Dnešní látka: Literatura: Kapitoly 3 a 4 ze skript Karel Rektorys: Matematika 43, ČVUT, Praha, Text přednášky na webové stránce přednášejícího.

Rozměr: px
Začít zobrazení ze stránky:

Download "Dnešní látka: Literatura: Kapitoly 3 a 4 ze skript Karel Rektorys: Matematika 43, ČVUT, Praha, Text přednášky na webové stránce přednášejícího."

Transkript

1 Předmět: MA4 Dnešní látka: Od okrajových úloh v 1D k o. ú. ve 2D Laplaceův diferenciální operátor Variačně formulované okrajové úlohy pro parciální diferenciální rovnice a metody jejich přibližného řešení Zobecněná derivace Obecná Dirichletova okrajová podmínka Literatura: Kapitoly 3 a 4 ze skript Karel Rektorys: Matematika 43, ČVUT, Praha, Text přednášky na webové stránce přednášejícího.

2 Co jsme udělali: ( p(x)u ) + q(x)u = f, u(a) = 0 = u(b) Au = f, u D(A) min F(v), v H A kde Au = (p(x)u ) + q(x)u a F(v) = (Av, v) 2(f, v). A je symetrický a pozitivně definitní operátor (p(x) > 0 pro a x b; s q(x) je to složitější, ale q(x) 0 stačí). H A je zúplněníd(a) (doplněníd(a) o další funkce - limity). Zobecnění do 2D a 3D?

3 Variačně formulované okrajové úlohy pro parciální diferenciální rovnice. Laplaceův operátor v R 2 (E 2 ) v R 3 (E 3 ) = 2 x 2 1 = 2 x x 2 2 Laplaceova rovnice v R x2 2, u = 2 u x u x x3 2, u = 2 u x u x2 2 u = 0. Řešení např. u = 5x 1 + 9x 2, u = 8x 2 1 8x u x3 2.

4 Poissonova rovnice v R 2 u = f, kde f C(R 2 ) je zadaná funkce. Pro f = 2 sin x 1 cos x 2, řešení např. u = sin x 1 cos x 2. Obdobně Poissonova rovnice v R 3 : u = f. Laplaceův operátor se hojně vyskytuje ve fyzice (rovnice pro elektrický nebo gravitační potenciál, vedení tepla, šíření vln).

5 Okrajové úlohy pro Poissonovu (Laplaceovu) rovnici Oblast R n : otevřená, omezená a souvislá množina v R n. Předpoklady: je omezená oblast a její hranice Γ (často též značeno ) je lipschitzovská. Okrajová úloha: u = f v a na Γ okrajová podmínka Dirichletova: u = g na Γ, kde funkce g je na hranici Γ předepsána; Neumannova: u = h na Γ, kde funkce h je zadaná na ν hranici Γ (derivace řešení podle jednotkové vnější normály ν); Newtonova: u +αu = h na Γ, kde funkce α a h jsou ν zadané na hranici Γ. Dirichletův (Neumannův, Newtonův) problém pro Poissonovu rovnici.

6 Poznámka: Harmonické funkce Funkce u(x 1,..., x n ), která je v oblasti spojitá včetně derivací 2 u x 2 1,..., 2 u x 2 n a splňuje v rovnici u = 0, se nazývá harmonická v. Věta o maximu harmonické funkce. Necht u je funkce spojitá v a harmonická v. Pak pro každý bod y platí min u(x) u(y) max u(x). x Γ x Γ

7 Harmonická funkce e x (sin y + cos y), Konec poznámky. (x, y) [0, 1] [0, 5π].

8 Dirichletův problém pro Poissonovu rovnici podrobněji R 2, f C(), g C(Γ) Hledáme funkci u, která splňuje je spojitá v uzavřené oblasti = Γ; má v spojité parciální derivace 2 u a splňuje v rovnici u = f ; x 2 1 v každém bodě hranice Γ platí u = g. Stručně u C 2 () C(), u = f v, u = g na Γ. a 2 u x 2 2 Každou funkci s těmito vlastnostmi nazýváme (klasickým) řešením Dirichletova problému pro Poissonovu rovnici. Obdobně pro R 3, R n a pro f = 0 (Dirichletův problém pro Laplaceovu rovnici).

9 Existuje (klasické) řešení? Ano pro speciální, f a g. Obecně ale existence klasického řešení není zaručena. Je možné úlohu formulovat pomocí operátoru a přejít k variačním metodám? Pro jednoduchost předpokládejme g = 0. Pak operátor A : D(A) C() je dán předpisem Au = u a definičním oborem D(A) = {u C 2 () C() : u Γ = 0}. V 1D byla pro přechod k zobecněnému řešení klíčová symetrie operátoru a pozitivní definitnost operátoru (pak bylo možné zúplnit/rozšířit D(A) na H A a v H A existovalo minimum funkcionálu energie). Lze podobně postupovat i u Dirichletovy úlohy?

10 Co je obdobou integrace po částech, kterou známe z 1D úloh? Greenova věta Necht je oblast s lipschitzovskou hranicí a necht funkce f(x) = f(x 1,...,x n ) a g(x) = g(x 1,...,x n ) jsou spojité v Γ včetně parciálních derivací f/ x i, g/ x i pro některý index i. Pak platí f g dx = fgν i ds f g dx, x i Γ x i kde ν i je i-tá souřadnice jednotkového vektoru vnější normály. Poznámka: Greenova věta z MA3 pro vektorovou funkci f, tj. f νds = div f dx, plyne z nynější verze Gr. věty při volbě g = 1. Γ

11 Připomeňme, že i pro funkce u, v C() je skalární součin definován analogicky jako v případě 1D, tj. (u, v) = u(x)v(x)dx, jde tedy o dvojný (případně trojný, vícerozměrný) integrál. Operátor daný předpisem Au = u je na D(A) = {u C 2 () C() : u Γ = 0} symetrický. Díky Greenově větě totiž pro u, v D(A) platí (Au, v) = (u, Av) = u v dx, nebot integrály přes hranici Γ jsou nulové.

12 Operátor A je pozitivní: u D(A), u 0 (Au, u) = u u dx > 0. Je pozitivně definitní?

13 Friedrichsova nerovnost [K. Rektorys:Variační metody..., SNTL, Praha, 1974 (upraveno)] Necht je oblast s lipschitzovskou hranicí; uvažujme funkce z prostoru C 1 ( Γ). Pak existuje kladná konstanta c, závislá na, ale nezávislá na funkcích z C 1 ( Γ) a taková, že pro každou funkci u C 1 ( Γ) platí n k=1 ( ) u 2 dx + u 2 (S) ds c x k Γ u 2 (x) dx = c u 2 L 2 ().

14 Díky Friedrichsově nerovnosti pro u D(A) (je tedy u = 0 na Γ) platí (Au, u) = c u u dx = n k=1 u 2 (x) dx = c u 2 L 2 (). Operátor A je tudíž pozitivně definitní. ( ) u 2 dx x k

15 Můžeme tedy (vyšedše z operátorové rovnice Au = f ) definovat energetický skalární součin (u, v) A = (Au, v) a energetickou normu u A = (Au, u); definovat prostor H A jako zúplnění prostoru D(A); definovat na H A funkcionál energie F(u) = (u, u) A 2(f, u); definovat zobecněné řešení rovnice Au = f jako funkci u H A, v níž F nabývá svého minima na H A (minimum existuje); hledat přibližné řešení u k Ritzovou metodou, tj. hledat koeficienty a 1,...,a k v lineární kombinaci u k = a 1 v 1 + +a k v k, kde funkce v 1,..., v k jsou pevně dány a u k minimalizuje hodnotu funkcionálu energie na prostoru všech lineárních kombinací funkcí v 1,...,v k.

