYNAMIKY 10 1. Základní pojmy 10 1.1 Termodynamická soustava 10 1.2 Energie, teplo, práce 10 1.3 Stavy látek 11 1.4 Veličiny popisující stavy látek 12 1.5 Úlohy technické
Příloha-výpočet motoru
Příloha-výpočet motoru 1.Zadané parametry motoru: vrtání d : 77mm zdvih z: 87mm kompresní poměr ε : 10.6 atmosférický tlak p 1 : 98000Pa teplota nasávaného vzduchu T 1 : 353.15K adiabatický exponent κ
Mol. fyz. a termodynamika
Molekulová fyzika pracuje na základě kinetické teorie látek a statistiky Termodynamika zkoumání tepelných jevů a strojů nezajímají nás jednotlivé částice Molekulová fyzika základem jsou: Látka kteréhokoli
Digitální učební materiál. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce podpory Gymnázium, Jevíčko, A. K.
Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím
Hydrochemie koncentrace látek (výpočty)
1 Atomová hmotnostní konstanta/jednotka m u Relativní atomová hmotnost Relativní molekulová hmotnost Látkové množství (mol) 1 mol je takové množství látky, které obsahuje tolik částic, kolik je atomů ve
III. STRUKTURA A VLASTNOSTI PLYNŮ
III. STRUKTURA A VLASTNOSTI PLYNŮ 3.1 Ideální plyn a) ideální plyn model, předpoklady: 1. rozměry molekul malé (ve srovnání se střední vzdáleností molekul). molekuly na sebe navzálem silově nepůsobí (mimo
3.1. Newtonovy zákony jsou základní zákony klasické (Newtonovy) mechaniky
3. ZÁKLADY DYNAMIKY Dynamika zkoumá příčinné souvislosti pohybu a je tedy zdůvodněním zákonů kinematiky. K pojmům používaným v kinematice zavádí pojem hmoty a síly. Statický výpočet Dynamický výpočet -
PROCESY V TECHNICE BUDOV cvičení 3, 4
UNIVERZITA TOMÁŠE ATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY PROCESY V TECHNICE UDOV cvičení 3, 4 část Hana Charvátová, Dagmar Janáčová Zlín 013 Tento studijní materiál vznikl za finanční podpory Evropského
Základem molekulové fyziky je kinetická teorie látek. Vychází ze tří pouček:
Molekulová fyzika zkoumá vlastnosti látek na základě jejich vnitřní struktury, pohybu a vzájemného působení částic, ze kterých se látky skládají. Termodynamika se zabývá zákony přeměny různých forem energie
Kontrolní otázky k 1. přednášce z TM
Kontrolní otázky k 1. přednášce z TM 1. Jak závisí hodnota izobarického součinitele objemové roztažnosti ideálního plynu na teplotě a jak na tlaku? Odvoďte. 2. Jak závisí hodnota izochorického součinitele
TERMOMECHANIKA 1. Základní pojmy
1 FSI VUT v Brně, Energetický ústav Odbor termomechaniky a techniky prostředí prof. Ing. Milan Pavelek, CSc. TERMOMECHANIKA 1. Základní pojmy OSNOVA 1. KAPITOLY Termodynamická soustava Energie, teplo,
TERMOMECHANIKA PRO STUDENTY STROJNÍCH FAKULT prof. Ing. Milan Pavelek, CSc. Brno 2013
Vysoké učení technické v Brně Fakulta strojního inženýrství, Energetický ústav Odbor termomechaniky a techniky prostředí TERMOMECHANIKA PRO STUDENTY STROJNÍCH FAKULT prof. Ing. Milan Pavelek, CSc. Brno
Teplota a její měření
Teplota a její měření Teplota a její měření Číslo DUM v digitálním archivu školy VY_32_INOVACE_07_03_01 Teplota, Celsiova a Kelvinova teplotní stupnice, převodní vztahy, příklady. Tepelná výměna, měrná
2.4 Stavové chování směsí plynů Ideální směs Ideální směs reálných plynů Stavové rovnice pro plynné směsi
1. ZÁKLADNÍ POJMY 1.1 Systém a okolí 1.2 Vlastnosti systému 1.3 Vybrané základní veličiny 1.3.1 Množství 1.3.2 Délka 1.3.2 Délka 1.4 Vybrané odvozené veličiny 1.4.1 Objem 1.4.2 Hustota 1.4.3 Tlak 1.4.4
8. Chemické reakce Energetika - Termochemie
- Termochemie TERMOCHEMIE oddíl termodynamiky Tepelné zabarvení chemických reakcí Samovolnost chemických reakcí Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti - Termochemie TERMOCHEMIE
Termodynamické zákony
Termodynamické zákony Makroskopická práce termodynamické soustavy Již jsme uvedli, že změna vnitřní energie soustavy je obecně vyvolána dvěma ději: tepelnou výměnou mezi soustavou a okolím a konáním práce
Domácí práce č.1. Jak dlouho vydrží palivo motocyklu Jawa 50 Pionýr, pojme-li jeho nádrž 3,5 litru paliva o hustote 750kg m 3 a
