CHEMIE A CHEMICKÉ TECHNOLOGIE (N150013) 3.r.

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "CHEMIE A CHEMICKÉ TECHNOLOGIE (N150013) 3.r."

Transkript

1 L A B O R A T O Ř O B O R U CHEMIE A CHEMICKÉ TECHNOLOGIE (N150013) 3.r. Ústav organcké technologe (111) Ing. J. Trejbal, Ph.D. budova A, místnost č. S25b

2 Název práce : Vedoucí práce: Umístění práce: Rektfkace Ing. J. Trejbal, Ph.D. S25b Úvod Rektfkace je nejčastěj používaným procesem pro separac organcký látek. Je šroce využívána v průmyslu u velkokapactních jednotek ale laboratoř v preparatvním měřítku. Technolog chemckých specalt, jako jsou například farmaka, se v poslední době čím dál tím častěj rektfkace používá především k regenerac rozpouštědel (většna syntéz probíhá v rozpouštědle), což je žádoucí z hledska ekologe a snžování nákladů. DESTILACE je jednoduchý, jednostupňový proces založený na rozdílném složení kapalné a parní fáze, které jsou v rovnováze. Částečným odpařením kapalné směs a kondenzací vznklých par získáme destlát obohacený o těkavější složku a zbytek obohacený o složku méně těkavou. Vícenásobné opakování destlace s protproudým uspořádáním toku kapalny a pár je podstatou REKTIFIKACE. Z hledska provedení lze rektfkace rozdělt na kontnuální a vsádkové, přčemž obě tyto varanty mají své výhody a nevýhody. Kontnuální uspořádání je vhodné pro velkokapactní procesy, vsádkové se používá u malých výrob a především v laboratoř. Zařízení pro laboratorní rektfkac a základní pojmy Rektfkační zařízení se skládá z několka částí (obrázek 1). Hlava B1 kolony Kondenzátor Kolona Výplň kolony Pata kolony Vařák Obrázek 1 Základní součást rektfkačního zařízení Vařák je v laboratoř obvykle zastoupen destlační baňkou, opatřenou sondou pro měření teploty a topným hnízdem. Kondenzátor je tvořen zpětným chladčem, který umožňuje částečný odběr destlátu.

3 Kolona je tvořena skleněnou trubkou ve které je umístěna výplň. Obecně se jako výplň používají patra (přepážky které umožňují průchod par a kapalny, obrázek 2), sypaná výplň (kroužky, válečky a další vhodná tělíska s co největším povrchem a co nejmenším odporem prot proudění, obrázek 3) a v poslední době moderní orentovaná výplň (plechy nebo drátěné tkanny slsované do určtých tvarů, obrázek 4) Obrázek 2 Patrová kolona s naznačeným tokem par a kapalny Obrázek 3 Různé druhy sypané výplně Obrázek 4 Orentovaná výplň frmy Sulzer Typ výplně určuje účnnost kolony a tím účnnost rektfkace. Účnnost kolony je udávána v počtu teoretckých pater. Za teoretcké patro kolony považujeme takový úsek v rektfkační koloně, ve kterém dojde k ustavení rovnováhy mez složením kapalné a plynné fáze. Pro stanovení počtu teoretckých pater kolony se používají modelové bnární směs kapaln, pro něž je znám pops rovnováhy kapalna pára nejčastěj ve formě x y dagramů. Účnnost rektfkace dále záleží, také na provozních parametrech jako je zatížení kolony parou, tlak v koloně ale především na refluxním poměru R. Aby rektfkační zařízení správně fungovalo musí se neustále část kondenzátu vracet zpět do kolony. Poměr mez množstvím odebíraného destlátu a množstvím vracejícím se zpět do kolony se nazývá refluxní poměr R. Pokud je R = 0 (nc se nevrací), výplň není smočená, zařízení funguje jako obyčejná destlace. Pokud se R blíží nekonečnu (všechno se vrací) je dělení nejúčnnější, ale

4 neodebírá se žádný destlát. Reálná rektfkace je vždy kompromsem mez rychlostí odběru destlátu a refluxním poměrem. Rektfkační kolona by měla pracovat za adabatckých podmínek a nemělo by tedy docházet k výměně tepla s okolím ke ztrátám tepla. Toho nelze samozřejmě dosáhnout, ale některé průmyslové kolony se tomuto požadavku blíží. Pokud bychom v laboratoř měl kolonu malého průměru a velké výšce, páry by kondenzoval jž v koloně. Kolona by se zahltla kapalnou a přetlakovala. Z tohoto důvodu je nutné kolony tepelně zolovat, nebo ztráty tepla do okolí kompenzovat přídavným vyhříváním pláště kolony. Posledním faktorem který ovlvňuje dělení látek jsou vlastnost separovaného systému látek a tedy rovnováha kapalna pára. Pro složení kapalné a parní fáze za konstantní teploty platí pro složku Raultův zákon ve tvaru: P y = γ x P P celkový tlak systému P parcální tlak složky za dané teploty y x γ molární zlomek složky v parní fáz molární zlomek složky v kapalné fáz aktvtní koefcent Aktvtní koefcent nabývá hodnoty 1 pokud se směs chová deálně (molekuly složek s v kapalné fáz navzájem neovlvňují). Pokud se směs nechová deálně (molekuly se ovlvňují v kapalné fáz například díky rozdílné polartě a tvorbě vodíkových můstků) může aktvtní koefcent nabývat hodnot od 0,01 až do několka tsíc. Závslost parcálního tlaku čsté složky na teplotě je nejčastěj popsována Antoneovou rovncí ve tvaru: ln P B = A ( C + T) A, B a C emprcké konstanty T teplota Úkol 1 Sledování destlační křvky ethanol voda př různých refluxních poměrech Do vařáku kolony se přpraví směs ethanol voda o hmotnostní složení 10 % ethanolu a 90 % vody. Před zapnutím topení se PUSTÍ VODA DO CHADIČE na hlavě kolony!!! Poté se zapne topení vařáku pláště kolony na stanovené výkony a regulace odběru destlátu se přepne na totální reflux. Od okamžku kdy se pára dostane až do chladče na hlavě kolony se vyčká nejméně 10 mnut na ustálení teplot a koncentrací v koloně. Po ustálení nastavíme refluxní poměr postupně na hodnoty 1, 3 a 6. Destlát odebíráme po frakcích cca 50 ml, které zvážíme a změříme hustotu. U každé frakce zaznamenáváme čas odběru, teploty na začátku a na konc. Po odebrání 300 ml destlátu vypneme topení vařáku, sundáme topné hnízdo a až teplota ve vařáku klesne pod 60 C vrátíme všechen získaný destlát do vařáku a opakujeme měření s jným refluxním poměrem.