16 Několik obrázků bázových funkcí = (0, L 1 ) (0, L 2 ) (obdélník) Trigonometrická báze v 1 = sin πx 1 L 1 sin πx 2 L 2, v 2 = sin 2πx 1 L 1 sin πx 2 L 2, v 3 = sin πx 1 L 1 sin 2πx 2 L 2, v 4 = sin 3πx 1 L 1 sin πx 2 L 2, v 5 = sin 2πx 1 L 1 sin 2πx 2 L 2, v 6 = sin πx 1 L 1 sin 3πx 2 L 2,...

17 sin 2πx 1 L 1 sin 2πx 2 L 2 sin 3πx 1 L 1 sin πx 2 L 2 sin πx 1 L 1 sin 3πx 2 L 2

18 Polynomiální báze g = x 1 x 2 (L 1 x 1 )(L 2 x 2 ) v 1 = g, v 2 = x 1 g, v 3 = x 2 g, v 4 = x 2 1 g, v 5 = x 1 x 2 g, v 6 = x 2 2 g,... 1,0 0,5 1,0 0,5 0,0 0 0,0 0 1 x_2 0,0 0,5 2 x_1 1,0 1 0,0 x_2 2 1,0 0,5 x_1 1,5 1,0 0,5 1,0 0,5 0,0 0,0 0,5 0,0 0 1,0 x_2 1,5 2,0 1,0 0,5 x_1 0,0 1 0,0 x_2 2 1,0 0,5 x_1

19 Metoda konečných prvků (MKP) různé typy spojitých bázových funkcí s malým nosičem. Nejjednodušší po částech lineární. Na rozdíl od předchozí báze (Ritzova metoda), tato báze zajistí, že výsledná soustava lineárních algebraických rovnic bude mít řídkou matici

20 Obě metody (Ritzova, MKP) opět vedou k řešení soustavy lineárních algebraických rovnic přímou nebo iterační metodou. Sestavení soustavy (její matice a pravé strany) je pracné kvůli integraci, používá se integrace numerická. Vrat me se ještě k původní úloze a minimalizaci funkcionálu energie.

21 Necht u H A je bodem minima energetického funkcionálu a v H A. Definujme φ(t) = F(u + tv) a upravme φ(t) = F(u + tv) = (u + tv, u + tv) A 2(f, u + tv) = (u, u) A + 2t(u, v) A + t 2 (v, v) A 2(f, u) 2t(f, v). Z podmínky minima φ (0) = 0 (čárka značí derivaci dle t). Tedy (u, v) A = (f, v) musí platit pro v H A. Opět se tedy setkáváme s ekvivalentní úlohou: Najdi u H A takové, že platí (u, v) A = (f, v) v H A, která má totéž zobecněné řešení u jako minimalizace funkcionálu energie. Tuto formulaci můžeme odvodit i bez minimalizace funkcionálu energie.

22 Jiná cesta k zobecněnému řešení Jestliže u = f v R 2, pak uv dx = fv dx pro každou funkci v z vhodného velkého" prostoru?. S užitím Greenovy věty a u = 0 na Γ odvodíme slabě formulovanou úlohu: Najdi funkci u? takovou, aby platilo ( u v + u ) v dx = fv dx v?. x 1 x 1 x 2 x 2 Potřebujeme, aby takto formulovaná úloha měla řešení u, které sice nemusí ležet v C 2 (), avšak v případě, že náhodou u C 2 (), aby platilo u = f v a u = 0 na Γ. Ukáže se (netriviálně), že na místě? potřebujeme prostor H A, který známe z úvah o minimu funkcionálu energie (zúplnění D(A)).

23 Jak si představit funkce z prostoru H A? H A = {u L 2 () : u/ x 1, u/ x 2 L 2 (), u Γ = 0}, kde však derivace jsou zobecněné: Řekneme, že funkce v,i L 2 () je zobecněnou první parciální derivací podle proměnné x i funkce u L 2 (), platí-li pro každou funkci φ C0 () v,i φ dx = u φ dx, (1) x i kde C0 () je prostor všech funkcí nekonečně spojitě diferencovatelných v a nulových v nějakém okolí hranice oblasti. Jestliže u C 1 (), pak v,i u/ x i a v,i je parciální derivace funkce u v klasickém smyslu. V pozadí (1) stojí Greenova věta. Platnost u Γ = 0 též v jistém zobecněném smyslu (nulová stopa funkce).

24 Příklad v 1D: Necht u C([0, 2]), u [0,1] = x, u [1,2] = 2 x. Najděte zobecněnou derivaci funkce u. Označme φ dφ(x) dx 2 0 uφ dx = 1 0 a u du(x) dx. Pak uφ dx uφ dx 1 2 = [uφ] x=1 x=0 u φ dx +[uφ] x=2 x=1 u φ dx = u(1)φ(1) u(1)φ(1) = û φ dx, 1 0 1φ dx ( 1)φ dx kde û L 2 ([0, 2]), û [0,1) = 1, û (1,2] = 1, a φ C0 (0, 2).

25 Pozor 2 û φ dx = 2φ(1). Souvislost s Diracovou delta funkcí. 0

26 Prostor H A byl sice původně definován pomocí operátoru A, ale lze jej definovat přímo, bez operátoru A. Značí se W 1,2 (); pro R 2 W 1,2 () = {u L 2 () : u/ x 1, u/ x 2 L 2 (), u Γ = 0}. Ještě obecnější (bez podmínky nulovosti na hranici) je prostor W 1,2 () (Sobolevův prostor) W 1,2 () = {u L 2 () : u/ x 1, u/ x 2 L 2 ()}. Jest W 1,2 () W 1,2 (). Na obou prostorech je definován speciální skalární součin funkcí (užívá i derivace!) ( ) u v (u, v) W 1,2 () = (u, v) L 2 () +, x 1 x 1 L 2 () u v = uv dx + dx + x 1 x 1 Norma u W 1,2 () = (u, u) W (). 1,2 ( u +, x 2 ) v x 2 u v dx. x 2 x 2 Prostor W 1,2 () (i W 1,2 ()) je úplný (každá posloupnost cauchyovská v normě u W 1,2 () má limitu z W 1,2 ()). L 2 ()

27 Shrnutí Klasické řešení úlohy: najít u C 2 () C(), aby u = f v R 2, u = 0 na Γ. Slabé řešení úlohy: najít u W 1,2 (), aby u v dx = fv dx v W 1,2 (). (2) (Odpovídá nulové derivaci funkcionálu energie v každém směru v W 1,2 ().) Díky symetrii operátoru je (2) ekvivalentní minimalizaci funkcionálu energie na H A W 1,2 (), řešení u je v obou případech stejné.

28 Přibližné řešení rovnice ( u v + u ) v dx = x 1 x 1 x 2 x 2 fv dx v W 1,2 () na podprostoru V m W 1,2 () konečné dimenze opět ve tvaru lineární kombinace bázových funkcí v i, tj. u m = m i=1 c iv i, ( m i=1 c iv i v + m i=1 c ) iv i v dx = fv dx, x 1 x 1 x 2 x 2 m ( vi v c i + v ) i v dx = fv dx v V m. x 1 x 1 x 2 x 2 i=1 Místo testování funkcemi v V m stačí užít jen v 1,..., v m. Dostaneme soustavu m lin. alg. rovnic pro neznámý vektor c = (c 1,...,c m ) T, (v i, v 1 ) A c 1 +(v i, v 2 ) A c 2 + +(v i, v m ) A c m = (f, v i ), i = 1, 2,..., m. Tuto soustavu známe z Ritzovy metody a z MKP!!!

