Do známky zkoušky rovnocenným podílem započítávají získané body ze zápočtového testu.

Rozměr: px
Začít zobrazení ze stránky:

Download "Do známky zkoušky rovnocenným podílem započítávají získané body ze zápočtového testu."

Transkript

1 Podmínky pro získání zápočtu a zkoušky z předmětu Chemicko-inženýrská termodynamika pro zpracování ropy Zápočet je udělen, pokud student splní zápočtový test alespoň na 50 %. Zápočtový test obsahuje 3 výpočetní příklady z probírané látky. Při testu je možno používat libovolné pomůcky (literaturu, PC, software). Není dovolena jakákoliv komunikace s jinou osobou. Při testu student bude mít k dispozici chemicko-inženýrské tabulky a přehled potřebných vztahů. Zkoušku může student skládat po získání zápočtu. Zkouška se skládá písemným testem a následným pohovorem. Student nesmí používat žádné pomůcky. Důraz je kladen na znalost definic, veličin (a jejich závislostí), fázových diagramů apod. Nejsou vyžadována odvození. Pro složení zkoušky je nutno dosáhnout alespoň 50 % maximálního bodového hodnocení. Do známky zkoušky rovnocenným podílem započítávají získané body ze zápočtového testu. Požadavky pro výpočetní část (získání zápočtu) Výpočet tlaku nasycených par nebo teploty varu z tenzní rovnice Výpočet PV chování z kubických stavových rovnic (čistá látka i směs) Výpočet (odha viriálních koeficientů (čistých látek, smíšených, směsi) Výpočet PV chování z viriálních stavových rovnic Výpočet PV chování z pomocí teorému korespondujících stavů pomocí tabulek dle Lee-Keslera Výpočet hustoty kapaliny z Rackettovy rovnice Použití dodatkové vnitřní energie, entalpie a entropie pro výpočet tepla, objemové a technické práce Výpočet fugacitních koeficientů čistých látek i složek ve směsi z tlakového viriálního rozvoje s druhým viriálním koeficientem Aplikace dodatkové entalpie a dodatkového objemu pro výpočet změny teploty nebo změny objemu při směšování dvou látek Výpočet aktivitních koeficientů ve dvousložkové směsi ze zadaného modelu pro dodatkovou Gibbsovu energii Výpočet rovnováhy kapalina-pára (reálné chování kapaliny popsané aktivitními koeficienty, reálné chování parní fáze popsané tlakovou viriální stavovou rovnicí) Aplikace Henryho zákona (rozpustnost plynů v kapalinách) Výpočet rovnováhy kapalina-kapalina ve dvousložkovém systému Výpočet rovnováhy kapalina-pevná fáze ve dvousložkovém systému

2 Okruhy ke zkoušce Skripta: Fyzikální chemie magisterský kurz (J. Novák a kolektiv, VŠCH Praha 2006) Stavové chování plynů a kapalin Stavová rovnice ideálního plynu Kritický bod a kritické veličiny Stavové rovnice reálných plynů eorém korespondujících stavů Stavové chování kapalin Směsi reálných plynů a kapalin I. a II. věta termodynamická ermodynamické veličiny (U, H, S, G, F, Cp, Cv) a jejich změny s teplotou a tlakem Chemický potenciál, fugacita a fugacitní koeficient Doplňkové veličiny reálného plynu Výpočet tepla a práce při různých dějích ermodynamika směsí Ideální a reálné směsi plynů a kapalin Dodatkové veličiny Parciální molární veličiny Chemický potenciál a fugacita složky ve směsi Aktivita a aktivitní koeficient Fázové rovnováhy Extenzivní a intenzivní kritérium rovnováhy Fázové rovnováhy jednosložkových soustav lak nasycených par Rovnováha kapalina pára Rozpustnost plynů v kapalinách Rovnováha kapalina kapalina Rovnováha kapalina pevná fáze Pákové pravidlo Chemická rovnováha Látková bilance chemické reakce Podmínky rovnováhy Rovnovážná konstanta Vliv reakčních podmínek na rovnovážné složení

3 UKÁZKA ZÁPOČOVÉHO ESU Chemicko-inženýrská termodynamika Jméno a příjmení:... Datum:... Příklad 1: Při teplotě 280 K a tlaku 6 MPa vypočtěte pomocí Relichovy-Kvongovy-Soaveho rovnice hustotu plynu o složení 83 mol. % methanu, 10 mol. % vodíku a 7 mol. % ethanu. Příklad 2: Vypočtěte teplo, které je nutno odebrat jednomu molu směsi methanu (x 1 = 0.9) a ethanu (x 2 = 0,1) pro jeho ochlazení z 300 K na 250 K za konstantního objemu. Počáteční tlak směsi je 5 MPa. Použijte van der Waalsovu rovnici. Standardní teplota Standardní tlak st = K st p = 0.1MPa Methan: 0 3 Cpm = H (, p ) = 0, S (, p ) = J mol K st st st st st st 1 1 Ethan: 0 3 Cpm = H (, p ) = 0, S (, p ) = J mol K st st st st st st 1 1 Příklad 3: Vypočtěte teplotu varu a rovnovážné složení parní fáze pro roztok obsahující 61.7 mol.% methanolu a 38.3 mol.% chloroformu (trichlomethanu) při tlaku kpa. Uvažujte reálné chování kapalné fáze popsané Wilsonovou rovnicí.

4 UKÁZKA ÚLOH ZKOUŠKOVÉHO ESU Chemicko-inženýrská termodynamika Jméno a příjmení:... Datum: Specifickou hustotu ideálního plynu lze určit z relace: a) p b) pm c) pv pm (p=tlak, V=objem, M=molekulová hmotnost, =teplota, R=univ. plynová konstanta) 2. V kritickém bodě (rovnováhy g-l) platí: a) H = (výparná entalpie) výp m 0 b) ( V p) c =0 c) z = (kritický kompresibilitní faktor) c 0 () l ( g) Vm = Vm (molární objemy nasycené kapaliny a páry) 3. Kritický kompresibilitní faktor organických látek nabývá většinou hodnoty: a) okolo 0,333 b) vždy 0,27 c) v oboru 0,25 0,29 libovolné 4. Chová-li se dvousložková směs podle Amagatova zákona, pak pro smíšený viriální koeficient platí: a) B 12 = 1 b) B 12 = 0 c) B12 = B11B22 B = ( B + B )/