5 Výpočty: Ze změřené hustoty spočítáme molární zlomek ethanolu ve frakcích destlátu. Vzhledem k tomu, že koncentrace ethanolu ve frakcích je ntegrální hodnota za určtou dobu je nutné skutečnou koncentrac (okamžtou) získat výpočtem z následujícího vztahu: dx dd Et y Et = D + y Et D x Et x Et okamžtá molární koncentrace ethanolu v destlátu množství destlátu ntegrální molární koncentrace ethanolu v destlátu Dále ze známého množství destlátu za čas a jeho koncentrace spočítejte objemový průtok páry kolonou (L/s). Výsledkem práce je graf závslost okamžté koncentrace ethanolu v destlátu na množství destlátu za různých refluxních poměrů. Zároveň do tohoto grafu na vedlejší osu vyneste závslost objemového průtoku par kolonou na množství destlátu za různých refluxních poměrů. Úkol 2 Měření tepelné ztráty kolony a výkonu vařáku Do vařáku kolony se přpraví směs ethanol voda o hmotnostní složení 5 % ethanolu a 95 % vody. Před zapnutím topení se PUSTÍ VODA DO CHADIČE na hlavě kolony!!! Poté se zapne spodní část topení vařáku, horní část a topení pláště kolony se zatím nechá vypnuté a regulace odběru destlátu se přepne na totální reflux. Od okamžku kdy se pára dostane až do chladče na hlavě kolony se vyčká nejméně 10 mnut na ustálení teplot a koncentrací v koloně. Po ustálení se přepne regulátor refluxu na totální odběr a odebírá se vzorek cca 10 až 20 ml a měří se čas odběru. Zapíší se všechny hodnoty teplot včetně teplot chladící vody. Pak se pomocí kádnky změří hmotnostní tok chladící vody. Pak se zapne horní část topení vařáku a po ustálení nejméně 10 mnut se celý postup zopakuje. Nakonec se zapne topení pláště kolony a opět se celý postup opakuje. Př každém expermentu je nutné znovu měřt průtok chladící vody, neboť tlak vody v sít může kolísat. U každého odebraného vzorku změřte hustotu. Výpočty: Ze známého množství chladící vody a rozdílu jejích teplot na vstupu a na výstupu spočítejte výkon odevzdaný v kondenzátoru (W). Z množství destlátu odebraného za určtý čas a jeho koncentrace spočítejte výkon potřebný na získání tohoto destlátu (W). Tento výpočet proveďte postupně pro všechna zapnutá topení. Výsledkem práce jsou změřené výkony dvou topení vařáku a tepelná ztráta kolony a to jednak měřením teploty chladící vody na výstupu a jednak měřením průtoku par kolonou. Výsledky porovnejte a pokuste se odhadnou ztráty tepla do okolí u kondenzátoru. Konečným výsledkem práce je výpočet koefcentu prostupu tepla ve vařáku př kompenzac ztrát tepla do okolí podle vztahu: Q = k( T t Tv) Q je tepelný tok (W m -2 ) k koefcent prostupu tepla (W m -2 K -1 )

6 T t T v teplota topení (K) teplota ve vařáku (K) Otápěnou plochu baňky spočítejte podle vztahu pro kulový vrchlík: S = 2 π r v S plocha vrchlíku r poloměr baňky v výška otápěné část baňky Úkol 3 - Vlv zatížení kolony param př konstantní refluxním poměru na destlační křvku směs heptan toluen Do vařáku kolony se přpraví směs heptan toluen o hmotnostní složení 10 % heptan a 90 % toluen. Před zapnutím topení se PUSTÍ VODA DO CHADIČE na hlavě kolony!!! Poté se zapne topení vařáku pláště kolony na stanovené výkony a regulace odběru destlátu se přepne na totální reflux. Od okamžku kdy se pára dostane až do chladče na hlavě kolony se vyčká nejméně 10 mnut na ustálení teplot a koncentrací v koloně. Po ustálení nastavíme refluxní poměr na hodnotu 2. Destlát odebíráme po frakcích cca 50 ml, které zvážíme a analyzujeme na refraktometru. U každé frakce zaznamenáváme čas odběru, teploty na začátku a na konc. Po odebrání 300 ml destlátu vypneme topení vařáku, sundáme topné hnízdo a až teplota ve vařáku klesne pod 60 C vrátíme všechen získaný destlát do vařáku a opakujeme měření s jným výkonem ve vařáku. Výpočty: Data změřená na refraktometru přepočítáme podle kalbrace na molární zlomky. Vzhledem k tomu, že koncentrace heptanu ve frakcích je ntegrální hodnota za určtou dobu je nutné skutečnou koncentrac (okamžtou) získat výpočtem z následujícího vztahu: dx Hep y Hep = D + y Hep D x Hep dd x Hep okamžtá molární koncentrace ethanolu v destlátu množství destlátu ntegrální molární koncentrace ethanolu v destlátu Dále ze známého množství destlátu za čas a jeho koncentrace spočítejte objemový průtok páry kolonou (L/s). Výsledkem práce je graf závslost okamžté koncentrace heptanu v destlátu na množství destlátu př různých výkonech ve vařáku. Zároveň do tohoto grafu na vedlejší osu vyneste závslost objemového průtoku par kolonou na množství destlátu př různých výkonech ve vařáku. Úkol 4 Stanovení složení azeotropckého bodu směs voda sopropylalkohol

7 Do vařáku kolony se přpraví směs sopropylalkohol voda o hmotnostní složení 95 % sopropylalkoholu a 5 % vody. Před zapnutím topení se PUSTÍ VODA DO CHADIČE na hlavě kolony!!! Poté se zapne topení vařáku pláště kolony na stanovené výkony a regulace odběru destlátu se přepne na totální reflux. Od okamžku kdy se pára dostane až do chladče na hlavě kolony se vyčká nejméně 20 mnut na ustálení teplot a koncentrací v koloně. Po ustálení se přepne regulátor refluxu na totální odběr a odebírá se vzorek cca 10 až 20 ml u kterého se změří hustota. Pak nastavíme na regulátoru refluxní poměr 2 a odebíráme destlát. Destlát odebíráme po frakcích cca 50 ml, které zvážíme a změříme hustotu. U každé frakce zaznamenáváme čas odběru, teploty na začátku a na konc. Po odebrání 300 ml destlátu vypneme topení vařáku, sundáme topné hnízdo a až teplota ve vařáku klesne pod 50 C obsah vařáku vylejeme do odpadních rozpouštědel a namícháme novou směs o hmotnostním složení 5 % sopropylalkoholu a 95 % vody. Opakujeme celý postup měření. Výpočty: Ze změřené hustoty spočítáme molární zlomek sopropylalkoholu ve frakcích destlátu. Vzhledem k tomu, že koncentrace sopropylalkoholu ve frakcích je ntegrální hodnota za určtou dobu je nutné skutečnou koncentrac (okamžtou) získat výpočtem z následujícího vztahu: dx Ipol y Ipol = D + y Ipol D x Ipol dd x Ipol okamžtá molární koncentrace sopropylalkoholu v destlátu množství destlátu ntegrální molární koncentrace sopropylalkoholu v destlátu Dále ze známého množství destlátu za čas a jeho koncentrace spočítejte objemový průtok páry kolonou (L/s). Výsledkem práce je graf závslost okamžté koncentrace sopropylalkoholu v destlátu na množství destlátu př různých násadách. Zároveň do tohoto grafu na vedlejší osu vyneste závslost objemového průtoku par kolonou na množství destlátu př různých násadách. První odebírané vzorky by měly složením odpovídat azeotropckému bodu. Data pro výpočty Šířka kolony 30 mm Závslost molárního zlomku heptanu ve směs heptan toluen je popsána tímto vztahem: y = -124,02 x ,37 x 2 689,97 x + 302,49 y molární zlomek heptanu x ndex lomu Tabulka 1 Závslost tepelné kapacty vody na teplotě C J/kg-K

8 0 3706, , , , , , , , , , , , , , , , , , , , ,2

9 Tabulka 2 Závslost výparných tepel na teplotě WATER IPOL ETHANO L HEPTAN TOLUEN E C kj/kmol kj/kmol kj/kmol kj/kmol kj/kmol 70, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , Tabulka 3 Normální body varu látek ETHANO TOLUEN WATER IPOL L HEPTAN E C ,3 78,2 98,4 110,6

10 Tabulka 4 Hustoty systému voda ethanol pro různé teploty

11 Tabulka 5 Hustoty systému voda sopropylalkohol pro různé teploty

215.1.9 - REKTIFIKACE DVOUSLOŽKOVÉ SMĚSI, VÝPOČET ÚČINNOSTI

215.1.9 - REKTIFIKACE DVOUSLOŽKOVÉ SMĚSI, VÝPOČET ÚČINNOSTI 215.1.9 - REKTIFIKACE DVOUSLOŽKOVÉ SMĚSI, VÝPOČET ÚČINNOSTI ÚVOD Rektifikace je nejčastěji používaným procesem pro separaci organických látek. Je široce využívána jak v chemické laboratoři, tak i v průmyslu.