29 Obecná Dirichletova okrajová podmínka Klasické řešení úlohy: najít u C 2 () C(), aby u = f v R 2, u = g na Γ. Slabé řešení úlohy: Vezměme takovou funkci w W 1,2 (), aby splňovala w = g na Γ, pak hledáme u W 1,2 (), pro niž u w W 1,2 (), u v dx = fv dx v W 1,2 (). Lze řešit např. užitím u = w + u 0, kde u 0 W 1,2 (): u 0 v dx = fv dx w v dx v W 1,2 ().

30 Příklad v 1D: Okrajová úloha u + e x u = cos x v (0, 3), u(0) = 1, u(3) = 5. Zvolíme například w(x) = 1 2x, tj. u = u 0 + w, navíc dokonce u = u 0. Pak OÚ pro neznámou funkci u 0: u 0 + ex (u 0 + w) = cos x v (0, 3), u 0 (0) = 0, u 0 (3) = 0. Slabá formulace: Najít u 0 W 1,2 ([0, 3]), aby v W 1,2 ([0, 3]) 3 0 ( u 0 (x)v (x)+e x u 0 (x)v(x) ) dx = 3 0 (cos x e x (1 2x))v(x) dx. Řešení původní úlohy je u = u x W 1,2 ([0, 3]).

Co jsme udělali: Au = f, u D(A)

Co jsme udělali: Au = f, u D(A) Předmět: MA4 Dnešní látka: Od okrajových úloh v 1D k o. ú. ve 2D Laplaceův diferenciální operátor Variačně formulované okrajové úlohy pro parciální diferenciální rovnice a metody jejich přibližného řešení

Více

Dnešní látka Variačně formulované okrajové úlohy zúplnění prostoru funkcí. Lineární zobrazení.

Dnešní látka Variačně formulované okrajové úlohy zúplnění prostoru funkcí. Lineární zobrazení. Předmět: MA4 Dnešní látka Variačně formulované okrajové úlohy zúplnění prostoru funkcí. Lineární zobrazení. Literatura: Kapitola 2 a)-c) a kapitola 4 a)-c) ze skript Karel Rektorys: Matematika 43, ČVUT,

Více

(Poznámka: V MA 43 je věta formulována trochu odlišně.)

(Poznámka: V MA 43 je věta formulována trochu odlišně.) Předmět: MA4 Dnešní látka Variačně formulované okrajové úlohy: zúplnění prostoru funkcí přibližné řešení minim. úlohy metoda konečných prvků jiný pohled na zobecněné řešení stejný způsob numerické aproximace

Více

Homogenní (nulové) okrajové podmínky Nehomogenní (nenulové) okrajové podmínky

Homogenní (nulové) okrajové podmínky Nehomogenní (nenulové) okrajové podmínky Předmět: MA4 Dnešní látka Variační formulace okrajových úloh. Přibližné řešení minimalizační úlohy Ritzova metoda. Homogenní (nulové) okrajové podmínky Nehomogenní (nenulové) okrajové podmínky Literatura:

Více

Literatura: Kapitoly 3, 4 a 2 d) ze skript Karel Rektorys: Matematika 43, ČVUT, Praha, Text přednášky na webové stránce přednášejícího.

Literatura: Kapitoly 3, 4 a 2 d) ze skript Karel Rektorys: Matematika 43, ČVUT, Praha, Text přednášky na webové stránce přednášejícího. Předmět: MA4 Dnešní látka: Nehomogenní okrajové podmínky. Pokračování OÚ pro PDR (jen pro fajnšmekry). Jednoznačnost zobecněného řešení. Metoda sítí v 1D. Přibližné řešení okrajových úloh. Aproximace vlastních

Více

Homogenní (nulové) okrajové podmínky Nehomogenní (nenulové) okrajové podmínky

Homogenní (nulové) okrajové podmínky Nehomogenní (nenulové) okrajové podmínky Předmět: MA4 Dnešní látka Diferenciální operátory Variační formulace okrajových úloh. Přibližné řešení minimalizační úlohy Ritzova metoda. Homogenní (nulové) okrajové podmínky Nehomogenní (nenulové) okrajové

Více

Věta o sedlovém bodu a Fredholmova alternativa

Věta o sedlovém bodu a Fredholmova alternativa Věta o sedlovém bodu a Fredholmova alternativa Petr Tomiczek Fakulta Aplikovaných věd Západočeská univerzita Plzeň 2006 obsah 1 Rozklad Hilbertova prostoru Uzavřený lineární a samoadjungovaný operátor

Více

které charakterizují danou fyzikální situaci. souvislostí). Může být formulován jako soustava rovnic a nerovnic.

které charakterizují danou fyzikální situaci. souvislostí). Může být formulován jako soustava rovnic a nerovnic. 1. Přednáška Obsah: Úvod do tvorby matematických modelů jako okrajové úlohy pro diferenciální rovnici. Příklad 1D vedení tepla a lineární pružnost. Diferenciální, variační, energetická formulace úloh.

Více

Literatura: Text o lineární algebře na webových stránkách přednášejícího (pro opakování). Kapitoly 4 a 5 ze skript Ondřej Zindulka: Matematika 3,

Literatura: Text o lineární algebře na webových stránkách přednášejícího (pro opakování). Kapitoly 4 a 5 ze skript Ondřej Zindulka: Matematika 3, Předmět: MA4 Dnešní látka Motivační úloha: ztráta stability nosníku Obyčejné diferenciální rovnice s okrajovými podmínkami a jejich řešitelnost Vlastní čísla a vlastní funkce Obecnější pohled na řešitelnost

Více

19 Hilbertovy prostory

19 Hilbertovy prostory M. Rokyta, MFF UK: Aplikovaná matematika III kap. 19: Hilbertovy prostory 34 19 Hilbertovy prostory 19.1 Úvod, základní pojmy Poznámka (připomenutí). Necht (X,(, )) je vektorový prostor se skalárním součinem

Více

Aplikovaná numerická matematika

Aplikovaná numerická matematika Aplikovaná numerická matematika 6. Metoda nejmenších čtverců doc. Ing. Róbert Lórencz, CSc. České vysoké učení technické v Praze Fakulta informačních technologií Katedra počítačových systémů Příprava studijních

Více

Primitivní funkce a Riemann uv integrál Lineární algebra Taylor uv polynom Extrémy funkcí více prom ˇenných Matematika III Matematika III Program

Primitivní funkce a Riemann uv integrál Lineární algebra Taylor uv polynom Extrémy funkcí více prom ˇenných Matematika III Matematika III Program Program Primitivní funkce a Riemannův integrál Program Primitivní funkce a Riemannův integrál Lineární algebra Program Primitivní funkce a Riemannův integrál Lineární algebra Taylorův polynom Program Primitivní

Více

MATEMATIKA IV - PARCIÁLNÍ DIFERENCIÁLNÍ ROVNICE - ZÁPISKY Z. Obsah. 1. Parciální diferenciální rovnice obecně. 2. Kvaazilineární rovnice prvního řádu

MATEMATIKA IV - PARCIÁLNÍ DIFERENCIÁLNÍ ROVNICE - ZÁPISKY Z. Obsah. 1. Parciální diferenciální rovnice obecně. 2. Kvaazilineární rovnice prvního řádu MATEMATIKA IV - PARCIÁLNÍ DIFERENCIÁLNÍ ROVNICE - ZÁPISKY Z PŘEDNÁŠEK JAN MALÝ Obsah 1. Parciální diferenciální rovnice obecně 1. Kvaazilineární rovnice prvního řádu 1 3. Lineární rovnice druhého řádu

Více

Interpolace, ortogonální polynomy, Gaussova kvadratura

Interpolace, ortogonální polynomy, Gaussova kvadratura Interpolace, ortogonální polynomy, Gaussova kvadratura Petr Tichý 20. listopadu 2013 1 Úloha Lagrangeovy interpolace Dán omezený uzavřený interval [a, b] a v něm n + 1 různých bodů x 0, x 1,..., x n. Nechť

Více

Metoda konečných prvků Charakteristika metody (výuková prezentace pro 1. ročník navazujícího studijního oboru Geotechnika)

Metoda konečných prvků Charakteristika metody (výuková prezentace pro 1. ročník navazujícího studijního oboru Geotechnika) Inovace studijního oboru Geotechnika Reg. č. CZ.1.07/2.2.00/28.0009 Metoda konečných prvků Charakteristika metody (výuková prezentace pro 1. ročník navazujícího studijního oboru Geotechnika) Doc. RNDr.

