Cvičení z termomechaniky Cvičení 5.

Rozměr: px
Začít zobrazení ze stránky:

Download "Cvičení z termomechaniky Cvičení 5."

Transkript

1 Příklad V kompresoru je kotiuálě stlačová objemový tok vzduchu [m 3.s- ] o teplotě 20 [ C] a tlaku 0, [MPa] a tlak 0,7 [MPa]. Vypočtěte objemový tok vzduchu vystupujícího z kompresoru, jeho teplotu a příko kompresoru, když komprese je: a izotermická, b adiabatická. Zakreslete změy v p-v a T-s diagramech. V = [m 3. s ]; t = 20 [ C] = 293,5 [K]; = 0, [MPa]; p 2 = 0,7 [MPa]; V 2 =? [m 3. s ]; t 2 =? [K]; P =? [W] a Izotermická změa Pro výpočet velikosti objemového toku vystupujícího z kompresoru se budeme opírat o stavovou rovici, která je trošku upraveá. Uvažujeme, že přes kompresor proudí kotiuálě stálé možství vzduchu (v čase se eměí možství vzduchu, které protéká kompresorem, tedy můžeme uvažovat, že hmotost vzduchu v kompresoru v čase stejá. Jelikož ale, máme proudící médium, upravíme si stavovou rovici do ásledujícího tvaru: p. V = m. r. T Rovice se změila jeom formálě a dostala časový rozměr. Její úpravou pro podmíky izotermického děje dostáváme rovici:. V = p 2. V 2 Jedoduchou úpravou této rovice dostáváme velikost objemového průtoku a výstupu z kompresoru: V 2 = 0,.06. V = p 2 0, = 0,43 [m3 s ] Velikost teploty při izotermické kompresi je stejá a začátku i a koci děje, tedy: T = T 2 = 293,5 [K]

2 Tady je dobré se zastavit, výsledek porovat z grafem a udělat ěkteré úvahy pro další výpočty. Z grafů plyou ásledující předpoklady: Objem a koci komprese adiabatické bude vyšší ež u komprese izotermické (bod 2 leží víc vpravo od bodu 2 očekáváme tedy vyšší hodotu objemového průtoku a výstupu při adiabatickém ději (V 2 < V 2. Při adiabatickém ději bude teplota a koci komprese vyšší ež u komprese izotermické (bod 2 leží víc vpravo od bodu 2, tedy se očekává výsledek, pro který bude platit T 2 < T 2. Velikost práce se očekává v záporých hodotách (kompresoru se dodává práce Velikost dodávaé práce v případě adiabatické komprese bude vyšší ež v případě izotermické komprese (velikost plochy mezi zeleou křivkou a osou tlaku je meší ež velikost plochy mezi purpurovou křivkou a osou tlaku. P < P - Pozor, výsledky se očekávají v záporých hodotách, proto je uté porovávat v absolutích hodotách! Příko kompresoru (velikost techické práce, která se musí dodat kompresoru za jedotku času, je možé vypočítat přímo použitím rovice pro výpočet techické práce a veliči, které mají i časový rozměr a byly dříve použity ve stavové rovici. Velikost techické práce, je vyjádřea v Joulech [J], použitím veličiy objemového toku [m 3. s ] místo veličiy objemu [m 3 ] v rovici pro výpočet techické práce dostáváme amísto rovice p 2 A t2 = V. dp rovici p 2 A t2 = V. dp Tím, že a pravé straě přibyl časový rozměr, musel přibýt i a levé straě. Tedy původí rozměr obou stra, který byl v [J], má yí rozměry [J. s ], což je rozměr výkou [W]. Proto můžeme apsat, že velikost dodávaé práce: p P = A t2 = 2 p m.r.t V. dp = p 2 p dp = m. r. T p 2 dv p p p = m. r. T[l p] 2 p = m. r. T. l p 2 == m. r. T. l = p. V. l = 0, l 0,.06 2 p 2 0,7.06 = 94 59,049 [W] 2

3 b Adiabatická změa V případě adiabatické změy je také uděláa formálí změa a přidá časový rozměr, tedy rovice popisující rovováhu mezi počátečím a kocovým dějem má tvar: Separováím proměých se lze dopracovat k rovici:. V κ = p 2. V 2 κ ( V 2 = ( V p 2 Odkud je jedoduché vyjádřit velikost objemového průtoku vzduchu a výstupu z kompresoru: V 2 = V. ( κ 0,.0 6,4 =. ( p 2 0,7.0 6 = 0,249 [m 3 s ] Výsledek korespoduje s očekávaým výsledkem (viz úvahy výše a graf - V 2 < V 2 Výpočet teploty se bude odvíjet také od úprav rovice pro adiabatický děj (viz rovice (6 a (7 Cvičeí 4.. Využijeme tvar rovice, která se musí miimálě upravovat: T 2 T = ( p 2 A tedy je jedoduché vyjádřit velikost teploty a koci adiabatické komprese: T 2 = T. ( p κ 2 κ 0,7.0 6,4,4 = 293,5. ( 0,.0 6 = 5,5 [K] Výsledek korespoduje s očekávaým výsledkem (viz úvahy výše a graf - T 2 < T 2 V případě adiabatické změy eí uté použít itegrálí tvar výpočtu, ale lze využít toho, že při adiabatickém ději je pravá straa rovice pro prví záko termodyamiky rova ule (viz rovice (2 - cvičeí 4. Tedy úpravou rovice (2 a její rozšířeím o časový rozměr (rovici evyásobím hmotostí m ale hmotostím tokem m můžeme apsat, že velikost dodávaé práce v případě adiabatického děje: κ κ κ κ. r P = A t2 = m. κ (T 2 T P =. V. c r. T p. (T T 2 = 0,.06.,4. 287,04.. (293,5 5,5 = ,3 [W] 287,04.293,5,4 Výsledek korespoduje s očekávaým výsledkem (viz úvahy výše a graf - P < P 3

4 Příklad 2 Ve válci je vzduch o hmotosti 0,25 [kg] při tlaku [bar] a teplotě 5 [ C]. Vzduch je adiabaticky stlače a tlak 0,8 [MPa]. Staovte: Absolutí práci 2 Techickou práci 3 Kocový objem 4 Kocovou teplotu 5 Změu vitří eergie 6 Změu etalpie 7 Změu etropie Dáo: m = 0,25 [kg = [bar] =.0 5 [Pa] T = 5 [ C] = 288,5 [K] p 2 = 0,8 [MPa] = 0,8.0 6 [Pa] Pro výpočet je možo použít možství zkratek, které plyou z rovic pro adiabatický děj. Tady bude ukázaý podrobý postup a pak ásledě budou ukázáy jedolité spojitosti. Na začátku je ale uté jsi uvědomit pár skutečostí, které plyou již grafů: Velikost techické i absolutí práce se očekává z záporých hodotách (kompresoru se dodává práce Objem a koci děje bude ižší jako a začátku V 2 < V Teplota a koci děje bude vyšší ež a začátku děje T 2 > T Při adiabatickém ději je pravá straa rovice pro prví záko termodyamiky rova ule (viz rovice (2 - cvičeí 4. Tedy platí, že ΔU = A 2 a ΔH = A t2 4