5 UKÁZKA ÚLOH ZKOUŠKOVÉHO ESU Chemicko-inženýrská termodynamika 5. Která křivka kvalitativně nejlépe vystihuje závislost druhého viriálního koeficientu na teplotě (v širokém teplotním intervalu) a) b) c) 6. Za podmínek, kdy p 0, pro kompresibilitní faktor reálného plynu platí a) z 0 b) z + c) z 1 z z c (zc je kritický kompresibilitní faktor) 7. Pro výpočet acentického faktoru látky není nutno použít a) kritický tlak b) kritickou teplotu c) kritický kompresibilitní faktor závislost tenze par na teplotě 8. Entropie ideálního plynu závisí a) pouze na teplotě b) na teplotě i tlaku c) pouze na tlaku na teplotě a objemu 9. Pro vratný adiabatický děj v soustavě s ideálním plynem, jehož tepelná kapacita je nezávislá na teplotě, platí a) S = 0 b) w= U c) H = 0 pv κ = konst. 10. Joule-homsonův koeficient je roven a) µ = ( p / ) H b) µ = ( / p) H c) µ = ( H / ) p C p µ = ( H / p) ( H / ) p

Osnova pro předmět Fyzikální chemie II magisterský kurz

Osnova pro předmět Fyzikální chemie II magisterský kurz Osnova pro předmět Fyzikální chemie II magisterský kurz Časový a obsahový program přednášek Týden Obsahová náplň přednášky Pozn. Stavové chování tekutin 1,2a 1, 2a Molekulární přístup kinetická teorie

Více

Fyzikální chemie. Magda Škvorová KFCH CN463 magda.skvorova@ujep.cz, tel. 3302. 14. února 2013

Fyzikální chemie. Magda Škvorová KFCH CN463 magda.skvorova@ujep.cz, tel. 3302. 14. února 2013 Fyzikální chemie Magda Škvorová KFCH CN463 magda.skvorova@ujep.cz, tel. 3302 14. února 2013 Co je fyzikální chemie? Co je fyzikální chemie? makroskopický přístup: (klasická) termodynamika nerovnovážná

Více

FYZIKÁLNÍ CHEMIE I: 1. ČÁST KCH/P401

FYZIKÁLNÍ CHEMIE I: 1. ČÁST KCH/P401 Univerzita J. E. Purkyně v Ústí nad Labem Přírodovědecká fakulta FYZIKÁLNÍ CHEMIE I: 1. ČÁST KCH/P401 Magda Škvorová Ústí nad Labem 2013 Obor: Toxikologie a analýza škodlivin, Chemie (dvouoborová) Klíčová

Více

Zadání příkladů řešených na výpočetních cvičeních z Fyzikální chemie I, obor CHTP. Termodynamika. Příklad 10

Zadání příkladů řešených na výpočetních cvičeních z Fyzikální chemie I, obor CHTP. Termodynamika. Příklad 10 Zadání příkladů řešených na výpočetních cvičeních z Fyzikální chemie I, obor CHTP Termodynamika Příklad 1 Stláčením ideálního plynu na 2/3 původního objemu vzrostl při stálé teplotě jeho tlak na 15 kpa.

Více

Fyzikální chemie. ochrana životního prostředí analytická chemie chemická technologie denní. Platnost: od 1. 9. 2009 do 31. 8. 2013

Fyzikální chemie. ochrana životního prostředí analytická chemie chemická technologie denní. Platnost: od 1. 9. 2009 do 31. 8. 2013 Učební osnova předmětu Fyzikální chemie Studijní obor: Aplikovaná chemie Zaměření: Forma vzdělávání: Celkový počet vyučovacích hodin za studium: Analytická chemie Chemická technologie Ochrana životního

Více

PROCESY V TECHNICE BUDOV 8

PROCESY V TECHNICE BUDOV 8 UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY PROCESY V TECHNICE BUDOV 8 Dagmar Janáčová, Hana Charvátová Zlín 2013 Tento studijní materiál vznikl za finanční podpory Evropského sociálního

Více

TERMOMECHANIKA PRO STUDENTY STROJNÍCH FAKULT prof. Ing. Milan Pavelek, CSc. Brno 2013

TERMOMECHANIKA PRO STUDENTY STROJNÍCH FAKULT prof. Ing. Milan Pavelek, CSc. Brno 2013 Vysoké učení technické v Brně Fakulta strojního inženýrství, Energetický ústav Odbor termomechaniky a techniky prostředí TERMOMECHANIKA PRO STUDENTY STROJNÍCH FAKULT prof. Ing. Milan Pavelek, CSc. Brno

Více

= 2,5R 1,5R =1,667 T 2 =T 1. W =c vm W = ,5R =400,23K. V 1 =p 2. p 1 V 2. =p 2 R T. p 2 p 1 1 T 1 =p 2 1 T 2. =p 1 T 1,667 = ,23

= 2,5R 1,5R =1,667 T 2 =T 1. W =c vm W = ,5R =400,23K. V 1 =p 2. p 1 V 2. =p 2 R T. p 2 p 1 1 T 1 =p 2 1 T 2. =p 1 T 1,667 = ,23 15-17 Jeden mol argonu, o kterém budeme předpokládat, že se chová jako ideální plyn, byl adiabaticky vratně stlačen z tlaku 100 kpa na tlak p 2. Počáteční teplota byla = 300 K. Kompresní práce činila W

Více

Úlohy z fyzikální chemie

Úlohy z fyzikální chemie Úlohy z fyzikální chemie Bakalářský kurz Kolektiv ústavu fyzikální chemie Doc. Ing. Lidmila Bartovská, CSc., Ing. Michal Bureš, CSc., Doc. Ing. Ivan Cibulka, CSc., Doc. Ing. Vladimír Dohnal, CSc., Doc.

Více

6. Stavy hmoty - Plyny

6. Stavy hmoty - Plyny skupenství plynné plyn x pára (pod kritickou teplotou) stavové chování Ideální plyn Reálné plyny Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti skupenství plynné reálný plyn ve stavu

Více

FYZIKÁLNÍ CHEMIE chemická termodynamika

FYZIKÁLNÍ CHEMIE chemická termodynamika FYZIKÁLNÍ CHEMIE chemická termodynamika ermodynamika jako vědní disciplína Základní zákony termodynamiky Práce, teplo a energie Vnitřní energie a entalpie Chemická termodynamika Definice termodynamiky

Více

Zákony ideálního plynu

Zákony ideálního plynu 5.2Zákony ideálního plynu 5.1.1 Ideální plyn 5.1.2 Avogadrův zákon 5.1.3 Normální podmínky 5.1.4 Boyleův-Mariottův zákon Izoterma 5.1.5 Gay-Lussacův zákon 5.1.6 Charlesův zákon 5.1.7 Poissonův zákon 5.1.8