Více

7. Derivace složené funkce. Budeme uvažovat složenou funkci F = f(g), kde některá z jejich součástí

7. Derivace složené funkce. Budeme uvažovat složenou funkci F = f(g), kde některá z jejich součástí 202-m3b2/cvic/7slf.tex 7. Derivace složené funkce. Budeme uvažovat složenou funkci F = fg, kde některá z jejich součástí může být funkcí více proměnných. Předpokládáme, že uvažujeme funkce, které mají

Více

terminologie předchozí kapitoly: (ϕ, Ω) - plocha, S - geometrický obraz plochy

terminologie předchozí kapitoly: (ϕ, Ω) - plocha, S - geometrický obraz plochy 2. Plošný integrál. Poznámka. Obecně: integrování přes k-rozměrné útvary (k-plochy) v R n. Omezíme se na případ k = 2, n = 3. Definice. Množina S R 3 se nazve plocha, pokud S = ϕ(), kde R 2 je otevřená

Více

stránkách přednášejícího.

stránkách přednášejícího. Předmět: MA 4 Dnešní látka Iterační metoda Jacobiova iterační metoda Gaussova-Seidelova iterační metoda Superrelaxační metoda (metoda SOR) Metoda sdružených gradientů Četba: Text o lineární algebře v Příručce

Více

em do konce semestru. Obsah Vetknutý nosník, str. 8 Problém č.8: Průhyb nosníku - Ritzova metoda

em do konce semestru. Obsah Vetknutý nosník, str. 8 Problém č.8: Průhyb nosníku - Ritzova metoda Zápočtové problémy Na následujících stránkách naleznete druhou sérii zápočtových problémů věnovanou nosníkům. Ti, co ještě nemají žádný problém přidělený, si mohou vybrat libovolný z nich. Řešení můžete

Více

Dnešní látka Opakování: normy vektorů a matic, podmíněnost matic Jacobiova iterační metoda Gaussova-Seidelova iterační metoda

Dnešní látka Opakování: normy vektorů a matic, podmíněnost matic Jacobiova iterační metoda Gaussova-Seidelova iterační metoda Předmět: MA 4 Dnešní látka Opakování: normy vektorů a matic, podmíněnost matic Jacobiova iterační metoda Gaussova-Seidelova iterační metoda Četba: Text o lineární algebře v Příručce přežití na webových

Více

Učební texty k státní bakalářské zkoušce Matematika Skalární součin. študenti MFF 15. augusta 2008

Učební texty k státní bakalářské zkoušce Matematika Skalární součin. študenti MFF 15. augusta 2008 Učební texty k státní bakalářské zkoušce Matematika Skalární součin študenti MFF 15. augusta 2008 1 10 Skalární součin Požadavky Vlastnosti v reálném i komplexním případě Norma Cauchy-Schwarzova nerovnost

Více

22 Základní vlastnosti distribucí

22 Základní vlastnosti distribucí M. Rokyta, MFF UK: Aplikovaná matematika IV kap. 22: Základní vlastnosti distribucí 5 22 Základní vlastnosti distribucí 22.1 Temperované distribuce Definice. O funkci ϕ C (R m ) řekneme, že je rychle klesající

Více

MATICE. a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij]

MATICE. a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij] MATICE Matice typu m/n nad tělesem T je soubor m n prvků z tělesa T uspořádaných do m řádků a n sloupců: a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij] a m1 a m2 a mn Prvek a i,j je prvek matice A na místě

Více

8.3). S ohledem na jednoduchost a názornost je výhodné seznámit se s touto Základní pojmy a vztahy. Definice

8.3). S ohledem na jednoduchost a názornost je výhodné seznámit se s touto Základní pojmy a vztahy. Definice 9. Lineární diferenciální rovnice 2. řádu Cíle Diferenciální rovnice, v nichž hledaná funkce vystupuje ve druhé či vyšší derivaci, nazýváme diferenciálními rovnicemi druhého a vyššího řádu. Analogicky

Více

Matematika pro informatiky

Matematika pro informatiky (FIT ČVUT v Praze) Konvexní analýza 13.týden 1 / 1 Matematika pro informatiky Jaroslav Milota Fakulta informačních technologíı České vysoké učení technické v Praze Letní semestr 2010/11 Extrémy funkce

Více

Literatura: Kapitola 2 d) ze skript Karel Rektorys: Matematika 43, ČVUT, Praha, Text přednášky na webové stránce přednášejícího.

Literatura: Kapitola 2 d) ze skript Karel Rektorys: Matematika 43, ČVUT, Praha, Text přednášky na webové stránce přednášejícího. Předmět: MA4 Dnešní látka: Metoda sítí v 1D. Myšlenka náhrada derivací diferenčními podíly Přibližné řešení okrajových úloh Aproximace vlastních čísel Literatura: Kapitola 2 d) ze skript Karel Rektorys:

Více

Matematika 5 FSV UK, ZS Miroslav Zelený

Matematika 5 FSV UK, ZS Miroslav Zelený Matematika 5 FSV UK, ZS 2018-19 Miroslav Zelený 1. Stabilita řešení soustav diferenciálních rovnic 2. Úvod do variačního počtu 3. Globální extrémy 4. Teorie optimálního řízení 5. Různé 1. Stabilita řešení

Více

Obsah. 1 Lineární prostory 2

Obsah. 1 Lineární prostory 2 Obsah 1 Lineární prostory 2 2 Úplné prostory 2 2.1 Metrické prostory.................................... 2 2.2 Banachovy prostory................................... 3 2.3 Lineární funkcionály..................................

Více

Vzpěr jednoduchého rámu, diferenciální operátory. Lenka Dohnalová

Vzpěr jednoduchého rámu, diferenciální operátory. Lenka Dohnalová 1 / 40 Vzpěr jednoduchého rámu, diferenciální operátory Lenka Dohnalová ČVUT, fakulta stavební, ZS 2015/2016 katedra stavební mechaniky a katedra matematiky, Odborné vedení: doc. Ing. Jan Zeman, Ph.D.,

Více

Matematika II, úroveň A ukázkový test č. 1 (2018) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené

Matematika II, úroveň A ukázkový test č. 1 (2018) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené 2. 3. 2018 Matematika II, úroveň A ukázkový test č. 1 (2018) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené mn. M E n. Zapište a načrtněte množinu D, ve které

Více

Matematická analýza pro informatiky I.