5 Absolutí práce Výpočet měré absolutí práce se řídí dle zámé rovice a itegrací se dostaeme ke koečému tvaru (viz úpravy rovice (8 Pozámky ke cvičeí 4 v 2 a 2 =. v κ. dv = p vκ. v κ. [ v κ+ v 2 κ + ] =. v κ. [ v 2 κ+ κ + v κ+ κ + ] = v v =. v κ. [ v 2 κ κ v κ κ ] = p κ. v κ. [v 2 κ v κ ] = = κ.. v κ. v κ. [ v κ 2 κ v v κ κ v ] = κ.. v. [( v κ 2 ] = v Koečý tvar rovice je možé upravit za pomoci stavové rovice a rovice adiabaty (viz úpravy rovice (8 Pozámky ke cvičeí 4: a 2 = p κ κ. v κ. [(p 2 κ r. T ] = κ. [(p 2 κ ] = 287, ,5,4,4 0,8. 06,4. [( 0,. 0 6 ] = ,4 [J. kg ] Výsledek je záporý, což se dalo očekávat. Je třeba si ale dát pozor, že výsledek je uté ásobit hmotostí!!! Teprve teto výsledek je správým výsledkem. Toto je častá chyba u zápočtů!!!! A 2 = m. a 2 = 0,25. ( ,4 = 4 974, [J] 2 Techická práce Velikost techické práce je možé také odvodit a vypočítat klasickým způsobem (viz úpravy rovice (9 Pozámky ke cvičeí 4. Využitím závislosti (4 (pozámky ke cvičeí 4 se rovou dopracujeme k výsledku: κ. A 2 = A t2,4. ( 4947, = 58725,7 [J] 3 Kocový objem Pro výpočet kocového objemu je utost zát velikost objemu a začátku, ebo zát dostatečé možství parametrů, aby se mohl kocový objem vypočítat v jedom kroku. V tomhle případě je ale zapotřebí ejprve vypočítat velikost objemu a počátku, což je možé za pomoci stavové rovice:. V = m. r. T V = m. r. T 0, , ,5 = 0,. 0 6 = 0,2 [m 3 ] Pak za pomoci rovice adiabaty a jejich úprav (viz pozámky ke cvičeí 4 je pak možé vypočítat kocový objem: V 2 = V. ( κ 0,.0 6,4 = 0,2. ( p 2 0,8.0 6 = 0,048 [m 3 ] Výsledek korespoduje s očekávaým výsledkem (viz úvahy výše a graf - V 2 < V 5

6 4 Kocová teplota Za pomoci rovice adiabaty a jejich úprav (viz pozámky ke cvičeí 4 je možé vypočítat kocovou: T 2 T = ( p 2 κ κ T 2 = T. ( p κ 2 κ 0, = 288,5. ( 0,. 0 6,4,4 = 52,97 [K] Výsledek korespoduje s očekávaým výsledkem (viz úvahy výše a graf - T 2 > T 5 Změa vitří eergie Při výpočtu změy velikosti se myslí číslo, které je dáo rozdílem mezi kocovým a počátečím stavem. V případě adiabatické změy stavu je tady ještě podmíka, které musí býti splěa, aby výsledek korespodoval s prvím zákoem termodyamiky. Prví rovicí pro výpočet velikosti změy vitří eergie, je: m. c v. dt = du Podmíka, která plye z prví věty termodyamické má tvar (viz pozámky ke cvičeí 4 rovice (2: da = du Tedy velikost změy vitří eergie, musí mít opačý zaméko jako velikost změy absolutí práce. Dle předchozího jsme si určili, že velikost dodávaé práce kompresoru začíme záporým zamékem, tedy změa vitří eergie při kompresi bude mít kladé zaméko, tudíž velikost změy vitří eergie závisí pouze a rozdílu teplot: r ΔU = (m. κ (T 2 T = (0, ,04. (52,97 288,5 = [J],4 Výsledek korespoduje s očekávaým výsledkem (viz úvahy výše a graf du = da 6 Změa etalpie Při výpočtu velikosti změy etalpie jsme omezei stejými podmíkami jako v případě výpočtu velikosti změy vitří eergie. Tedy rovice pro výpočet velikosti změy etalpie: m. c p. dt = dh Podmíka, která plye z prví věty termodyamické má tvar (viz pozámky ke cvičeí 4 rovice (3: ΔH = da t Tedy velikost změy etalpie bude dáa rovicí: κ. r ΔH = (m. κ (T,4.287,04 2 T = (0,25. (52,97 288,5 = 58726,2 [J],4 Výsledek korespoduje s očekávaým výsledkem (viz úvahy výše a graf dh = da t V tomhle případě je tu opět možost využít vlastostí, které plyou z Mayerovy rovice (viz pozámky ke cvičeí 2 rovice (7, (8 ale i ze zavilostí absolutí a techické práce, pro adiabatické děje (popsaé výše, ebo viz pozámky ke cvičeí 4 rovice (3: ΔU. κ = ΔH = 58726,2 7 Změa etropie V případě změy velikosti etropie je odpověď jasá. U vraté adiabatické komprese, která probíhá s ideálím plyem, edochází k výměě tepla s okolím a ai se eprodukuje žádé teplo uvitř systému, tedy velikost změy etropie je rova ule. ds = dq T [J. K ] dq = 0 ds = 0 6

7 Příklad 3 Dvoustupňový kompresor asává vzduch o teplotě 20 [ C] a tlaku 98 [kpa] stlačuje ho a 6 [MPa]. Vypočítejte výko motoru, je-li mechaická účiost 85%, možství chladící vody pro chlazeí válců kompresoru a pro mezichladič. Teplota chladící vody se zvýší o 5 [K]. Komprese je v obou stupích polytropická s expoetem,3. Sací výko kompresoru je 0,4 [m 3.s - ]. Dáo: t = 20[ C]; = 98 [kpa]; p 2 = 6 [MPa]; η M = 85 [%]; ΔT = 5 [K]; =,3; V = 0,4 [m 3. s ]; c vody = 487 [kj. kg. K ] Na začátku příkladu je uté jsi uvědomit pár skutečostí, které plyou z úlohy: Při klasické polytropické kompresi jedostupňovým kompresorem je uto vyaložit veliké možství techické práce pro zvýšeí tlaku z tlaku a p 2 (viz polytropa -4. Při použití dvou stupňů a mezichladiče (děj je vidět, že se sižuje velikost dodávaé techické práce kompresoru. Ušetřeá techická práce je zobrazea modrou plochou. Chlazeí mezi body 2-3 je izobarické. Jelikož se bavíme o ideálím ději a chceme získat maximálí možství ušetřeé eergie, tak k odvodu tepla musí docházet izobaricky. Dělící tlak ( rozděluje celý děj komprese tak, aby velikost techické práce prvího stupě odpovídala velikosti techické práce druhého stupě. Výpočet techické práce pro polytropický děj vychází z rozdílů tlaků (viz pozámky ke cvičeí 4 rovice (4. Porováím dvou rovic dostáváme tvar rovice korespodující s obrázkem výše: = p 2 K tomu, aby byla zachováa rovost dodávaé techické práce v každém stupi, musí být i poměr teplot stejý jako v případě tlaků. To zameá, že musí býti zachováy stejé teploty v bodech T = T 3 a T 2 = T 4 K tomu aby byla zachováa rovost dodávaé techické práce v každém stupi, musí být i poměr 7

8 objemů stejý jako v případě tlaků. Tedy: v 2 v = v 4 v 3 (z hlediska výpočtu je teto fakt teď irelevatí, ale je dobré si ho pro úplost připomeout. Výpočet dle výše uvedeého musíme začít výpočtem dělícího tlaku: = p 2 =. p 2 = 0,767 [MPa] Jak je vidět, tak dělící tlak eí přesě ve středu mezi 98 [kpa] a 6 [MPa] tomu by odpovídala hodota 3,49 [MPa]. Dělící tlak slouží k zachováí rovosti velikosti dodávaé techické práce. Zároveň platí, že tlakový poměr v obou stupích kompresoru bude stejý (zvýšeí tlaku v prvím stupi se bude rovat zvýšeí tlaku v druhém stupi: = p 2 = 7,82 V zadáí se uvádí, že se má vypočítat výko motoru. Za pomoci zadaých parametrů se k tomuto výsledku dá jedoduše dopracovat. V prví řadě je uto si uvědomit, že výko se počítá dle rovice P = m. a t. Druhý čle rovice vyjadřuje velikost měré techické práce. Jelikož v zadáí eí uvedeo, že je uté vypočítat velikost techické práce, stačí ám tedy jeom jeho vyjádřeí. Celková techická práce kompresoru je součtem techické práce prvího stupě a techické práce druhého stupě. Jelikož velikosti prací v prvím i druhém stupi se rovají, tak ám stačí zámí vztah (4 (viz pozámky ke cvičeí 4 vyásobit dvěma. Velikost měré techické práce kompresoru můžeme vyjádřit tedy ásledujícím způsobem: a t = a t + a t2 =. r. T [ ( p x ] +. r. T [ ( p 2 ] a t = 2.. r. T. [ ( Práci systému dodáváme, tedy předpokládáme, že výsledek bude záporý. Násobeí rovice pro techickou práci hmotostím tokem m dostáváme rovici, která ám určuje velikost výkou, který je během komprese ] kompresoru dodává (jde o polytropický, vratý děj s ideálím plyem!!!. P k = P k = m. a t = m. 2. P k = m.. r. T. [ (. ρ. 2 [ ( ] ].. V. 2 [ ( p x ] = 72,22 [kw] Kompresoru se však musí teto výko dodávat. Dodává se z motoru. Samozřejmě motor pracuje s určitými mechaickými ztrátami a velikost těchto ztrát je reprezetováa účiostí. V tomto případě se jedá o mechaickou účiost η M = 85 [%]. Toto číslo ám říká, že z celkového výkou, který motor vyprodukuje, se 8