Více

Sbírka příkladů a úloh z fyzikální chemie

Sbírka příkladů a úloh z fyzikální chemie Univerzita Jana Evangelisty Purkyně Přírodovědecká fakulta Sbírka příkladů a úloh z fyzikální chemie Ludmila Boublíková Magda Škvorová Ivo Nezbeda Ústí nad Labem 2014 Název: Autoři: Recenzenti: Sbírka

Více

Mol. fyz. a termodynamika

Mol. fyz. a termodynamika Molekulová fyzika pracuje na základě kinetické teorie látek a statistiky Termodynamika zkoumání tepelných jevů a strojů nezajímají nás jednotlivé částice Molekulová fyzika základem jsou: Látka kteréhokoli

Více

5.4 Adiabatický děj Polytropický děj Porovnání dějů Základy tepelných cyklů První zákon termodynamiky pro cykly 42 6.

5.4 Adiabatický děj Polytropický děj Porovnání dějů Základy tepelných cyklů První zákon termodynamiky pro cykly 42 6. OBSAH Předmluva 9 I. ZÁKLADY TERMODYNAMIKY 10 1. Základní pojmy 10 1.1 Termodynamická soustava 10 1.2 Energie, teplo, práce 10 1.3 Stavy látek 11 1.4 Veličiny popisující stavy látek 12 1.5 Úlohy technické

Více

VYBRANÉ STATĚ Z PROCESNÍHO INŽENÝRSTVÍ cvičení 11

VYBRANÉ STATĚ Z PROCESNÍHO INŽENÝRSTVÍ cvičení 11 UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY VYBRANÉ STATĚ Z PROCESNÍHO INŽENÝRSTVÍ cvičení 11 Termodynamika reálných plynů část 1 Hana Charvátová, Dagmar Janáčová Zlín 2013 Tento studijní

Více

Fázové rovnováhy I. Phase change cooling vest $ with Free Shipping. PCM phase change materials

Fázové rovnováhy I. Phase change cooling vest $ with Free Shipping. PCM phase change materials Fázové rovnováhy I PCM phase change materials akumulace tepla pomocí fázové změny (tání-tuhnutí) parafin, mastné kyseliny tání endotermní tuhnutí - exotermní Phase change cooling vest $149.95 with Free

Více

ZAKLADY FYZIKALNI CHEMIE HORENí, VÝBUCHU A HAŠENí

ZAKLADY FYZIKALNI CHEMIE HORENí, VÝBUCHU A HAŠENí r SDRUŽENí POŽÁRNíHO A BEZPEČNOSTNíHO INžENÝRSTVí. JAROSLAV K,\LOUSEK,.,.,. ZAKLADY FYZIKALNI CHEMIE HORENí, VÝBUCHU A HAŠENí EDICESPBI SPEKTRUM OBSAH. strana 1. FyzikálnÍ chemie v požární ochranč a bezpečnosti

Více

Gymnázium Jiřího Ortena, Kutná Hora

Gymnázium Jiřího Ortena, Kutná Hora Předmět: Seminář chemie (SCH) Náplň: Obecná chemie, anorganická chemie, chemické výpočty, základy analytické chemie Třída: 3. ročník a septima Počet hodin: 2 hodiny týdně Pomůcky: Vybavení odborné učebny,

Více

Kontrolní otázky k 1. přednášce z TM

Kontrolní otázky k 1. přednášce z TM Kontrolní otázky k 1. přednášce z TM 1. Jak závisí hodnota izobarického součinitele objemové roztažnosti ideálního plynu na teplotě a jak na tlaku? Odvoďte. 2. Jak závisí hodnota izochorického součinitele

Více

Stanislav Labík. Ústav fyzikální chemie V CHT Praha budova A, 3. patro u zadního vchodu, místnost

Stanislav Labík. Ústav fyzikální chemie V CHT Praha budova A, 3. patro u zadního vchodu, místnost Stanislav Labík Ústav fyzikální chemie V CHT Praha budova A, 3. patro u zadního vchodu, místnost 325 labik@vscht.cz 220 444 257 http://www.vscht.cz/fch/ Výuka Letní semestr N403032 Základy fyzikální chemie

Více

Teorie transportu plynů a par polymerními membránami. Doc. Ing. Milan Šípek, CSc. Ústav fyzikální chemie VŠCHT Praha

Teorie transportu plynů a par polymerními membránami. Doc. Ing. Milan Šípek, CSc. Ústav fyzikální chemie VŠCHT Praha Teorie transportu plynů a par polymerními membránami Doc. Ing. Milan Šípek, CSc. Ústav fyzikální chemie VŠCHT Praha Úvod Teorie transportu Difuze v polymerních membránách Propustnost polymerních membrán

Více

Základy chemické termodynamiky v příkladech

Základy chemické termodynamiky v příkladech Základy chemické termodynamiky v příkladech Karel Řehák, Ivan Cibulka a Josef Novák (8. října 2007) Tato učební pomůcka je primárně určena pro předmět Základy chemické termodynamiky, který je vyučován

Více

Elektroenergetika 1. Termodynamika

Elektroenergetika 1. Termodynamika Elektroenergetika 1 Termodynamika Termodynamika Popisuje procesy, které zahrnují změny teploty, přeměny energie a vzájemný vztah mezi tepelnou energií a mechanickou prací Opakování fyziky Termodynamický

Více

Elektroenergetika 1. Termodynamika a termodynamické oběhy

Elektroenergetika 1. Termodynamika a termodynamické oběhy Termodynamika a termodynamické oběhy Termodynamika Popisuje procesy, které zahrnují změny teploty, přeměny energie a vzájemný vztah mezi tepelnou energií a mechanickou prací Opakování fyziky Termodynamický

Více

Termomechanika 8. přednáška Doc. Dr. RNDr. Miroslav Holeček

Termomechanika 8. přednáška Doc. Dr. RNDr. Miroslav Holeček Termomechanika 8. přednáška Doc. Dr. RNDr. Miroslav Holeček Upozornění: Tato prezentace slouží výhradně pro výukové účely Fakulty strojní Západočeské univerzity v Plzni. Byla sestavena autorem s využitím

Více

Termomechanika 6. přednáška Doc. Dr. RNDr. Miroslav Holeček

Termomechanika 6. přednáška Doc. Dr. RNDr. Miroslav Holeček Termomechanika 6. přednáška Doc. Dr. RNDr. Miroslav Holeček Upozornění: Tato prezentace slouží výhradně pro výukové účely Fakulty strojní Západočeské univerzity v Plzni. Byla sestavena autorem s využitím