Domácí práce č.1 Jak dlouho vydrží palivo motocyklu Jawa 50 Pionýr, pojme-li jeho nádrž 3,5 litru paliva o hustote 750kg m 3 a motor beží pri 5000ot min 1 s výkonem 1.5kW. Motor má vrtání 38 mm a zdvih
Molekulová fyzika a termika. Přehled základních pojmů
Molekulová fyzika a termika Přehled základních pojmů Kinetická teorie látek Vychází ze tří experimentálně ověřených poznatků: 1) Látky se skládají z částic - molekul, atomů nebo iontů, mezi nimiž jsou
CVIČENÍ č. 10 VĚTA O ZMĚNĚ TOKU HYBNOSTI
CVIČENÍ č. 10 VĚTA O ZMĚNĚ TOKU HYBNOSTI Stojící povrch, Pohybující se povrch Příklad č. 1: Vodorovný volný proud vody čtvercového průřezu o straně 25 cm dopadá kolmo na rovinnou desku. Určete velikost
CVIČENÍ 3: VLHKÝ VZDUCH A MOLLIÉRŮV DIAGRAM
CVIČENÍ 3: VLHKÝ VZDUCH A MOLLIÉRŮV DIAGRAM Co to je vlhký vzduch? - vlhký vzduch je směsí suchého vzduchu a vodní páry okupující společný objem - vodní pára ve směsi může měnit formu z plynné na kapalnou
CVIČENÍ č. 7 BERNOULLIHO ROVNICE
CVIČENÍ č. 7 BERNOULLIHO ROVNICE Výtok z nádoby, Průtok potrubím beze ztrát Příklad č. 1: Určete hmotnostní průtok vody (pokud otvor budeme považovat za malý), která vytéká z válcové nádoby s průměrem
Přehled základních fyzikálních veličin užívaných ve výpočtech v termomechanice. Autor Ing. Jan BRANDA Jazyk Čeština
Identifikátor materiálu: ICT 2 41 Registrační číslo projektu CZ.1.07/1.5.00/34.0796 Název projektu Vzděláváme pro život Název příjemce podpory SOU plynárenské Pardubice název materiálu (DUM) Mechanika
13 otázek za 1 bod = 13 bodů Jméno a příjmení:
13 otázek za 1 bod = 13 bodů Jméno a příjmení: 4 otázky za 2 body = 8 bodů Datum: 1 příklad za 3 body = 3 body Body: 1 příklad za 6 bodů = 6 bodů Celkem: 30 bodů příklady: 1) Sportovní vůz je schopný zrychlit
Termomechanika 6. přednáška Doc. Dr. RNDr. Miroslav Holeček
Termomechanika 6. přednáška Doc. Dr. RNDr. Miroslav Holeček Upozornění: Tato prezentace slouží výhradně pro výukové účely Fakulty strojní Západočeské univerzity v Plzni. Byla sestavena autorem s využitím
VZOROVÝ ZKOUŠKOVÝ TEST z fyzikální chemie( 1
VZOROVÝ ZKOUŠKOVÝ TEST z fyzikální chemie(www.vscht.cz/fch/zktesty/) 1 Zkouškový test z FCH I, 10. srpna 2015 Vyplňuje student: Příjmení a jméno: Kroužek: Upozornění: U úloh označených ikonou uveďte výpočet
Hydrochemie koncentrace látek (výpočty)
Atomová hmotnostní konstanta/jednotka m u Relativní atomová hmotnost Relativní molekulová hmotnost Látkové množství (mol) mol je takové množství látky, které obsahuje tolik částic, kolik je atomů ve 2
a) Jaká je hodnota polytropického exponentu? ( 1,5257 )
Ponorka se potopí do 50 m. Na dně ponorky je výstupní tunel o průměru 70 cm a délce, m. Tunel je napojen na uzavřenou komoru o objemu 4 m. Po otevření vnějšího poklopu vnikne z části voda tunelem do komory.
PROCESNÍ INŽENÝRSTVÍ cvičení 10
UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY PROCESNÍ INŽENÝRSTVÍ cvičení 10 Hana Charvátová, Dagmar Janáčová Zlín 2013 Tento studijní materiál vznikl za finanční podpory Evropského sociálního
Zvyšování vstupních parametrů
CARNOTIZACE Zvyšování vstupních parametrů TTT + vyšší tepelná účinnost ZVYŠOVÁNÍ ÚČINNOSTI R-C CYKLU - roste vlhkost páry na konci expanze (snížení η td, příp. eroze lopatek) - vyšší tlaky = větší nároky
Termomechanika 4. přednáška
ermomechanika 4. přednáška Miroslav Holeček Upozornění: ato prezentace slouží výhradně pro výukové účely Fakulty strojní Západočeské univerzity v Plzni. Byla sestavena autorem s využitím citovaných zdrojů
Termodynamické zákony
ermoynamické zákony. termoynamický zákon (zákon zachování energie) (W je práce vykonaná na systém) teplo Q oané systému plus vynaložená práce W zvyšují vnitřní energii systému U (W je práce vykonaná systémem)
metoda je základem fenomenologické vědy termodynamiky, statistická metoda je základem kinetické teorie plynů, na níž si princip této metody ukážeme.
