Princip gradientních optimalizačních metod

Rozměr: px
Začít zobrazení ze stránky:

Download "Princip gradientních optimalizačních metod"

Transkript

1 Princip gradientních optimalizačních metod Tomáš Kroupa 20. května 2014 Tento studijní materiál je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky.

2 Obsah Úkol a základní princip Obecné značení Výpočet gradientu optimalizace Metoda nejvetšího spádu Metoda sdružených gradientů Newtonova metoda Kvazi-Newtonovo metody Porovnání metod

3 Úkol a základní princip Úkol a základní princip Obecné značení Výpočet gradientu optimalizace Metoda nejvetšího spádu Metoda sdružených gradientů Newtonova metoda Kvazi-Newtonovo metody Porovnání metod

4 Nalézt Úkol min x {f (x)} (1) kde f je funkcí mnoha proměnných (parametrů) f = f(x 1, x 2,..., x N ), (2) na oblasti Ω, která je definovaná tak, že x 1 x lb 1, xub 1 atd. Často se značí x = [x 1, x 2,..., x N ] T. (3) Často je nutné uvažovat ještě podmínky rovnosti a nebo nerovnosti 1 0 h in (x) a nebo 0 = h eq (x). (4) 1 Pak ovšem musí být algoritmy více propracované, princip těchto algoritmů snad bude jednou ukázán. Úkol a základní princip 4/21

5 Úkol Funkce f nemusí být popsaná jen analyticky, ale i tak, že pomocí parametrů x se postaví MKP model a výstup bude například maximální průhyb modelu, nebo první vlastní frekvence. A funkce f může být rozdíl mezi vlastní frekvencí, na kterou chceme model naladit nebo ten samotný průhyb, který chceme minimalizovat apod. Úkol a základní princip 5/21

6 Praktické příklady 1. Identifikace materiálových parametrů f Rozdíl mezi MKP a exp. x E 1, E 2, σ y,... 0 h Relaxační časy u viskoelastického modelu větší než 0 2. Minimalizace hmotnosti lávky f Hmotnost lávky x Všechny možné rozměry, skladba vrstev laminátu,... 0 h Průhyb, První vlastní frekvence > 6 Hz 3. Identifikace místa dopadu impaktoru f Rozdíl mezi signály z analýzy a exp. x Pozice razníku v analýze 0 h Hodnoty rázové funkce musí být vždý vetší nebo rovny 0 Úkol a základní princip 6/21

7 Základní princip Sestavení posloupnosti kde x k+1 = x k + α k d k (5) x k je vektor hodnot parametrů v kroku k. α k je délka kroku. d k je směr kroku. Rychlost konvergence a dost často i schopnost algoritmu nalézt minimum ovlivňuje volba x 0. Úkol a základní princip 7/21

8 Další obecné informace Při vhodné volbě d k a vlastnostech funkce f lze dokázat, že výše zmíněná posloupnost konverguje k minimu (v okolí bodu minima). Volba d k se liší metodu od metody. Parametr α k se určuje jako řešení 1D optimalizace { ( min f x k+1)} { ( = min f x k + α k d k)}. (6) α k α k V praxi často nelze nalézt přesné minimum, proto se výpočet ukončuje podmínkou kdy kde ɛ je velmi malé číslo např f ɛ, (7) Úkol a základní princip 8/21

9 Značení a co je co? Gradient c (x) = f (x) = [ f x 1, f x 2,..., ] f T (8) x N Hessova matice H (x) = 2 f (x) = 2 f x 1 x 1 2 f x 2 x 1. 2 f x N x 1 2 f x 1 x 2 2 f 2 f x 1 x N 2 f x 2 x N x 2 x f x N x 2 2 f x N x N (9) Úkol a základní princip Obecné značení 9/21

10 Výpočet gradientu Analyticky to snad nebudeme probírat, ne? ;-) Numericky je nutné definovat interval, na kterém bude gradient vypočten x i. Single sided f = f(x 1 + x 1, x 2,...) f(x 1, x 2,...) (10) x 1 x 1 Central differences f = f(x 1 + x 1, x 2,...) f(x 1 x 1, x 2,...) (11) x 1 2 x 1 A mnoho dalších ještě fikanějších způsobů. Úkol a základní princip Výpočet gradientu 10/21

11 Výpočet gradientu - ukázka na paraboloidu f =x x 2 2 f(x 1,x 2 ) =[2x 1,4x 2 ] T f Top x Front x Side Analyticky f(1.0,1.0) = [2.0,4.0] T Numericky -- single sided f(1.0,1.0) = [3.0,6.0] T, [ x 1, x 2 ] T =[1,1] T f(1.0,1.0) = [2.5,5.0] T, [ x 1, x 2 ] T =[0.5,0.5] T f(1.0,1.0) = [2.1,4.2] T, [ x 1, x 2 ] T =[0.1,0.1] T f(1.0,1.0) = [2.01,4.02] T, [ x 1, x 2 ] T =[0.01,0.01] T Numericky -- central differences f(1.0,1.0) = [2.0,4.0] T, [ x 1, x 2 ] T =[1,1] T f(1.0,1.0) = [2.0,4.0] T, [ x 1, x 2 ] T =[0.01,0.01] T x 1 f f f x 2 x 1 x2 x 1 x 2 Úkol a základní princip Výpočet gradientu 11/21

12 optimalizace Úkol a základní princip Obecné značení Výpočet gradientu optimalizace Metoda nejvetšího spádu Metoda sdružených gradientů Newtonova metoda Kvazi-Newtonovo metody Porovnání metod

13 Metoda nejvetšího spádu Připomeňme, že x k+1 = x k + α k d k. Základní myšlenkou této metody je, že ( d k = c k = c x k). (12) optimalizace Metoda nejvetšího spádu 13/21

14 Metoda sdružených gradientů Připomeňme, že x k+1 = x k + α k d k. Základní myšlenkou této metody je, že Platí, že d 0 = c 0. d k = c k + ( ck c k 1 )2 d k 1. (13) optimalizace Metoda sdružených gradientů 14/21

15 Newtonova metoda Připomeňme, že x k+1 = x k + α k d k. Základní myšlenkou této metody je, že d k = (H k ) 1 c k, (14) kde se v praxi d k získá jako řešení soustavy lineárních algebraických rovnic H k d k = c k. optimalizace Newtonova metoda 15/21