Matematická analýza pro informatiky I. Matematická analýza pro informatiky I. 10. přednáška Diferenciální počet funkcí více proměnných (II) Jan Tomeček jan.tomecek@upol.cz http://aix-slx.upol.cz/ tomecek/index Univerzita Palackého v Olomouci

Více

5. cvičení z Matematiky 2

5. cvičení z Matematiky 2 5. cvičení z Matematiky 2 21.-25. března 2016 5.1 Nalezněte úhel, který v bodě 1, 0, 0 svírají grafy funkcí fx, y ln x 2 + y 2 a gx, y sinxy. Úhel, který svírají grafy funkcí je dán jako úhel mezi jednotlivými

Více

EUKLIDOVSKÉ PROSTORY

EUKLIDOVSKÉ PROSTORY EUKLIDOVSKÉ PROSTORY Necht L je lineární vektorový prostor nad tělesem reálných čísel R. Zobrazení (.,.) : L L R splňující vlastnosti 1. (x, x) 0 x L, (x, x) = 0 x = 0, 2. (x, y) = (y, x) x, y L, 3. (λx,

Více

Četba: Texty o lineární algebře (odkazy na webových stránkách přednášejícího).

Četba: Texty o lineární algebře (odkazy na webových stránkách přednášejícího). Předmět: MA 4 Dnešní látka Vlastní čísla a vektory Google Normovaný lineární prostor Normy matic a vektorů Symetrické matice, pozitivně definitní matice Gaussova eliminační metoda, podmíněnost matic Četba:

Více

Funkce v ıce promˇ enn ych Extr emy Pˇredn aˇska p at a 12.bˇrezna 2018

Funkce v ıce promˇ enn ych Extr emy Pˇredn aˇska p at a 12.bˇrezna 2018 Funkce více proměnných Extrémy Přednáška pátá 12.března 2018 Zdroje informací Diferenciální počet http://homen.vsb.cz/~kre40/esfmat2/fceviceprom.html http://www.studopory.vsb.cz/studijnimaterialy/sbirka_uloh/pdf/7.pdf

Více

Matematická analýza III.

Matematická analýza III. 2. Parciální derivace Miroslav Hušek, Lucie Loukotová UJEP 2010 Parciální derivace jsou zobecněním derivace funkce jedné proměnné. V této kapitole poznáme jejich základní vlastnosti a využití. Co bychom

Více

Literatura: O. Zindulka: Matematika 3 (kapitola 4, kapitola 5)

Literatura: O. Zindulka: Matematika 3 (kapitola 4, kapitola 5) Předmět: MA03 Opakování: formulace okrajové úlohy (OÚ), skalární součin funkcí, ortogonalita funkcí Nová látka: vlastní čísla a vlastní funkce OÚ ortogonalita vlastních funkcí řešitelnost OÚ Literatura:

Více

Matematika II, úroveň A ukázkový test č. 1 (2017) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené

Matematika II, úroveň A ukázkový test č. 1 (2017) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené 28. 2. 2017 Matematika II, úroveň A ukázkový test č. 1 (2017) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené mn. M E n. Zapište a načrtněte množinu D, ve které

Více

9. přednáška 26. listopadu f(a)h < 0 a pro h (0, δ) máme f(a 1 + h, a 2,..., a m ) f(a) > 1 2 x 1

9. přednáška 26. listopadu f(a)h < 0 a pro h (0, δ) máme f(a 1 + h, a 2,..., a m ) f(a) > 1 2 x 1 9 přednáška 6 listopadu 007 Věta 11 Nechť f C U, kde U R m je otevřená množina, a a U je bod Pokud fa 0, nemá f v a ani neostrý lokální extrém Pokud fa = 0 a H f a je pozitivně negativně definitní, potom

Více

Četba: Texty o lineární algebře (odkazy na webových stránkách přednášejícího).

Četba: Texty o lineární algebře (odkazy na webových stránkách přednášejícího). Předmět: MA 4 Dnešní látka Vektorový (lineární) prostor (připomenutí) Normovaný lineární prostor Normy matic a vektorů Symetrické matice, pozitivně definitní matice Gaussova eliminační metoda, podmíněnost

Více

Derivace funkce. Přednáška MATEMATIKA č Jiří Neubauer

Derivace funkce. Přednáška MATEMATIKA č Jiří Neubauer Přednáška MATEMATIKA č. 9-11 Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Šotová, J., Doudová, L. Diferenciální počet funkcí jedné proměnné Motivační příklady

Více

Úvod do parciálních diferenciálních rovnic. 2 Kanonický tvar lineárních PDR 2. řádu pro funkce

Úvod do parciálních diferenciálních rovnic. 2 Kanonický tvar lineárních PDR 2. řádu pro funkce Příklady na cvičení k přednášce NMMA334 Úvod do parciálních diferenciálních rovnic 1 Kanonický tvar lineárních PDR 2. řádu pro funkce dvou proměnných 1. Určete typ parciální diferenciální rovnice u xx

Více

Obsah Obyčejné diferenciální rovnice

Obsah Obyčejné diferenciální rovnice Obsah 1 Obyčejné diferenciální rovnice 3 1.1 Základní pojmy............................................ 3 1.2 Obyčejné diferenciální rovnice 1. řádu................................ 5 1.3 Exaktní rovnice............................................

Více

10 Funkce více proměnných

10 Funkce více proměnných M. Rokyta, MFF UK: Aplikovaná matematika II kap. 10: Funkce více proměnných 16 10 Funkce více proměnných 10.1 Základní pojmy Definice. Eukleidovskou vzdáleností bodů x = (x 1,...,x n ), y = (y 1,...,y

Více

příkladů do cvičení. V textu se objeví i pár detailů, které jsem nestihl (na které jsem zapomněl) a(b u) = (ab) u, u + ( u) = 0 = ( u) + u.

příkladů do cvičení. V textu se objeví i pár detailů, které jsem nestihl (na které jsem zapomněl) a(b u) = (ab) u, u + ( u) = 0 = ( u) + u. Několik řešených příkladů do Matematiky Vektory V tomto textu je spočteno několik ukázkových příkladů které vám snad pomohou při řešení příkladů do cvičení. V textu se objeví i pár detailů které jsem nestihl

Více

MATEMATIKA III. Olga Majlingová. Učební text pro prezenční studium. Předběžná verze

MATEMATIKA III. Olga Majlingová. Učební text pro prezenční studium. Předběžná verze Fakulta strojního inženýrství Univerzity J. E. Purkyně v Ústí nad Labem Pasteurova 7 Tel.: 475 285 511 400 96 Ústí nad Labem Fax: 475 285 566 Internet: www.ujep.cz E-mail: kontakt@ujep.cz MATEMATIKA III

Více

Program SMP pro kombinované studium

Program SMP pro kombinované studium Zadání příkladů k procvičení na seminář Program SMP pro kombinované studium Nejdůležitější typy příkladů - minimum znalostí před zkouškovou písemkou 1) Matice 1. Pro matice 1 0 2 1 0 3 B = 7 3 4 4 2 0

Více

Lineární algebra : Metrická geometrie

Lineární algebra : Metrická geometrie Lineární algebra : Metrická geometrie (16. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 6. května 2014, 10:42 1 2 Úvod Zatím jsme se lineární geometrii věnovali v kapitole o lineárních

Více

PŘEDNÁŠKA 9 KŘIVKOVÝ A PLOŠNÝ INTEGRÁL 1. DRUHU

PŘEDNÁŠKA 9 KŘIVKOVÝ A PLOŠNÝ INTEGRÁL 1. DRUHU PŘEDNÁŠKA 9 KŘIVKOVÝ A PLOŠNÝ INTEGRÁL 1. DRUHU 6.1 Křivkový integrál 1. druhu Definice 1. Množina R n se nazývá prostá regulární křivka v R n právě tehdy, když existuje vzájemně jednoznačné zobrazení