Více

Rektifikace. I. Základní vztahy a definice: František Jonáš Rejl, Lukáš Valenz, Jan Haidl

Rektifikace. I. Základní vztahy a definice: František Jonáš Rejl, Lukáš Valenz, Jan Haidl Rektifikace František Jonáš Rejl, Lukáš Valenz, Jan Haidl I. Základní vztahy a definice: Destilace a rektifikace jsou metody dělení kapalných směsí na základě odlišného složení rovnovážné kapaliny a páry.

Více

kde p je celkový tlak par nad vroucí kapalinou, u atmosférické destilace shodný s atmosférickým tlakem,

kde p je celkový tlak par nad vroucí kapalinou, u atmosférické destilace shodný s atmosférickým tlakem, Destilace diferenciální bilance a posouzení vlivu aparaturních dílů na složení destilátu Úvod: Diferenciální destilace je nejjednodušší metodou dělení kapalných směsí destilací. Její výsledky závisí na

Více

LABORATOŘ OBORU I. Testování katalyzátorů pro přípravu prekurzorů vonných látek. Umístění práce:

LABORATOŘ OBORU I. Testování katalyzátorů pro přípravu prekurzorů vonných látek. Umístění práce: LABORATOŘ OBORU I F Testování katalyzátorů pro přípravu prekurzorů vonných látek Vedoucí práce: Umístění práce: Ing. Eva Vrbková F07, F08 1 ÚVOD Hydrogenace je uplatňována v nejrůznějších odvětvích chemických

Více

Stanovení dělící účinnosti rektifikační kolony

Stanovení dělící účinnosti rektifikační kolony Stanovení dělící účinnosti rektifikační kolony Destilace je jedna z nejběžnějších separačních metod v chemickém průmyslu, především v odvětví organické výroby a petrochemii. Návrh či diagnostika destilačních

Více

Stanovení počtu teoretických pater (PTP) rektifikační kolony

Stanovení počtu teoretických pater (PTP) rektifikační kolony Stanovení počtu teoretických pater (PTP) rektifikační kolony Úvod: Počet teoretických (rovnovážných) pater - PTP - je důležitým kriteriem pro posouzení dělicí schopnosti rektifikační kolony. Čím větší

Více

Přípravný kurz k přijímacím zkouškám. Obecná a anorganická chemie. RNDr. Lukáš Richtera, Ph.D. Ústav chemie materiálů Fakulta chemická VUT v Brně

Přípravný kurz k přijímacím zkouškám. Obecná a anorganická chemie. RNDr. Lukáš Richtera, Ph.D. Ústav chemie materiálů Fakulta chemická VUT v Brně Přípravný kurz k přijímacím zkouškám Obecná a anorganická chemie RNDr. Lukáš Richtera, Ph.D. Ústav chemie materiálů Fakulta chemická VUT v Brně část III. - 23. 3. 2013 Hmotnostní koncentrace udává se jako

Více

Využití faktorového plánování v oblasti chemických specialit

Využití faktorového plánování v oblasti chemických specialit LABORATOŘ OBORU I T Využití faktorového plánování v oblasti chemických specialit Vedoucí práce: Ing. Eliška Vyskočilová, Ph.D. Umístění práce: FO7 1 ÚVOD Faktorové plánování je optimalizační metoda, hojně

Více

Sešit pro laboratorní práci z chemie

Sešit pro laboratorní práci z chemie Sešit pro laboratorní práci z chemie téma: Příprava roztoků a měření ph autor: ing. Alena Dvořáková vytvořeno při realizaci projektu: Inovace školního vzdělávacího programu biologie a chemie registrační

Více

CHEMICKÉ VÝPOČTY I. ČÁST LÁTKOVÉ MNOŽSTVÍ. HMOTNOSTI ATOMŮ A MOLEKUL.

CHEMICKÉ VÝPOČTY I. ČÁST LÁTKOVÉ MNOŽSTVÍ. HMOTNOSTI ATOMŮ A MOLEKUL. CHEMICKÉ VÝPOČTY I. ČÁST LÁTKOVÉ MNOŽSTVÍ. HMOTNOSTI ATOMŮ A MOLEKUL. Látkové množství Značka: n Jednotka: mol Definice: Jeden mol je množina, která má stejný počet prvků, jako je atomů ve 12 g nuklidu

Více

Laboratorní úloha Diluční měření průtoku

Laboratorní úloha Diluční měření průtoku Laboratorní úloha Diluční měření průtoku pro předmět lékařské přístroje a zařízení 1. Teorie Diluční měření průtoku patří k velmi používaným nepřímým metodám v biomedicíně. Využívá se zejména tehdy, kdy

Více

popsat činnost základních zapojení převodníků U-f a f-u samostatně změřit zadanou úlohu

popsat činnost základních zapojení převodníků U-f a f-u samostatně změřit zadanou úlohu 7. Převodníky - f, f - Čas ke studu: 5 mnut Cíl Po prostudování tohoto odstavce budete umět popsat čnnost základních zapojení převodníků -f a f- samostatně změřt zadanou úlohu Výklad 7.. Převodníky - f

Více

1. Okalibrujte pomocí bodu tání ledu, bodu varu vody a bodu tuhnutí cínu:

1. Okalibrujte pomocí bodu tání ledu, bodu varu vody a bodu tuhnutí cínu: 1 Pracovní úkoly 1. Okalibrujte pomocí bodu tání ledu, bodu varu vody a bodu tuhnutí cínu: a. platinový odporový teploměr (určete konstanty R 0, A, B) b. termočlánek měď-konstantan (určete konstanty a,

Více

Zkouškový test z fyzikální a koloidní chemie

Zkouškový test z fyzikální a koloidní chemie Zkouškový test z fyzkální a kolodní cheme VZOR/1 jméno test zápočet průměr známka Čas 9 mnut. Povoleny jsou kalkulačky. Nejsou povoleny žádné písemné pomůcky. Uotázeksvýběrema,b,c...odpověd b kroužkujte.platí:

Více

1 Tlaková ztráta při toku plynu výplní

1 Tlaková ztráta při toku plynu výplní I Základní vztahy a definice 1 Tlaková ztráta při toku plynu výplní Proudění plynu (nebo kapaliny) nehybnou vrstvou částic má řadu aplikací v chemické technoloii. Částice tvořící vrstvu mohou být kuličky,

Více

Míchání. P 0,t = Po ρ f 3 d 5 (2)

Míchání. P 0,t = Po ρ f 3 d 5 (2) Míchání Úvod: Mícháním se urychluje dosažení koncentrační a teplotní homogenity, které podstatně ovlivňují průběh tepelných a difuzních operací, reakcí v reaktorech a bezpečnost chemických provozů, která

Více

DESTILAČNÍ ZKOUŠKA PALIV

DESTILAČNÍ ZKOUŠKA PALIV VYSOKÁ ŠKOLA CHEMICKO-TECHNOLOGICKÁ V PRAZE Fakulta technologie ochrany prostředí Ústav technologie ropy a alternativních ativních paliv DESTILAČNÍ ZKOUŠKA PALIV Laboratorní cvičení ÚVOD Destilační zkouška

