12. Automatické vyhodnocení derivací. jaro 2012
|
|
- Kamil Procházka
- před 5 lety
- Počet zobrazení:
Transkript
1 1/ derivací jaro 2012
2 2/16 Motivace kromě funkce dokážeme vyhodnotit i její derivace první, druhé,... parciální mnohé numerické problémy jsou lépe řešitelné metodami s dostupnou derivací metody s derivací zpravidla rychleji konvergují Newton vs. metoda sečen
3 2/16 Motivace kromě funkce dokážeme vyhodnotit i její derivace první, druhé,... parciální mnohé numerické problémy jsou lépe řešitelné metodami s dostupnou derivací metody s derivací zpravidla rychleji konvergují Newton vs. metoda sečen aproximace konečnou diferencí nestačí zpracovávaná funkce nebývá triviální analytické vyjádření derivace je náročné zdroj nebezpečných chyb komplikace při změnách
4 3/16 funkce je implementována jako program hledáme program, který vedle funkční hodnoty spočte i derivace
5 3/16 funkce je implementována jako program hledáme program, který vedle funkční hodnoty spočte i derivace příklad s majákem bod dopadu paprsku na nábřeží y 1 = ν tan ωt γ tan ωt y 2 = γy 1
6 4/16 vyjádřeno jako jednoduchý program a := tan ωt; y 1 := νa/(γ a); y 2 := γy 1 ; chceme spočítat i rychlost pohybu, tj. derivaci v čase výpočet současně s původní funkcí ṫ := 1 a 1 := ωt ȧ 1 := ωṫ a := tan a 1 ȧ := ȧ 1 /(cos a 1 ) 2 a 2 := γ a ȧ 2 := ȧ y 1 := νa/a 2 ẏ 1 := ν(ȧa 2 aȧ 2 )/a 2 2 y 2 := γy 1 ẏ 2 := γẏ 1 pouze mechanická aplikace základních pravidel
7 5/16 transformace zdrojového kódu (např. ADIC) přetížení operátorů a funkcí (ADOL-C) zjednodušený příklad class adouble { double x; double dx;... } adouble operator * (adouble a, adouble b) { adouble r; r.x = a.x * b.x; r.dx = a.x * b.dx + a.dx * b.x; return r; } adouble v1, v2, v3;... v1 = v2 * v3;
8 6/16 aktivní proměnná nezávislé proměnné, podle kterých chceme derivovat všechny další proměnné na nich během výpočtu závisející vyhrazený typ adouble přiřazení adouble double je chybné ztrácíme informaci o derivacích tam, kde je potřebná explicitní přístup metodou value() více nezávislých proměnných s každou aktivní proměnnou udržujeme vektor parciálních derivací
9 7/16 Typický program #define NUMBER_DIRECTIONS 3 #define ADOLC_TAPELESS #include <adolc/adouble.h> func(adouble[], const adouble[]); adouble x[3]; adouble y[4];... for (i=0; i<3; i++) for (j=0; i<3; i++) x[i].setadvalue(j,i==j? 1.0 : 0.0); func(y,x); for (i=0; i<4; i++) { cout << y.getvalue() << ": "; for (j=0; j<3; j++) cout << y.getadvalue(j) << ", "; cout << endl; }
10 8/16 Není to tak jednoduché nediferencovatelné funkce (fmod) nelze použít absolutní hodnota (fabs) v 0 pravá nebo levá derivace ±1 případně položíme uměle rovnu 0 minimum a maximum (fmin, fmax) lze nahradit (a + b ± a b )/2 nedefinované na celém R (sqrt, pow, tan,... ) derivaci položíme uměle NaN, resp. Inf
11 9/16 množství potřebných operací O(mk) pro f : R m R n m počet nezávislých proměnných n počet závislých proměnných k počet kroků výpočtu nepříjemné s rostoucím m velká třída problémů velkým m ale malým n optimalizace funkce více proměnných (n = 1)
12 9/16 množství potřebných operací O(mk) pro f : R m R n m počet nezávislých proměnných n počet závislých proměnných k počet kroků výpočtu nepříjemné s rostoucím m velká třída problémů velkým m ale malým n optimalizace funkce více proměnných (n = 1) počítali jsme citlivost pomocných proměnných na změny vstupu obrácený postup, citlivost výstupu (závislých proměnných) na změny pomocných výpočet od konce
13 10/16 např. funkce y = sin(x 1 /x 2 )e x 3 označujeme ā = y/ a a 1 := x 1 /x 2 a 2 := sin a 1 a 3 := e x 3 y := a 2 a 3 ȳ := 1 ā 2 := a 3 ȳ ā 3 := a 2 ȳ x 3 := a 3 ā 3 ā 1 := ā 2 cos a 1 x 2 := ā 1 /x 2 x 1 := ā 2 /x 2 v O(nk) operacích máme všechny y/ x i
14 11/16 Stopa výpočtu derivace se vyhodnocují od konce tj. až poté, co proběhl výpočet funkce proto obrácené (reverse) výpočet funkce je nutné nějak zaznamenat ADOL-C: datová struktura (i soubor) páska (tape) záznam posloupnosti operací, nikoli konkrétních hodnot lze recyklovat pro jiný vstup případné rozdílnosti (a>b? c : d) jsou detekovány použije se pro funkce, gradientu/jakobiánu, Hessiánu,...