Více

Přijímací zkouška na navazující magisterské studium 2018

Přijímací zkouška na navazující magisterské studium 2018 Přijímací zkouška na navazující magisterské studium 208 Studijní program: Studijní obory: Matematika MA, MMIT, MMFT, MSTR, MNVM, MPMSE Varianta A Řešení příkladů pečlivě odůvodněte. Věnujte pozornost ověření

Více

Průvodce studiem. do bodu B se snažíme najít nejkratší cestu. Ve firmách je snaha minimalizovat

Průvodce studiem. do bodu B se snažíme najít nejkratší cestu. Ve firmách je snaha minimalizovat 6. Extrémy funkcí více proměnných Průvodce studiem Hledání extrémů je v praxi často řešená úloha. Např. při cestě z bodu A do bodu B se snažíme najít nejkratší cestu. Ve firmách je snaha minimalizovat

Více

Necht L je lineární prostor nad R. Operaci : L L R nazýváme

Necht L je lineární prostor nad R. Operaci : L L R nazýváme Skalární součin axiomatická definice odvození velikosti vektorů a úhlu mezi vektory geometrická interpretace ortogonalita vlastnosti ortonormálních bázi [1] Definice skalárního součinu Necht L je lineární

Více

Četba: Texty o lineární algebře (odkazy na webových stránkách přednášejícího).

Četba: Texty o lineární algebře (odkazy na webových stránkách přednášejícího). Předmět: MA 4 Dnešní látka Lineární (vektorový) prostor Normovaný lineární prostor Normy matic a vektorů Symetrické matice, pozitivně definitní matice Gaussova eliminační metoda, podmíněnost matic Četba:

Více

INTEGRÁLY S PARAMETREM

INTEGRÁLY S PARAMETREM INTEGRÁLY S PARAMETREM b a V kapitole o integraci funkcí více proměnných byla potřeba funkce g(x) = f(x, y) dy proměnné x. Spojitost funkce g(x) = b a f(x, y) dy proměnné x znamená vlastně prohození limity

Více

Budeme hledat řešení y(x) okrajové úlohy pro diferenciální rovnici druhého řádu v samoadjungovaném tvaru na intervalu a, b : 2 ) y i p i+ 1

Budeme hledat řešení y(x) okrajové úlohy pro diferenciální rovnici druhého řádu v samoadjungovaném tvaru na intervalu a, b : 2 ) y i p i+ 1 ODR - okrajová úloha Teorie (velmi stručný výběr z přednášek) Okrajová úloha 2. řádu Budeme hledat řešení y(x) okrajové úlohy pro diferenciální rovnici druhého řádu v samoadjungovaném tvaru na intervalu

Více

Numerická matematika 1

Numerická matematika 1 Numerická matematika 1 Obsah 1 Řešení nelineárních rovnic 3 1.1 Metoda půlení intervalu....................... 3 1.2 Metoda jednoduché iterace..................... 4 1.3 Newtonova metoda..........................

Více

Matematika (CŽV Kadaň) aneb Úvod do lineární algebry Matice a soustavy rovnic

Matematika (CŽV Kadaň) aneb Úvod do lineární algebry Matice a soustavy rovnic Přednáška třetí (a pravděpodobně i čtvrtá) aneb Úvod do lineární algebry Matice a soustavy rovnic Lineární rovnice o 2 neznámých Lineární rovnice o 2 neznámých Lineární rovnice o dvou neznámých x, y je

Více

Úvodní informace. 17. února 2018

Úvodní informace. 17. února 2018 Úvodní informace Funkce více proměnných Přednáška první 17. února 2018 Obsah 1 Úvodní informace. 2 Funkce více proměnných Definiční obor Limita a spojitost Derivace, diferencovatelnost, diferenciál Úvodní

Více

1 Funkce dvou a tří proměnných

1 Funkce dvou a tří proměnných 1 Funkce dvou a tří proměnných 1.1 Pojem funkce více proměnných Definice Funkce dvou proměnných je předpis, který každému bodu z R 2 (tj. z roviny) přiřazuje jediné reálné číslo. z = f(x, y), D(f) R 2

Více

Diferenˇcní rovnice Diferenciální rovnice Matematika IV Matematika IV Program

Diferenˇcní rovnice Diferenciální rovnice Matematika IV Matematika IV Program Program Diferenční rovnice Program Diferenční rovnice Diferenciální rovnice Program Frisch a Samuelson: Systém je dynamický, jestliže jeho chování v čase je určeno funkcionální rovnicí, jejíž neznámé závisí

Více

1 Báze a dimenze vektorového prostoru 1

1 Báze a dimenze vektorového prostoru 1 1 Báze a dimenze vektorového prostoru 1 Báze a dimenze vektorového prostoru 1 2 Aritmetické vektorové prostory 7 3 Eukleidovské vektorové prostory 9 Levá vnější operace Definice 5.1 Necht A B. Levou vnější

Více

24. Parciální diferenciální rovnice

24. Parciální diferenciální rovnice 24. Parciální diferenciální rovnice Aplikovaná matematika IV, NMAF074 M. Rokyta, KMA MFF UK LS 2011/12 24.1 Rovnice vedení tepla Definice (Rovnice vedení tepla) Parciální diferenciální rovnici c(x)ρ(x)

Více

1 Linearní prostory nad komplexními čísly

1 Linearní prostory nad komplexními čísly 1 Linearní prostory nad komplexními čísly V této přednášce budeme hledat kořeny polynomů, které se dále budou moci vyskytovat jako složky vektorů nebo matic Vzhledem k tomu, že kořeny polynomu (i reálného)

Více

Základní spádové metody

Základní spádové metody Základní spádové metody Petr Tichý 23. října 2013 1 Metody typu line search Problém Idea metod min f(x), f : x R Rn R. n Dána počáteční aproximace x 0. Iterační proces (krok k): (a) zvol směr d k, (b)

Více

Učební texty k státní bakalářské zkoušce Matematika Diferenciální rovnice. študenti MFF 15. augusta 2008

Učební texty k státní bakalářské zkoušce Matematika Diferenciální rovnice. študenti MFF 15. augusta 2008 Učební texty k státní bakalářské zkoušce Matematika Diferenciální rovnice študenti MFF 15. augusta 2008 1 7 Diferenciální rovnice Požadavky Soustavy lineárních diferenciálních rovnic prvního řádu lineární

Více

Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice

Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice Vektorové podprostory K množina reálných nebo komplexních čísel, U vektorový prostor nad K. Lineární kombinace vektorů u 1, u 2,...,u

Více

VI. Derivace složené funkce.

VI. Derivace složené funkce. VI. Derivace složené funkce. 17. Parciální derivace složené funkce Budeme uvažovat složenou funkci F = f(g, kde některá z jejich součástí může být funkcí více proměnných. Předpokládáme, že uvažujeme funkce,

Více

Komplexní analýza. Fourierovy řady. Martin Bohata. Katedra matematiky FEL ČVUT v Praze

Komplexní analýza. Fourierovy řady. Martin Bohata. Katedra matematiky FEL ČVUT v Praze Komplexní analýza Fourierovy řady Martin Bohata Katedra matematiky FEL ČVU v Praze bohata@math.feld.cvut.cz Martin Bohata Komplexní analýza Fourierovy řady 1 / 20 Úvod Často se setkáváme s periodickými