9 využije 85%, ebo že z celkového výkou, který motor vyprodukuje, se 5% ztratí. Z toho logicky plye, že motor, který má poháět teto kompresor, musí být schope produkovat a dodávat o 5% vyšší výko. Z toho je patré, že velikost potřebého dodávaého výkou bude: P M = P k η M = 85 [kw] Pozor, v tomto případě, jsme vypočetli možství potřebého dodávaého výkou od motoru a poho kompresoru. Z toho tedy plye, že výko motoru s 85% účiostí, který bude poháět teto kompresor, bude: P = P M = 85 [kw] Při polytropickém ději dochází k výměě tepla s okolím a zároveň se teplo odvádí pomocí chladiče, ve kterém cirkuluje voda, do které je odváděé teplo. Možství odvedeého tepla bude určea rovicí: Q = Q v + Q ch Tepelé toky, je možo vypočítat i z kalorimetrické rovice, ale je uto brát v úvahu charakter děje. Možství tepla odváděého stěami válců je dáa rovicí polytropy a komprese probíhá polytropicky (proto c. Je uto vzít v úvahu i to, že kompresor je dvoustupňový, takže máme dva válce (proto je tam ásobeí číslem 2. Možství odvedeého tepla stěami válců je dáo rovicí: Q v κ = 2. c. m. (T 2 T = 2. c v... V. (T r. T 2 T = 2. r κ. κ.. V r. T. (T 2 T Možství tepla odváděého stěami chladiče je dáo rovicí izobary (proto c p, tedy kalorimetrická rovice abyde tvaru: Q ch = m. c p (T 3 T 2 =. V κ. r. r. T κ. (T 3 T 2 V obou případech vidíme, že ám do rovic chybí čle T 2. Te si můžeme jedoduše vyjádřit z rovice polytropy (viz pozámky ke cvičeí 4 rovice ( a (2: Možství tepla odváděého stěami válců: T 2 = T. ( p x = 47,2 [K] Q v = ,04,3,4.,4,3. 0, ,4. (47,2 293,5 = 3889 [W] 287, ,5 Možství tepla odváděého stěami mezichladiče: Q Celkové odvedeé teplo: ch = 0, ,4,4. 287, ,04.293,5,4. (293,5 47,2 = 29,7.03 [W] Q = Q v + Q ch = 43, [W] 9

10 Možství chladící vody vypočteme také z kalorimetrické rovice. Voda musí absorbovat stejé možství tepla, které je z válců a výměíků předáváo a zároveň se její teplota zvýší je o 5 [K]. Bude tedy platit: Q = m. c vody. ΔT Z toho pak lze vypočítat průtočí možství vody potřebé ke chlazeí: m = Q c vody. Δt = 0,686 [kg. s ] 0

IV-1 Energie soustavy bodových nábojů... 2 IV-2 Energie elektrického pole pro náboj rozmístěný obecně na povrchu a uvnitř objemu tělesa...

IV-1 Energie soustavy bodových nábojů... 2 IV-2 Energie elektrického pole pro náboj rozmístěný obecně na povrchu a uvnitř objemu tělesa... IV- Eergie soustavy bodových ábojů... IV- Eergie elektrického pole pro áboj rozmístěý obecě a povrchu a uvitř objemu tělesa... 3 IV-3 Eergie elektrického pole v abitém kodezátoru... 3 IV-4 Eergie elektrostatického

Více

2. Definice plazmatu, základní charakteristiky plazmatu

2. Definice plazmatu, základní charakteristiky plazmatu 2. efiice plazmatu, základí charakteristiky plazmatu efiice plazmatu Plazma bývá obyčejě ozačováo za čtvrté skupeství hmoty. Pokud zahříváme pevou látku, dojde k jejímu roztaveí, při dalším zahříváí se

Více

Matice. nazýváme m.n reálných čísel a. , sestavených do m řádků a n sloupců ve tvaru... a1

Matice. nazýváme m.n reálných čísel a. , sestavených do m řádků a n sloupců ve tvaru... a1 Matice Matice Maticí typu m/ kde m N azýváme m reálých čísel a sestaveých do m řádků a sloupců ve tvaru a a a a a a M M am am am Prví idex i začí řádek a druhý idex j sloupec ve kterém prvek a leží Prvky

Více

z možností, jak tuto veličinu charakterizovat, je určit součet

z možností, jak tuto veličinu charakterizovat, je určit součet 6 Charakteristiky áhodé veličiy. Nejdůležitější diskrétí a spojitá rozděleí. 6.1. Číselé charakteristiky áhodé veličiy 6.1.1. Středí hodota Uvažujme ejprve diskrétí áhodou veličiu X s rozděleím {x }, {p

Více

Kontrolní otázky k 1. přednášce z TM

Kontrolní otázky k 1. přednášce z TM Kontrolní otázky k 1. přednášce z TM 1. Jak závisí hodnota izobarického součinitele objemové roztažnosti ideálního plynu na teplotě a jak na tlaku? Odvoďte. 2. Jak závisí hodnota izochorického součinitele

Více

Základní princip regulace U v ES si ukážeme na definici statických charakteristik zátěže

Základní princip regulace U v ES si ukážeme na definici statických charakteristik zátěže Regulace apětí v ES Základí pricip regulace v ES si ukážeme a defiici statických charakteristik zátěže Je zřejmé, že výko odebíraý spotřebitelem je závislý a frekveci a apětí a přípojicích spotřebitelů.

Více

Cvičení z termomechaniky Cvičení 7 Seminář z termomechaniky

Cvičení z termomechaniky Cvičení 7 Seminář z termomechaniky Příklad 1 Plynová turbína pracuje dle Ericsson-Braytonova oběhu. Kompresor nasává 0,05 [kg.s- 1 ] vzduchu (individuální plynová konstanta 287,04 [J.kg -1 K -1 ]; Poissonova konstanta 1,4 o tlaku 0,12 [MPa]

Více

12. Termomechanika par, Clausius-Clapeyronova rovnice, parní tabulky, základni termodynamické děje v oblasti par

12. Termomechanika par, Clausius-Clapeyronova rovnice, parní tabulky, základni termodynamické děje v oblasti par 1/2 1. Určovací veličiny pracovní látky 2. Stavová rovnice, plynová konstanta, Avogadrův zákon, kilomol plynu 3. Směsi plynů, měrné tepelné kapacity plynů 4. První termodynamický zákon 5. Základní vratné

Více

Poznámky k cvičením z termomechaniky Cvičení 3.

Poznámky k cvičením z termomechaniky Cvičení 3. Vnitřní energie U Vnitřní energie U je stavová veličina U = U (p, V, T), ale závisí pouze na teplotě (experiment Gay-Lussac / Joule) U = f(t) Pro měrnou vnitřní energii (tedy pro vnitřní energii jednoho

Více

17. Statistické hypotézy parametrické testy

17. Statistické hypotézy parametrické testy 7. Statistické hypotézy parametrické testy V této části se budeme zabývat statistickými hypotézami, pomocí vyšetřujeme jedotlivé parametry populace. K takovýmto šetřeím většiou využíváme ám již dobře zámé

Více

1/5. 9. Kompresory a pneumatické motory. Příklad: 9.1, 9.2, 9.3, 9.4, 9.5, 9.6, 9.7, 9.8, 9.9, 9.10, 9.11, 9.12, 9.13, 9.14, 9.15, 9.16, 9.