Více

Fyzikální chemie Úvod do studia, základní pojmy

Fyzikální chemie Úvod do studia, základní pojmy Fyzikální chemie Úvod do studia, základní pojmy HMOTA A JEJÍ VLASTNOSTI POSTAVENÍ FYZIKÁLNÍ CHEMIE V PŘÍRODNÍCH VĚDÁCH HISTORIE FYZIKÁLNÍ CHEMIE ZÁKLADNÍ POJMY DEFINICE FORMY HMOTY Formy a nositelé hmoty

Více

Termodynamika 2. UJOP Hostivař 2014

Termodynamika 2. UJOP Hostivař 2014 Termodynamika 2 UJOP Hostivař 2014 Skupenské teplo tání/tuhnutí je (celkové) teplo, které přijme pevná látka při přechodu na kapalinu během tání nebo naopak Značka Veličina Lt J Nedochází při něm ke změně

Více

T0 Teplo a jeho měření

T0 Teplo a jeho měření Teplo a jeho měření 1 Teplo 2 Kalorimetrie Kalorimetr 3 Tepelná kapacita 3.1 Měrná tepelná kapacita Měrná tepelná kapacita při stálém objemu a stálém tlaku Poměr měrných tepelných kapacit 3.2 Molární tepelná

Více

5.7 Vlhkost vzduchu 5.7.5 Absolutní vlhkost 5.7.6 Poměrná vlhkost 5.7.7 Rosný bod 5.7.8 Složení vzduchu 5.7.9 Měření vlhkosti vzduchu

5.7 Vlhkost vzduchu 5.7.5 Absolutní vlhkost 5.7.6 Poměrná vlhkost 5.7.7 Rosný bod 5.7.8 Složení vzduchu 5.7.9 Měření vlhkosti vzduchu Fázové přechody 5.6.5 Fáze Fázové rozhraní 5.6.6 Gibbsovo pravidlo fází 5.6.7 Fázový přechod Fázový přechod prvního druhu Fázový přechod druhého druhu 5.6.7.1 Clausiova-Clapeyronova rovnice 5.6.8 Skupenství

Více

Breviář fyzikální chemie

Breviář fyzikální chemie Breviář fyzikální chemie Anatol Malijevský Josef P. Novák Stanislav Labík Ivona Malijevská Připomínky k elektronické verzi posílejte na adresu: labik@vscht.cz 24. ledna 2001 Strana 1 z 519 Úvod Milí přátelé,

Více

bak-06=1/1 http://www.vscht.cz/fch/cz/pomucky/kolafa/n403011p.html

bak-06=1/1 http://www.vscht.cz/fch/cz/pomucky/kolafa/n403011p.html bak-06=1/1 pst=101325 = 1.013e+05 Pa R=8.314 = 8.314JK 1 mol 1 Gibbsovo fázové pravidlo v = k f + 2 C počet stupnů volnosti počet složek počet fází počet vazných podmínek 1. Gibbsovo fázové pravidlo Určete

Více

PROCESY V TECHNICE BUDOV 9

PROCESY V TECHNICE BUDOV 9 UNIVERZIA OMÁŠE BAI VE ZLÍNĚ FAKULA APLIKOVANÉ INFORMAIKY PROCESY V ECHNICE BUDOV 9 ermodynamika reálných plynů (2. část) Dagmar Janáčová, Hana Charvátová Zlín 2013 ento studijní materiál vznikl za finanční

Více

TERMOMECHANIKA 1. Základní pojmy

TERMOMECHANIKA 1. Základní pojmy 1 FSI VUT v Brně, Energetický ústav Odbor termomechaniky a techniky prostředí prof. Ing. Milan Pavelek, CSc. TERMOMECHANIKA 1. Základní pojmy OSNOVA 1. KAPITOLY Termodynamická soustava Energie, teplo,

Více

Stavové chování kapalin a plynů. 4. března 2010

Stavové chování kapalin a plynů. 4. března 2010 Stavové chování kapalin a plynů 4. března 2010 Studium plynů Plyn JE tekutina Studium plynů Studium plynů Létání v balónu aneb... Jak se vzepřít gravitaci? Studium plynů Studium plynů Létání v balónu aneb...

Více

Termochemie. Katedra materiálového inženýrství a chemie A Ing. Martin Keppert Ph.D.

Termochemie. Katedra materiálového inženýrství a chemie A Ing. Martin Keppert Ph.D. Termochemie Ing. Martin Keppert Ph.D. Katedra materiálového inženýrství a chemie keppert@fsv.cvut.cz A 329 http://tpm.fsv.cvut.cz/ Termochemie: tepelné jevy při chemických reakcích Chemická reakce: CH

Více

Plyn. 11 plynných prvků. Vzácné plyny. He, Ne, Ar, Kr, Xe, Rn Diatomické plynné prvky H 2, N 2, O 2, F 2, Cl 2

Plyn. 11 plynných prvků. Vzácné plyny. He, Ne, Ar, Kr, Xe, Rn Diatomické plynné prvky H 2, N 2, O 2, F 2, Cl 2 Plyny Plyn T v, K Vzácné plyny 11 plynných prvků He, Ne, Ar, Kr, Xe, Rn 165 Rn 211 N 2 O 2 77 F 2 90 85 Diatomické plynné prvky Cl 2 238 H 2, N 2, O 2, F 2, Cl 2 H 2 He Ne Ar Kr Xe 20 4.4 27 87 120 1 Plyn

Více

4 Term ika. D ůsledky zavedení tep lo ty a tep la Stavová r o v n i c e Stavová rovnice termická a kalorická

4 Term ika. D ůsledky zavedení tep lo ty a tep la Stavová r o v n i c e Stavová rovnice termická a kalorická Obsah Předm luva И 1 Výchozí představy term odynam iky 13 1.1 Předmět zkoumání termodynamiky... 13 1.1.1 Celkový r á m e c... 13 1.1.2 Teplo, teplota, e n tr o p ie... 14 1.1.3 Vymezení term o d y n am

Více

IV. Fázové rovnováhy. 4. Fázové rovnováhy Ústav procesní a zpracovatelské techniky FS ČVUT v Praze

IV. Fázové rovnováhy. 4. Fázové rovnováhy Ústav procesní a zpracovatelské techniky FS ČVUT v Praze IV. Fázové rovnováhy 1 4. Fázové rovnováhy 4.1 Základní pojmy 4.2 Fázové rovnováhy jednosložkové soustavy 4.3 Fázové rovnováhy dvousložkových soustav 4.3.1 Soustava tuhá složka tuhá složka 4.3.2 Soustava

Více

Fyzikální chemie VŠCHT PRAHA. bakalářský kurz. Prof. Ing. Josef Novák, CSc. a kolektiv. (2. listopadu 2008)

