FLUORESCENČNÍ MIKROSKOP
|
|
- Emilie Vaňková
- před 9 lety
- Počet zobrazení:
Transkript
1 FLUORESCENČNÍ MIKROSKOP na gymnáziu Pierra de Coubertina v Táboře Pavla Trčková, kabinet Biologie, GPdC Tábor
2 Co je fluorescence Fluorescence je jev spočívající v tom, že některé látky (fluorofory) po ozáření (excitaci) světlem určité vlnové délky λexcit vyzařují (emitují) světlo jiné vlnové délky λemit λemit > λexcit Např. chlorofyl při ozáření modrým světlem emituje světlo červené. Autofluorescence např. celulóza, chlorofyl, keratin aj. Fluorescenční barvení užívá se ke zviditelnění molekul a buněk, které nemají autofluorescenci. Fluorescenční barvivo je barvivo, jehož molekuly jsou schopny fluorescence. např. akridinová oranž. Na obrázku je ukázán princip optických přístrojů využívajích fluorescence světla. Ze zdroje světla je pomocí tzv. excitačního filtru propuštěno pouze světlo určité vlnové délky λexcit, které dopadá na vyšetřovaný vzorek. Zde dochází k fluorescenci, přičemž vzorek emituje světlo o vlnové délce λemit > λexcit. Pomocí tzv. bariérového filtru je do oka pozorovatele propuštěno jen světlo emitované vzorkem a oko vidí jen ty části vzorku, které emitují světlo o vlnové délce λemit. Zdroj:
3 Pro zájemce trochu podrobněji Jev fluorescence je založen na tom, že fotony, které tvoří světlo, nesou určitou energii, kterou mohou předat elektronům v různých molekulách. Při tomto předání energie dochází k tzv. excitaci elektronů - tyto se přesouvají do vyšší energetické hladiny. Prakticky to znamená, že se pohybují kolem jádra molekuly ve větší vzdálenosti (ve vyšším orbitalu). Tento stav ale není stabilní - elektron obsahuje energii "navíc" a ta má tendenci se zase uvolnit, když je elektron "přitažen" jádrem molekuly opět na nižší energetickou hladinu (do nižšího orbitalu). Energie se opět uvolní v podobě fotonu, který je vyzářen (emise). Děj shrnuje schéma nahoře. Protože při každé přeměně energie dochází ke ztrátám - část energie se uvolní do prostředí v podobě tepla (konkrétně v podobě tepelných pohybů molekul), obsahuje vyzářený foton menší množství energie. Protože světlo má vlnovou povahu, je vlnová délka vyzářeného (emitovaného) světla delší, než vlnová délka světla, které fluorescenci vybudilo (excitovalo). Fotony (světlo) kratší vlnové délky totiž obsahují více energie - délka vlny je kratší a fotony kmitají rychleji, nesou tedy více energie. Pohlcení a vyzáření jednoho fotonu ovšem není běžným okem ani mikroskopem pozorovatelné. Fluorescenční barviva jsou proto velké molekuly, obsahující velké množství elektronů, které lze snadno a koordinovaně excitovat a které se také rychle vracejí zpět do nižší energetické hladiny. Jako fluorescenční barviva se proto nejčastěji používají aromatické sloučeniny a heterocykly s elektrony konjugovanými v plochých "mracích" nad a pod rovinou ploché molekuly. Zdroj:
4 Zapůjčený fluorescenční mikroskop Olympus CX21 s LED Fluorescent Illuminator Pozn. výrazně levnější varianta fluorescenčního mikroskopu kde je na místo tradiční ho zdroje světla rtuťové výbojky použita LED dioda
5 Jak jsme se k fluorescenčnímu mikroskopu dostali Prezentace fluorescenčního mikroskopu středoškolským učitelům biologie na týdnu biologie v rámci Otevřené vědy v Nových Hradech možnost zapůjčení mikroskopu na SŠ Zapůjčovatelem mikroskopu je Přírodovědecká fakulta Univerzity Karlovy v Praze Mikroskop byl pořízen z prostředků MŠMT, v rámci grantu, jehož řešitelem byla katedra buněční biologie PřF UK
6 K čemu je dobrá fluorescenční mikroskopie Nejširší užití v buněčné biologii a molekulární genetice: Nalézání specifických molekul (bílkovin, lipidů, sacharidů) Zviditelnění některých buněčných struktur (jádra, cytoskelet) Nalezení určitých sekvencí nukleotidů v DNA či RNA aj. Výrazný posun ve fluorescenční mikroskopii živých buněk přinesl objev tzv. GFP (green fluorescent protein) Zelený protein mořské medúzy rodu Aqueoria Izolace genu pro tento protein z jejího genomu Genovými manipulacemi je tento gen vnášen do jiných organismů a umožňuje značkování buněk, molekul, struktur a díky tomu je možné pozorovat osud těchto struktur v buňce či těle, jejich zapojení do buněčných činností a tělesných funkcí organismu