15 12/16 Instrumentace pro zpětné výhodnocení #include <adolc/adouble.h> void func( double px[4], /* vstup */ double py[4], /* vystup */ ) { adouble x[4],y[4],aux; trace_on(0); /* paska 0 */ for (i=0; i<4; i++) x[i] <<= px[i]; aux = x[1] * x[4] + exp(x[2]); /* vlastni vypocet */... y[4] = sin(aux); for (i=0; i<4; i++) y[i] >>= py[i]; trace_off(); }
16 13/16 Drivery ADOL-C poskytuje celou řadu driver funkcí vstupem je vždy páska a konkrétní vstupní hodnoty driver provede výpočet na základě záznamu na pásce funkční hodnota funkce R n R m function(short tag, int m, int n, double x[n],double y[m]) gradient funkce R n R gradient(short tag, int n, double x[n],double g[n]) Jakobián funkce R n R m jacobian(short tag, int m, int n, double x[n],double J[m][n]) Hessián (matice druhých derivací) funkce R n R hessian(short tag, int m, int n, double x[n],double H[n][n])
17 14/16 Drivery optimalizované varianty pro Newtonovu metodu řešení různých typů diferenciálních rovnic speciální varianty pro řídké Jakobiány a Hessiány tenzory vyšších derivací implicitně definované funkce G(x, y) = 0 obecné plná kontrola nad zpracováním pásky
18 15/16 Rekapitulace obráceného aktivní proměnné deklarovat jako adouble výpočet označit trace_on()... trace_off() zavolat instrumentovanou funkci jednou s typickými hodnotami vstupů vyprodukuje záznam výpočtu pásku opakovaně volat potřebné drivery případně na různé vstupy pro jinou posloupnost výpočtu zavolat instrumentovanou funkci s jinou páskou
19 16/16 Další materiál rozsáhlá problematika, řada implementací včetně obsáhlé teorie přehled nástrojů, FAQ,... implementac a dokumentace ADOL-C včetně řady příkladů Griewank, Walter. Evaluating Derivatives. 2008
Co je obsahem numerických metod?
Numerické metody Úvod Úvod Co je obsahem numerických metod? Numerické metody slouží k přibližnému výpočtu věcí, které se přesně vypočítat bud nedají vůbec, nebo by byl výpočet neúměrně pracný. Obsahem
Písemná zkouška z Matematiky II pro FSV vzor
Písemná zkouška z Matematik II pro FSV vzor. (0 bodů) Určete a nakreslete definiční obor funkce sin x f(x, ) = (Kalenda 00/) spočtěte její parciální derivace podle všech proměnných všude, kde existují,
1 Polynomiální interpolace
Polynomiální interpolace. Metoda neurčitých koeficientů Příklad.. Nalezněte polynom p co nejmenšího stupně, pro který platí p() = 0, p(2) =, p( ) = 6. Řešení. Polynom hledáme metodou neurčitých koeficientů,
5. cvičení z Matematiky 2
5. cvičení z Matematiky 2 21.-25. března 2016 5.1 Nalezněte úhel, který v bodě 1, 0, 0 svírají grafy funkcí fx, y ln x 2 + y 2 a gx, y sinxy. Úhel, který svírají grafy funkcí je dán jako úhel mezi jednotlivými
VYBRANÉ PARTIE Z NUMERICKÉ MATEMATIKY
VYBRANÉ PARTIE Z NUMERICKÉ MATEMATIKY Jan Krejčí 31. srpna 2006 jkrejci@physics.ujep.cz http://physics.ujep.cz/~jkrejci Obsah 1 Přímé metody řešení soustav lineárních rovnic 3 1.1 Gaussova eliminace...............................