1/5. 9. Kompresory a pneumatické motory. Příklad: 9.1, 9.2, 9.3, 9.4, 9.5, 9.6, 9.7, 9.8, 9.9, 9.10, 9.11, 9.12, 9.13, 9.14, 9.15, 9.16, 9. 1/5 9. Kompresory a pneumatické motory Příklad: 9.1, 9.2, 9.3, 9.4, 9.5, 9.6, 9.7, 9.8, 9.9, 9.10, 9.11, 9.12, 9.13, 9.14, 9.15, 9.16, 9.17 Příklad 9.1 Dvojčinný vzduchový kompresor bez škodného prostoru,

Více

cenný papír, jehož koupí si investor zajistí předem definované peněžní toky, které obdrží v budoucnosti

cenný papír, jehož koupí si investor zajistí předem definované peněžní toky, které obdrží v budoucnosti DLUHOPISY ceý papír, jehož koupí si ivestor zajistí předem defiovaé peěží toky, které obdrží v budoucosti podle doby splatosti ~ 1 rok dlouhodobé dluhopisy Pokladičí poukázky

Více

Příklady k opakování TERMOMECHANIKY

Příklady k opakování TERMOMECHANIKY Příklady k opakování TERMOMECHANIKY P1) Jaký teoretický výkon musí mít elektrický vařič, aby se 12,5 litrů vody o teplotě 14 C za 15 minuty ohřálo na teplotu 65 C, jestliže hustota vody je 1000 kg.m -3

Více

Poznámky k semináři z termomechaniky Grafy vody a vodní páry

Poznámky k semináři z termomechaniky Grafy vody a vodní páry Příklad 1 Sytá pára o tlaku 1 [MPa] expanduje izotermicky na tlak 0,1 [MPa]. Znázorněte v diagramech vody a vodní páry. Jelikož se jedná o izotermický děj, je výhodné použít diagram T-s. Dále máme v zadání,

Více

Regulace frekvence a velikosti napětí Řízení je spojeno s dodávkou a přenosem činného a jalového výkonu v soustavě.

Regulace frekvence a velikosti napětí Řízení je spojeno s dodávkou a přenosem činného a jalového výkonu v soustavě. 18. Řízeí elektrizačí soustavy ES je spojeí paralelě pracujících elektráre, přeosových a rozvodých sítí se spotřebiči. Provoz je optimálě spolehlivá hospodárá dodávka kvalití elektrické eergie. Stěžejími

Více

Systémové vodící stěny a dopravní zábrany

Systémové vodící stěny a dopravní zábrany Vyvíjíme bezpečost. Systémové vodící stěy a dopraví zábray Fukčí a estetické řešeí v dopravě eje pro města a obce. www.deltabloc.cz CITYBLOC Více bezpečosti pro všechy účastíky siličího provozu Jediečá

Více

4.5.9 Vznik střídavého proudu

4.5.9 Vznik střídavého proudu 4.5.9 Vzik střídavého proudu Předpoklady: 4508 Miulá hodia: Pokud se v uzavřeém závitu měí magetický idukčí tok, idukuje se v ěm elektrické apětí =. Př. 1: Vodorově orietovaá smyčka se pohybuje rovoměrě

Více

VÝMĚNA VZDUCHU A INTERIÉROVÁ POHODA PROSTŘEDÍ

VÝMĚNA VZDUCHU A INTERIÉROVÁ POHODA PROSTŘEDÍ ÝMĚNA ZDUCHU A INTERIÉROÁ POHODA PROSTŘEDÍ AERKA J. Fakulta architektury UT v Brě, Poříčí 5, 639 00 Bro Úvod Jedím ze základích požadavků k zabezpečeí hygieicky vyhovujícího stavu vitřího prostředí je

Více

MATEMATIKA PŘÍKLADY K PŘÍJÍMACÍM ZKOUŠKÁM BAKALÁŘSKÉ STUDIUM MGR. RADMILA STOKLASOVÁ, PH.D.

MATEMATIKA PŘÍKLADY K PŘÍJÍMACÍM ZKOUŠKÁM BAKALÁŘSKÉ STUDIUM MGR. RADMILA STOKLASOVÁ, PH.D. MATEMATIKA PŘÍKLADY K PŘÍJÍMACÍM ZKOUŠKÁM BAKALÁŘSKÉ STUDIUM MGR. RADMILA STOKLASOVÁ PH.D. Obsah MNOŽINY.... ČÍSELNÉ MNOŽINY.... OPERACE S MNOŽINAMI... ALGEBRAICKÉ VÝRAZY... 6. OPERACE S JEDNOČLENY A MNOHOČLENY...

Více

u, v, w nazýváme číslo u.( v w). Chyba! Chybné propojení.,

u, v, w nazýváme číslo u.( v w). Chyba! Chybné propojení., Def: Vetorovým součiem vetorů u =(u, u, u 3 ) v = (v, v, v 3 ) zýváme vetor u v = (u v 3 u 3 v, u 3 v u v 3, u v u v ) Vět: Pro vetory i, j, ortoormálí báze pltí i i = j = i, i = j Vět: Nechť u v, w, jsou

Více

1. K o m b i n a t o r i k a

1. K o m b i n a t o r i k a . K o m b i a t o r i k a V teorii pravděpodobosti a statistice budeme studovat míru výskytu -pravděpodobostvýsledků procesů, které mají áhodý charakter, t.j. při opakováí za stejých podmíek se objevují

Více

Cvičení z termomechaniky Cvičení 6.

Cvičení z termomechaniky Cvičení 6. Příklad 1: Pacovní látkou v poovnávacím smíšeném oběhu spalovacího motou je vzduch o hmotnosti 1 [kg]. Počáteční tlak je 0,981.10 5 [Pa] při teplotě 30 [ C]. Kompesní pomě je 7, stupeň zvýšení tlaku 2

Více

Laboratorní práce č. 10 Úloha č. 9. Polarizace světla a Brownův pohyb:

Laboratorní práce č. 10 Úloha č. 9. Polarizace světla a Brownův pohyb: ruhlář Michal 8.. 5 Laboratorí práce č. Úloha č. 9 Polarizace světla a Browův pohyb: ϕ p, C 4% 97,kPa Úkol: - Staovte polarizačí schopost daého polaroidu - Určete polarimetrem úhel stočeí kmitavé roviy

Více

Jednotkou tepla je jednotka energie, tj. 1 Joule (J). Z definice dále plyne, že jednotkou tepelného toku je 1 J/s ( neboli 1 W )

Jednotkou tepla je jednotka energie, tj. 1 Joule (J). Z definice dále plyne, že jednotkou tepelného toku je 1 J/s ( neboli 1 W ) 5. Sdíleí tepla. pomy: Pomem tepelá eergie ozačueme eergii mikroskopického pohybu částic (traslačího, rotačího, vibračího). Měřitelou mírou této eergie e teplota. Teplo e část vitří eergie, která samovolě

Více

Odhad parametru p binomického rozdělení a test hypotézy o tomto parametru. Test hypotézy o parametru p binomického rozdělení

Odhad parametru p binomického rozdělení a test hypotézy o tomto parametru. Test hypotézy o parametru p binomického rozdělení Odhad parametru p biomického rozděleí a test hypotézy o tomto parametru Test hypotézy o parametru p biomického rozděleí Motivačí úloha Předpokládejme, že v důsledku realizace jistého áhodého pokusu P dochází

Více

Jednotlivým bodům (n,2,a,e,k) z blokového schématu odpovídají body na T-s a h-s diagramu:

Jednotlivým bodům (n,2,a,e,k) z blokového schématu odpovídají body na T-s a h-s diagramu: Elektroenergetika 1 (A1B15EN1) 3. cvičení Příklad 1: Rankin-Clausiův cyklus Vypočtěte tepelnou účinnost teoretického Clausius-Rankinova parního oběhu, jsou-li admisní parametry páry tlak p a = 80.10 5

Více

Úvod do lineárního programování

Úvod do lineárního programování Úvod do lieárího programováí ) Defiice úlohy Jedá se o optimalizaí problémy které jsou popsáy soustavou lieárích rovic a erovic. Kritéria optimalizace jsou rovž lieárí. Promé v této úloze abývají reálých

Více

a) Jaká je hodnota polytropického exponentu? ( 1,5257 )

a) Jaká je hodnota polytropického exponentu? ( 1,5257 ) Ponorka se potopí do 50 m. Na dně ponorky je výstupní tunel o průměru 70 cm a délce, m. Tunel je napojen na uzavřenou komoru o objemu 4 m. Po otevření vnějšího poklopu vnikne z části voda tunelem do komory.