Fyzikální chemie VŠCHT PRAHA. bakalářský kurz. Prof. Ing. Josef Novák, CSc. a kolektiv. (2. listopadu 2008) Fyzikální chemie bakalářský kurz Prof. Ing. Josef Novák, CSc. a kolektiv (2. listopadu 2008) VŠCHT PRAHA Tato skripta jsou určena pro posluchače bakalářského kurzu Fyzikální chemie na VŠCHT v Praze. Obsahují

Více

Termodynamické zákony

Termodynamické zákony Termodynamické zákony Makroskopická práce termodynamické soustavy Již jsme uvedli, že změna vnitřní energie soustavy je obecně vyvolána dvěma ději: tepelnou výměnou mezi soustavou a okolím a konáním práce

Více

Bilan a ce c zák á l k ad a ní pojm j y m aplikace zákonů o zachování čehokoli 10.10.2008 3

Bilan a ce c zák á l k ad a ní pojm j y m aplikace zákonů o zachování čehokoli 10.10.2008 3 Výpočtový seminář z Procesního inženýrství podzim 2008 Bilance Materiálové a látkové 10.10.2008 1 Tématické okruhy bilance - základní pojmy bilanční schéma způsoby vyjadřování koncentrací a přepočtové

Více

7. Fázové přeměny Separace

7. Fázové přeměny Separace 7. Fázové řeměny Searace Fáze Fázové rovnováhy Searace látek Evroský sociální fond Praha & EU: Investujeme do vaší budoucnosti 7. Fázové řeměny Searace fáze - odlišitelný stav látky v systému; v určité

Více

VYBRANÉ STATĚ Z PROCESNÍHO INŢENÝRSTVÍ cvičení 12

VYBRANÉ STATĚ Z PROCESNÍHO INŢENÝRSTVÍ cvičení 12 UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY VYBRANÉ STATĚ Z PROCESNÍHO INŢENÝRSTVÍ cvičení 2 Termodynamika reálných plynů část 2 Hana Charvátová, Dagmar Janáčová Zlín 203 Tento studijní

Více

d T FP = fázový přechod (tání, tuhnutí, vypařování, kapalnění, sublimace)

d T FP = fázový přechod (tání, tuhnutí, vypařování, kapalnění, sublimace) Fázové rovnováhy jednoložkový ytém Gibbův fázový zákon k f C Popi záviloti tlaku naycených par na teploě Clapeyronova rovnice: d p F P m n e b o F P d l np F P m F P z FP fázový přechod (tání, tuhnutí,

Více

Fyzikální chemie VŠCHT PRAHA. bakalářský kurz. Prof. Ing. Josef Novák, CSc. a kolektiv. (2. listopadu 2008)

Fyzikální chemie VŠCHT PRAHA. bakalářský kurz. Prof. Ing. Josef Novák, CSc. a kolektiv. (2. listopadu 2008) Fyzikální chemie bakalářský kurz Prof. Ing. Josef Novák, CSc. a kolektiv (2. listopadu 2008) VŠCHT PRAHA Tato skripta jsou určena pro posluchače bakalářského kurzu Fyzikální chemie na VŠCHT v Praze. Obsahují

Více

Skupenské stavy látek. Mezimolekulární síly

Skupenské stavy látek. Mezimolekulární síly Skupenské stavy látek Mezimolekulární síly 1 Interakce iont-dipól Např. hydratační (solvatační) interakce mezi Na + (iont) a molekulou vody (dipól). Jde o nejsilnější mezimolekulární (nevazebnou) interakci.

Více

Úloha 3-15 Protisměrné reakce, relaxační kinetika... 5. Úloha 3-18 Protisměrné reakce, relaxační kinetika... 6

Úloha 3-15 Protisměrné reakce, relaxační kinetika... 5. Úloha 3-18 Protisměrné reakce, relaxační kinetika... 6 3. SIMULTÁNNÍ REAKCE Úloha 3-1 Protisměrné reakce oboustranně prvého řádu, výpočet přeměny... 2 Úloha 3-2 Protisměrné reakce oboustranně prvého řádu, výpočet času... 2 Úloha 3-3 Protisměrné reakce oboustranně

Více

C5250 Chemie životního prostředí II definice pojmů

C5250 Chemie životního prostředí II definice pojmů C5250 Chemie životního prostředí II definice pojmů Na základě materiálů Ivana Holoubka a Josefa Zemana zpracoval Jiří Kalina. Ekotoxikologie věda studující vlivy chemických, fyzikálních a biologických

Více

Aplikovaná fyzikální chemie. Magda Škvorová KFCH CN463 tel. 3302

Aplikovaná fyzikální chemie. Magda Škvorová KFCH CN463 tel. 3302 Aplikovaná fyzikální chemie Aplikovaná fyzikální chemie Magda Škvorová KFCH CN463 magda.skvorova@ujep.cz, tel. 3302 1. září 2014 Aplikovaná fyzikální chemie Bylo nebylo... Bylo nebylo... Nejvzácnějšímu

Více

Ideální plyn. Stavová rovnice Děje v ideálním plynu Práce plynu, Kruhový děj, Tepelné motory

Ideální plyn. Stavová rovnice Děje v ideálním plynu Práce plynu, Kruhový děj, Tepelné motory Struktura a vlastnosti plynů Ideální plyn Vlastnosti ideálního plynu: Ideální plyn Stavová rovnice Děje v ideálním plynu Práce plynu, Kruhový děj, epelné motory rozměry molekul jsou ve srovnání se střední

Více

VÝUKA CHEMIE. Clausiovo kritérium a extenzivní podmínky termodynamické rovnováhy

VÝUKA CHEMIE. Clausiovo kritérium a extenzivní podmínky termodynamické rovnováhy VÝUKA CHEMIE Chemické listy, v souladu s celosvětovým trendem v oblasti informatiky, budou postupně stále více přecházet na elektronickou formu publikování. V současnosti si lze na internetové adrese http://staff.vscht.cz/chem_listy

Více

Model dokonalého spalování pevných a kapalných paliv Teoretické základy spalování. Teoretické základy spalování

Model dokonalého spalování pevných a kapalných paliv Teoretické základy spalování. Teoretické základy spalování Spalování je fyzikálně chemický pochod, při kterém probíhá organizovaná příprava hořlavé směsi paliva s okysličovadlem a jejich slučování (hoření) za intenzivního uvolňování tepla, což způsobuje prudké

Více

Stavové chování plynů a kapalin

Stavové chování plynů a kapalin Stavové chování plynů a kapalin Ing. Martin Keppert Ph.D. Katedra materiálového inženýrství a chemie keppert@fsv.cvut.cz A 329 Stav a velikost systému stav systému je definován intenzivními veličinami:

Více

Teplota a její měření

Teplota a její měření Teplota a její měření Teplota a její měření Číslo DUM v digitálním archivu školy VY_32_INOVACE_07_03_01 Teplota, Celsiova a Kelvinova teplotní stupnice, převodní vztahy, příklady. Tepelná výměna, měrná

Více

PROCESY V TECHNICE BUDOV cvičení 3, 4

PROCESY V TECHNICE BUDOV cvičení 3, 4 UNIVERZITA TOMÁŠE ATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY PROCESY V TECHNICE UDOV cvičení 3, 4 část Hana Charvátová, Dagmar Janáčová Zlín 013 Tento studijní materiál vznikl za finanční podpory Evropského

Více

metoda je základem fenomenologické vědy termodynamiky, statistická metoda je základem kinetické teorie plynů, na níž si princip této metody ukážeme.

metoda je základem fenomenologické vědy termodynamiky, statistická metoda je základem kinetické teorie plynů, na níž si princip této metody ukážeme. Přednáška 1 Úvod Při studiu tepelných vlastností látek a jevů probíhajících při tepelné výměně budeme používat dvě různé metody zkoumání: termodynamickou a statistickou. Termodynamická metoda je základem

Více

Termodynamika a živé systémy. Helena Uhrová

Termodynamika a živé systémy. Helena Uhrová Termodynamika a živé systémy Helena Uhrová Základní pojmy termodynamiky soustava izolovaná otevřená okolí vlastnosti soustavy znaky popisující soustavu stav rovnováhy tok m či E =0 funkce stavu - soubor

Více

Přípravný kurz k přijímacím zkouškám. Obecná a anorganická chemie. RNDr. Lukáš Richtera, Ph.D. Ústav chemie materiálů Fakulta chemická VUT v Brně

Přípravný kurz k přijímacím zkouškám. Obecná a anorganická chemie. RNDr. Lukáš Richtera, Ph.D. Ústav chemie materiálů Fakulta chemická VUT v Brně Přípravný kurz k přijímacím zkouškám Obecná a anorganická chemie RNDr. Lukáš Richtera, Ph.D. Ústav chemie materiálů Fakulta chemická VUT v Brně část III. - 23. 3. 2013 Hmotnostní koncentrace udává se jako

Více

Základem molekulové fyziky je kinetická teorie látek. Vychází ze tří pouček:

Základem molekulové fyziky je kinetická teorie látek. Vychází ze tří pouček: Molekulová fyzika zkoumá vlastnosti látek na základě jejich vnitřní struktury, pohybu a vzájemného působení částic, ze kterých se látky skládají. Termodynamika se zabývá zákony přeměny různých forem energie

Více

KLIMATIZACE A PRŮMYSLOVÁ VZDUCHOTECHNIKA VYBRANÉ PŘÍKLADY KE CVIČENÍ I.

KLIMATIZACE A PRŮMYSLOVÁ VZDUCHOTECHNIKA VYBRANÉ PŘÍKLADY KE CVIČENÍ I. KLIMATIZACE A PRŮMYSLOVÁ VZDUCHOTECHNIKA VYBRANÉ PŘÍKLADY KE CVIČENÍ I. Ing. Jan Schwarzer, Ph.D.. Praha 2011 Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti 1 Obsah 1 Obsah... 2 2 Označení...3

Více

Fyzika - Sexta, 2. ročník

Fyzika - Sexta, 2. ročník - Sexta, 2. ročník Fyzika Výchovné a vzdělávací strategie Kompetence komunikativní Kompetence k řešení problémů Kompetence sociální a personální Kompetence občanská Kompetence k podnikavosti Kompetence

Více

ZMĚNY SKUPENSTVÍ LÁTEK

ZMĚNY SKUPENSTVÍ LÁTEK ZMĚNY SKUPENSTVÍ LÁTEK TÁNÍ A TUHNUTÍ - OSNOVA Kapilární jevy příklad Skupenské přeměny látek Tání a tuhnutí Teorie s video experimentem Příklad KAPILÁRNÍ JEVY - OPAKOVÁNÍ KAPILÁRNÍ JEVY - PŘÍKLAD Jak

Více

Energie v chemických reakcích

Energie v chemických reakcích Energie v chemických reakcích Energetická bilance reakce CH 4 + Cl 2 = CH 3 Cl + HCl rozštěpení vazeb vznik nových vazeb V chemických reakcích dochází ke změně vazeb mezi atomy. Vazebná energie uvolnění

Více

Digitální učební materiál. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce podpory Gymnázium, Jevíčko, A. K.

Digitální učební materiál. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce podpory Gymnázium, Jevíčko, A. K. Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím

Více

Termomechanika. Doc. Dr. RNDr. Miroslav HOLEČEK

Termomechanika. Doc. Dr. RNDr. Miroslav HOLEČEK ermomechanika. přednáška Doc. Dr. RNDr. Miroslav HOLEČEK Upozornění: ato prezentace slouží výhradně pro výukové účely Fakulty strojní Západočeské univerzity v Plzni. Byla sestavena autorem s využitím citovaných

Více

Sbírka příkladů a úloh z fyzikální chemie

Sbírka příkladů a úloh z fyzikální chemie Univerzita Jana Evangelisty Purkyně Přírodovědecká fakulta Sbírka příkladů a úloh z fyzikální chemie Ludmila Boublíková Magda Škvorová Ivo Nezbeda Ústí nad Labem 2014 Název: Autoři: Recenzenti: Sbírka

Více

Popis stavového chování plynů

Popis stavového chování plynů ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA PEDAGOGICKÁ KATEDRA CHEMIE Popis stavového chování plynů BAKALÁŘSKÁ PRÁCE Martin Řehák Studijní obor: Chemie se zaměřením na vzdělávání Vedoucí práce: Mgr. Jitka

Více

FyzChem_kap1_3. (inovovaný prozatímní učební text, srpen 2012)

FyzChem_kap1_3. (inovovaný prozatímní učební text, srpen 2012) FyzChem_kap1_3 (inovovaný prozatímní učební text, srpen 2012) PŘEDMLUVA Tato Sbírka příkladů a úloh z fyzikální chemie přináší výpočetní materiál ke kurzu fyzikální chemie, jak se přednáší na přírodovědných

Více

Termodynamika. T [K ]=t [ 0 C] 273,15 T [ K ]= t [ 0 C] termodynamická teplota: Stavy hmoty. jednotka: 1 K (kelvin) = 1/273,16 část termodynamické

Termodynamika. T [K ]=t [ 0 C] 273,15 T [ K ]= t [ 0 C] termodynamická teplota: Stavy hmoty. jednotka: 1 K (kelvin) = 1/273,16 část termodynamické Termodynamika termodynamická teplota: Stavy hmoty jednotka: 1 K (kelvin) = 1/273,16 část termodynamické teploty trojného bodu vody (273,16 K = 0,01 o C). 0 o C = 273,15 K T [K ]=t [ 0 C] 273,15 T [ K ]=