16 Newtonova metoda Typicky dochází k problémům pokud je v H k singulární. Pokud ovšem je funkce f šikovná, má tato metoda nejrychlejší konvergenci. Pokud je α = 1 jedná se o klasickou Newtonovou metodu, pokud se určuje délka kroku α jde o modifikovanou Newtonovu metodu. optimalizace Newtonova metoda 16/21

17 BFGS Broyden-Fletcher- Goldfarb-Shanno Připomeňme, že x k+1 = x k + α k d k. Základní myšlenkou této metody je, že kde d k = (B k ) 1 c k, (15) s k = x k+1 x k rozdíl parametrů, (16) y k = c k+1 c k rozdíl gradientu, (17) B k+1 = B k Bk s k s kt B k s kt B k s k přičemž opět lze řešit B k d k = c k. + yk y kt y kt s k, (18) optimalizace Kvazi-Newtonovo metody 17/21

18 BFGS Broyden-Fletcher- Goldfarb-Shanno Případně lze inverzi matice B k+1 vypočítat i jiným způsobem a to pomocí Sherman Morisson vztahu 2 (B k+1 ) 1 = (B k ) 1 + (s kt y k + y kt (B k ) 1 y k) ( s k s kt) (s kt y k) 2 Často se bere B 0 = I nebo B 0 = H(x 0 ). + (Bk ) 1 y k s kt + s k y kt (B k ) 1 s kt y k. (19) 2 k a k + 1 jde jen o to z jakého kroku se na daný vztah koukáme. optimalizace Kvazi-Newtonovo metody 18/21

19 Porovnání metod Úkol a základní princip Obecné značení Výpočet gradientu optimalizace Metoda nejvetšího spádu Metoda sdružených gradientů Newtonova metoda Kvazi-Newtonovo metody Porovnání metod

20 Porovnání f = x 2 + xy y2 y Nejvetsi spad Sdruzene gradienty Newtonova metoda BFGS Metoda nejvetsiho spadu # x y f Metoda sdruzenych gradientu # x y f Newtonova metoda # x y f x BFGS # x y f Porovnání metod 20/21

21 Tato prezentace je spolufinancována Evropským sociálním fondem a státním rozpočtem České republiky v rámci projektu č. CZ.1.07/2.2.00/ Inovace výuky podpořená praxí. Tento studijní materiál je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky.

Princip řešení soustavy rovnic

Princip řešení soustavy rovnic Princip řešení soustavy rovnic Tomáš Kroupa 20. května 2014 Tento studijní materiál je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Obsah Formulace úlohy Metody řešení

Více

Numerické metody a programování. Lekce 8

Numerické metody a programování. Lekce 8 Numerické metody a programování Lekce 8 Optimalizace hledáme bod x, ve kterém funkce jedné nebo více proměnných f x má minimum (maximum) maximalizace f x je totéž jako minimalizace f x Minimum funkce lokální:

Více

4. Přednáška: Kvazi-Newtonovské metody:

4. Přednáška: Kvazi-Newtonovské metody: 4 Přednáša: Kvazi-Newtonovsé metody: Metody s proměnnou metriou, modifiace Newtonovy metody Efetivní pro menší úlohy s hustou Hessovou maticí Newtonova metoda (opaování): f aproximujeme loálně vadraticou

Více

Základní spádové metody

Základní spádové metody Základní spádové metody Petr Tichý 23. října 2013 1 Metody typu line search Problém Idea metod min f(x), f : x R Rn R. n Dána počáteční aproximace x 0. Iterační proces (krok k): (a) zvol směr d k, (b)

Více

20. května Abstrakt V následujícím dokumentu je popsán způsob jakým analyzovat problém. výstřelu zasáhnout bod na zemi v definované vzdálenosti.

20. května Abstrakt V následujícím dokumentu je popsán způsob jakým analyzovat problém. výstřelu zasáhnout bod na zemi v definované vzdálenosti. Ukázková semestrální práce z předmětu VSME Tomáš Kroupa 20. května 2014 Abstrakt V následujícím dokumentu je popsán způsob jakým analyzovat problém lučištníka, který má při pevně daném natažení luku jen

Více

Princip optimalizačních metod inspirovaných přírodou

Princip optimalizačních metod inspirovaných přírodou Princip optimalizačních metod inspirovaných přírodou Tomáš Kroupa 20. května 2014 Tento studijní materiál je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Obsah Úkol a

Více

OPTIMALIZACE. (přehled metod)

OPTIMALIZACE. (přehled metod) OPTIMALIZACE (přehled metod) Typy optimalizačních úloh Optimalizace bez omezení Nederivační metody Derivační metody Optimalizace s omezeními Lineární programování Nelineární programování Globální optimalizace

Více

Numerické metody optimalizace - úvod

Numerické metody optimalizace - úvod Numerické metody optimalizace - úvod Petr Tichý 16. února 2015 1 Organizace přednášek a cvičení 13 přednášek a cvičení. Zápočet: úloha programování a testování úloh v Matlabu. Další informace na blogu

Více

Faster Gradient Descent Methods

Faster Gradient Descent Methods Faster Gradient Descent Methods Rychlejší gradientní spádové metody Ing. Lukáš Pospíšil, Ing. Martin Menšík Katedra aplikované matematiky, VŠB - Technická univerzita Ostrava 24.1.2012 Ing. Lukáš Pospíšil,

Více

Hledání extrémů funkcí

Hledání extrémů funkcí Hledání extrémů funkcí Budeme se zabývat téměř výhradně hledáním minima. Přes nost nalezeného extrému Obecně není hledání extrému tak přesné jako řešení rovnic. Demonstrovat to můžeme na příkladu hledání

Více

Numerická matematika 1

Numerická matematika 1 Numerická matematika 1 Obsah 1 Řešení nelineárních rovnic 3 1.1 Metoda půlení intervalu....................... 3 1.2 Metoda jednoduché iterace..................... 4 1.3 Newtonova metoda..........................