7 Nobelova cena za chemii 2008 V souvislosti s objevením a využitím GFP O. Shimomura objev proteinu u medúzy M. Chalfie detekce genu, genové manipulace, využití proteinu jako markeru ( značkovače ) v genetických výzkumech R.Y. Tsien vylepšení proteinu a rozšíření škály (drobnými úpravami vytvořil celou barevnou škálu značkovacích fluorescenčních proteinů) Zdroj: Doc. Jan Černý: Zelený fluorescenční protein, Vesmír 4/2009
8 Naše pozorování
9 Zelené řasy autofluorescence
10 Zelené řasy barvení akridinová oranž
11 Zelené řasy barvení akridinová oranž
12 Obrněnky, rozsivky
13 Rozsivky
14 Řezy - autofluorescence
15 Pylová zrna- autofluorescence
16 Výtrusnice, prašník- autofluorescence
17 Pokožka pelargonie; lístek mechu
18 Hmyz - autofluorescence
Metoda Live/Dead aneb využití fluorescenční mikroskopie v bioaugmentační praxi. Juraj Grígel Inovativní sanační technologie ve výzkumu a praxi
Metoda Live/Dead aneb využití fluorescenční mikroskopie v bioaugmentační praxi Juraj Grígel Inovativní sanační technologie ve výzkumu a praxi Co je to vlastně ta fluorescence? Některé látky (fluorofory)
Zoologická mikrotechnika - FLUORESCENČNÍ MIKROSKOPIE
Fluorescence Fluorescence je jev, kdy látka absorbuje ultrafialové záření nebo viditelné světlo s krátkou vlnovou délkou a emituje viditelné světlo s delší vlnovou délkou než má světlo absorbované Emitace
F l u o r e s c e n c e
F l u o r e s c e n c e Fluorescenční mikroskopie Luminiscence jev, kdy látka vysílá do prostoru světlo chemická reakce chemiluminiscence světlo fotoluminiscence Vyvolávající záření exitační fluorescence
Fluorescenční mikroskopie
Luminiscence jev, kdy látka vysílá do prostoru světlo chemická reakce chemiluminiscence (např. světluška) světlo fotoluminiscence fluorescence (emisní záření jen krátkou dobu po skončení exitačního záření)
Fluorescence (luminiscence)
Fluorescence (luminiscence) Patří mezi luminiscenční metody fotoluminiscence. Luminiscence efekt, kdy excitované molekuly či atomy vyzařují světlo při přechodu z excitovaného do základního stavu. Podle
Využití a princip fluorescenční mikroskopie
Využití a princip fluorescenční mikroskopie fyzikálně chemický děj Fluorescence typem luminiscence (elektroluminiscence, fotoluminiscence, radioluminiscence a chemiluminiscenci) patří mezi fotoluminiscenční
IZOLACE, SEPARACE A DETEKCE PROTEINŮ I. Vlasta Němcová, Michael Jelínek, Jan Šrámek
IZOLACE, SEPARACE A DETEKCE PROTEINŮ I Vlasta Němcová, Michael Jelínek, Jan Šrámek Studium aktinu, mikrofilamentární složky cytoskeletu pomocí dvou metod: detekce přímo v buňkách - fluorescenční barvení
Barevné principy absorpce a fluorescence
Barevné principy absorpce a fluorescence Pokročilé biofyzikální metody v experimentální biologii Ctirad Hofr 27.9.2007 2 1 Světlo je elektromagnetické vlnění Skládá se z elektrické složky a magnetické
1. Teorie mikroskopových metod
1. Teorie mikroskopových metod A) Mezi první mikroskopové metody patřilo barvení biologických preparátů vhodnými barvivy, což způsobilo ovlivnění amplitudy světla prošlého preparátem, který pak byl snadno
Fluorescenční mikroskopie. -fluorescenční mikroskopie -konfokální mikroskopie
Fluorescenční mikroskopie -fluorescenční mikroskopie -konfokální mikroskopie Fluorescence a fluorofory Schéma konvenčního fluorescenčního mikroskopu -Na fluorescenčně značený vzorek dopadá pouze světlo
Moderní nástroje pro zobrazování biologicky významných molekul pro zajištění zdraví. René Kizek
Moderní nástroje pro zobrazování biologicky významných molekul pro zajištění zdraví René Kizek 12.04.2013 Fluorescence je fyzikálně chemický děj, který je typem luminiscence. Luminiscence se dále dělí
Buňka cytologie. Buňka. Autor: Katka www.nasprtej.cz Téma: buňka stavba Ročník: 1.