III. Diferenciál funkce a tečná rovina 8. Diferenciál funkce. Přírůstek funkce. a = (x 0, y 0 ), h = (h 1, h 2 ).
III. Diferenciál funkce a tečná rovina 8. Diferenciál funkce. Přírůstek funkce = f(x 0 + h 1, y 0 + h 2 ) f(x 0, y 0 ) f u (x 0, y 0 ), kde u = (h 1, h 2 ). ( ) = f(x 0 + h 1, y 0 ) f(x 0, y 0 ) x (x 0,
Pokročilé programování v jazyce C pro chemiky (C3220) Operátory new a delete, virtuální metody
Pokročilé programování v jazyce C pro chemiky (C3220) Operátory new a delete, virtuální metody Dynamická alokace paměti Jazyky C a C++ poskytují programu možnost vyžádat si část volné operační paměti pro
Co jsme udělali: Au = f, u D(A)
Předmět: MA4 Dnešní látka: Od okrajových úloh v 1D k o. ú. ve 2D Laplaceův diferenciální operátor Variačně formulované okrajové úlohy pro parciální diferenciální rovnice a metody jejich přibližného řešení
INTEGRÁLY S PARAMETREM
INTEGRÁLY S PARAMETREM b a V kapitole o integraci funkcí více proměnných byla potřeba funkce g(x) = f(x, y) dy proměnné x. Spojitost funkce g(x) = b a f(x, y) dy proměnné x znamená vlastně prohození limity
MATEMATIKA III. Olga Majlingová. Učební text pro prezenční studium. Předběžná verze
Fakulta strojního inženýrství Univerzity J. E. Purkyně v Ústí nad Labem Pasteurova 7 Tel.: 475 285 511 400 96 Ústí nad Labem Fax: 475 285 566 Internet: www.ujep.cz E-mail: kontakt@ujep.cz MATEMATIKA III
PŘÍKLAD PŘECHODNÝ DĚJ DRUHÉHO ŘÁDU ŘEŠENÍ V ČASOVÉ OBLASTI A S VYUŽITÍM OPERÁTOROVÉ ANALÝZY
PŘÍKLAD PŘECHODNÝ DĚJ DRHÉHO ŘÁD ŘEŠENÍ V ČASOVÉ OBLASTI A S VYŽITÍM OPERÁTOROVÉ ANALÝZY A) Časová oblast integro-diferenciální rovnice K obvodu na obrázku je v čase t 0 napětí u b (t). t 0 připojen zdroj
I. Diferenciální rovnice. 3. Rovnici y = x+y+1. převeďte vhodnou transformací na rovnici homogenní (vzniklou
Typy příkladů pro I. část písemky ke zkoušce z MA II I. Diferenciální rovnice. 1. Určete obecné řešení rovnice y = y sin x.. Určete řešení rovnice y = y x splňující počáteční podmínku y(1) = 0. 3. Rovnici
Martin Flusser. Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague. October 17, 2016
ZPRO cvičení 2 Martin Flusser Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague October 17, 2016 Outline I 1 Outline 2 Proměnné 3 Proměnné - cvičení 4 Funkce 5 Funkce
Dnešní látka: Literatura: Kapitoly 3 a 4 ze skript Karel Rektorys: Matematika 43, ČVUT, Praha, Text přednášky na webové stránce přednášejícího.
Předmět: MA4 Dnešní látka: Od okrajových úloh v 1D k o. ú. ve 2D Laplaceův diferenciální operátor Variačně formulované okrajové úlohy pro parciální diferenciální rovnice a metody jejich přibližného řešení
Nelineární optimalizace a numerické metody (MI NON)
Nelineární optimalizace a numerické metody (MI NON) Magisterský program: Informatika Obor: Teoretická informatika Katedra: 18101 Katedra teoretické informatiky Jaroslav Kruis Evropský sociální fond Praha
Standardní algoritmy v C++.