Více

SOUSTAVY LINEÁRNÍCH ALGEBRAICKÝCH ROVNIC

SOUSTAVY LINEÁRNÍCH ALGEBRAICKÝCH ROVNIC SOUSTAVY LINEÁRNÍCH ALGEBRAICKÝCH ROVNIC Pojmy: Algebraická rovnice... rovnice obsahující pouze celé nezáporné mocniny neznámé x, tj. a n x n + a n 1 x n 1 +... + a x + a 1 x + a 0 = 0, kde n je přirozené

Více

Katedra geotechniky a podzemního stavitelství

Katedra geotechniky a podzemního stavitelství Katedra geotechniky a podzemního stavitelství Modelování v geotechnice Metoda okrajových prvků (prezentace pro výuku předmětu Modelování v geotechnice) doc. RNDr. Eva Hrubešová, Ph.D. Inovace studijního

Více

stránkách přednášejícího.

stránkách přednášejícího. Předmět: MA 4 Dnešní látka Iterační metoda Jacobiova iterační metoda Gaussova-Seidelova iterační metoda Superrelaxační metoda (metoda SOR) Metoda sdružených gradientů Četba: Text o lineární algebře v Příručce

Více

DRN: Kořeny funkce numericky

DRN: Kořeny funkce numericky DRN: Kořeny funkce numericky Kořenem funkce f rozumíme libovolné číslo r splňující f(r) = 0. Fakt. Nechť f je funkce na intervalu a, b. Jestliže f(a) f(b) < 0 (tj. f(a) a f(b) mají opačná znaménka) a f

Více

Algoritmy pro spojitou optimalizaci

Algoritmy pro spojitou optimalizaci Algoritmy pro spojitou optimalizaci Vladimír Bičík Katedra počítačů Fakulta elektrotechnická České vysoké učení technické v Praze 10.6.2010 Vladimír Bičík (ČVUT Praha) Algoritmy pro spojitou optimalizaci

Více

Iterační metody řešení soustav lineárních rovnic. 27. prosince 2011

Iterační metody řešení soustav lineárních rovnic. 27. prosince 2011 Iterační metody řešení soustav lineárních rovnic Michal Čihák 27. prosince 2011 Přímé metody řešení soustav lineárních rovnic V přednáškách z lineární algebry jste se seznámili s několika metodami řešení

Více

III. MKP vlastní kmitání

III. MKP vlastní kmitání Jiří Máca - katedra mechaniky - B325 - tel. 2 2435 4500 maca@fsv.cvut.cz III. MKP vlastní kmitání 1. Rovnice vlastního kmitání 2. Rayleighova Ritzova metoda 3. Jacobiho metoda 4. Metoda inverzních iterací

Více

Dnešní látka: Literatura: Kapitoly 3 a 4 ze skript Karel Rektorys: Matematika 43, ČVUT, Praha, Text přednášky na webové stránce přednášejícího.

Dnešní látka: Literatura: Kapitoly 3 a 4 ze skript Karel Rektorys: Matematika 43, ČVUT, Praha, Text přednášky na webové stránce přednášejícího. Předmět: MA4 Dnešní látka: Od okrajových úloh v 1D k o. ú. ve 2D Laplaceův diferenciální operátor Variačně formulované okrajové úlohy pro parciální diferenciální rovnice a metody jejich přibližného řešení

Více

AVDAT Nelineární regresní model

AVDAT Nelineární regresní model AVDAT Nelineární regresní model Josef Tvrdík Katedra informatiky Přírodovědecká fakulta Ostravská univerzita Nelineární regresní model Ey i = f (x i, β) kde x i je k-členný vektor vysvětlujících proměnných

Více

Newtonova metoda. 23. října 2012

Newtonova metoda. 23. října 2012 Hledání kořenů rovnic jedné reálné proměnné Newtonova metoda Michal Čihák 23. října 2012 Newtonova metoda (metoda tečen) využívá myšlenku, že tečna v daném bodě grafu funkce nejlépe aproximuje graf funkce

Více

2. RBF neuronové sítě

2. RBF neuronové sítě 2. RBF neuronové sítě Kapitola pojednává o neuronových sítích typu RBF. V kapitole je popsána základní struktura tohoto typu neuronové sítě. Poté následuje definice a charakteristika jednotlivých radiálně

Více

Lineární klasifikátory

Lineární klasifikátory Lineární klasifikátory Lineární klasifikátory obsah: perceptronový algoritmus základní verze varianta perceptronového algoritmu přihrádkový algoritmus podpůrné vektorové stroje Lineární klasifikátor navrhnout

Více

Úvod do optimalizace Matematické metody pro ITS (11MAMY)

Úvod do optimalizace Matematické metody pro ITS (11MAMY) Úvod do optimalizace Matematické metody pro ITS (11MAMY) Jan Přikryl (volně dle M.T. Heathe) 10. přednáška 11MAMY úterý 22. března 2016 verze: 2016-04-01 16:10 Obsah Optimalizační problém 1 Definice 1

Více

Západočeská Univerzita v Plzni Fakulta Aplikovaných Věd Katedra Matematiky. Použití gradientních metod v úlohách na nelineární

Západočeská Univerzita v Plzni Fakulta Aplikovaných Věd Katedra Matematiky. Použití gradientních metod v úlohách na nelineární Západočeská Univerzita v Plzni Fakulta Aplikovaných Věd Katedra Matematiky Bakalářská Práce Použití gradientních metod v úlohách na nelineární nejmenší čtverce Plzeň 2016 Pavel Šimána Čestné prohlášení

Více

Co jsme udělali: Au = f, u D(A)

Co jsme udělali: Au = f, u D(A) Předmět: MA4 Dnešní látka: Od okrajových úloh v 1D k o. ú. ve 2D Laplaceův diferenciální operátor Variačně formulované okrajové úlohy pro parciální diferenciální rovnice a metody jejich přibližného řešení

Více

Dnešní látka Opakování: normy vektorů a matic, podmíněnost matic Jacobiova iterační metoda Gaussova-Seidelova iterační metoda

Dnešní látka Opakování: normy vektorů a matic, podmíněnost matic Jacobiova iterační metoda Gaussova-Seidelova iterační metoda Předmět: MA 4 Dnešní látka Opakování: normy vektorů a matic, podmíněnost matic Jacobiova iterační metoda Gaussova-Seidelova iterační metoda Četba: Text o lineární algebře v Příručce přežití na webových

Více

Pokročilé metody učení neuronových sítí. Tomáš Řehořek tomas.rehorek@fit.cvut.cz

Pokročilé metody učení neuronových sítí. Tomáš Řehořek tomas.rehorek@fit.cvut.cz Pokročilé metody učení neuronových sítí Tomáš Řehořek tomas.rehorek@fit.cvut.cz Problém učení neuronové sítě (1) Nechť N = (V, I, O, S, w, f, h) je dopředná neuronová síť, kde: V je množina neuronů I V

Více

Kontraktantní/dilatantní

Kontraktantní/dilatantní Kontraktantní/dilatantní plasticita - úhel dilatance směr přírůstku plastické deformace Na základě experimentálního měření dospěl St. Venant k závěru, že směry hlavních napětí jsou totožné se směry přírůstku

Více

Soustavy nelineárních rovnic pomocí systému Maple. Newtonova metoda.