Buňka cytologie Buňka - Základní, stavební a funkční jednotka organismu - Je univerzální - Všechny organismy jsou tvořeny z buněk - Nejmenší životaschopná existence - Objev v 17. stol. R. Hooke Tvar: rozmanitý,
Fluorescenční mikroskopie
Fluorescenční mikroskopie Mgr. Jan Černý PhD. Oddělení vývojové biologie, Katedra fyziologie živočichů, Přírodovědecká fakulta UK v Praze janmartincerny@seznam.cz Klasická světelná mikroskopie sloužila
Fluorescenční a konfokální mikroskopie
Fluorescenční a konfokální mikroskopie Hana Sehadová, Biologické centrum AVČR, České Budějovice, 2011 Co je to fluorescence? některé látky (fluorofory) po ozáření (excitaci) světlem jsou schopny absorbovat
Vzdělávací materiál. vytvořený v projektu OP VK CZ.1.07/1.5.00/ Anotace. Fotosyntéza světelná fáze. VY_32_INOVACE_Ch0214.
Vzdělávací materiál vytvořený v projektu OP VK Název školy: Gymnázium, Zábřeh, náměstí Osvobození 20 Číslo projektu: Název projektu: Číslo a název klíčové aktivity: CZ.1.07/1.5.00/34.0211 Zlepšení podmínek
Barevné principy absorpce a fluorescence
Barevné principy absorpce a fluorescence Pokročilé biofyzikální metody v experimentální biologii Ctirad Hofr Světlo je elektromagnetické vlnění Skládá se z elektrické složky a magnetické složky, které
Fluorescenční mikroskopie
Fluorescenční mikroskopie Pokročilé biofyzikální metody v experimentální biologii Ctirad Hofr 1 VYUŽITÍ FLUORESCENCE, PŘÍMÁ FLUORESCENCE, PŘÍMÁ A NEPŘÍMA IMUNOFLUORESCENCE, BIOTIN-AVIDINOVÁ METODA IMUNOFLUORESCENCE
Fluorescenční mikroskopie. principy a použití
Fluorescenční mikroskopie principy a použití Luminiscence objekt absorbuje záření určité vlnové délky, které se vnitroatomovým přeskupením změní na záření o delší vlnové délce excitace viditelné světlo,
IMUNOFLUORESCENCE. Mgr. Petr Bejdák Ústav klinické imunologie a alergologie Fakultní nemocnice u sv. Anny a Lékařská fakulta MU
Mgr. Petr Bejdák Ústav klinické imunologie a alergologie Fakultní nemocnice u sv. Anny a Lékařská fakulta MU Luminiscence jev, při kterém látka emituje záření po absorpci excitačního záření (fotoluminiscence)
7. Měření fluorescence při excitaci kontinuálním světlem ( steady-state )
7. Měření fluorescence při excitaci kontinuálním světlem ( steady-state ) Steady-state měření Excitujeme kontinuálním světlem, měříme intenzitu emise (počet emitovaných fotonů) Obvykle nedetekujeme všechny
Využití a princip fluorescenční mikroskopie
Využití a princip fluorescenční mikroskopie fyzikálně chemický děj Fluorescence typem luminiscence (elektroluminiscence, fotoluminiscence, radioluminiscence a chemiluminiscence) patří mezi fotoluminiscenční
Ústav experimentální medicíny AV ČR úspěšně rozšířil přístrojové vybavení pro vědce z peněz evropských fondů
Ústav experimentální medicíny AV ČR úspěšně rozšířil přístrojové vybavení pro vědce z peněz evropských fondů Ústav úspěšně dokončil realizaci dvou investičních projektů s využitím prostředků z Operačního
FRET FRET. FRET: schéma. Základní vztahy. Základní vztahy. Fluorescence Resonance Energy Transfer
Fluorescence Resonance Energy Transfer je Fluorescence Resonance Energy Transfer Fluorescenční rezonanční energetický transfér podle objevitele Főrster nazýván také Förster Resonance Energy Transfer přenos
Buňka buňka je základní stavební a funkční jednotka živých organismů
Buňka - buňka je základní stavební a funkční jednotka živých organismů - je pozorovatelná pouze pod mikroskopem - na Zemi existuje několik typů buněk: 1. buňky bez jádra (prokaryotní buňky)- bakterie a
Fluorescenční rezonanční přenos energie
Fluorescenční rezonanční přenos energie Pokročilé biofyzikální metody v experimentální biologii Ctirad Hofr 1 Přenos excitační energie Přenos elektronové energie se uskutečňuje mechanismy zářivými nebo