Více

12. Křivkové integrály

12. Křivkové integrály 12 Křivkové integrály Definice 121 Jednoduchou po částech hladkou křivkou v prostoru R n rozumíme množinu bodů [x 1,, x n ], které jsou dány parametrickými rovnicemi x 1 = ϕ 1 t), x 2 = ϕ 2 t), x n = ϕ

Více

III. Diferenciál funkce a tečná rovina 8. Diferenciál funkce. Přírůstek funkce. a = (x 0, y 0 ), h = (h 1, h 2 ).

III. Diferenciál funkce a tečná rovina 8. Diferenciál funkce. Přírůstek funkce. a = (x 0, y 0 ), h = (h 1, h 2 ). III. Diferenciál funkce a tečná rovina 8. Diferenciál funkce. Přírůstek funkce = f(x 0 + h 1, y 0 + h 2 ) f(x 0, y 0 ) f u (x 0, y 0 ), kde u = (h 1, h 2 ). ( ) = f(x 0 + h 1, y 0 ) f(x 0, y 0 ) x (x 0,

Více

Definice 1.1. Nechť je M množina. Funkci ρ : M M R nazveme metrikou, jestliže má následující vlastnosti:

Definice 1.1. Nechť je M množina. Funkci ρ : M M R nazveme metrikou, jestliže má následující vlastnosti: Přednáška 1. Definice 1.1. Nechť je množina. Funkci ρ : R nazveme metrikou, jestliže má následující vlastnosti: (1 pro každé x je ρ(x, x = 0; (2 pro každé x, y, x y, je ρ(x, y = ρ(y, x > 0; (3 pro každé

Více

11. Skalární součin a ortogonalita p. 1/16

11. Skalární součin a ortogonalita p. 1/16 11. Skalární součin a ortogonalita 11. Skalární součin a ortogonalita p. 1/16 11. Skalární součin a ortogonalita p. 2/16 Skalární součin a ortogonalita 1. Definice skalárního součinu 2. Norma vektoru 3.

Více

Drsná matematika III 1. přednáška Funkce více proměnných: křivky, směrové derivace, diferenciál

Drsná matematika III 1. přednáška Funkce více proměnných: křivky, směrové derivace, diferenciál Drsná matematika III 1. přednáška Funkce více proměnných: křivky, směrové derivace, diferenciál Jan Slovák Masarykova univerzita Fakulta informatiky 16. 9. 2008 Obsah přednášky 1 Literatura 2 Funkce a

Více

Parciální diferenciální rovnice

Parciální diferenciální rovnice Parciální diferenciální rovnice Obsah kurzu Co bude obsahovat... úvod do PDR odvození některých PDR klasická teorie lineárních PDR 1. a 2. řádu řešení poč. a okraj. úloh vlastnosti řešení souvislost s

Více

Kapitola 11: Lineární diferenciální rovnice 1/15

Kapitola 11: Lineární diferenciální rovnice 1/15 Kapitola 11: Lineární diferenciální rovnice 1/15 Lineární diferenciální rovnice 2. řádu Definice: Lineární diferenciální rovnice 2-tého řádu je rovnice tvaru kde: y C 2 (I) je hledaná funkce a 0 (x)y +

Více

13. cvičení z Matematické analýzy 2

13. cvičení z Matematické analýzy 2 . cvičení z atematické analýz 2 5. - 9. května 27. konzervativní pole, potenciál Dokažte, že následující pole jsou konzervativní a najděte jejich potenciál. i F x,, z x 2 +, 2 + x, ze z, ii F x,, z x 2

Více

Matematika II, úroveň A ukázkový test č. 1 (2016) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené

Matematika II, úroveň A ukázkový test č. 1 (2016) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené 22. 2. 2016 Matematika II, úroveň A ukázkový test č. 1 (2016) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené mn. M E n. Zapište a načrtněte množinu D, ve které

Více

a počtem sloupců druhé matice. Spočítejme součin A.B. Označme matici A.B = M, pro její prvky platí:

a počtem sloupců druhé matice. Spočítejme součin A.B. Označme matici A.B = M, pro její prvky platí: Řešené příklady z lineární algebry - část 1 Typové příklady s řešením Příklady jsou určeny především k zopakování látky před zkouškou, jsou proto řešeny se znalostmi učiva celého semestru. Tento fakt se

Více

2. Určete jádro KerL zobrazení L, tj. nalezněte alespoň jednu jeho bázi a určete jeho dimenzi.

2. Určete jádro KerL zobrazení L, tj. nalezněte alespoň jednu jeho bázi a určete jeho dimenzi. Řešené příklady z lineární algebry - část 3 Typové příklady s řešením Příklad 3.1: Zobrazení L: P 3 R 23 je zobrazení z prostoru P 3 všech polynomů do stupně 3 (včetně nulového polynomu) do prostoru R

Více

PRIMITIVNÍ FUNKCE. Primitivní funkce primitivní funkce. geometrický popis integrály 1 integrály 2 spojité funkce konstrukce prim.

PRIMITIVNÍ FUNKCE. Primitivní funkce primitivní funkce. geometrický popis integrály 1 integrály 2 spojité funkce konstrukce prim. PRIMITIVNÍ FUNKCE V předchozích částech byly zkoumány derivace funkcí a hlavním tématem byly funkce, které derivace mají. V této kapitole se budou zkoumat funkce, které naopak jsou derivacemi jiných funkcí

Více

21. Úvod do teorie parciálních diferenciálních rovnic

21. Úvod do teorie parciálních diferenciálních rovnic 21. Úvod do teorie parciálních diferenciálních rovnic Aplikovaná matematika IV, NMAF074 M. Rokyta, KMA MFF UK LS 2014/15 21.1 Základní termíny Definice Vektor tvaru α = (α 1,...,α m ), kde α j N {0}, j

Více

Věta 12.3 : Věta 12.4 (princip superpozice) : [MA1-18:P12.7] rovnice typu y (n) + p n 1 (x)y (n 1) p 1 (x)y + p 0 (x)y = q(x) (6)

Věta 12.3 : Věta 12.4 (princip superpozice) : [MA1-18:P12.7] rovnice typu y (n) + p n 1 (x)y (n 1) p 1 (x)y + p 0 (x)y = q(x) (6) 1. Lineární diferenciální rovnice řádu n [MA1-18:P1.7] rovnice typu y n) + p n 1 )y n 1) +... + p 1 )y + p 0 )y = q) 6) počáteční podmínky: y 0 ) = y 0 y 0 ) = y 1 y n 1) 0 ) = y n 1. 7) Věta 1.3 : Necht

Více

Definice globální minimum (absolutní minimum) v bodě A D f, jestliže X D f

Definice globální minimum (absolutní minimum) v bodě A D f, jestliže X D f Výklad Globální extrémy mají stejný význam jako u funkcí jedné proměnné. Hledáme je bud na celém definičním oboru dané funkce, nebo na předem zadané podmnožině definičního oboru. Definice 6..1. Řekneme,

Více

PŘEDNÁŠKA 2 POSLOUPNOSTI

PŘEDNÁŠKA 2 POSLOUPNOSTI PŘEDNÁŠKA 2 POSLOUPNOSTI 2.1 Zobrazení 2 Definice 1. Uvažujme libovolné neprázdné množiny A, B. Zobrazení množiny A do množiny B je definováno jako množina F uspořádaných dvojic (x, y A B, kde ke každému

Více

1 Polynomiální interpolace

1 Polynomiální interpolace Polynomiální interpolace. Metoda neurčitých koeficientů Příklad.. Nalezněte polynom p co nejmenšího stupně, pro který platí p() = 0, p(2) =, p( ) = 6. Řešení. Polynom hledáme metodou neurčitých koeficientů,