Soustavy nelineárních rovnic pomocí systému Maple. Newtonova metoda. Úvod Soustavy nelineárních rovnic pomocí systému Maple. Newtonova metoda. Mnoho technických problémů vede na řešení matematických úloh, které se následně převedou na úlohy řešení soustav nelineárních rovnic

Více

3. Přednáška: Line search

3. Přednáška: Line search Úloha: 3. Přednáška: Line search min f(x), x R n kde x R n, n 1 a f : R n R je dvakrát spojitě diferencovatelná. Iterační algoritmy: Začínám v x 0 a vytvářím posloupnost iterací {x k } k=0, tak, aby minimum

Více

Tento dokument obsahuje zadání pro semestrální programy z PAA. Vypracování. vypracovanou úlohu podle níže uvedených zadání. To mimo jiné znamená, že

Tento dokument obsahuje zadání pro semestrální programy z PAA. Vypracování. vypracovanou úlohu podle níže uvedených zadání. To mimo jiné znamená, že Kapitola Zadání Tento dokument obsahuje zadání pro semestrální programy z PAA. Vypracování alespoň jedné úlohy je nutnou podmínkou pro úspěšné složení zkoušky resp. získaní (klasifikovaného) zápočtu (viz.

Více

Numerické metody 6. května FJFI ČVUT v Praze

Numerické metody 6. května FJFI ČVUT v Praze Extrémy funkcí Numerické metody 6. května 2018 FJFI ČVUT v Praze 1 Úvod Úvod 1D Více dimenzí Kombinatorika Lineární programování Programy 1 Úvod Úvod - Úloha Snažíme se najít extrém funkce, at už jedné

Více

Úvod do optimalizace, metody hladké optimalizace

Úvod do optimalizace, metody hladké optimalizace Evropský sociální fond Investujeme do vaší budoucnosti Úvod do optimalizace, metody hladké optimalizace Matematika pro informatiky, FIT ČVUT Martin Holeňa, 13. týden LS 2010/2011 O čem to bude? Příklady

Více

Četba: Texty o lineární algebře (odkazy na webových stránkách přednášejícího).

Četba: Texty o lineární algebře (odkazy na webových stránkách přednášejícího). Předmět: MA 4 Dnešní látka Vlastní čísla a vektory Google Normovaný lineární prostor Normy matic a vektorů Symetrické matice, pozitivně definitní matice Gaussova eliminační metoda, podmíněnost matic Četba:

Více

Vlastní (charakteristická) čísla a vlastní (charakteristické) Pro zadanou čtvercovou matici A budeme řešit maticovou

Vlastní (charakteristická) čísla a vlastní (charakteristické) Pro zadanou čtvercovou matici A budeme řešit maticovou 1 Vlastní (charakteristická) čísla a vlastní (charakteristické) vektory matice Pro zadanou čtvercovou matici A budeme řešit maticovou rovnici A x = λ x, kde x je neznámá matice o jednom sloupci (sloupcový

Více

Přijímací zkoušky z matematiky pro akademický rok 2018/19 NMgr. studium Učitelství matematiky ZŠ, SŠ

Přijímací zkoušky z matematiky pro akademický rok 2018/19 NMgr. studium Učitelství matematiky ZŠ, SŠ Přijímací zkoušky z matematiky pro akademický rok 8/9 NMgr studium Učitelství matematiky ZŠ, SŠ Datum zkoušky: Varianta Registrační číslo uchazeče: Příklad 3 4 5 Celkem Body Ke každému příkladu uved te

Více

Stabilizace Galerkin Least Squares pro

Stabilizace Galerkin Least Squares pro Fakulta strojní ČVUT Ústav technické matematiky Stabilizace Galerkin Least Squares pro MKP na řešení proudění o vyšších Reynoldsových číslech Ing. Jakub Šístek Doc. RNDr. Pavel Burda, CSc. RNDr. Jaroslav

Více

Nalezněte hladiny následujících funkcí. Pro které hodnoty C R jsou hladiny neprázdné

Nalezněte hladiny následujících funkcí. Pro které hodnoty C R jsou hladiny neprázdné . Definiční obor a hladiny funkce více proměnných Nalezněte a graficky znázorněte definiční obor D funkce f = f(x, y), kde a) f(x, y) = x y, b) f(x, y) = log(xy + ), c) f(x, y) = xy, d) f(x, y) = log(x

Více

Nelineární optimalizace a numerické metody (MI NON)

Nelineární optimalizace a numerické metody (MI NON) Nelineární optimalizace a numerické metody (MI NON) Magisterský program: Informatika Obor: Teoretická informatika Katedra: 18101 Katedra teoretické informatiky Jaroslav Kruis Evropský sociální fond Praha

Více

Moderní numerické metody

Moderní numerické metody Moderní numerické metody Sbírka příkladů doc. RNDr. Jaromír Baštinec, CSc. RNDr. Michal Novák, Ph.D. ÚSTAV MATEMATIKY Moderní numerické metody 1 Obsah 1 Soustavy lineárních rovnic 7 2 Řešení jedné nelineární

Více

Četba: Texty o lineární algebře (odkazy na webových stránkách přednášejícího).

Četba: Texty o lineární algebře (odkazy na webových stránkách přednášejícího). Předmět: MA 4 Dnešní látka Vektorový (lineární) prostor (připomenutí) Normovaný lineární prostor Normy matic a vektorů Symetrické matice, pozitivně definitní matice Gaussova eliminační metoda, podmíněnost

Více

(Poznámka: V MA 43 je věta formulována trochu odlišně.)