Stručný úvod do spektroskopie
Vzdělávací soustředění studentů projekt KOSOAP Slunce, projevy sluneční aktivity a využití spektroskopie v astrofyzikálním výzkumu Stručný úvod do spektroskopie Ing. Libor Lenža, Hvězdárna Valašské Meziříčí,
M I K R O S K O P I E
Inovace předmětu KBB/MIK SVĚTELNÁ A ELEKTRONOVÁ M I K R O S K O P I E Rozvoj a internacionalizace chemických a biologických studijních programů na Univerzitě Palackého v Olomouci CZ.1.07/2.2.00/28.0066
Optická konfokální mikroskopie a mikrospektroskopie. Pavel Matějka
Optická konfokální mikroskopie a Pavel Matějka 1. Konfokální mikroskopie 1. Princip metody - konfokalita 2. Instrumentace metody zobrazování 3. Analýza obrazu 2. Konfokální 1. Luminiscenční 2. Ramanova
Spektroskopické metody. převážně ve viditelné, ultrafialové a blízké infračervené oblasti
Spektroskopické metody převážně ve viditelné, ultrafialové a blízké infračervené oblasti Elektromagnetické záření Elektromagnetické záření je postupné vlnění elektromagnetického pole složeného z kombinace
DEN OTEVŘENÝCH DVEŘÍ NA ÚMG
DEN OTEVŘENÝCH DVEŘÍ NA ÚMG Místo konání: Datum a doba konání: Budova F, Vídeňská 1083, 142 20 Praha 4-Krč 23. 11. 2015 od 9:00 do 15:00 hod. Kontakt pro styk s veřejností: Organizační záležitosti: Odborné
Principy a instrumentace
Průtoková cytometrie Principy a instrumentace Ing. Antonín Hlaváček Úvod Průtoková cytometrie je moderní laboratorní metoda měření a analýza fyzikálních -chemických vlastností buňky během průchodu laserovým
Fluorescenční vyšetření rostlinných surovin. 10. cvičení
Fluorescenční vyšetření rostlinných surovin 10. cvičení Cíl cvičení práce s fluorescenčním mikroskopem detekce vybraných rostlinných surovin Princip nepřímé dvojstupňové IHC s použitím fluorochromu Fluorescenční
Modul IB. Histochemie. CBO Odd. histologie a embryologie. MUDr. Martin Špaček
Modul IB Histochemie CBO Odd. histologie a embryologie MUDr. Martin Špaček Histochemie Histologická metoda užívaná k průkazu různých látek přímo v tkáních a buňkách Histochemie Katalytická histochemie
Pokročilé biofyzikální metody v experimentální biologii
Pokročilé biofyzikální metody v experimentální biologii Ctirad Hofr 1/1 Proč biofyzikální metody? Biofyzikální metody využívají fyzikální principy ke studiu biologických systémů Poskytují kvantitativní
SPEKTROSKOPICKÉ VLASTNOSTI LÁTEK (ZÁKLADY SPEKTROSKOPIE)
SPEKTROSKOPICKÉ VLASTNOSTI LÁTEK (ZÁKLADY SPEKTROSKOPIE) Elektromagnetické vlnění SVĚTLO Charakterizace záření Vlnová délka - (λ) : jednotky: m (obvykle nm) λ Souvisí s povahou fotonu Charakterizace záření
Uchovávání předmětů kulturního dědictví v dobrém stavu pro budoucí generace Prezentování těchto předmětů veřejnosti Vědecký výzkum
NEDESTRUKTIVNÍ PRŮZKUM PŘEDMĚTŮ KULTURNÍHO DĚDICTVÍ Ing. Petra Štefcová, CSc. Národní muzeum ZÁKLADNÍM M POSLÁNÍM M MUZEÍ (ale i další ších institucí obdobného charakteru, jako např.. galerie či i archivy)
Inovace studia molekulární a buněčné biologie
Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. MBIO1/Molekulární biologie 1 Tento projekt je spolufinancován
Typy nukleových kyselin. deoxyribonukleová (DNA); ribonukleová (RNA).
Typy nukleových kyselin Existují dva typy nukleových kyselin (NA, z anglických slov nucleic acid): deoxyribonukleová (DNA); ribonukleová (RNA). DNA je lokalizována v buněčném jádře, RNA v cytoplasmě a
Emise vyvolaná působením fotonů nebo částic
Emise vyvolaná působením fotonů nebo částic PES (fotoelektronová spektroskopie) XPS (rentgenová fotoelektronová spektroskopie), ESCA (elektronová spektroskopie pro chemickou analýzu) UPS (ultrafialová
Název školy: Střední odborná škola stavební Karlovy Vary Sabinovo náměstí 16, 360 09 Karlovy Vary Autor: Hana Turoňová Název materiálu:
Název školy: Střední odborná škola stavební Karlovy Vary Sabinovo náměstí 16, 360 09 Karlovy Vary Autor: Hana Turoňová Název materiálu: VY_32_INOVACE_04_BUŇKA 1_P1-2 Číslo projektu: CZ 1.07/1.5.00/34.1077
1. Téma : Genetika shrnutí Název DUMu : VY_32_INOVACE_29_SPSOA_BIO_1_CHAM 2. Vypracovala : Hana Chamulová 3. Vytvořeno v projektu EU peníze středním
1. Téma : Genetika shrnutí Název DUMu : VY_32_INOVACE_29_SPSOA_BIO_1_CHAM 2. Vypracovala : Hana Chamulová 3. Vytvořeno v projektu EU peníze středním školám Genetika - shrnutí TL2 1. Doplň: heterozygot,
Mikroskopy. Světelný Konfokální Fluorescenční Elektronový
Mikroskopy Světelný Konfokální Fluorescenční Elektronový Světelný mikroskop Historie 1590-1610 - Vyrobeny první přístroje, které lze považovat za použitelný mikroskop (Hans a Zaccharis Janssenové z Middleburgu
ABSORPČNÍ A EMISNÍ SPEKTRÁLNÍ METODY
ABSORPČNÍ A EMISNÍ SPEKTRÁLNÍ METODY 1 Fyzikální základy spektrálních metod Monochromatický zářivý tok 0 (W, rozměr m 2.kg.s -3 ): Absorbován ABS Propuštěn Odražen zpět r Rozptýlen s Bilance toků 0 = +
Pracovní listy pro žáky
Pracovní listy pro žáky : (Ne)viditelná DNA Úvod do tématu Přečtěte si následující tři odborné články a přiřaďte k nim názvy oborů, ve kterých se využívá metod izolace DNA: forenzní genetika, paleogenetika,
Škola: Střední škola obchodní, České Budějovice, Husova 9. Inovace a zkvalitnění výuky prostřednictvím ICT
Škola: Střední škola obchodní, České Budějovice, Husova 9 Projekt MŠMT ČR: EU PENÍZE ŠKOLÁM Číslo projektu: CZ.1.07/1.5.00/34.0536 Název projektu školy: Výuka s ICT na SŠ obchodní České Budějovice Šablona
LRR/BUBCV CVIČENÍ Z BUNĚČNÉ BIOLOGIE 3. TESTY ŽIVOTASCHOPNOSTI A POČÍTÁNÍ BUNĚK
LRR/BUBCV CVIČEÍ Z BUĚČÉ BILGIE 3. TESTY ŽIVTASCHPSTI A PČÍTÁÍ BUĚK TERETICKÝ ÚVD: Při práci s buňkami je jedním ze základních sledovaných parametrů stanovení jejich životaschopnosti (viability). Tímto
Lupa a mikroskop příručka pro učitele
Obecné informace Lupa a mikroskop příručka pro učitele Pro vysvětlení chodu světelných paprsků lupou a mikroskopem je nutno navázat na znalosti o zrcadlech a čočkách. Hodinová dotace: 1 vyučovací hodina
16. Franck Hertzův experiment
16. Franck Hertzův experiment Zatímco zahřáté těleso vysílá spojité spektrum elektromagnetického záření, mají např. zahřáté páry kovů nebo plyny, v nichž probíhá elektrický výboj, spektrum čárové. V uvedených
MOLEKULÁRNÍ METODY V EKOLOGII MIKROORGANIZMŮ
MOLEKULÁRNÍ METODY V EKOLOGII MIKROORGANIZMŮ (EKO/MMEM) FLUORESCENČNÍ MIKROSKOPIE A ANALÝZA OBRAZU Použití fluorescenční mikroskopie je založeno na detekci objektů pomocí fluorochromů látek, jež se specificky
NUKLEOVÉ KYSELINY. Základ života
NUKLEOVÉ KYSELINY Základ života HISTORIE 1. H. Braconnot (30. léta 19. století) - Strassburg vinné kvasinky izolace matiére animale. 2. J.F. Meischer - experimenty z hnisem štěpení trypsinem odstředěním
-fluorescenční mikroskopie. -konfokální mikroskopie -multifotonová konfokální mikroskopie
Fluorescenční mikroskopie -fluorescenční mikroskopie -konfokální mikroskopie -multifotonová konfokální mikroskopie Fluorescence a fluorofory Schéma konvenčního fluorescenčního mikroskopu -Na fluorescenčně
GENETIKA 1. Úvod do světa dědičnosti. Historie
GENETIKA 1. Úvod do světa dědičnosti Historie Základní informace Genetika = věda zabývající se dědičností a proměnlivostí živých soustav sleduje variabilitu (=rozdílnost) a přenos druhových a dědičných
BUNĚČ ORGANISMŮ KLÍČOVÁ SLOVA:
BUNĚČ ĚČNÁ STAVBA ŽIVÝCH ORGANISMŮ KLÍČOVÁ SLOVA: Prokaryota, eukaryota, viry, bakterie, živočišná buňka, rostlinná buňka, organely buněčné jádro, cytoplazma, plazmatická membrána, buněčná stěna, ribozom,
Barevné hry se světlem - co nám mohou říci o biomolekulách?