Více

Kapitoly z fyzikální chemie KFC/KFCH. I. Základní pojmy FCH a kinetická teorie plynů

Kapitoly z fyzikální chemie KFC/KFCH. I. Základní pojmy FCH a kinetická teorie plynů Kapitoly z fyzikální chemie KFC/KFCH I. Základní pojmy FCH a kinetická teorie plynů RNDr. Karel Berka, Ph.D. Univerzita Palackého v Olomouci Zkouška a doporučená literatura Ústní kolokvium Doporučená literatura

Více

8. Chemické reakce Energetika - Termochemie

8. Chemické reakce Energetika - Termochemie - Termochemie TERMOCHEMIE oddíl termodynamiky Tepelné zabarvení chemických reakcí Samovolnost chemických reakcí Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti - Termochemie TERMOCHEMIE

Více

test zápočet průměr známka

test zápočet průměr známka Zkouškový test z FCH mikrosvěta 6. ledna 2015 VZOR/1 jméno test zápočet průměr známka Čas 90 minut. Povoleny jsou kalkulačky. Nejsou povoleny žádné písemné pomůcky. U otázek označených symbolem? uvádějte

Více

Chemie - cvičení 2 - příklady

Chemie - cvičení 2 - příklady Cheie - cvičení 2 - příklady Stavové chování 2/1 Zásobník o objeu 50 obsahuje plynný propan C H 8 při teplotě 20 o C a přetlaku 0,5 MPa. Baroetrický tlak je 770 torr. Kolik kg propanu je v zásobníku? Jaká

Více

Poznámky k cvičením z termomechaniky Cvičení 3.

Poznámky k cvičením z termomechaniky Cvičení 3. Vnitřní energie U Vnitřní energie U je stavová veličina U = U (p, V, T), ale závisí pouze na teplotě (experiment Gay-Lussac / Joule) U = f(t) Pro měrnou vnitřní energii (tedy pro vnitřní energii jednoho

Více

Fyzikální učebna vybavená audiovizuální technikou, interaktivní tabule, fyzikální pomůcky

Fyzikální učebna vybavená audiovizuální technikou, interaktivní tabule, fyzikální pomůcky Předmět: Náplň: Třída: Počet hodin: Pomůcky: Fyzika (FYZ) Molekulová fyzika, termika 2. ročník, sexta 2 hodiny týdně Fyzikální učebna vybavená audiovizuální technikou, interaktivní tabule, fyzikální pomůcky

Více

Joulův-Thomsonův jev. p 1 V 1 V 2. p 2 < p 1 V 2 > V 1. volná adiabatická expanze nevratný proces (vzroste entropie)

Joulův-Thomsonův jev. p 1 V 1 V 2. p 2 < p 1 V 2 > V 1. volná adiabatická expanze nevratný proces (vzroste entropie) Joulův-homsonův jev volná aiabatická expanze nevratný proces (vzroste entropie) ieální plyn: teplota t se nezmění ě a bue platit: p p p reálný plyn: teplota se změní (buď vzroste nebo klesne) p p < p >

Více

10. Energie a její transformace

10. Energie a její transformace 10. Energie a její transformace Energie je nejdůležitější vlastností hmoty a záření. Je obsažena v každém kousku hmoty i ve světelném paprsku. Je ve vesmíru a všude kolem nás. S energií se setkáváme na

Více

Viriálová stavová rovnice 1 + s.1

Viriálová stavová rovnice 1 + s.1 Viriálová stavová rovnice 1 + s.1 (Mírnì nestandardní odvození Prùmìrná energie molekul okolo vybrané molekuly (β = 1/(k B T : 0 u(r e βu(r 4πr 2 dr Energie souboru N molekul: U = f 2 k B T + N 2 2V Tlak

Více

Termochemie. Verze VG

Termochemie. Verze VG Termochemie Verze VG Termochemie Termochemie je oblast termodynamiky zabývající se studiem tepelného zabarvení chemických reakcí. Reakce, při kterých se teplo uvolňuje = exotermní. Reakce, při kterých

Více

Katedra biologie, PřF UJEP

Katedra biologie, PřF UJEP Studijní opora pro distanční studium biologie Předmět Fyzikální biologie Katedra biologie, PřF UJEP ZÁKLADNÍ CHARAKTERISTIKA KURZU Cílem kurzu Fyzikální biologie je uvést studenty biologie do problematiky

Více

CHEMICKÁ ENERGETIKA. Celá termodynamika je logicky odvozena ze tří základních principů, které mají axiomatický charakter.

CHEMICKÁ ENERGETIKA. Celá termodynamika je logicky odvozena ze tří základních principů, které mají axiomatický charakter. CHEMICKÁ ENERGETIKA Energetickou stránkou soustav a změnami v těchto soustavách se zabývá fyzikální disciplína termodynamika. Z široké oblasti obecné termodynamiky se chemická termodynamika zajímá o chemické

Více

Přehled základních fyzikálních veličin užívaných ve výpočtech v termomechanice. Autor Ing. Jan BRANDA Jazyk Čeština

Přehled základních fyzikálních veličin užívaných ve výpočtech v termomechanice. Autor Ing. Jan BRANDA Jazyk Čeština Identifikátor materiálu: ICT 2 41 Registrační číslo projektu CZ.1.07/1.5.00/34.0796 Název projektu Vzděláváme pro život Název příjemce podpory SOU plynárenské Pardubice název materiálu (DUM) Mechanika

Více

Termodynamika par. Rovnovážný diagram látky 1 pevná fáze, 2 kapalná fáze, 3 plynná fáze

Termodynamika par. Rovnovážný diagram látky 1 pevná fáze, 2 kapalná fáze, 3 plynná fáze ermodynamika par Fázové změny látky: Přivádíme-li pevné fázi látky teplo, dochází při jisté teplotě a tlaku ke změně pevné fáze na fázi kapalnou (tání) Jestliže spojíme body tání při různých tlacích, získáme

Více

Autokláv reaktor pro promíchávané vícefázové reakce

Autokláv reaktor pro promíchávané vícefázové reakce Vysoká škola chemicko technologická v Praze Ústav organické technologie (111) Autokláv reaktor pro promíchávané vícefázové reakce Vypracoval : Bc. Tomáš Sommer Předmět: Vícefázové reaktory (prof. Ing.