(Poznámka: V MA 43 je věta formulována trochu odlišně.) Předmět: MA4 Dnešní látka Variačně formulované okrajové úlohy: zúplnění prostoru funkcí přibližné řešení minim. úlohy metoda konečných prvků jiný pohled na zobecněné řešení stejný způsob numerické aproximace

Více

VYBRANÉ PARTIE Z NUMERICKÉ MATEMATIKY

VYBRANÉ PARTIE Z NUMERICKÉ MATEMATIKY VYBRANÉ PARTIE Z NUMERICKÉ MATEMATIKY Jan Krejčí 31. srpna 2006 jkrejci@physics.ujep.cz http://physics.ujep.cz/~jkrejci Obsah 1 Přímé metody řešení soustav lineárních rovnic 3 1.1 Gaussova eliminace...............................

Více

Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague

Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague 1 / 40 regula Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague regula 1 2 3 4 5 regula 6 7 8 2 / 40 2 / 40 regula Iterační pro nelineární e Bud f reálná funkce

Více

Klasifikace a rozpoznávání. Lineární klasifikátory

Klasifikace a rozpoznávání. Lineární klasifikátory Klasifikace a rozpoznávání Lineární klasifikátory Opakování - Skalární součin x = x1 x 2 w = w T x = w 1 w 2 x 1 x 2 w1 w 2 = w 1 x 1 + w 2 x 2 x. w w T x w Lineární klasifikátor y(x) = w T x + w 0 Vyber

Více

Transformujte diferenciální výraz x f x + y f do polárních souřadnic r a ϕ, které jsou definovány vztahy x = r cos ϕ a y = r sin ϕ.

Transformujte diferenciální výraz x f x + y f do polárních souřadnic r a ϕ, které jsou definovány vztahy x = r cos ϕ a y = r sin ϕ. Ukázka 1 Necht má funkce z = f(x, y) spojité parciální derivace. Napište rovnici tečné roviny ke grafu této funkce v bodě A = [ x 0, y 0, z 0 ]. Transformujte diferenciální výraz x f x + y f y do polárních

Více

Státní závěrečná zkouška z oboru Matematika a její použití v přírodních vědách

Státní závěrečná zkouška z oboru Matematika a její použití v přírodních vědách Státní závěrečná zkouška z oboru Matematika a její použití v přírodních vědách Ústní zkouška z oboru Náročnost zkoušky je podtržena její ústní formou a komisionálním charakterem. Předmětem bakalářské zkoušky

Více

Kombinatorická minimalizace

Kombinatorická minimalizace Kombinatorická minimalizace Cílem je nalézt globální minimum ve velké diskrétní množině, kde může být mnoho lokálních minim. Úloha obchodního cestujícího Cílem je najít nejkratší cestu, která spojuje všechny

Více

DIPLOMOVÁ PRÁCE Nelineární řízení magnetického ložiska

DIPLOMOVÁ PRÁCE Nelineární řízení magnetického ložiska ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta strojní Ústav mechaniky DIPLOMOVÁ PRÁCE Nelineární řízení magnetického ložiska 2004 Jan KRYŠTŮFEK Motivace Účel diplomové práce: Porovnání nelineárního řízení

Více

Definice 1.1. Nechť je M množina. Funkci ρ : M M R nazveme metrikou, jestliže má následující vlastnosti:

Definice 1.1. Nechť je M množina. Funkci ρ : M M R nazveme metrikou, jestliže má následující vlastnosti: Přednáška 1. Definice 1.1. Nechť je množina. Funkci ρ : R nazveme metrikou, jestliže má následující vlastnosti: (1 pro každé x je ρ(x, x = 0; (2 pro každé x, y, x y, je ρ(x, y = ρ(y, x > 0; (3 pro každé

Více

Průvodce studiem. do bodu B se snažíme najít nejkratší cestu. Ve firmách je snaha minimalizovat

Průvodce studiem. do bodu B se snažíme najít nejkratší cestu. Ve firmách je snaha minimalizovat 6. Extrémy funkcí více proměnných Průvodce studiem Hledání extrémů je v praxi často řešená úloha. Např. při cestě z bodu A do bodu B se snažíme najít nejkratší cestu. Ve firmách je snaha minimalizovat

Více

Kapitola 12: Soustavy diferenciálních rovnic 1. řádu

Kapitola 12: Soustavy diferenciálních rovnic 1. řádu Kapitola 12: Soustavy diferenciálních rovnic 1. řádu Základní pojmy Definice: Rovnice tvaru = f(t, x, y) = g(t, x, y), t I nazýváme soustavou dvou diferenciálních rovnic 1. řádu. Řešením soustavy rozumíme

Více

Aplikovaná numerická matematika - ANM

Aplikovaná numerická matematika - ANM Aplikovaná numerická matematika - ANM 3 Řešení soustav lineárních rovnic iterační metody doc Ing Róbert Lórencz, CSc České vysoké učení technické v Praze Fakulta informačních technologií Katedra počítačových

Více

MODEL SOUSTAVY MOTORŮ S PRUŽNÝM ČLENEM

MODEL SOUSTAVY MOTORŮ S PRUŽNÝM ČLENEM VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV AUTOMATIZACE A MĚŘICÍ TECHNIKY FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION

Více

Kapitola 5. SLAR - gradientní metody

Kapitola 5. SLAR - gradientní metody 23.3.2o7 Kapitola 5. SLAR - gradientní metody Metody na řešení SLAR přímé (GEM, metoda LU-rozkladu) iterační (Jacobiova m., Gauss-Seidelova m., metoda SOR) gradientní X X Motivace Uvažujme kvadratickou

Více

l, l 2, l 3, l 4, ω 21 = konst. Proved te kinematické řešení zadaného čtyřkloubového mechanismu, tj. analyticky

l, l 2, l 3, l 4, ω 21 = konst. Proved te kinematické řešení zadaného čtyřkloubového mechanismu, tj. analyticky Kinematické řešení čtyřkloubového mechanismu Dáno: Cíl: l, l, l 3, l, ω 1 konst Proved te kinematické řešení zadaného čtyřkloubového mechanismu, tj analyticky určete úhlovou rychlost ω 1 a úhlové zrychlení