Více

Domácí práce č.1. Jak dlouho vydrží palivo motocyklu Jawa 50 Pionýr, pojme-li jeho nádrž 3,5 litru paliva o hustote 750kg m 3 a

Domácí práce č.1. Jak dlouho vydrží palivo motocyklu Jawa 50 Pionýr, pojme-li jeho nádrž 3,5 litru paliva o hustote 750kg m 3 a Domácí práce č.1 Jak dlouho vydrží palivo motocyklu Jawa 50 Pionýr, pojme-li jeho nádrž 3,5 litru paliva o hustote 750kg m 3 a motor beží pri 5000ot min 1 s výkonem 1.5kW. Motor má vrtání 38 mm a zdvih

Více

0. 4b) 4) Je dán úhel 3450. Urči jeho základní velikost a převeď ji na radiány. 2b) Jasný Q Q ZK T D ZNÁMKA. 1. pololetí 2 3 1 2 2 3 5 2 3 1 1

0. 4b) 4) Je dán úhel 3450. Urči jeho základní velikost a převeď ji na radiány. 2b) Jasný Q Q ZK T D ZNÁMKA. 1. pololetí 2 3 1 2 2 3 5 2 3 1 1 ) Urči záladí veliost úhlu v radiáech, víš-li, že platí: a) si cos 0. b) cos, Opravá zouša z matematiy 3SD (druhé pololetí) c) cotg 3 5b) ) Na možiě R řeš rovici cos cos 0. 4b) 3) Vzdáleost bodů AB elze

Více

2 EXPLORATORNÍ ANALÝZA

2 EXPLORATORNÍ ANALÝZA Počet automobilů Ig. Martia Litschmaová EXPLORATORNÍ ANALÝZA.1. Níže uvedeá data představují částečý výsledek zazameaý při průzkumu zatížeí jedé z ostravských křižovatek, a to barvu projíždějících automobilů.

Více

Návod pro výpočet základních induktorů s jádrem na síťové frekvenci pro obvody výkonové elektroniky.

Návod pro výpočet základních induktorů s jádrem na síťové frekvenci pro obvody výkonové elektroniky. Návod pro cvičeí předmětu Výkoová elektroika Návod pro výpočet základích iduktorů s jádrem a síťové frekveci pro obvody výkoové elektroiky. Úvod V obvodech výkoové elektroiky je možé většiu prvků vyrobit

Více

Matematika I, část II

Matematika I, část II 1. FUNKCE Průvodce studiem V deím životě, v přírodě, v techice a hlavě v matematice se eustále setkáváme s fukčími závislostmi jedé veličiy (apř. y) a druhé (apř. x). Tak apř. cea jízdeky druhé třídy osobího

Více

FINANČNÍ MATEMATIKA SBÍRKA ÚLOH

FINANČNÍ MATEMATIKA SBÍRKA ÚLOH FINANČNÍ MATEMATIKA SBÍRKA ÚLOH Zpracováo v rámci projektu " Vzděláváí pro kokureceschopost - kokureceschopost pro Třeboňsko", registračí číslo CZ.1.07/1.1.10/02.0063 Gymázium, Třeboň, Na Sadech 308 Autor:

Více

HYPOTEČNÍ ÚVĚR. , kde v = je diskontní faktor, Dl počáteční výše úvěru, a anuita, i roční úroková sazba v procentech vyjádřená desetinným číslem.

HYPOTEČNÍ ÚVĚR. , kde v = je diskontní faktor, Dl počáteční výše úvěru, a anuita, i roční úroková sazba v procentech vyjádřená desetinným číslem. HYPTEČNÍ ÚVĚR Spláceí úvěru stejým splátkam - kostatí auta ÚLHA 1: Mladý maželský pár s dostačujícím příjmy (tz. a získáí hypotéčího úvěru) se rozhodl postavt s meší rodý domek. Podle předběžé kalkulace

Více

Ideální plyn. Stavová rovnice Děje v ideálním plynu Práce plynu, Kruhový děj, Tepelné motory

Ideální plyn. Stavová rovnice Děje v ideálním plynu Práce plynu, Kruhový děj, Tepelné motory Struktura a vlastnosti plynů Ideální plyn Vlastnosti ideálního plynu: Ideální plyn Stavová rovnice Děje v ideálním plynu Práce plynu, Kruhový děj, epelné motory rozměry molekul jsou ve srovnání se střední

Více

VYBRANÉ STATĚ Z PROCESNÍHO INŢENÝRSTVÍ cvičení 12

VYBRANÉ STATĚ Z PROCESNÍHO INŢENÝRSTVÍ cvičení 12 UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY VYBRANÉ STATĚ Z PROCESNÍHO INŢENÝRSTVÍ cvičení 2 Termodynamika reálných plynů část 2 Hana Charvátová, Dagmar Janáčová Zlín 203 Tento studijní

Více

4. Model M1 syntetická geometrie

4. Model M1 syntetická geometrie 4. Model M1 sytetiká geometrie V této kapitole se udeme zaývat vektory, jejih vlastostmi a využitím v geometrii. Neudeme přitom rozlišovat, jestli se jedá je o roviu (dvě dimeze) eo prostor (tři dimeze).

Více

Úkol měření. Použité přístroje a pomůcky. Tabulky a výpočty

Úkol měření. Použité přístroje a pomůcky. Tabulky a výpočty Úkol měřeí ) Na základě vějšího fotoelektrického pole staovte velikost Plackovy kostaty h. ) Určete mezí kmitočet a výstupí práci materiálu fotokatody použité fotoky. Porovejte tuto hodotu s výstupími

Více

Měření na třífázovém asynchronním motoru

Měření na třífázovém asynchronním motoru 15.1 Zadáí 15 Měřeí a zatěžovaém třífázovém asychroím motoru a) Změřte otáčky, odebíraý proud, fázový čiý výko, účiík a fázová apětí a 3-fázovém asychroím motoru apájeém z třífázové sítě 3 x 50 V při běhu

Více

3.5 Tepelné děje s ideálním plynem stálé hmotnosti, izotermický děj

3.5 Tepelné děje s ideálním plynem stálé hmotnosti, izotermický děj 3.5 Tepelné děje s ideálním plynem stálé hmotnosti, izotermický děj a) tepelný děj přechod plynu ze stavu 1 do stavu tepelnou výměnou nebo konáním práce dále uvaž., že hmotnost plynu m = konst. a navíc

Více

Experimentální postupy. Koncentrace roztoků

Experimentální postupy. Koncentrace roztoků Experimetálí postupy Kocetrace roztoků Kocetrace roztoků možství rozpuštěé látky v roztoku. Hmotostí zlomek (hmotostí proceta) Objemový zlomek (objemová proceta) Molárí zlomek Molarita (molárí kocetrace)

Více

Seznámíte se s pojmem Riemannova integrálu funkce jedné proměnné a geometrickým významem tohoto integrálu.

Seznámíte se s pojmem Riemannova integrálu funkce jedné proměnné a geometrickým významem tohoto integrálu. 2. URČITÝ INTEGRÁL 2. Určitý itegrál Průvodce studiem V předcházející kapitole jsme se sezámili s pojmem eurčitý itegrál, který daé fukci přiřazoval opět fukci (přesěji možiu fukcí). V této kapitole se

Více

Vážeí zákazíci dovolujeme si Vás upozorit že a tuto ukázku kihy se vztahují autorská práva tzv. copyright. To zameá že ukázka má sloužit výhradì pro osobí potøebu poteciálího kupujícího (aby èteáø vidìl

Více

CHEMICKÁ ENERGETIKA. Celá termodynamika je logicky odvozena ze tří základních principů, které mají axiomatický charakter.