Barevné hry se světlem - co nám mohou říci o biomolekulách? Martin Kubala Univerzita Palackého v Olomouci Přírodovědecká fakulta, katedra biofyziky Tato prezentace je spolufinancována Evropským sociálním
Luminiscence. Luminiscence. Fluorescence. emise světla látkou, která je způsobená: světlem (fotoluminiscence) chemicky (chemiluminiscence)
Luminiscence Luminiscence emise světla látkou, která je způsobená: světlem (fotoluminiscence) fluorescence, fosforescence chemicky (chemiluminiscence) teplem (termoluminiscence) zvukem (sonoluminiscence)
Mnohobuněčné kvasinky
Laboratoř buněčné biologie PROJEKT Mnohobuněčné kvasinky Libuše Váchová ve spolupráci s laboratoří Prof. Palkové (PřFUK) Do laboratoře přijímáme studenty se zájmem o vědeckou práci Kontakt: vachova@biomed.cas.cz
Viková, M. : MIKROSKOPIE II Mikroskopie II M. Viková
II Mikroskopie II M. Viková LCAM DTM FT TU Liberec, martina.vikova@tul.cz Osvětlovac tlovací soustava I Výsledkem Köhlerova nastavení je rovnoměrné a maximální osvětlení průhledného preparátu, ležícího
NANOMATERIÁLY, NANOTECHNOLOGIE, NANOMEDICÍNA
NANOMATERIÁLY, NANOTECHNOLOGIE, NANOMEDICÍNA Nano je z řečtiny = trpaslík. 10-9, 1 nm = cca deset tisícin průměru lidského vlasu Nanotechnologie věda a technologie na atomární a molekulární úrovni Mnoho
Střední průmyslová škola strojnická Olomouc, tř. 17. listopadu 49
Střední průmyslová škola strojnická Olomouc, tř. 17. listopadu 49 Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205 Šablona: III/2 Přírodovědné
Optické spektroskopie 1 LS 2014/15
Optické spektroskopie 1 LS 2014/15 Martin Kubala 585634179 mkubala@prfnw.upol.cz 1.Úvod Velikosti objektů v přírodě Dítě ~ 1 m (10 0 m) Prst ~ 2 cm (10-2 m) Vlas ~ 0.1 mm (10-4 m) Buňka ~ 20 m (10-5 m)
CÍLE CHEMICKÉ ANALÝZY
ANALYTICKÉ METODY CÍLE CHEMICKÉ ANALÝZY Získat maximum informací dostupným přírodovědným průzkumem o památce. Posoudit poruchy a poškození materiálů. Navrhnout nejvhodnější technologii restaurování. Určit
EM, aneb TEM nebo SEM?
EM, aneb TEM nebo SEM? Jiří Šperka Přírodovědecká fakulta, Masarykova univerzita, Brno 2. únor 2011 / Prezentace pro studentský seminář Jiří Šperka (Masarykova univerzita) SEM a TEM 2. únor 2011 1 / 21
KOMPLEXY EUROPIA(III) LUMINISCENČNÍ VLASTNOSTI A VYUŽITÍ V ANALYTICKÉ CHEMII. Pavla Pekárková
KOMPLEXY EUROPIA(III) LUMINISCENČNÍ VLASTNOSTI A VYUŽITÍ V ANALYTICKÉ CHEMII Pavla Pekárková Katedra analytické chemie, Přírodovědecká fakulta, Masarykova univerzita, Kotlářská 2, 611 37 Brno E-mail: 78145@mail.muni.cz
Ing. Pavel Hrzina, Ph.D. - Laboratoř diagnostiky fotovoltaických systémů Katedra elektrotechnologie K13113
Sluneční energie, fotovoltaický jev Ing. Pavel Hrzina, Ph.D. - Laboratoř diagnostiky fotovoltaických systémů Katedra elektrotechnologie K13113 1 Osnova přednášky Slunce jako zdroj energie Vlastnosti slunečního
Autor: Katka Téma: fyziologie (fotosyntéza) Ročník: 1.
Fyziologie Fotosyntéza Celým názvem: fotosyntetická asimilace - vznikla při ohrožení, že již nebudou anorg. l. rostliny začaly dělat fotosyntézu v atmosféře vzrostl počet O 2 = 1. energetická krize - nejdůležitější
PSI (Photon Systems Instruments), spol. s r.o. Ústav přístrojové techniky AV ČR, v.v.i.
PSI (Photon Systems Instruments), spol. s r.o. Ústav přístrojové techniky AV ČR, v.v.i. Konstrukce a výroba speciálních optických dielektrických multivrstev pro systémy FluorCam Firma příjemce voucheru
Bioscience Imaging Centre
Bioscience Imaging Centre (Středisko mikroskopie) zajišťujeme moderní mikroskopické zařízení a softwary pro analýzu obrazu poradíme s plánováním experimentů (histologie, detekce proteinů a mrna) pomůžeme
Biochemie Ch52 volitelný předmět pro 4. ročník
Biochemie Ch52 volitelný předmět pro 4. ročník Charakteristika vyučovacího předmětu Vyučovací předmět vychází ze vzdělávací oblasti Člověk a příroda, vzdělávacího oboru Chemie. Mezipředmětové přesahy a
Základy spektroskopie a její využití v astronomii
Ing. Libor Lenža, Hvězdárna Valašské Meziříčí, p. o. Základy spektroskopie a její využití v astronomii Hvězdárna Valašské Meziříčí, p. o. Krajská hvezdáreň v Žiline Světlo x záření Jak vypadá spektrum?