Více

4EK213 Lineární modely. 12. Dopravní problém výchozí řešení

4EK213 Lineární modely. 12. Dopravní problém výchozí řešení 4EK213 Lineární modely 12. Dopravní problém výchozí řešení 12. Distribuční úlohy LP Úlohy výrobního plánování (alokace zdrojů) Úlohy finančního plánování (optimalizace portfolia) Úlohy reklamního plánování

Více

Státnicová otázka 6, okruh 1

Státnicová otázka 6, okruh 1 Státnicová otázka 6, okruh 1 Vojtěch Franc, xfrancv@electra.felk.cvut.cz 7. února 2000 1 Zadání Statické optimalizace. Lineární a nelineární programování. Optimální řízení a rozhodování v dynamických systémech,

Více

na magisterský studijní obor Učitelství matematiky pro střední školy

na magisterský studijní obor Učitelství matematiky pro střední školy Datum:... Jméno:... Přijímací řízení pro akademický rok 203/4 na magisterský studijní obor Učitelství matematiky pro střední školy Písemná část přijímací zkoušky z matematiky Za každou správnou odpověd

Více

VYUŽITÍ MATLABU PRO VÝUKU NUMERICKÉ MATEMATIKY Josef Daněk Centrum aplikované matematiky, Západočeská univerzita v Plzni. Abstrakt

VYUŽITÍ MATLABU PRO VÝUKU NUMERICKÉ MATEMATIKY Josef Daněk Centrum aplikované matematiky, Západočeská univerzita v Plzni. Abstrakt VYUŽITÍ MATLABU PRO VÝUKU NUMERICKÉ MATEMATIKY Josef Daněk Centrum aplikované matematiky, Západočeská univerzita v Plzni Abstrakt Současný trend snižování počtu kontaktních hodin ve výuce nutí vyučující

Více

5. Lokální, vázané a globální extrémy

5. Lokální, vázané a globální extrémy 5 Lokální, vázané a globální extrémy Studijní text Lokální extrémy 5 Lokální, vázané a globální extrémy Definice 51 Řekneme, že f : R n R má v bodě a Df: 1 lokální maximum, když Ka, δ Df tak, že x Ka,

Více

- funkce, které integrujete aproximujte jejich Taylorovými řadami a ty následně zintegrujte. V obou případech vyzkoušejte Taylorovy řady

- funkce, které integrujete aproximujte jejich Taylorovými řadami a ty následně zintegrujte. V obou případech vyzkoušejte Taylorovy řady Vzorové řešení domácího úkolu na 6. 1. 1. Integrály 1 1 x2 dx, ex2 dx spočítejte přibližně následují metodou - funkce, které integrujete aproximujte jejich Taylorovými řadami a ty následně zintegrujte.

Více

Aproximace funkcí. Numerické metody 6. května FJFI ČVUT v Praze

Aproximace funkcí. Numerické metody 6. května FJFI ČVUT v Praze Aproximace funkcí Numerické metody 6. května 2018 FJFI ČVUT v Praze 1 Úvod Dělení Interpolace 1D Více dimenzí Minimalizace Důvody 1 Dělení Dělení - Získané data zadané data 2 Dělení - Získané data Obecně

Více

Diferenciál funkce dvou proměnných. Má-li funkce f = f(x, y) spojité parciální derivace v bodě a, pak lineární formu (funkci)

Diferenciál funkce dvou proměnných. Má-li funkce f = f(x, y) spojité parciální derivace v bodě a, pak lineární formu (funkci) 2. Diferenciál funkce, tečná rovina. Diferenciál funkce dvou proměnných. Má-li funkce f = f(x, y) spojité parciální derivace v bodě a, pak lineární formu (funkci) df(a, h) = x (a)h + (a)h 2, h = (h, h

Více

Program SMP pro kombinované studium

Program SMP pro kombinované studium Zadání příkladů k procvičení na seminář Program SMP pro kombinované studium Nejdůležitější typy příkladů - minimum znalostí před zkouškovou písemkou 1) Matice 1. Pro matice 1 0 2 1 0 3 B = 7 3 4 4 2 0

Více

Matematika V. Dynamická optimalizace

Matematika V. Dynamická optimalizace Matematika V. Dynamická optimalizace Obsah Kapitola 1. Variační počet 1.1. Derivace funkcí na vektorových prostorech...str. 3 1.2. Derivace integrálu...str. 5 1.3. Formulace základní úlohy P1 var. počtu,

Více

B) výchovné a vzdělávací strategie jsou totožné se strategiemi vyučovacího předmětu Matematika.

B) výchovné a vzdělávací strategie jsou totožné se strategiemi vyučovacího předmětu Matematika. 4.8.3. Cvičení z matematiky Předmět Cvičení z matematiky je vyučován v sextě a v septimě jako volitelný předmět. Vzdělávací obsah vyučovacího předmětu Cvičení z matematiky vychází ze vzdělávací oblasti

Více

Numerické metody a programování. Lekce 7

Numerické metody a programování. Lekce 7 Numerické metody a programování Lekce 7 Řešení nelineárních rovnic hledáme řešení x problému f x = 0 strategie: odhad řešení iterační proces postupného zpřesňování řešení výpočet skončen pokud je splněno

Více

Dnešní látka Variačně formulované okrajové úlohy zúplnění prostoru funkcí. Lineární zobrazení.