Více

1. Okalibrujte pomocí bodu tání ledu, bodu varu vody a bodu tuhnutí cínu:

1. Okalibrujte pomocí bodu tání ledu, bodu varu vody a bodu tuhnutí cínu: 1 Pracovní úkol 1. Okalibrujte pomocí bodu tání ledu, bodu varu vody a bodu tuhnutí cínu: (a) platinovýodporovýteploměr(určetekonstanty R 0, A, B). (b) termočlánek měď-konstantan(určete konstanty a, b,

Více

Měření spotřeby tepla

Měření spotřeby tepla Měření spotřeby tepla Úkol: Změřte jaké množství tepla je spotřebováno a přeneseno na laboratorním přípravku v daném čase. Použijte tři způsoby měření spotřeby tepla měřením množství spotřebované elektrické

Více

Základy chemických technologií

Základy chemických technologií 6. Přednáška Výměníky tepla Odpařování, odparky Výměníky tepla: zařízení, které slouží k výměně tepla mezi dvěma fázemi ( obvykle kapalné) z tepejší se teplo odebírá do studenější se převádí technologické

Více

Experiment C-16 DESTILACE 2

Experiment C-16 DESTILACE 2 Experiment C-16 DESTILACE 2 CÍL EXPERIMENTU Získání informací o třech klasických skupenstvích látek, změnách skupenství (jedné z fázových změn), křivkách ohřevu a ochlazování a destilační křivce. Prozkoumání

Více

Stupeň oddělitelnosti dvousložek kapalnésměsi destilací pak vyjadřujetzv. relativnítěkavost = ))))))

Stupeň oddělitelnosti dvousložek kapalnésměsi destilací pak vyjadřujetzv. relativnítěkavost = )))))) Úlohy č. 6 8 DESTILACE Obecnýúvod Destilace je dělící pochod, založený na rozdílu ve složení kapaliny a páry z ní vytvořené. Užívá se nejčastěji kčistění kapalných látek, tj. jejich oddělení od méně čivíce

Více

Experiment C-15 DESTILACE 1

Experiment C-15 DESTILACE 1 Experiment C-15 DESTILACE 1 CÍL EXPERIMENTU Získání informací o třech klasických skupenstvích látek, změnách skupenství (jedné z fázových změn), křivkách ohřevu a ochlazování a destilační křivce. Prozkoumání

Více

MNOŽSTVÍ KYSLÍKU VE VODĚ

MNOŽSTVÍ KYSLÍKU VE VODĚ MNOŽSTVÍ KYSLÍKU VE VODĚ Úvod Místo toho, aby ryby dýchaly kyslík, získávají ho z vody díky svým žábrám. Množství rozpuštěného kyslíku ve vodě je často udáváno v miligramech na litr vody. V této činnosti

Více

d p o r o v t e p l o m ě r, t e r m o č l á n k

d p o r o v t e p l o m ě r, t e r m o č l á n k d p o r o v t e p l o m ě r, t e r m o č l á n k Ú k o l : a) Proveďte kalibraci odporového teploměru, termočlánku a termistoru b) Určete teplotní koeficienty odporového teploměru, konstanty charakterizující

Více

EU peníze středním školám digitální učební materiál

EU peníze středním školám digitální učební materiál EU peníze středním školám digitální učební materiál Číslo projektu: Číslo a název šablony klíčové aktivity: Tematická oblast, název DUMu: Autor: CZ.1.07/1.5.00/34.0515 III/2 Inovace a zkvalitnění výuky

Více

DĚLÍCÍ METODY. Autor: Mgr. Stanislava Bubíková. Datum (období) tvorby: 28. 5. 2012. Ročník: osmý. Vzdělávací oblast: Člověk a příroda / Chemie / Směsi

DĚLÍCÍ METODY. Autor: Mgr. Stanislava Bubíková. Datum (období) tvorby: 28. 5. 2012. Ročník: osmý. Vzdělávací oblast: Člověk a příroda / Chemie / Směsi Autor: Mgr. Stanislava Bubíková DĚLÍCÍ METODY Datum (období) tvorby: 28. 5. 2012 Ročník: osmý Vzdělávací oblast: Člověk a příroda / Chemie / Směsi 1 Anotace: Žáci se seznámí s nejčastěji používanými separačními

Více

Vliv zateplení objektů na vytápěcí soustavu, nové provozní stavy a topné křivky

Vliv zateplení objektů na vytápěcí soustavu, nové provozní stavy a topné křivky Vliv zateplení objektů na vytápěcí soustavu, nové provozní stavy a topné křivky V současnosti se u řady stávajících bytových objektů provádí zvyšování tepelných odporů obvodového pláště, neboli zateplování

Více

Univerzita obrany. Měření na výměníku tepla K-216. Laboratorní cvičení z předmětu TERMOMECHANIKA. Protokol obsahuje 13 listů. Vypracoval: Vít Havránek

Univerzita obrany. Měření na výměníku tepla K-216. Laboratorní cvičení z předmětu TERMOMECHANIKA. Protokol obsahuje 13 listů. Vypracoval: Vít Havránek Univerzita obrany K-216 Laboratorní cvičení z předmětu TERMOMECHANIKA Měření na výměníku tepla Protokol obsahuje 13 listů Vypracoval: Vít Havránek Studijní skupina: 21-3LRT-C Datum zpracování: 7.5.2011

Více

Sešit pro laboratorní práci z chemie

Sešit pro laboratorní práci z chemie Sešit pro laboratorní práci z chemie téma: Roztoky výpočty koncentrací autor: MVDr. Alexandra Gajová vytvořeno při realizaci projektu: Inovace školního vzdělávacího programu biologie a chemie registrační

Více

E1 - Měření koncentrace kyslíku magnetickým analyzátorem

E1 - Měření koncentrace kyslíku magnetickým analyzátorem E1 - Měření koncentrace kyslíku magnetickým analyzátorem Funkční princip analyzátoru Podle chování plynů v magnetickém poli rozlišujeme plyny paramagnetické a diamagnetické. Charakteristickou konstantou

Více

Návod pro laboratorní úlohu: Závislost citlivosti plynových vodivostních senzorů na teplotě

Návod pro laboratorní úlohu: Závislost citlivosti plynových vodivostních senzorů na teplotě Návod pro laboratorní úlohu: Závislost citlivosti plynových vodivostních senzorů na teplotě Náplní laboratorní úlohy je proměření základních parametrů plynových vodivostních senzorů: i) el. odpor a ii)

Více

Úloha 5 Řízení teplovzdušného modelu TVM pomocí PC a mikropočítačové jednotky CTRL

Úloha 5 Řízení teplovzdušného modelu TVM pomocí PC a mikropočítačové jednotky CTRL VŠB-TUO 2005/2006 FAKULTA STROJNÍ PROSTŘEDKY AUTOMATICKÉHO ŘÍZENÍ Úloha 5 Řízení teplovzdušného modelu TVM pomocí PC a mikropočítačové jednotky CTRL SN 72 JOSEF DOVRTĚL HA MINH Zadání:. Seznamte se s teplovzdušným

Více

Základy chemických technologií

Základy chemických technologií 8. Přednáška Extrakce Sušení Extrakce extrakce kapalina kapalina rovnováha kapalina kapalina pro dvousložkové systémy jednostupňová extrakce, opakovaná extrakce procesní zařízení extrakce kapalina pevná

Více

MĚŘENÍ INDUKČNOSTI A KAPACITY

MĚŘENÍ INDUKČNOSTI A KAPACITY Úloha č. MĚŘENÍ NDKČNOST A KAPATY ÚKO MĚŘENÍ:. Změřte ndkčnost cívky bez jádra z její mpedance a stanovte nejstot měření.. Změřte na Maxwellově můstk ndkčnost cívky a rčete nejstot měření. Porovnejte výsledky