Více

PRŮMYSLOVÉ TECHNOLOGIE I - SOUBOR OTÁZEK KE ZKOUŠCE

PRŮMYSLOVÉ TECHNOLOGIE I - SOUBOR OTÁZEK KE ZKOUŠCE PRŮMYSLOVÉ TECHNOLOGIE I - SOUBOR OTÁZEK KE ZKOUŠCE 1. PRVKY 5. SKUPINY (N,P,As,Sb,Bi) obecné zákonitosti ve skupině DUSÍK Výskyt, chemické vlastnosti molekulární dusík Amoniak vlastnosti, příprava, hydrolýza,

Více

Moravské gymnázium Brno s.r.o. RNDr. Miroslav Štefan

Moravské gymnázium Brno s.r.o. RNDr. Miroslav Štefan Číslo projektu CZ.1.07/1.5.00/34.0743 Název školy Moravské gymnázium Brno s.r.o. Autor RNDr. Miroslav Štefan Tematická oblast Chemie obecná termodynamika Ročník 1. ročník Datum tvorby 22.4.2014 Anotace

Více

Jméno: _ podpis: ročník: č. studenta. Otázky typu A (0.25 bodů za otázku, správně je pouze jedna odpověď)

Jméno: _ podpis: ročník: č. studenta. Otázky typu A (0.25 bodů za otázku, správně je pouze jedna odpověď) Jméno: _ podpis: ročník: č. studenta Otázky typu A (0.25 bodů za otázku, správně je pouze jedna odpověď) 1. JEDNOTKA PASCAL JE DEFINOVÁNÁ JAKO a. N.m.s b. kg.m-1.s-2 c. kg.m-2 d. kg.m.s 2. KALORIMETRICKÁ

Více

Předmluva k 1. vydání (tištěná verze, VŠCHT, Praha 1992, ISBN )

Předmluva k 1. vydání (tištěná verze, VŠCHT, Praha 1992, ISBN ) Předmluva k 1. vydání (tištěná verze, VŠCHT, Praha 1992, ISBN 80-7080-167-0) Skripta Termodynamika materiálů vznikla na základě přednášek stejnojmenného předmětu, který je v této podobě od r.1991 přednášen

Více

12. Termomechanika par, Clausiova-Clapeyronova rovnice, parní tabulky, základni termodynamické děje v oblasti par

12. Termomechanika par, Clausiova-Clapeyronova rovnice, parní tabulky, základni termodynamické děje v oblasti par 1/18 12. Termomechanika par, Clausiova-Clapeyronova rovnice, parní tabulky, základni termodynamické děje v oblasti par Příklad: 12.1, 12.2, 12.3, 12.4, 12.5, 12.6, 12.7, 12.8, 12.9, 12.10, 12.11, 12.12,

Více

Termodynamika. Děj, který není kvazistatický, se nazývá nestatický.

Termodynamika. Děj, který není kvazistatický, se nazývá nestatický. Termodynamika Zabývá se ději, při nichž se mění tepelná energie v jiné druhy energie (zejména mechanické). Studuje vlastnosti látek bez přihlédnutí k jejich mikrostruktuře. Je vystavěna na axiomech (0.,

Více

Rozpustnost s. Rozpouštění = opakem krystalizace Veličina udávající hmotnost rozpuštěné látky v daném objemu popř. v hmotnosti nasyceného roztoku.

Rozpustnost s. Rozpouštění = opakem krystalizace Veličina udávající hmotnost rozpuštěné látky v daném objemu popř. v hmotnosti nasyceného roztoku. Rozpustnost 1 Rozpustnost s Rozpouštění = opakem krystalizace Veličina udávající hmotnost rozpuštěné látky v daném objemu popř. v hmotnosti nasyceného roztoku. NASYCENÝ = při určité t a p se již více látky

Více

Poznámky k semináři z termomechaniky Grafy vody a vodní páry

Poznámky k semináři z termomechaniky Grafy vody a vodní páry Příklad 1 Sytá pára o tlaku 1 [MPa] expanduje izotermicky na tlak 0,1 [MPa]. Znázorněte v diagramech vody a vodní páry. Jelikož se jedná o izotermický děj, je výhodné použít diagram T-s. Dále máme v zadání,

Více

CHEMICKÁ ROVNOVÁHA PRINCIP MOBILNÍ (DYNAMICKÉ) ROVNOVÁHY

CHEMICKÁ ROVNOVÁHA PRINCIP MOBILNÍ (DYNAMICKÉ) ROVNOVÁHY CHEMICKÁ ROVNOVÁHA PRINCIP MOBILNÍ (DYNAMICKÉ) ROVNOVÁHY V reakční kinetice jsme si ukázali, že zvratné reakce jsou charakterizovány tím, že probíhají současně oběma směry, tj. od výchozích látek k produktům

Více

Gymnázium, Milevsko, Masarykova 183 Školní vzdělávací program (ŠVP) pro vyšší stupeň osmiletého studia a čtyřleté studium 4.

Gymnázium, Milevsko, Masarykova 183 Školní vzdělávací program (ŠVP) pro vyšší stupeň osmiletého studia a čtyřleté studium 4. Vyučovací předmět - Chemie Vzdělávací obor - Člověk a příroda Gymnázium, Milevsko, Masarykova 183 Školní vzdělávací program (ŠVP) pro vyšší stupeň osmiletého studia a čtyřleté studium 4. ročník - seminář

Více

Základní charakteristika výzkumné činnosti Ústavu fyzikální chemie

Základní charakteristika výzkumné činnosti Ústavu fyzikální chemie Základní charakteristika výzkumné činnosti Ústavu fyzikální chemie Základním předmětem výzkumu prováděného ústavem je chemická termodynamika a její aplikace pro popis vybraných vlastností chemických systémů

Více

STRUKTURA A VLASTNOSTI PLYNŮ POJMY K ZOPAKOVÁNÍ. Testové úlohy varianta A

STRUKTURA A VLASTNOSTI PLYNŮ POJMY K ZOPAKOVÁNÍ. Testové úlohy varianta A Škola: Autor: DUM: Vzdělávací obor: Tematický okruh: Téma: Masarykovo gymnázium Vsetín Mgr. Jitka Novosadová MGV_F_SS_3S3_D09_Z_OPAK_T_Plyny_T Člověk a příroda Fyzika Struktura a vlastnosti plynů Opakování

Více

VÝPO C TY. Tomáš Kuc era & Karel Kotaška

VÝPO C TY. Tomáš Kuc era & Karel Kotaška ZÁKLADNÍ CHEMICKÉ VÝPO C TY I Tomáš Kuc era & Karel Kotaška tomas.kucera@lfmotol.cuni.cz Ústav lékar ské chemie a klinické biochemie 2. lékar ská fakulta, Univerzita Karlova v Praze a Fakultní nemocnice

Více