CHEMICKÁ ENERGETIKA. Celá termodynamika je logicky odvozena ze tří základních principů, které mají axiomatický charakter. CHEMICKÁ ENERGETIKA Energetickou stránkou soustav a změnami v těchto soustavách se zabývá fyzikální disciplína termodynamika. Z široké oblasti obecné termodynamiky se chemická termodynamika zajímá o chemické

Více

FYZIKÁLNÍ CHEMIE I: 2. ČÁST

FYZIKÁLNÍ CHEMIE I: 2. ČÁST Univerzita J. E. Purkyně v Ústí nad Labem Přírodovědecká fakulta FYZIKÁLNÍ CHEMIE I: 2. ČÁST KCH/P401 Ivo Nezbeda Ústí nad Labem 2013 1 Obor: Klíčová slova: Anotace: Toxikologie a analýza škodlivin, Chemie

Více

Řešené úlohy ze statistické fyziky a termodynamiky

Řešené úlohy ze statistické fyziky a termodynamiky Řešené úlohy ze statistické fyziky a termodynamiky Statistická fyzika. Uvažujme dvouhladinový systém, např. atom s celkovým momentem hybnosti h v magnetickém ) ) poli. Bázové stavy označme = a =, první

Více

www.utp.fs.cvut.cz REGULACE V TECHNICE PROSTŘEDÍ (STAVEB) Cvičení č. 2

www.utp.fs.cvut.cz REGULACE V TECHNICE PROSTŘEDÍ (STAVEB) Cvičení č. 2 REGULACE V TECHNICE PROSTŘEDÍ (STAVEB) Cvičení č. 2 1 REGULACE V TECHNICE PROSTŘEDÍ (STAVEB) Cvičení: Inteligentní budovy - sudé středy 17.45 až 19.15 hod v místnosti č. 366 Strojní inženýrství - liché

Více

sin n sin n 1 n 2 Obr. 1: K zákonu lomu

sin n sin n 1 n 2 Obr. 1: K zákonu lomu MĚŘENÍ INDEXU LOMU REFRAKTOMETREM Jedou z charakteristických optických veliči daé látky je absolutím idexu lomu. Je to podíl rychlosti světla ve vakuu c a v daém prostředí v: c (1) v Průchod světla rozhraím

Více

Identifikátor materiálu: ICT 2 51

Identifikátor materiálu: ICT 2 51 Identifikátor materiálu: ICT 2 51 Registrační číslo projektu Název projektu Název příjemce podpory název materiálu (DUM) Anotace Autor Jazyk Očekávaný výstup Klíčová slova Druh učebního materiálu Druh

Více

k(k + 1) = A k + B. s n = n 1 n + 1 = = 3. = ln 2 + ln. 2 + ln

k(k + 1) = A k + B. s n = n 1 n + 1 = = 3. = ln 2 + ln. 2 + ln Číselé řady - řešeé přílady ČÍSELNÉ ŘADY - řešeé přílady A. Součty řad Vzorové přílady:.. Přílad. Určete součet řady + = + 6 + +.... Řešeí: Rozladem -tého čleu řady a parciálí zlomy dostáváme + = + ) =

Více

3 - Hmotnostní bilance filtrace a výpočet konstant filtrační rovnice

3 - Hmotnostní bilance filtrace a výpočet konstant filtrační rovnice 3 - Hmotnostní bilance filtrace a výpočet konstant filtrační rovnice I Základní vztahy a definice iltrace je jedna z metod dělení heterogenních směsí pevná fáze tekutina. Směs prochází pórovitým materiálem

Více

Cvičení z termomechaniky Cvičení 2. Stanovte objem nádoby, ve které je uzavřený dusík o hmotnosti 20 [kg], teplotě 15 [ C] a tlaku 10 [MPa].

Cvičení z termomechaniky Cvičení 2. Stanovte objem nádoby, ve které je uzavřený dusík o hmotnosti 20 [kg], teplotě 15 [ C] a tlaku 10 [MPa]. Příklad 1 Stanovte objem nádoby, ve které je uzavřený dusík o hmotnosti 20 [kg], teplotě 15 [ C] a tlaku 10 [MPa]. m 20[kg], t 15 [ C] 288.15 [K], p 10 [MPa] 10.10 6 [Pa], R 8314 [J. kmol 1. K 1 ] 8,314

Více

20. Eukleidovský prostor

20. Eukleidovský prostor 20 Eukleidovský prostor V této kapitole budeme pokračovat ve studiu dalších vlastostí afiích prostorů avšak s tím rozdílem že místo obecého vektorového prostoru budeme uvažovat prostor uitárí Proto bude

Více

Měřící technika - MT úvod

Měřící technika - MT úvod Měřící techika - MT úvod Historie Už Galileo Galilei zavádí vědecký přístup k měřeí. Jeho výrok Měřit vše, co je měřitelé a co eí měřitelým učiit platí stále. - jedotá soustava jedotek fyz. veliči - símače

Více

MATEMATICKÁ INDUKCE. 1. Princip matematické indukce

MATEMATICKÁ INDUKCE. 1. Princip matematické indukce MATEMATICKÁ INDUKCE ALEŠ NEKVINDA. Pricip matematické idukce Nechť V ) je ějaká vlastost přirozeých čísel, apř. + je dělitelé dvěma či < atd. Máme dokázat tvrzeí typu Pro každé N platí V ). Jeda možost

Více

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004.

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Náhodá veličia Tyto materiály byly vytvořey za pomoci gratu FRVŠ číslo 45/004. Náhodá veličia Většia áhodých pokusů má jako výsledky reálá čísla. Budeme tedy dále áhodou veličiou rozumět proměou, která

Více

CVIČENÍ č. 3 STATIKA TEKUTIN

CVIČENÍ č. 3 STATIKA TEKUTIN Rovnováha, Síly na rovinné stěny CVIČENÍ č. 3 STATIKA TEKUTIN Příklad č. 1: Nákladní automobil s cisternou ve tvaru kvádru o rozměrech H x L x B se pohybuje přímočarým pohybem po nakloněné rovině se zrychlením

Více

REGULOVANÉ PŘEPLŇOVÁNÍ VOZIDLOVÝCH MOTORŮ

REGULOVANÉ PŘEPLŇOVÁNÍ VOZIDLOVÝCH MOTORŮ REGULOVANÉ PŘEPLŇOVÁNÍ VOZIDLOVÝCH MOTORŮ Doc.Ing. Karel Hofmann, CSc -Ústav dopravní techniky FSI-VUT v Brně 2000 ÚVOD Současnost je dobou prudkého rozvoje elektronické regulace spalovacího motoru a tím

Více

Katedra elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava

Katedra elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava Katedra elektrotechiky Fakulta elektrotechiky a iformatiky, VŠB - TU Ostrava 10. STŘÍDAVÉ STROJE Obsah 1. Asychroí stroje 1. Výzam a použití asychroích strojů 1.2 Pricip čiosti a provedeí asychroího motoru.

Více

ÚLOHA ČÍNSKÉHO LISTONOŠE, MATEMATICKÉ MODELY PRO ORIENTOVANÝ A NEORIENTOVANÝ GRAF

ÚLOHA ČÍNSKÉHO LISTONOŠE, MATEMATICKÉ MODELY PRO ORIENTOVANÝ A NEORIENTOVANÝ GRAF Úloha číského listooše ÚLOHA ČÍNSKÉHO LISTONOŠE, MATEMATICKÉ MODELY PRO ORIENTOVANÝ A NEORIENTOVANÝ GRAF Uvažujme situaci, kdy exstuje ějaký výchozí uzel a další uzly spojeé hraami (může jít o cesty, ulice

Více

BEZKONKURENČNÍ SERVIS A PODPORA.

BEZKONKURENČNÍ SERVIS A PODPORA. BEZKONKURENČNÍ SERVIS A PODPORA. Pro výrobky Heliarc, stejě jako pro všechy další výrobky ESAB, abízíme jediečý zákazický servis a podporu. Naši kvalifikovaí pracovíci techického servisu jsou připravei

Více

Univerzita Karlova v Praze Pedagogická fakulta

Univerzita Karlova v Praze Pedagogická fakulta Uverzt Krlov v Prze Pegogcká kult SEMINÁRNÍ PRÁCE Z POLYNOMICKÉ ALGEBRY POLYNOM 00/00 CIFRIK Záí: Vyšetřete všem probrým prostřeky polyom 0 0 Vyprcováí: Pole věty: Rcoálí kořey. Nechť p Q je koře polyomu

Více

Obsah. 1 Mocninné řady Definice a vlastnosti mocninných řad Rozvoj funkce do mocninné řady Aplikace mocninných řad...