Více

1. Stanovení modulu pružnosti v tahu přímou metodou

1. Stanovení modulu pružnosti v tahu přímou metodou . Stanovení moduu pružnost v tahu přímou metodou.. Zadání úohy. Určte modu pružnost v tahu přímou metodou pro dva vzorky různých materáů a výsedky porovnejte s tabukovým hodnotam.. Z naměřených hodnot

Více

Mechatronické systémy s elektronicky komutovanými motory

Mechatronické systémy s elektronicky komutovanými motory Mechatroncké systémy s elektroncky komutovaným motory 1. EC motor Uvedený motor je zvláštním typem synchronního motoru nazývaný též bezkartáčovým stejnosměrným motorem (anglcky Brushless Drect Current

Více

Stanovení kritické micelární koncentrace

Stanovení kritické micelární koncentrace Stanovení kritické micelární koncentrace TEORIE KONDUKTOMETRIE Měrná elektrická vodivost neboli konduktivita je fyzikální veličinou, která popisuje schopnost látek vést elektrický proud. Látky snadno vedoucí

Více

215.1.4 HUSTOTA ROPNÝCH PRODUKTŮ

215.1.4 HUSTOTA ROPNÝCH PRODUKTŮ 5..4 HUSTOTA ROPNÝCH PRODUKTŮ ÚVOD Hustota je jednou ze základních veličin, které charakterizují ropu a její produkty. Z její hodnoty lze usuzovat také na frakční chemické složení ropných produktů. Hustota

Více

KLIMATIZACE A PRŮMYSLOVÁ VZDUCHOTECHNIKA VYBRANÉ PŘÍKLADY KE CVIČENÍ I.

KLIMATIZACE A PRŮMYSLOVÁ VZDUCHOTECHNIKA VYBRANÉ PŘÍKLADY KE CVIČENÍ I. KLIMATIZACE A PRŮMYSLOVÁ VZDUCHOTECHNIKA VYBRANÉ PŘÍKLADY KE CVIČENÍ I. Ing. Jan Schwarzer, Ph.D.. Praha 2011 Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti 1 Obsah 1 Obsah... 2 2 Označení...3

Více

Anemometr s vyhřívanými senzory

Anemometr s vyhřívanými senzory Anemometr s vyhřívanými senzory Úvod: Přípravek anemometru je postaven na 0,5 m větrném tunelu, kde se na jedné straně nachází měřící část se senzory na straně druhé ventilátor s řízením. Na obr. 1 je

Více

CHROMATOGRAFIE ÚVOD Společný rys působením nemísících fází: jedna fáze je nepohyblivá (stacionární), druhá pohyblivá (mobilní).

CHROMATOGRAFIE ÚVOD Společný rys působením nemísících fází: jedna fáze je nepohyblivá (stacionární), druhá pohyblivá (mobilní). CHROMATOGRAFIE ÚOD Existují různé chromatografické metody, viz rozdělení metod níže. Společný rys chromatografických dělení: vzorek jako směs látek - složek se dělí na jednotlivé složky působením dvou

Více

KDE VZÍT PLYNY? Václav Piskač, Brno 2014

KDE VZÍT PLYNY? Václav Piskač, Brno 2014 KDE VZÍT PLYNY? Václav Piskač, Brno 2014 Tento článek se zabývá možnostmi, jak pro školní experimenty s plyny získat něco jiného než vzduch. V dalším budu předpokládat, že nemáte kamarády ve výzkumném

Více

Gymnázium a Střední odborná škola, Rokycany, Mládežníků 1115

Gymnázium a Střední odborná škola, Rokycany, Mládežníků 1115 Gymnázium a Střední odborná škola, Rokycany, Mládežníků 1115 Číslo projektu: CZ.1.07/1.5.00/34.0410 Číslo šablony: III/2 Inovace a zkvalitněni výuky prostřednictvím ICT. Název materiálu: Zpracování ropy

Více

Orientačně lze uvažovat s potřebou cca 650 750 Kcal na vypaření 1 l kapalné odpadní vody.

Orientačně lze uvažovat s potřebou cca 650 750 Kcal na vypaření 1 l kapalné odpadní vody. Proces Biodestil Biodestil je nový pokrokový proces pro zpracování vysoce kontaminovaných nebo zasolených odpadních vod, které jsou obtížně likvidovatelné ostatními konvenčními metodami. Tento proces je

Více

2. ELEKTRICKÉ OBVODY STEJNOSMĚRNÉHO PROUDU

2. ELEKTRICKÉ OBVODY STEJNOSMĚRNÉHO PROUDU VŠB T Ostrava Faklta elektrotechnky a nformatky Katedra obecné elektrotechnky. ELEKTCKÉ OBVODY STEJNOSMĚNÉHO POD.. Topologe elektrckých obvodů.. Aktvní prvky elektrckého obvod.3. Pasvní prvky elektrckého

Více

STANOVENÍ VLASTNOSTÍ AERAČNÍCH ZAŘÍZENÍ

STANOVENÍ VLASTNOSTÍ AERAČNÍCH ZAŘÍZENÍ STANOVENÍ VLASTNOSTÍ AERAČNÍCH ZAŘÍZENÍ Zadání: 1. Stanovte oxygenační kapacitu a procento využití kyslíku v čisté vodě pro provzdušňovací porézní element instalovaný v plexi válci následujících rozměrů:

Více

PROTOKOL O LABORATORNÍM CVIČENÍ - AUTOMATIZACE

PROTOKOL O LABORATORNÍM CVIČENÍ - AUTOMATIZACE STŘEDNÍ PRŮMYSLOVÁ ŠKOLA V ČESKÝCH BUDĚJOVICÍCH, DUKELSKÁ 13 PROTOKOL O LABORATORNÍM CVIČENÍ - AUTOMATIZACE Provedl: Tomáš PRŮCHA Datum: 23. 1. 2009 Číslo: Kontroloval: Datum: 4 Pořadové číslo žáka: 24

Více

ZLOMEK MOLÁRNÍ ZLOMEK MOLÁLNÍ KONCENTRACE

ZLOMEK MOLÁRNÍ ZLOMEK MOLÁLNÍ KONCENTRACE Složení roztoku KONCENTRACE ROZTOKU Koncentrace je veličina, která číselně charakterizuje složení směsi. Způsoby vyjádření: - MOLÁRNÍ KONCENTRACE (molarita) - HMOTNOSTNÍ ZLOMEK - MOLÁRNÍ ZLOMEK - MOLÁLNÍ

Více

Analýza kofeinu v kávě pomocí kapalinové chromatografie

Analýza kofeinu v kávě pomocí kapalinové chromatografie Analýza kofeinu v kávě pomocí kapalinové chromatografie Kofein (obr.1) se jako přírodní alkaloid vyskytuje v mnoha rostlinách (např. fazolích, kakaových bobech, černém čaji apod.) avšak nejvíce je spojován

Více

Postup měření při stanovení radonového indexu pozemku

Postup měření při stanovení radonového indexu pozemku Jak se měří radon Jak se měří radon Postup měření při stanovení radonového indexu pozemku Měřeným parametrem je objemová aktivita radonu 222 Rn v půdním vzduchu. Výsledek je udáván v jednotkách kbq/m 3.

Více

Složení roztoků. Výukové materiály. Chlorid sodný. Autor: RNDr. Jana Parobková. Název školy: Gymnázium Jana Nerudy, škola hl.