ABSORPČNÍ A LUMINISCENČNÍ SPEKTROMETRIE V UV/Vis OBLASTI SPEKTRA
ABSORPČNÍ A LUMINISCENČNÍ SPEKTROMETRIE V UV/Vis OBLASTI SPEKTRA -2014 ABSORPČNÍ SPEKTROMETRIE ACH/IM 1 Absorpce záření ve Vis oblasti Při dopadu bílého světla na vzorek může být záření zcela odraženo
Vybrané spektroskopické metody
Vybrané spektroskopické metody a jejich porovnání s Ramanovou spektroskopií Předmět: Kapitoly o nanostrukturách (2012/2013) Autor: Bc. Michal Martinek Školitel: Ing. Ivan Gregora, CSc. Obsah přednášky
ON-LINE KVANTIFIKACE SINIC V SUROVÉ VODĚ
ON-LINE KVANTIFIKACE SINIC V SUROVÉ VODĚ Mgr. ZLATICA NOVOTNÁ Doc. Ing. BLAHOSLAV MARŠÁLEK, CSc. Ing. MARTIN TRTÍLEK Ing. TOMÁŠ RATAJ CENTRUM PRO CYANOBAKTERIE A JEJICH TOXINY, BÚ AVČR Photon System Instrument,
Téma: Testy životaschopnosti a Počítání buněk
LRR/BUBV vičení z buněčné biologie Úloha č. 3 Téma: Testy životaschopnosti a Počítání Úvod: Při práci s buňkami je jedním ze základních sledovaných parametrů stanovení jejich životaschopnosti (viability).
nano.tul.cz Inovace a rozvoj studia nanomateriálů na TUL
Inovace a rozvoj studia nanomateriálů na TUL nano.tul.cz Tyto materiály byly vytvořeny v rámci projektu ESF OP VK: Inovace a rozvoj studia nanomateriálů na Technické univerzitě v Liberci Zdravotní rizika
Optoelektronika. elektro-optické převodníky - LED, laserové diody, LCD. Elektronické součástky pro FAV (KET/ESCA)
Optoelektronika elektro-optické převodníky - LED, laserové diody, LCD Elektro-optické převodníky žárovka - nejzákladnější EO převodník nevhodné pro optiku široké spektrum vlnových délek vhodnost pro EO
MIKROSKOPIE JAKO NÁSTROJ STUDIA MIKROORGANISMŮ
Mikroskopické techniky MIKROSKOPIE JAKO NÁSTROJ STUDIA MIKROORGANISMŮ Slouží k vizualizaci mikroorganismů Antoni van Leeuwenhoek (1632-1723) Čočka zvětšující 300x Různé druhy mikroskopů, které se liší
FLUORIMETRICKÉ STANOVENÍ FLUORESCEINU
FLUORIMETRICKÉ STANOVENÍ FLUORESCEINU návod vznikl jako součást bakalářské práce Martiny Vidrmanové Fluorimetrie s využitím spektrofotometru SpectroVis Plus firmy Vernier (http://is.muni.cz/th/268973/prif_b/bakalarska_prace.pdf)
"Učení nás bude více bavit aneb moderní výuka oboru lesnictví prostřednictvím ICT ". Základy genetiky, základní pojmy
"Učení nás bude více bavit aneb moderní výuka oboru lesnictví prostřednictvím ICT ". Základy genetiky, základní pojmy 1/75 Genetika = věda o dědičnosti Studuje biologickou informaci. Organizmy uchovávají,
Výukový materiál zpracován v rámci projektu EU peníze školám
Výukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.5.00/34.0996 Šablona: III/2 č. materiálu: VY_32_INOVACE_FYZ_379 Jméno autora: Mgr. Alena Krejčíková Třída/ročník:
Stanovení mikroskopického obrazu ve vodě Petr Pumann
Stanovení mikroskopického obrazu ve vodě Petr Pumann Determinační kurz 2009 15.-18.6.2009 Dolní Věstonice Co se nachází při mikroskopickém rozboru vody? sinice a řasy prvoci (bezbarví bičíkovci, nálevníci)
EDUKAČNÍ PROGRAMY S MIKROSKOPY
EDUKAČNÍ PROGRAMY S MIKROSKOPY B.P. MEDICAL s.r. o.,mgr. Jaroslava Kohoutová PhD., kohoutovaj1@gmail.com, +420 608 838 887 Edukační programy s mikroskopovou technikou nabízejí dětem možnost vyzkoušet si
Využití metagenomiky při hodnocení sanace chlorovaných ethylenů in situ Výsledky pilotních testů
Využití metagenomiky při hodnocení sanace chlorovaných ethylenů in situ Výsledky pilotních testů Stavělová M.,* Macháčková J.*, Rídl J.,** Pačes J.** * Earth Tech CZ, s.r.o ** ÚMG AV ČR PROČ METAGENOMIKA?