Obsah. 1 Mocninné řady Definice a vlastnosti mocninných řad Rozvoj funkce do mocninné řady Aplikace mocninných řad... Obsah 1 Mocié řady 1 1.1 Defiice a vlastosti mociých řad.................... 1 1. Rozvoj fukce do mocié řady...................... 5 1.3 Aplikace mociých řad........................... 10 1 Kapitola 1

Více

PLYNNÉ LÁTKY. Mgr. Jan Ptáčník - GJVJ - Fyzika - Termika - 2. ročník

PLYNNÉ LÁTKY. Mgr. Jan Ptáčník - GJVJ - Fyzika - Termika - 2. ročník PLYNNÉ LÁTKY Mgr. Jan Ptáčník - GJVJ - Fyzika - Termika - 2. ročník Ideální plyn Po molekulách ideálního plynu požadujeme: 1.Rozměry molekul ideálního plynu jsou ve srovnání se střední vzdáleností molekul

Více

HYDROPNEUMATICKÝ VAKOVÝ AKUMULÁTOR

HYDROPNEUMATICKÝ VAKOVÝ AKUMULÁTOR HYDROPNEUMATICKÝ AKOÝ AKUMULÁTOR OSP 050 ŠEOBECNÉ INFORMACE ýočet hydroneumatického akumulátoru ZÁKLADNÍ INFORMACE Při výočtu hydroneumatického akumulátoru se vychází ze stavové změny lynu v akumulátoru.

Více

Soustava kapalina + tuhá látka Izobarický fázový diagram pro soustavu obsahující vodu a chlorid sodný

Soustava kapalina + tuhá látka Izobarický fázový diagram pro soustavu obsahující vodu a chlorid sodný Soustv kpl + tuhá látk Izobrcký fázový dgrm pro soustvu obshující vodu chlord sodý t / o C H 2 O (s) + esyceý roztok 30 20 10 0-10 -20 t I t II esyceý roztok 2 1 p o NCl (s) + syceý roztok eutektcký bod

Více

Termochemie { práce. Práce: W = s F nebo W = F ds. Objemová práce (p vn = vnìj¹í tlak): W = p vn dv. Vratný dìj: p = p vn (ze stavové rovnice) W =

Termochemie { práce. Práce: W = s F nebo W = F ds. Objemová práce (p vn = vnìj¹í tlak): W = p vn dv. Vratný dìj: p = p vn (ze stavové rovnice) W = Termochemie { práce Práce: W = s F nebo W = Objemová práce (p vn = vnìj¹í tlak): W = V2 V 1 p vn dv s2 Vratný dìj: p = p vn (ze stavové rovnice) W = V2 V 1 p dv s 1 F ds s.1 Diferenciální tvar: dw = pdv

Více

1. Definice elektrického pohonu 1.1 Specifikace pohonu podle typu poháněného pracovního stroje 1.1.1 Rychlost pracovního mechanismu

1. Definice elektrického pohonu 1.1 Specifikace pohonu podle typu poháněného pracovního stroje 1.1.1 Rychlost pracovního mechanismu 1. Defiice elektrického pohou Pod pojmem elektrický poho rozumíme soubor elektromechaických vazeb a vztahů mezi pracovím mechaismem a elektromechaickou soustavou. Mezi základí tři části elektrického pohou

Více

Test hypotézy o parametru π alternativního rozdělení příklad

Test hypotézy o parametru π alternativního rozdělení příklad Test hypotézy o parametru π alterativího rozděleí příklad Podik předpokládá, že o jeho ový výrobek bude mít zájem 7 % osloveých domácostí. Proběhl předběžý průzkum, v ěmž bylo osloveo 4 áhodě vybraých

Více

Základní parametry a návrh regulačních ventilů

Základní parametry a návrh regulačních ventilů Základní parametry a návrh regulačních ventilů DN, PN, Tmax., Kvs, Sv, Pv, Pvmax, Pmax, Ps 2. Definice DN, PN, T max. a netěsnosti 3. Hydraulické okruhy škrtící a rozdělovací okruh 4. Hydraulické okruhy

Více

VÝHODY A NEVÝHODY PNEUMATICKÝCH MECHANISMŮ

VÝHODY A NEVÝHODY PNEUMATICKÝCH MECHANISMŮ VÝHODY A NEVÝHODY PNEUMATICKÝCH MECHANISMŮ Výhody: medium (vzduch) se nachází všude kolem nás možnost využití centrální výroby stlačeného vzduchu v závodě kompresor nemusí pracovat nepřetržitě (stlačený

Více

Teplo z chladu PARAMETRY ZAŘÍZENÍ. www.echoz.cz

Teplo z chladu PARAMETRY ZAŘÍZENÍ. www.echoz.cz Teplo z chladu PARAMETRY ZAŘÍZENÍ www.echoz.cz Obsah str. 1 LAMELOVÉ VÝMĚNÍKY...2 2 KONTAKTNÍ VÝMĚNÍKY DEFENDER...3 3 LAMELOVÉ CHLADIČE...4 4 OCELOVÉ AKUMULAČNÍ NÁDRŽE 200-2000L...5 5 NEREZOVÉ AKUMULAČNÍ

Více

KABELY. Pro drátové okruhy (za drát se považuje i světlovodné vlákno): metalické kabely optické kabely

KABELY. Pro drátové okruhy (za drát se považuje i světlovodné vlákno): metalické kabely optické kabely KABELY Pro drátové okruhy (za drát se považuje i světlovodé vláko): metalické kabely optické kabely Metalické kabely: osou veličiou je elektrické apětí ebo proud obvykle se jedá o vysokofrekvečí přeos

Více

Cvičení z termomechaniky Cvičení 8.

Cvičení z termomechaniky Cvičení 8. Příklad Vzduch o tlaku,5 [MPa] a teplotě 27 [ C] vytéká Lavalovou dýzou do prostředí o tlaku 0,7 [MPa]. Nejužší průřez dýzy má průměr 0,04 [m]. Za jakou dobu vyteče 250 [kg] vzduchu a jaká bude výtoková

Více

Elektroenergetika 1. Termodynamika

Elektroenergetika 1. Termodynamika Elektroenergetika 1 Termodynamika Termodynamika Popisuje procesy, které zahrnují změny teploty, přeměny energie a vzájemný vztah mezi tepelnou energií a mechanickou prací Opakování fyziky Termodynamický

Více

Interakce světla s prostředím

Interakce světla s prostředím Iterakce světla s prostředím světlo dopadající rozptyl absorpce světlo odražeé světlo prošlé prostředím ODRAZ A LOM The Light Fatastic, kap. 2 Light rays ad Huyges pricip, str. 31 Roviá vla E = E 0 cos

Více

Téma sady: Všeobecně o vytápění. Název prezentace: základní pojmy 1

Téma sady: Všeobecně o vytápění. Název prezentace: základní pojmy 1 Téma sady: Všeobecně o vytápění. Název prezentace: základní pojmy 1 Autor prezentace: Ing. Eva Václavíková VY_32_INOVACE_1201_základní_pojmy_1_pwp Název školy: Číslo a název projektu: Číslo a název šablony

Více

DISKRÉTNÍ MATEMATIKA PRO INFORMATIKY

DISKRÉTNÍ MATEMATIKA PRO INFORMATIKY DISKRÉTNÍ MATEMATIKA PRO INFORMATIKY URČENO PRO VZDĚLÁVÁNÍ V AKREDITOVANÝCH STUDIJNÍCH PROGRAMECH IVAN KŘIVÝ ČÍSLO OPERAČNÍHO PROGRAMU: CZ..07 NÁZEV OPERAČNÍHO PROGRAMU: VZDĚLÁVÁNÍ PRO KONKURENCESCHOPNOST

Více

Poznámky k cvičením z termomechaniky Cvičení 9.