Složení roztoků. Výukové materiály. Chlorid sodný. Autor: RNDr. Jana Parobková. Název školy: Gymnázium Jana Nerudy, škola hl. Výukové materiály Složení roztoků Autor: RNDr. Jana Parobková Chlorid sodný Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy Předmět: Chemie Tematický celek: Roztoky ev. Halogenidy alkalických

Více

Základní škola a mateřská škola Hutisko Solanec. žák uvede základní druhy uhlovodíků, jejich použití a zdroje. Chemie - 9. ročník

Základní škola a mateřská škola Hutisko Solanec. žák uvede základní druhy uhlovodíků, jejich použití a zdroje. Chemie - 9. ročník Základní škola a mateřská škola Hutisko Solanec Digitální učební materiál Anotace: Autor: Jazyk: Očekávaný výstup: Speciální vzdělávací potřeby: Klíčová slova: Druh učebního materiálu: Druh interaktivity:

Více

ina ina Diskrétn tní náhodná veličina může nabývat pouze spočetně mnoha hodnot (počet aut v náhodně vybraná domácnost, výsledek hodu kostkou)

ina ina Diskrétn tní náhodná veličina může nabývat pouze spočetně mnoha hodnot (počet aut v náhodně vybraná domácnost, výsledek hodu kostkou) Náhodná velčna na Výsledek náhodného pokusu, daný reálným číslem je hodnotou náhodné velčny. Náhodná velčna je lbovolná reálná funkce defnovaná na množně elementárních E pravděpodobnostního prostoru S.

Více

Elektrárny část II. Tepelné elektrárny. Ing. M. Bešta

Elektrárny část II. Tepelné elektrárny. Ing. M. Bešta Tepelné elektrárny 1) Kondenzační elektrárny uhelné K výrobě elektrické energie se využívá tepelné energie uvolněné z uhlí spalováním. Teplo uvolněné spalováním se využívá k výrobě přehřáté (ostré) páry.

Více

Vyjmenujte tři základní stavební částice látek: a) b) c)

Vyjmenujte tři základní stavební částice látek: a) b) c) OPAKOVÁNÍ Vyjmenujte tři základní stavební částice látek: a) b) c) Vyjmenujte tři základní stavební částice látek: a) atom b) molekula c) ion Vyjmenujte skupenství, ve kterých se může látka nacházet: a)

Více

Funkční vzorek průmyslového motoru pro provoz na rostlinný olej

Funkční vzorek průmyslového motoru pro provoz na rostlinný olej Funkční vzorek průmyslového motoru pro provoz na rostlinný olej V laboratořích Katedry vozidel a motorů Technické univerzity v Liberci byl vyvinut motor pro pohon kogenerační jednotky spalující rostlinný

Více

1. Určení rovnovážných dat adsorpce CO 2 na aktivním uhlí

1. Určení rovnovážných dat adsorpce CO 2 na aktivním uhlí 1. Určení rovnovážných dat adsorpce CO 2 na aktivním uhlí Čas ke studiu: 1 hodiny příprava + 2 hodiny experiment + 2 hodiny zpracování dat a vypracování protokolu Cíl Po prostudování tohoto odstavce budete

Více

2 - Kinetika sušení vybraného materiálu (Stanice sušení)

2 - Kinetika sušení vybraného materiálu (Stanice sušení) 2 - Kinetika sušení vybraného materiálu (Stanice sušení) I Základní vztahy a definice Sušení je děj, při kterém se odstraňuje kapalina obsažená v materiálu. Sušením se nejčastěji odstraňuje voda (složka

Více

1) ALS Czech Republic, s.r.o., Na Harfě 336/9, 190 00 Praha 9 Laboratoř Česká Lípa, Bendlova 1687/7, 470 01 Česká Lípa

1) ALS Czech Republic, s.r.o., Na Harfě 336/9, 190 00 Praha 9 Laboratoř Česká Lípa, Bendlova 1687/7, 470 01 Česká Lípa Praktické zkušenosti s aparaturou DIPER 4K ke zkouškám vyluhovatelnosti odpadů perkolačním způsobem dle normy ČSN P CEN/TS 14405 Tomáš Bouda 1), Petr Podhájecký 2) 1) ALS Czech Republic, s.r.o., Na Harfě

Více

Technická specifikace mikrokogenerační jednotky

Technická specifikace mikrokogenerační jednotky Technická specifikace mikrokogenerační jednotky Gas module specification pro kombinovanou výrobu elektřiny a tepla Combined Heat and Power, Cleanergy C9G Stirling Modul Cleanergy C9G segas Stirlingovým

Více

Jednotné pracovní postupy zkoušení krmiv STANOVENÍ OBSAHU 5-VINYL - 2-THIOOXAZOLIDONU (GOITRINU) METODOU GC

Jednotné pracovní postupy zkoušení krmiv STANOVENÍ OBSAHU 5-VINYL - 2-THIOOXAZOLIDONU (GOITRINU) METODOU GC Národní referenční laboratoř Strana 1 STANOVENÍ OBSAHU 5-VINYL - 2-THIOOXAZOLIDONU (GOITRINU) METODOU GC 1 Rozsah a účel Metoda specifikuje podmínky pro stanovení vinylthiooxazolidonu (dále VOT) v krmivech.

Více

Ohmův zákon pro uzavřený obvod. Tematický celek: Elektrický proud. Úkol:

Ohmův zákon pro uzavřený obvod. Tematický celek: Elektrický proud. Úkol: Název: Ohmův zákon pro uzavřený obvod. Tematcký celek: Elektrcký proud. Úkol: Zopakujte s Ohmův zákon pro celý obvod. Sestrojte elektrcký obvod dle schématu. Do obvodu zařaďte robota, který bude hlídat

Více

Blokové schéma Clausius-Rankinova (C-R) cyklu s přihříváním páry je na obrázku.

Blokové schéma Clausius-Rankinova (C-R) cyklu s přihříváním páry je na obrázku. Elektroenergetika 1 (A1B15EN1) 4. cvičení Příklad 1: Přihřívání páry Teoretický parní oběh s přihříváním páry pracuje s následujícími parametry: Admisní tlak páry p a = 10 MPa a teplota t a = 530 C. Tlak

Více

Tepelná čerpadla. princip funkce topný faktor typy tepelných čerpadel hodnocení provozu tepelných čerpadel otopné soustavy

Tepelná čerpadla. princip funkce topný faktor typy tepelných čerpadel hodnocení provozu tepelných čerpadel otopné soustavy Tepelná čerpadla princip funkce topný faktor typy tepelných čerpadel hodnocení provozu tepelných čerpadel otopné soustavy Tepelná čerpadla zařízen zení k získz skávání využiteln itelné tepelné energie

Více

5 ST ADATEL, FONDOVATEL, ZÁSOBITEL, NESTEJNÉ PENùÎNÍ PROUDY, REÁLNÁ ÚROKOVÁ MÍRA

5 ST ADATEL, FONDOVATEL, ZÁSOBITEL, NESTEJNÉ PENùÎNÍ PROUDY, REÁLNÁ ÚROKOVÁ MÍRA 5 ST ADATEL, FONDOVATEL, ZÁSOBITEL, NESTEJNÉ PENùÎNÍ PROUDY, REÁLNÁ ÚROKOVÁ MÍRA Střadatel se používá pro výpočet úroku na konc období, kdy jste pravdelně ukládal stejnou částku, ve stejný okamžk, po určté

Více

Testování olejů - Reichert

Testování olejů - Reichert ÚSTAV TECHNOLOGIE ROPY A PETROCHEMIE Testování olejů - Reichert 1 Úvod Hodnocení maziv chemicko-fyzikálními metodami nám jen nepřímo poukazuje na jejich kvalitu z hlediska mazivosti, resp. únosnosti mazacího