Dnešní látka Variačně formulované okrajové úlohy zúplnění prostoru funkcí. Lineární zobrazení. Předmět: MA4 Dnešní látka Variačně formulované okrajové úlohy zúplnění prostoru funkcí. Lineární zobrazení. Literatura: Kapitola 2 a)-c) a kapitola 4 a)-c) ze skript Karel Rektorys: Matematika 43, ČVUT,

Více

Vzpěr jednoduchého rámu, diferenciální operátory. Lenka Dohnalová

Vzpěr jednoduchého rámu, diferenciální operátory. Lenka Dohnalová 1 / 40 Vzpěr jednoduchého rámu, diferenciální operátory Lenka Dohnalová ČVUT, fakulta stavební, ZS 2015/2016 katedra stavební mechaniky a katedra matematiky, Odborné vedení: doc. Ing. Jan Zeman, Ph.D.,

Více

Změna koeficientů PDR při změně proměnných

Změna koeficientů PDR při změně proměnných Změna koeficientů PR při změně proměnných Oldřich Vlach oto pojednání doplňuje přednášku M. Šofera na téma Nalezení složek tenzoru napjatosti pro případ rovinné úlohy s povrchem zatíženým kontaktním tlakem

Více

1 Mnohočleny a algebraické rovnice

1 Mnohočleny a algebraické rovnice 1 Mnohočleny a algebraické rovnice 1.1 Pojem mnohočlenu (polynomu) Připomeňme, že výrazům typu a 2 x 2 + a 1 x + a 0 říkáme kvadratický trojčlen, když a 2 0. Číslům a 0, a 1, a 2 říkáme koeficienty a písmenem

Více

METODY OPTIMALIZACE ZDENĚK DOSTÁL, PETR BEREMLIJSKI

METODY OPTIMALIZACE ZDENĚK DOSTÁL, PETR BEREMLIJSKI METODY OPTIMALIZACE ZDENĚK DOSTÁL, PETR BEREMLIJSKI Text byl vytvořen v rámci realizace projektu Matematika pro inženýry 21. století (reg. č. CZ.1.07/2.2.00/07.0332), na kterém se společně podílela Vysoká

Více

LDF MENDELU. Simona Fišnarová (MENDELU) LDR druhého řádu VMAT, IMT 1 / 22

LDF MENDELU. Simona Fišnarová (MENDELU) LDR druhého řádu VMAT, IMT 1 / 22 Lineární diferenciální rovnice druhého řádu Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF)

Více

Přijímací zkouška na navazující magisterské studium 2018

Přijímací zkouška na navazující magisterské studium 2018 Přijímací zkouška na navazující magisterské studium 208 Studijní program: Studijní obory: Matematika MA, MMIT, MMFT, MSTR, MNVM, MPMSE Varianta A Řešení příkladů pečlivě odůvodněte. Věnujte pozornost ověření

Více

M5170: Matematické programování

M5170: Matematické programování M5170: Matematické programování Petr Zemánek (Masarykova Univerzita, Brno) Kapitola 3: Numerické metody řešení úloh matematického programování I (verze: 28. ledna 2019) Obecný úvod Nyní se již konečně

Více

Jak se matematika poučila v biologii

Jak se matematika poučila v biologii Jak se matematika poučila v biologii René Kalus IT4Innovations, VŠB TUO Role matematiky v (nejen) přírodních vědách Matematika inspirující a sloužící jazyk pro komunikaci s přírodou V 4 3 r 3 Matematika

Více

10 Funkce více proměnných

10 Funkce více proměnných M. Rokyta, MFF UK: Aplikovaná matematika II kap. 10: Funkce více proměnných 16 10 Funkce více proměnných 10.1 Základní pojmy Definice. Eukleidovskou vzdáleností bodů x = (x 1,...,x n ), y = (y 1,...,y

Více

1 Zobrazení 1 ZOBRAZENÍ 1. Zobrazení a algebraické struktury. (a) Ukažte, že zobrazení f : x

1 Zobrazení 1 ZOBRAZENÍ 1. Zobrazení a algebraické struktury. (a) Ukažte, že zobrazení f : x 1 ZOBRAZENÍ 1 Zobrazení a algebraické struktury 1 Zobrazení Příklad 1.1. (a) Ukažte, že zobrazení f : x na otevřený interval ( 1, 1). x x +1 je bijekce množiny reálných čísel R (b) Necht a, b R, a < b.

Více

DIPLOMOVÁ PRÁCE OPTIMALIZACE MECHANICKÝCH

DIPLOMOVÁ PRÁCE OPTIMALIZACE MECHANICKÝCH DIPLOMOVÁ PRÁCE OPTIMALIZACE MECHANICKÝCH VLASTNOSTÍ MECHANISMU TETRASPHERE Vypracoval: Jaroslav Štorkán Vedoucí práce: prof. Ing. Michael Valášek, DrSc. CÍLE PRÁCE Sestavit programy pro kinematické, dynamické

Více

Matice. Modifikace matic eliminační metodou. α A = α a 2,1, α a 2,2,..., α a 2,n α a m,1, α a m,2,..., α a m,n

Matice. Modifikace matic eliminační metodou. α A = α a 2,1, α a 2,2,..., α a 2,n α a m,1, α a m,2,..., α a m,n [1] Základní pojmy [2] Matice mezi sebou sčítáme a násobíme konstantou (lineární prostor) měníme je na jiné matice eliminační metodou násobíme je mezi sebou... Matice je tabulka čísel s konečným počtem

Více

Několik poznámek na téma lineární algebry pro studenty fyzikální chemie

Několik poznámek na téma lineární algebry pro studenty fyzikální chemie Několik poznámek na téma lineární algebry pro studenty fyzikální chemie Jiří Kolafa Vektory. Vektorový prostor Vektor je často zaveden jako n-tice čísel, (v,..., v n ), v i R (pro reálný vektorový prostor);

Více

Co je obsahem numerických metod?

Co je obsahem numerických metod? Numerické metody Úvod Úvod Co je obsahem numerických metod? Numerické metody slouží k přibližnému výpočtu věcí, které se přesně vypočítat bud nedají vůbec, nebo by byl výpočet neúměrně pracný. Obsahem

Více

Aplikovaná numerická matematika

Aplikovaná numerická matematika Aplikovaná numerická matematika 6. Metoda nejmenších čtverců doc. Ing. Róbert Lórencz, CSc. České vysoké učení technické v Praze Fakulta informačních technologií Katedra počítačových systémů Příprava studijních

Více

Soustavy lineárních diferenciálních rovnic I. řádu s konstantními koeficienty

Soustavy lineárních diferenciálních rovnic I. řádu s konstantními koeficienty Soustavy lineárních diferenciálních rovnic I řádu s konstantními koeficienty Definice a) Soustava tvaru x = ax + a y + az + f() t y = ax + a y + az + f () t z = a x + a y + a z + f () t se nazývá soustava

Více

2. Numerické řešení obyčejných diferenciálních rovnic

2. Numerické řešení obyčejných diferenciálních rovnic 1 2. Numerické řešení obyčejných diferenciálních rovnic y = f(x,y) spočátečnípodmínkou y(x )=y, (1) Platí: : Nechť f je spojitá v uzavřeném dvojrozměrném intervalu Ω= x a,x + a y b,y + b, a, b >.Anechť

Více

Četba: Texty o lineární algebře (odkazy na webových stránkách přednášejícího).