Více

Základy matematické analýzy

Základy matematické analýzy Základy matematické analýzy Spojitost funkce Ing. Tomáš Kalvoda, Ph.D. 1, Ing. Daniel Vašata 2 1 tomas.kalvoda@fit.cvut.cz 2 daniel.vasata@fit.cvut.cz Katedra aplikované matematiky Fakulta informačních

Více

ZS: 2017/2018 NMAF061 F/2 J. MÁLEK. Matematika pro fyziky I. Posluchárna: T2 T1 Konzultační hodiny: pátek 9:40-10:30, posluchárna T5

ZS: 2017/2018 NMAF061 F/2 J. MÁLEK. Matematika pro fyziky I. Posluchárna: T2 T1 Konzultační hodiny: pátek 9:40-10:30, posluchárna T5 ZS: 2017/2018 NMAF061 F/2 J. MÁLEK Matematika pro fyziky I OBECNÉ INFORMACE A SYLABUS Přednášející: Cvičící: Josef Málek Michal Báthory, Tomáš Los, Michal Pavelka, Vít Průša Termíny přednášek: Čtvrtek

Více

Matematika V. Dynamická optimalizace

Matematika V. Dynamická optimalizace Matematika V. Dynamická optimalizace Obsah Kapitola 1. Variační počet 1.1. Derivace funkcí na vektorových prostorech...str. 3 1.2. Derivace integrálu...str. 5 1.3. Formulace základní úlohy P1 var. počtu,

Více

Vektorový prostor. Př.1. R 2 ; R 3 ; R n Dvě operace v R n : u + v = (u 1 + v 1,...u n + v n ), V (E 3 )...množina vektorů v E 3,

Vektorový prostor. Př.1. R 2 ; R 3 ; R n Dvě operace v R n : u + v = (u 1 + v 1,...u n + v n ), V (E 3 )...množina vektorů v E 3, Vektorový prostor Příklady: Př.1. R 2 ; R 3 ; R n...aritmetický n-rozměrný prostor Dvě operace v R n : součet vektorů u = (u 1,...u n ) a v = (v 1,...v n ) je vektor u + v = (u 1 + v 1,...u n + v n ),

Více

Greenova funkce pro dvoubodové okrajové úlohy pro obyčejné diferenciální rovnice

Greenova funkce pro dvoubodové okrajové úlohy pro obyčejné diferenciální rovnice Greenova funkce pro dvoubodové okrajové úlohy pro obyčejné diferenciální rovnice Jan Tomeček Tento stručný text si klade za cíl co nejrychlejší uvedení do teorie Greenových funkcí pro obyčejné diferenciální

Více

Limita a spojitost funkce a zobrazení jedné reálné proměnné

Limita a spojitost funkce a zobrazení jedné reálné proměnné Přednáška 4 Limita a spojitost funkce a zobrazení jedné reálné proměnné V několika následujících přednáškách budeme studovat zobrazení jedné reálné proměnné f : X Y, kde X R a Y R k. Protože pro každé

Více

Skalární součin dovoluje zavedení metriky v afinním bodovém prostoru, tj. umožňuje nám určovat vzdálenosti, odchylky, obsahy a objemy.

Skalární součin dovoluje zavedení metriky v afinním bodovém prostoru, tj. umožňuje nám určovat vzdálenosti, odchylky, obsahy a objemy. 6 Skalární součin Skalární součin dovoluje zavedení metriky v afinním bodovém prostoru, tj. umožňuje nám určovat vzdálenosti, odchylky, obsahy a objemy. Příklad: Určete odchylku přímek p, q : p : x =1+3t,

Více

PRUŽNOST A PEVNOST II

PRUŽNOST A PEVNOST II VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STAVEBNÍ PRUŽNOST A PEVNOST II Navazující magisterské studium, 1. ročník Alois Materna (přednášky) Jiří Brožovský (cvičení) Kancelář: LP C 303/1

Více

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ CZ.1.07/2.2.00/ Jitka Machalová, Horymír Netuka METODA KONEČNÝCH PRVKŮ

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ CZ.1.07/2.2.00/ Jitka Machalová, Horymír Netuka METODA KONEČNÝCH PRVKŮ INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ CZ.1.07/2.2.00/28.0141 Jitka Machalová, Horymír Netuka METODA KONEČNÝCH PRVKŮ Olomouc 2015 Předmluva Tento text vznikl v rámci projektu MATAP určenému ke zkvalitnění výuky

Více

Úlohy k přednášce NMAG 101 a 120: Lineární algebra a geometrie 1 a 2,

Úlohy k přednášce NMAG 101 a 120: Lineární algebra a geometrie 1 a 2, Úlohy k přednášce NMAG a : Lineární algebra a geometrie a Verze ze dne. května Toto je seznam přímočarých příkladů k přednášce. Úlohy z tohoto seznamu je nezbytně nutné umět řešit. Podobné typy úloh se

Více

DIPLOMOVÁ PRÁCE. Parabolické rovnice řešené metodou konečných UNIVERZITA PALACKÉHO V OLOMOUCI KATEDRA MATEMATICKÉ ANALÝZY A APLIKACÍ MATEMATIKY

DIPLOMOVÁ PRÁCE. Parabolické rovnice řešené metodou konečných UNIVERZITA PALACKÉHO V OLOMOUCI KATEDRA MATEMATICKÉ ANALÝZY A APLIKACÍ MATEMATIKY UNIVERZITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDECKÁ FAKULTA KATEDRA MATEMATICKÉ ANALÝZY A APLIKACÍ MATEMATIKY DIPLOMOVÁ PRÁCE Parabolické rovnice řešené metodou konečných prvků Vedoucí diplomové práce: RNDr.

Více

PRIMITIVNÍ FUNKCE DEFINICE A MOTIVACE

PRIMITIVNÍ FUNKCE DEFINICE A MOTIVACE PIMITIVNÍ FUNKCE V předchozích částech byly zkoumány derivace funkcí a hlavním tématem byly funkce, které derivace mají. V této kapitole se budou zkoumat funkce, které naopak jsou derivacemi jiných funkcí

Více

Fakt. Každou soustavu n lineárních ODR řádů n i lze eliminací převést ekvivalentně na jednu lineární ODR

Fakt. Každou soustavu n lineárních ODR řádů n i lze eliminací převést ekvivalentně na jednu lineární ODR DEN: ODR teoreticky: soustavy rovnic Soustava lineárních ODR 1 řádu s konstantními koeficienty je soustava ve tvaru y 1 = a 11 y 1 + a 12 y 2 + + a 1n y n + b 1 (x) y 2 = a 21 y 1 + a 22 y 2 + + a 2n y

Více

+ 2y. a y = 1 x 2. du x = nxn 1 f(u) 2x n 3 yf (u)

+ 2y. a y = 1 x 2. du x = nxn 1 f(u) 2x n 3 yf (u) Diferenciální počet příklad 1 Dokažte, že funkce F, = n f 2, kde f je spojitě diferencovatelná funkce, vhovuje vztahu + 2 = nf ; 0 Řešení: Označme u = 2. Pak je F, = n fu a platí Podle vět o derivaci složené

Více

Matematika I 12a Euklidovská geometrie

Matematika I 12a Euklidovská geometrie Matematika I 12a Euklidovská geometrie Jan Slovák Masarykova univerzita Fakulta informatiky 3. 12. 2012 Obsah přednášky 1 Euklidovské prostory 2 Odchylky podprostorů 3 Standardní úlohy 4 Objemy Plán přednášky

Více