Více

LABORATORNÍ CVIČENÍ Z FYZIKÁLNÍ

LABORATORNÍ CVIČENÍ Z FYZIKÁLNÍ MASARYKOVA UNIVERZITA FAKULTA PŘÍRODOVĚDECKÁ LABORATORNÍ CVIČENÍ Z FYZIKÁLNÍ CHEMIE ÚLOHY ZÁKLADNÍHO PRAKTIKA PRO POSLUCHAČE VYSOKOŠKOLSKÉHO STUDIA ODBORNÉ A UČITELSKÉ CHEMIE KOLEKTIV: PAVEL BROŽ MIROSLAV

Více

Reaktory pro systém plyn-kapalina

Reaktory pro systém plyn-kapalina Reaktory pro systém plyn-kapalina Vypracoval : Jan Horáček FCHT, ústav 111 Prováděné reakce Rychlé : všechen absorbovaný plyn zreaguje již na fázovém rozhraní (př. : absorpce kyselých plynů : CO 2, H 2

Více

Aldolová kondenzace při syntéze léčivých látek

Aldolová kondenzace při syntéze léčivých látek Laboratoř oboru I Výroba léčiv (N111049) a rganická technologie (N111025) Návod Aldolová kondenzace při syntéze léčivých látek Vedoucí práce: Ing. Dana Bílková Studijní program: Studijní obor: Umístění

Více

Fyzikální chemie. Magda Škvorová KFCH CN463 magda.skvorova@ujep.cz, tel. 3302. 14. února 2013

Fyzikální chemie. Magda Škvorová KFCH CN463 magda.skvorova@ujep.cz, tel. 3302. 14. února 2013 Fyzikální chemie Magda Škvorová KFCH CN463 magda.skvorova@ujep.cz, tel. 3302 14. února 2013 Co je fyzikální chemie? Co je fyzikální chemie? makroskopický přístup: (klasická) termodynamika nerovnovážná

Více

Bilan a ce c zák á l k ad a ní pojm j y m aplikace zákonů o zachování čehokoli 10.10.2008 3

Bilan a ce c zák á l k ad a ní pojm j y m aplikace zákonů o zachování čehokoli 10.10.2008 3 Výpočtový seminář z Procesního inženýrství podzim 2008 Bilance Materiálové a látkové 10.10.2008 1 Tématické okruhy bilance - základní pojmy bilanční schéma způsoby vyjadřování koncentrací a přepočtové

Více

Laboratorní cvičení č.10

Laboratorní cvičení č.10 Laboratorní cvičení č.10 Název: Měření na usměrňovačích. Zadání: 1) Navrhněte jednocestný usměrňovač, jsou-li na výstupu požadovány následující parametry. U ss = V I výst =..A p=5% 2)Navrhněte můstkový

Více

Chemie - 3. ročník. přesahy, vazby, mezipředmětové vztahy průřezová témata. očekávané výstupy RVP. témata / učivo. očekávané výstupy ŠVP.

Chemie - 3. ročník. přesahy, vazby, mezipředmětové vztahy průřezová témata. očekávané výstupy RVP. témata / učivo. očekávané výstupy ŠVP. očekávané výstupy RVP témata / učivo Chemie - 3. ročník Žák: očekávané výstupy ŠVP přesahy, vazby, mezipředmětové vztahy průřezová témata 1.1., 1.2., 1.3., 1.4., 2.1. 1. Látky přírodní nebo syntetické

Více

1. Měření parametrů koaxiálních napáječů

1. Měření parametrů koaxiálních napáječů . Měření parametrů koaxiálních napáječů. Úvod Napáječ je vedení, které spojuje zdroj a zátěž. Vlastnosti napáječe popisujeme charakteristickou impedancí Z [], měrnou fází [rad/m] a měrným útlumem [/m].

Více

TEPELNÉ JEVY. Mgr. Jan Ptáčník - GJVJ - Fyzika - Tercie

TEPELNÉ JEVY. Mgr. Jan Ptáčník - GJVJ - Fyzika - Tercie TEPELNÉ JEVY Mgr. Jan Ptáčník - GJVJ - Fyzika - Tercie Vnitřní energie tělesa Každé těleso se skládá z látek. Látky se skládají z částic. neustálý neuspořádaný pohyb kinetická energie vzájemné působení

Více

Praktikum I Mechanika a molekulová fyzika

Praktikum I Mechanika a molekulová fyzika Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK Praktikum I Mechanika a molekulová fyzika Úloha č. IV Název: Určení závislosti povrchového napětí na koncentraci povrchově aktivní látky

Více

Organická chemie 1. ročník studijního oboru - gastronomie.

Organická chemie 1. ročník studijního oboru - gastronomie. Organická chemie 1. ročník studijního oboru - gastronomie. T-4 Metody oddělování složek směsí. Zpracováno v rámci projektu Zlepšení podmínek ke vzdělávání Registrační číslo projektu: CZ.1.07/1.5.00/34.0639

Více

4 Měření nelineárního odporu žárovky

4 Měření nelineárního odporu žárovky 4 4.1 Zadání úlohy a) Změřte proud I Ž procházející žárovkou při různých hodnotách napětí U, b) sestrojte voltampérovou charakteristiku dané žárovky, c) z naměřených hodnot dopočítejte hodnoty stejnosměrného

Více

Stanovení hustoty pevných a kapalných látek

Stanovení hustoty pevných a kapalných látek 55 Kapitola 9 Stanovení hustoty pevných a kapalných látek 9.1 Úvod Hustota látky ρ je hmotnost její objemové jednotky, definované vztahem: ρ = dm dv, kde dm = hmotnost objemového elementu dv. Pro homogenní

Více

HYDROGENAČNÍ RAFINACE MINERÁLNÍCH OLEJŮ

HYDROGENAČNÍ RAFINACE MINERÁLNÍCH OLEJŮ VYSOKÁ ŠKOLA CHEMICKO-TECHNOLOGICKÁ V PRAZE Fakulta technologie ochrany prostředí Ústav technologie ropy a alternativních paliv HYDROGENAČNÍ RAFINACE MINERÁLNÍCH OLEJŮ Laboratorní cvičení ÚVOD Při výrobě

Více

Směsi a čisté látky, metody dělení

Směsi a čisté látky, metody dělení Směsi a čisté látky, metody dělení LÁTKY Chemicky čisté látky Sloučeniny Chemické prvky Homogenní Roztoky pevné kapalné plynné Směsi Heterogenní Suspenze Emulze Pěna Aerosol Chemicky čisté látky: prvky

Více

č.. 6: Tento projekt je spolufinancován Evropským sociálním fondem a Státním rozpočtem ČR InoBio CZ.1.07/2.2.00/28.0018

č.. 6: Tento projekt je spolufinancován Evropským sociálním fondem a Státním rozpočtem ČR InoBio CZ.1.07/2.2.00/28.0018 Pedologické praktikum - téma č.. 6: Práce v pedologické laboratoři - půdní fyzika Tento projekt je spolufinancován Evropským sociálním fondem a Státním rozpočtem ČR InoBio CZ.1.07/2.2.00/28.0018 Půdní

Více

Korekční křivka napěťového transformátoru

Korekční křivka napěťového transformátoru 8 Měření korekční křivky napěťového transformátoru 8.1 Zadání úlohy a) pro primární napětí daná tabulkou změřte sekundární napětí na obou sekundárních vinutích a dopočítejte převody transformátoru pro

Více

VLIV VZORKOVÁNÍ POVRCHOVÝCH VOD NA HODNOTY UKAZATELŮ KVALITY VODY POD ZAÚSTĚNÍM ODPADNÍCH VOD DO VODOTEČÍ NA PŘÍKLADU TRITIA