Kvantové tečky. a jejich využití v bioanalýze. Jiří Kudr SPOLEČNĚ PRO VÝZKUM, ROZVOJ A INOVACE CZ/FMP.17A/0436
SPOLEČNĚ PRO VÝZKUM, ROZVOJ A INOVACE CZ/FMP.17A/0436 Kvantové tečky a jejich využití v bioanalýze Jiří Kudr Datum: 9.4.2015 Hvězdárna Valašské Meziříčí, p.o, Vsetínská 78, Valašské Meziříčí, Nanotechnologie
Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/
I n v e s t i c e d o r o z v o j e v z d ě l á v á n í Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/07.0354 Tento projekt je spolufinancován Evropským sociálním fondem a státním
Anizotropie fluorescence
Anizotropie fluorescence Pokročilé biofyzikální metody v experimentální biologii Ctirad Hofr 6 1 Jev anizotropie Jestliže dochází k excitaci světlem kmitajícím v jedné rovině, emise fluorescence se často
Molekulová spektroskopie 1. Chemická vazba, UV/VIS
Molekulová spektroskopie 1 Chemická vazba, UV/VIS 1 Chemická vazba Silová interakce mezi dvěma atomy. Chemické vazby jsou soudržné síly působící mezi jednotlivými atomy nebo ionty v molekulách. Chemická
Luminiscence. emise světla látkou, která je způsobená: světlem (fotoluminiscence) fluorescence, fosforescence. chemicky (chemiluminiscence)
Luminiscence Luminiscence emise světla látkou, která je způsobená: světlem (fotoluminiscence) fluorescence, fosforescence chemicky (chemiluminiscence) teplem (termoluminiscence) zvukem (sonoluminiscence)
OBECNÁ CHARAKTERISTIKA ŽIVÝCH ORGANISMŮ - PRACOVNÍ LIST
OBECNÁ CHARAKTERISTIKA ŽIVÝCH ORGANISMŮ - PRACOVNÍ LIST Datum: 26. 8. 2013 Projekt: Registrační číslo: Číslo DUM: Škola: Jméno autora: Název sady: Název práce: Předmět: Ročník: Studijní obor: Časová dotace:
Vitální barvení, rostlinná buňka, buněčné organely
Vitální barvení, rostlinná buňka, buněčné organely Vitální barvení používá se u nativních preparátů a rozumíme tím zvýšení kontrastu určitých buněčných složek v živých buňkách, nebo tkáních pomocí barvení
Renáta Kenšová. Název: Školitel: Datum: 24. 10. 2014
Název: Školitel: Sledování distribuce zinečnatých iontů v kuřecím zárodku za využití moderních technik Monitoring the distribution of zinc ions in chicken embryo using modern techniques Renáta Kenšová
Úvod do biochemie. Vypracoval: RNDr. Milan Zimpl, Ph.D.
Úvod do biochemie Vypracoval: RNDr. Milan Zimpl, Ph.D. TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Co je to biochemie? Biochemie je chemií živých soustav.
Digitální učební materiál
Digitální učební materiál Projekt CZ.1.07/1.5.00/34.0415 Inovujeme, inovujeme Šablona III/2 Inovace a zkvalitnění výuky prostřednictvím ICT (DUM) Tématická Odborná biologie, část biologie Společná pro
Laboratoř molekulární patologie
Laboratoř molekulární patologie Ústav patologie FN Brno Prof. RNDr. Jana Šmardová, CSc. 19.11.2014 Složení laboratoře stálí členové Prof. RNDr. Jana Šmardová, CSc. Mgr. Květa Lišková Mgr. Lenka Pitrová
METODY STUDIA PROTEINŮ
METODY STUDIA PROTEINŮ Mgr. Vlasta Němcová vlasta.furstova@tiscali.cz OBSAH PŘEDNÁŠKY 1) Stanovení koncentrace proteinu 2) Stanovení AMK sekvence proteinu Hmotnostní spektrometrie Edmanovo odbourávání
ZDRAVOTNÍ NEZÁVADNOST POTRAVIN
ZDRAVOTNÍ NEZÁVADNOST POTRAVIN Možnosti stanovení Listeria monocytogenes popis metod a jejich princip Mária Strážiková Aleš Holfeld Obsah Charakteristika Listeria monocytogenes Listerióza Metody detekce
Kapitoly z fyzikální chemie KFC/KFCH. VII. Spektroskopie a fotochemie
Kapitoly z fyzikální chemie KFC/KFCH VII. Spektroskopie a fotochemie Karel Berka Univerzita Palackého v Olomouci Katedra Fyzikální chemie karel.berka@upol.cz Spektroskopie Analýza světla Excitované Absorbované
VY_32_INOVACE_002. VÝUKOVÝ MATERIÁL zpracovaný v rámci projektu EU peníze školám
VY_32_INOVACE_002 VÝUKOVÝ MATERIÁL zpracovaný v rámci projektu EU peníze školám Registrační číslo projektu: CZ. 1.07. /1. 5. 00 / 34. 0696 Šablona: III/2 Název: Buňka Vyučovací předmět: Základy ekologie
Oligobiogenní prvky bývají běžnou součástí organismů, ale v těle jich již podstatně méně (do 1%) než prvků makrobiogenních.
1 (3) CHEMICKÉ SLOŢENÍ ORGANISMŮ Prvky Stejné prvky a sloučeniny se opakují ve všech formách života, protože mají shodné principy stavby těla i metabolismu. Např. chemické děje při dýchání jsou stejné