Přednáška 1 Úvod Při studiu tepelných vlastností látek a jevů probíhajících při tepelné výměně budeme používat dvě různé metody zkoumání: termodynamickou a statistickou. Termodynamická metoda je základem
přednáška č. 6 Elektrárny B1M15ENY Tepelné oběhy: Stavové změny Typy oběhů Možnosti zvýšení účinnosti Ing. Jan Špetlík, Ph.D.
Elektrárny B1M15ENY přednáška č. 6 Tepelné oběhy: Stavové změny Typy oběhů Možnosti zvýšení účinnosti Ing. Jan Špetlík, Ph.D. ČVUT FEL Katedra elektroenergetiky E-mail: spetlij@fel.cvut.cz Termodynamika:
3 Mechanická energie 5 3.1 Kinetická energie... 6 3.3 Potenciální energie... 6. 3.4 Zákon zachování mechanické energie... 9
Obsah 1 Mechanická práce 1 2 Výkon, příkon, účinnost 2 3 Mechanická energie 5 3.1 Kinetická energie......................... 6 3.2 Potenciální energie........................ 6 3.3 Potenciální energie........................
CVIČENÍ 1 - část 2: MOLLIÉRŮV DIAGRAM A ZMĚNY STAVU VLHKÉHO VZDUCHU
CVIČENÍ 1 - část 2: MOLLIÉRŮV DIAGRAM A ZMĚNY STAVU VLHKÉHO VZDUCHU Co to je Molliérův diagram? - grafický nástroj pro zpracování izobarických změn stavů vlhkého vzduchu - diagram je sestaven pro konstantní
Třecí ztráty při proudění v potrubí
Třecí ztráty při proudění v potrubí Vodorovným ocelovým mírně zkorodovaným potrubím o vnitřním průměru 0 mm proudí 6 l s - kapaliny o teplotě C. Určete tlakovou ztrátu vlivem tření je-li délka potrubí
Termomechanika cvičení
KATEDRA ENERGETICKÝCH STROJŮ A ZAŘÍZENÍ Termomechanika cvičení 1. cvičení Ing. Michal Volf / 18.02.2019 Informace o cvičení Ing. Michal Volf Email: volfm@kke.zcu.cz Konzultace: po vzájemné dohodě prezentace
ÚVODNÍ POJMY, VNITŘNÍ ENERGIE, PRÁCE A TEPLO POJMY K ZOPAKOVÁNÍ. Testové úlohy varianta A
Škola: Autor: DUM: Vzdělávací obor: Tematický okruh: Téma: Masarykovo gymnázium Vsetín Mgr. Jitka Novosadová MGV_F_SS_3S3_D08_Z_OPAK_T_Uvodni_pojmy_vnitrni_energie _prace_teplo_t Člověk a příroda Fyzika
KLIMATIZACE A PRŮMYSLOVÁ VZDUCHOTECHNIKA VYBRANÉ PŘÍKLADY KE CVIČENÍ I.
KLIMATIZACE A PRŮMYSLOVÁ VZDUCHOTECHNIKA VYBRANÉ PŘÍKLADY KE CVIČENÍ I. Ing. Jan Schwarzer, Ph.D.. Praha 2011 Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti 1 Obsah 1 Obsah... 2 2 Označení...3
Práce, výkon, energie
Práce, výkon, energie (test version, not revised) Petr Pošta pposta@karlin.mff.cuni.cz 23. října 2009 Obsah Mechanická práce Výkon, příkon, účinnost Mechanická energie Kinetická energie Potenciální energie
STANOVENÍ VLASTNOSTÍ AERAČNÍCH ZAŘÍZENÍ
STANOVENÍ VLASTNOSTÍ AERAČNÍCH ZAŘÍZENÍ Zadání: 1. Stanovte oxygenační kapacitu a procento využití kyslíku v čisté vodě pro provzdušňovací porézní element instalovaný v plexi válci následujících rozměrů:
Práce, výkon, energie
Práce, výkon, energie (test version, not revised) Petr Pošta pposta@karlin.mff.cuni.cz 11. listopadu 2009 Obsah Mechanická práce Výkon, příkon, účinnost Mechanická energie Kinetická energie Potenciální
Termomechanika 5. přednáška Michal Hoznedl
Termomechanika 5. přednáška Michal Hoznedl Upozornění: Tato prezentace slouží výhradně pro výukové účely Fakulty strojní Západočeské univerzity v Plzni. Byla sestavena autory s využitím citovaných zdrojů
Termodynamika a živé systémy. Helena Uhrová
Termodynamika a živé systémy Helena Uhrová Základní pojmy termodynamiky soustava izolovaná otevřená okolí vlastnosti soustavy znaky popisující soustavu stav rovnováhy tok m či E =0 funkce stavu - soubor
Proč funguje Clemův motor
- 1 - Proč funguje Clemův motor Princip - výpočet - konstrukce (c) Ing. Ladislav Kopecký, 2004 Tento článek si klade za cíl odhalit podstatu funkce Clemova motoru, provést základní výpočty a navrhnout