VLIV VZORKOVÁNÍ POVRCHOVÝCH VOD NA HODNOTY UKAZATELŮ KVALITY VODY POD ZAÚSTĚNÍM ODPADNÍCH VOD DO VODOTEČÍ NA PŘÍKLADU TRITIA E. Hanslík, E. Juranová, V. Kodeš, D. Marešová, T. Minařík, B. Sedlářová VLIV VZORKOVÁNÍ POVRCHOVÝCH VOD NA HODNOTY UKAZATELŮ KVALITY VODY POD ZAÚSTĚNÍM ODPADNÍCH VOD DO VODOTEČÍ NA PŘÍKLADU TRITIA Výzkumný

Více

Vícefázové reaktory. Probublávaný reaktor plyn kapalina katalyzátor. Zuzana Tomešová

Vícefázové reaktory. Probublávaný reaktor plyn kapalina katalyzátor. Zuzana Tomešová Vícefázové reaktory Probublávaný reaktor plyn kapalina katalyzátor Zuzana Tomešová 2008 Probublávaný reaktor plyn - kapalina - katalyzátor Hydrogenace méně těkavých látek za vyššího tlaku Kolony naplněné

Více

www.zlinskedumy.cz Střední odborná škola Luhačovice Číslo projektu

www.zlinskedumy.cz Střední odborná škola Luhačovice Číslo projektu Název školy Číslo projektu Autor Název šablony Název DUMu Stupeň a typ vzdělání Vzdělávací obor Tematický okruh Druh učebního materiálu Cílová skupina Anotace Střední odborná škola Luhačovice CZ.1.07/1.5.00/34.0370

Více

Teplota a její měření

Teplota a její měření Teplota a její měření Teplota a její měření Číslo DUM v digitálním archivu školy VY_32_INOVACE_07_03_01 Teplota, Celsiova a Kelvinova teplotní stupnice, převodní vztahy, příklady. Tepelná výměna, měrná

Více

CHEMICKY ČISTÁ LÁTKA A SMĚS

CHEMICKY ČISTÁ LÁTKA A SMĚS CHEMICKY ČISTÁ LÁTKA A SMĚS Látka = forma hmoty, která se skládá z velkého množství základních stavebních částic: atomů, iontů a... Látky se liší podle druhu částic, ze kterých se skládají. Druh částic

Více

Nedokonalé spalování. Spalování uhlíku C na CO. Metodika kontroly spalování. Kontrola jakosti spalování. Části uhlíku a a b C + 1/2 O 2 CO

Nedokonalé spalování. Spalování uhlíku C na CO. Metodika kontroly spalování. Kontrola jakosti spalování. Části uhlíku a a b C + 1/2 O 2 CO Nedokonalé spalování palivo v kotli nikdy nevyhoří dokonale nedokonalost spalování je příčinou ztrát hořlavinou ve spalinách hořlavinou v tuhých zbytcích nedokonalost spalování tuhých a kapalných paliv

Více

Výměna tepla může probíhat vedením (kondukcí), prouděním (konvekcí) nebo sáláním (zářením).

Výměna tepla může probíhat vedením (kondukcí), prouděním (konvekcí) nebo sáláním (zářením). 10. VÝMĚNÍKY TEPLA Výměníky tepla jsou zařízení, ve kterých se jeden proud ohřívá a druhý ochlazuje sdílením tepla. Nezáleží přitom na konečném cíli operace, tj. zda chceme proud ochladit nebo ohřát, ani

Více

CHEMIE A CHEMICKÉ TECHNOLOGIE (N150013) 3.r.

CHEMIE A CHEMICKÉ TECHNOLOGIE (N150013) 3.r. L A B O R A T O Ř O B O R U CHEMIE A CHEMICKÉ TECHNOLOGIE (N150013) 3.r. Ústav organické technologie (111) Ing. I. Dudková Doc. Ing. B. Dvořák, CSc. budova A, místnost č. S31 MĚŘENÍ VYBRANÝCH TECHNICKÝCH

Více

Měření pevnosti slupky dužnatých plodin

Měření pevnosti slupky dužnatých plodin 35 Kapitola 5 Měření pevnosti slupky dužnatých plodin 5.1 Úvod Měření pevnosti slupky dužnatých plodin se provádí na penetrometrickém přístroji statickou metodou. Princip statického měření spočívá v postupném

Více

Zvyšování kvality výuky technických oborů

Zvyšování kvality výuky technických oborů Zvyšování kvality výuky technických oborů Klíčová aktivita V.2 Inovace a zkvalitnění výuky směřující k rozvoji odborných kompetencí žáků středních škol Téma V.2.11 Diagnostika automobilů Kapitola 19 Snímač

Více

2.POPIS MĚŘENÉHO PŘEDMĚTU Měřený předmětem jsou v tomto případě polovodičové diody, jejich údaje jsou uvedeny v tabulce:

2.POPIS MĚŘENÉHO PŘEDMĚTU Měřený předmětem jsou v tomto případě polovodičové diody, jejich údaje jsou uvedeny v tabulce: REDL 3.EB 8 1/14 1.ZADÁNÍ a) Změřte voltampérovou charakteristiku polovodičových diod pomocí voltmetru a ampérmetru v propustném i závěrném směru. b) Sestrojte grafy =f(). c) Graficko početní metodou určete

Více

Měření na 3fázovém transformátoru

Měření na 3fázovém transformátoru Měření na 3fázovém transformátoru Transformátor naprázdno 0. 1. Zadání Změřte trojfázový transformátor v chodu naprázdno. Regulujte napájecí napětí v rozmezí 75 až 120 V, měřte proud naprázdno ve všech

Více

Technické specifikace přístrojů pro část B zadávací dokumentace veřejné zakázky Laboratorní přístroje II pro projekt UniCRE

Technické specifikace přístrojů pro část B zadávací dokumentace veřejné zakázky Laboratorní přístroje II pro projekt UniCRE Příloha č. 2 Technické specifikace přístrojů pro část B zadávací dokumentace veřejné zakázky Laboratorní přístroje II pro projekt UniCRE Laboratorní muflové pece Muflová pec, 1ks Identifikace: LP-EF1 Použití:

Více

9. cvičení 4ST201. Obsah: Jednoduchá lineární regrese Vícenásobná lineární regrese Korelační analýza. Jednoduchá lineární regrese

9. cvičení 4ST201. Obsah: Jednoduchá lineární regrese Vícenásobná lineární regrese Korelační analýza. Jednoduchá lineární regrese cvčící 9. cvčení 4ST01 Obsah: Jednoduchá lneární regrese Vícenásobná lneární regrese Korelační analýza Vysoká škola ekonomcká 1 Jednoduchá lneární regrese Regresní analýza je statstcká metoda pro modelování

Více

1/6. 2. Stavová rovnice, plynová konstanta, Avogadrův zákon, kilomol plynu

1/6. 2. Stavová rovnice, plynová konstanta, Avogadrův zákon, kilomol plynu 1/6 2. Stavová rovnice, plynová konstanta, Avogadrův zákon, kilomol plynu Příklad: 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 2.10, 2.11, 2.12, 2.13, 2.14, 2.15, 2.16, 2.17, 2.18, 2.19, 2.20, 2.21, 2.22,

Více

Zpráva ze vstupních měření na. testovací trati stanovení TZL č. 740 08/09

Zpráva ze vstupních měření na. testovací trati stanovení TZL č. 740 08/09 R Vysoká škola báňská Technická univerzita Ostrava Výzkumné energetické centrum 17. listopadu 15/2172 708 33 Ostrava Poruba Zpráva ze vstupních měření na testovací trati stanovení TZL č. 740 08/09 Místo

Více