Poznámky k cvičením z termomechaniky Cvičení 9. Voda a vodní pára Při výpočtech příkladů, které jsou zaěřeny na výpočty vody a vodní páry je důležité si paatovat veličiny, které jsou kritické a z hlediska výpočtu i nezbytné. Jedná se o hodnoty teploty

Více

Metodický postup pro určení úspor primární energie

Metodický postup pro určení úspor primární energie Metodický postup pro určeí úspor primárí eergie Parí protitlaká turbía ORGRZ, a.s., DIVIZ PLNÉ CHNIKY A CHMI HUDCOVA 76, 657 97 BRNO, POŠ. PŘIHR. 97, BRNO 2 z.č. Obsah abulka hodot vstupujících do výpočtu...3

Více

SIGMA PUMPY HRANICE 426 2.98 11.91

SIGMA PUMPY HRANICE 426 2.98 11.91 SIGMA PUMPY HRANICE LEHKÁ DIAGONÁLNÍ ÈERPADLA DE SIGMA PUMPY HRANICE, s.r.o. Tovární 605, 753 01 Hranice tel.: 581 661 111, fax: 581 602 587 Email: sigmahra@sigmahra.cz 426 2.98 11.91 Použití Èerpadla

Více

M - Posloupnosti VARIACE

M - Posloupnosti VARIACE M - Poslouposti Autor: Mgr Jromír Juřek - http://wwwjrjurekcz Kopírováí jkékoliv dlší využití výukového mteriálu je povoleo pouze s uvedeím odkzu wwwjrjurekcz VARIACE Teto dokumet byl kompletě vytvoře,

Více

STAVEBNICOVÝ VĚTRACÍ A KLIMATIZAČNÍ SYSTÉM

STAVEBNICOVÝ VĚTRACÍ A KLIMATIZAČNÍ SYSTÉM STVENICOVÝ VĚTRCÍ KLIMTIZČNÍ SYSTÉM Technická dokumentace číslo : TD 7. platí od: / kontakt : LTEKO s.r.o. Pod Cihelnou Hostomice pod rdy Czech Republic telefon: +- ; +- 8 fax: +- ; +- 7 e-mail: odbyt@alteko.cz.

Více

Termodynamika 2. UJOP Hostivař 2014

Termodynamika 2. UJOP Hostivař 2014 Termodynamika 2 UJOP Hostivař 2014 Skupenské teplo tání/tuhnutí je (celkové) teplo, které přijme pevná látka při přechodu na kapalinu během tání nebo naopak Značka Veličina Lt J Nedochází při něm ke změně

Více

p V = n R T Při stlačování vkládáme do systému práci a tím se podle 1. věty termodynamické zvyšuje vnitřní energie systému U = q + w

p V = n R T Při stlačování vkládáme do systému práci a tím se podle 1. věty termodynamické zvyšuje vnitřní energie systému U = q + w 3. DOPRAVA PLYNŮ Ve výrobních procesech se často dopravují a zpracovávají plyny za tlaků odlišných od tlaku atmosférického. Podle poměru stlačení, tj. poměru tlaků před a po kompresi, jsou stroje na dopravu

Více

pracovní list studenta Acidobazické rovnováhy Odměrná analýza acidobazická titrace

pracovní list studenta Acidobazické rovnováhy Odměrná analýza acidobazická titrace praoví list studeta Aidobaziké rovováhy dměrá aalýza aidobaziká titrae ýstup RP: Klíčová slova: Marti Krejčí experimet umožňuje žákům pohopit hováí slabýh protolytů (kyseli a zásad ve vodýh roztoíh; žái

Více

8.2.1 Aritmetická posloupnost

8.2.1 Aritmetická posloupnost 8.. Aritmetická posloupost Předpoklady: 80, 80, 803, 807 Pedagogická pozámka: V hodiě rozdělím třídu a dvě skupiy a každá z ich dělá jede z prvích dvou příkladů. Př. : V továrě dokočí každou hodiu motáž

Více

KLIMATIZACE A PRŮMYSLOVÁ VZDUCHOTECHNIKA VYBRANÉ PŘÍKLADY KE CVIČENÍ I.

KLIMATIZACE A PRŮMYSLOVÁ VZDUCHOTECHNIKA VYBRANÉ PŘÍKLADY KE CVIČENÍ I. KLIMATIZACE A PRŮMYSLOVÁ VZDUCHOTECHNIKA VYBRANÉ PŘÍKLADY KE CVIČENÍ I. Ing. Jan Schwarzer, Ph.D.. Praha 2011 Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti 1 Obsah 1 Obsah... 2 2 Označení...3

Více

Měření na trojfázovém transformátoru naprázdno a nakrátko.

Měření na trojfázovém transformátoru naprázdno a nakrátko. Úol: Měřeí a trojfázovém trasformátoru aprázdo a aráto. 1. Změřte a areslete charateristiy aprázdo trojfázového trasformátoru 2,, P, cos = f ( 1) v rozmezí 4-1 V. Zdůvoděte průběh charateristi 2 = f (

Více

6. FUNKCE A POSLOUPNOSTI

6. FUNKCE A POSLOUPNOSTI 6. FUNKCE A POSLOUPNOSTI Fukce Dovedosti:. Základí pozatky o fukcích -Chápat defiici fukce,obvyklý způsob jejího zadáváí a pojmy defiičí obor hodot fukce. U fukcí zadaých předpisem umět správě operovat

Více

1. Nakreslete všechny kostry následujících grafů: nemá žádnou kostru, roven. roven n,

1. Nakreslete všechny kostry následujících grafů: nemá žádnou kostru, roven. roven n, DSM2 Cv 7 Kostry grafů Defiice kostry grafu: Nechť G = V, E je souvislý graf. Kostrou grafu G azýváme každý jeho podgraf, který má stejou možiu vrcholů a je zároveň stromem. 1. Nakreslete všechy kostry

Více

10.2.3 VÁŽENÝ ARITMETICKÝ PRŮMĚR S REÁLNÝMI VAHAMI

10.2.3 VÁŽENÝ ARITMETICKÝ PRŮMĚR S REÁLNÝMI VAHAMI Středí hodoty Artmetcý průměr vážeý Aleš Drobí straa 0 VÁŽENÝ ARITMETICKÝ PRŮMĚR S REÁLNÝMI VAHAMI Zatím jsme počítal s tím, že četost ve vztahu pro vážeý artmetcý průměr byla přrozeá čísla Četost mohou

Více

Zpracování teorie 2010/11 2011/12

Zpracování teorie 2010/11 2011/12 Zpracování teorie 2010/11 2011/12 Cykly Děje Proudění (turbíny) počet v: roce 2010/11 a roce 2011/12 Chladící zařízení (nakreslete cyklus a nakreslete schéma)... zde 13 + 2 (15) Izochorický děj páry (nakreslit

Více

Komplexní čísla. Definice komplexních čísel

Komplexní čísla. Definice komplexních čísel Komplexí čísla Defiice komplexích čísel Komplexí číslo můžeme adefiovat jako uspořádaou dvojici reálých čísel [a, b], u kterých defiujeme operace sčítáí, ásobeí, apod. Stadardě se komplexí čísla zapisují

Více

Identifikátor materiálu: ICT 2 58

Identifikátor materiálu: ICT 2 58 Identifikátor materiálu: ICT 58 Registrační číslo projektu Název projektu Název příjemce podpory název materiálu (DUM) Anotace Autor Jazyk Očekávaný výstup Klíčová slova Druh učebního materiálu Druh interaktivity

Více

Elektroenergetika 1. Termodynamika a termodynamické oběhy

Elektroenergetika 1. Termodynamika a termodynamické oběhy Termodynamika a termodynamické oběhy Termodynamika Popisuje procesy, které zahrnují změny teploty, přeměny energie a vzájemný vztah mezi tepelnou energií a mechanickou prací Opakování fyziky Termodynamický

Více

12. Termomechanika par, Clausiova-Clapeyronova rovnice, parní tabulky, základni termodynamické děje v oblasti par

12. Termomechanika par, Clausiova-Clapeyronova rovnice, parní tabulky, základni termodynamické děje v oblasti par 1/18 12. Termomechanika par, Clausiova-Clapeyronova rovnice, parní tabulky, základni termodynamické děje v oblasti par Příklad: 12.1, 12.2, 12.3, 12.4, 12.5, 12.6, 12.7, 12.8, 12.9, 12.10, 12.11, 12.12,

Více

12. N á h o d n ý v ý b ě r

12. N á h o d n ý v ý b ě r 12. N á h o d ý v ý b ě r Při sledováí a studiu vlastostí áhodých výsledků pozáme charakter rozděleí z toho, že opakovaý áhodý pokus ám dává za stejých podmíek růzé výsledky. Ty odpovídají hodotám jedotlivých

Více

STRUKTURA A VLASTNOSTI PLYNŮ POJMY K ZOPAKOVÁNÍ. Testové úlohy varianta A

STRUKTURA A VLASTNOSTI PLYNŮ POJMY K ZOPAKOVÁNÍ. Testové úlohy varianta A Škola: Autor: DUM: Vzdělávací obor: Tematický okruh: Téma: Masarykovo gymnázium Vsetín Mgr. Jitka Novosadová MGV_F_SS_3S3_D09_Z_OPAK_T_Plyny_T Člověk a příroda Fyzika Struktura a vlastnosti plynů Opakování

Více