Četba: Texty o lineární algebře (odkazy na webových stránkách přednášejícího). Předmět: MA 4 Dnešní látka Lineární (vektorový) prostor Normovaný lineární prostor Normy matic a vektorů Symetrické matice, pozitivně definitní matice Gaussova eliminační metoda, podmíněnost matic Četba:

Více

geologie a užité geofyziky Karlova Univerzita, Praha v geomechanice I

geologie a užité geofyziky Karlova Univerzita, Praha v geomechanice I 1 Ústav hydrogeologie, inženýrské geologie a užité geofyziky Karlova Univerzita, Praha Přednášky pro předmět Matematické modelování v geomechanice I 3. část numerické metody David Mašín 2 Obsah Výstavba

Více

OOFEM: Implementace plasticitního materiálového modelu Cam-Clay. Ondřej Faltus, ZS 2016/17 Vyučující: Ing. Martin Horák, PhD.

OOFEM: Implementace plasticitního materiálového modelu Cam-Clay. Ondřej Faltus, ZS 2016/17 Vyučující: Ing. Martin Horák, PhD. OOFEM: Implementace plasticitního materiálového modelu Cam-Clay Ondřej Faltus, ZS 2016/17 Vyučující: Ing. Martin Horák, PhD. Teorie plasticity Pružnoplastické chování Princip: materiál se chová elasticky

Více

REGRESNÍ ANALÝZA V PROSTŘEDÍ MATLAB

REGRESNÍ ANALÝZA V PROSTŘEDÍ MATLAB 62 REGRESNÍ ANALÝZA V PROSTŘEDÍ MATLAB BEZOUŠKA VLADISLAV Abstrakt: Text se zabývá jednoduchým řešením metody nejmenších čtverců v prostředí Matlab pro obecné víceparametrové aproximační funkce. Celý postup

Více

Písemná zkouška z Matematiky II pro FSV vzor

Písemná zkouška z Matematiky II pro FSV vzor Písemná zkouška z Matematik II pro FSV vzor. (0 bodů) Určete a nakreslete definiční obor funkce sin x f(x, ) = (Kalenda 00/) spočtěte její parciální derivace podle všech proměnných všude, kde existují,

Více

Řešení "stiff soustav obyčejných diferenciálních rovnic

Řešení stiff soustav obyčejných diferenciálních rovnic Řešení "stiff soustav obyčejných diferenciálních rovnic Jiří Škvára Katedra fyziky, Přírodovědecká fakulta Univerzity J.E. Purkyně v Ústí n.l.. ročník, počítačové metody ve vědě a technice Abstrakt Seminární

Více

Přepočet provozních stavů sítě daných: Výpočet ztrát a kapacitních proudů v síti: Výpočet zkratových poměrů v síti:

Přepočet provozních stavů sítě daných: Výpočet ztrát a kapacitních proudů v síti: Výpočet zkratových poměrů v síti: Přepočet provozních stavů sítě daných: změnou topologie sítě (nová přípojnice, transformátor, vedení resp. kabel v síti) změnou zapojení sítě (změna provozu přípojnic resp. směrů napájení sítě) změnou

Více

Studijní text pro obor G+K Katedra matematiky Fakulta stavební ROVNICE. Doc. RNDr. Milada Kočandrlová, CSc.

Studijní text pro obor G+K Katedra matematiky Fakulta stavební ROVNICE. Doc. RNDr. Milada Kočandrlová, CSc. Studijní text pro obor G+K Katedra matematiky Fakulta stavební České vysoké učení technické OBYČEJNÉ DIFERENCIÁLNÍ ROVNICE Doc. RNDr. Milada Kočandrlová, CSc. Lektorovali: RNDr. Milan Kočandrle, CSc.,

Více

1 Linearní prostory nad komplexními čísly

1 Linearní prostory nad komplexními čísly 1 Linearní prostory nad komplexními čísly V této přednášce budeme hledat kořeny polynomů, které se dále budou moci vyskytovat jako složky vektorů nebo matic Vzhledem k tomu, že kořeny polynomu (i reálného)

Více

1. Řešená konstrukce Statické řešení Výpočet průhybové čáry Dynamika Vlastní netlumené kmitání...

1. Řešená konstrukce Statické řešení Výpočet průhybové čáry Dynamika Vlastní netlumené kmitání... . Řešená konstrukce.... Statické řešení.... Výpočet průhybové čáry... 5. Dynamika.... Vlastní netlumené kmitání..... Jacobiho metoda rovinné rotace... 4.. Popis algoritmu... 4. Vynucené kmitání... 5 4.

Více

FIT ČVUT MI-LOM Lineární optimalizace a metody. Dualita. Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti

FIT ČVUT MI-LOM Lineární optimalizace a metody. Dualita. Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti FIT ČVUT MI-LOM Lineární optimalizace a metody Dualita Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Michal Černý, 2011 FIT ČVUT, MI-LOM, M. Černý, 2011: Dualita 2/5 Dualita Evropský

Více

BAKALÁŘSKÁ PRÁCE. Numerické metody jednorozměrné minimalizace

BAKALÁŘSKÁ PRÁCE. Numerické metody jednorozměrné minimalizace UNIVERZITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDECKÁ FAKULTA KATEDRA MATEMATICKÉ ANALÝZY A APLIKACÍ MATEMATIKY BAKALÁŘSKÁ PRÁCE Numerické metody jednorozměrné minimalizace Vedoucí bakalářské práce: RNDr. Horymír

Více

Funkce v ıce promˇ enn ych Extr emy Pˇredn aˇska p at a 12.bˇrezna 2018

Funkce v ıce promˇ enn ych Extr emy Pˇredn aˇska p at a 12.bˇrezna 2018 Funkce více proměnných Extrémy Přednáška pátá 12.března 2018 Zdroje informací Diferenciální počet http://homen.vsb.cz/~kre40/esfmat2/fceviceprom.html http://www.studopory.vsb.cz/studijnimaterialy/sbirka_uloh/pdf/7.pdf

Více