Standardní algoritmy v C++. Standardní algoritmy jsou součástí STL. Jedná se o spoustu užitečných šablon funkcí, které za nás naprogramoval někdo jiný. Na nás je jen, abychom je používali. Také si ukážeme
aneb jiný úhel pohledu na prvák
Účelná matematika aneb jiný úhel pohledu na prvák Jan Hejtmánek FEL, ČVUT v Praze 24. června 2015 Jan Hejtmánek (FEL, ČVUT v Praze) Technokrati 2015 24. června 2015 1 / 18 Outline 1 Motivace 2 Proč tolik
Numerická matematika 1
Numerická matematika 1 Obsah 1 Řešení nelineárních rovnic 3 1.1 Metoda půlení intervalu....................... 3 1.2 Metoda jednoduché iterace..................... 4 1.3 Newtonova metoda..........................
1 Funkce dvou a tří proměnných
1 Funkce dvou a tří proměnných 1.1 Pojem funkce více proměnných Definice Funkce dvou proměnných je předpis, který každému bodu z R 2 (tj. z roviny) přiřazuje jediné reálné číslo. z = f(x, y), D(f) R 2
VI. Derivace složené funkce.
VI. Derivace složené funkce. 17. Parciální derivace složené funkce Budeme uvažovat složenou funkci F = f(g, kde některá z jejich součástí může být funkcí více proměnných. Předpokládáme, že uvažujeme funkce,
Úvod do programování. Lekce 3
Úvod do programování Lekce 3 Řízení běhu programu - pokračování /2 příklad: program vypisuje hodnotu sin x dx pro různé délky integračního kroku 0 #include #include // budeme pouzivat funkci
Wolfram Alpha. v podobě html stránky, samotný výsledek je často doplněn o další informace (např. graf, jiné možné zobrazení výsledku a
Wolfram Alpha jde o výpočetní prostředí z nejrůznějších oborů (matematika, fyzika, chemie, inženýrství... ) přístupné online: http://www.wolframalpha.com/ Jaké matematické výpočty Wolfram Alpha zvládá?
Úvod do optimalizace, metody hladké optimalizace
Evropský sociální fond Investujeme do vaší budoucnosti Úvod do optimalizace, metody hladké optimalizace Matematika pro informatiky, FIT ČVUT Martin Holeňa, 13. týden LS 2010/2011 O čem to bude? Příklady
Programování v C++ 1, 6. cvičení
Programování v C++ 1, 6. cvičení dědičnost, polymorfismus 1 1 Fakulta jaderná a fyzikálně inženýrská České vysoké učení technické v Praze Zimní semestr 2018/2019 Přehled 1 2 3 Shrnutí minule procvičené
Řešení nelineárních rovnic
Řešení nelineárních rovnic Metody sečen (sekantová a regula falsi) Máme dva body x 1 a x mezi nimiž se nachází kořen Nový bod x 3 volíme v průsečíku spojnice bodů x 1, f x 1 a x, f x (sečny) s osou x ERRBISPAS
ODR metody Runge-Kutta
ODR metody Runge-Kutta Teorie (velmi stručný výběr z přednášek) Úloha s počátečními podmínkami (Cauchyova) 1 řádu Hledáme aprox řešení Y(x) soustavy obyčejných diferenciálních rovnic 1 řádu kde Y(x) =
PŘETĚŽOVÁNÍ OPERÁTORŮ
PŘETĚŽOVÁNÍ OPERÁTORŮ Jazyk C# podobně jako jazyk C++ umožňuje přetěžovat operátory, tj. rozšířit definice některých standardních operátorů na uživatelem definované typy (třídy a struktury). Stejně jako
PB161 Programování v jazyce C++ Přednáška 9
PB161 Programování v jazyce C++ Přednáška 9 Právo friend Přetěžování operátorů Nikola Beneš 16. listopadu 2015 PB161 přednáška 9: friend, přetěžování operátorů 16. listopadu 2015 1 / 30 Reklama PB173 Tematicky
PB161 Programování v jazyce C++ Přednáška 4
PB161 Programování v jazyce C++ Přednáška 4 Přetěžování funkcí Konstruktory a destruktory Nikola Beneš 9. října 2017 PB161 přednáška 4: přetěžování funkcí, konstruktory, destruktory 9. října 2017 1 / 20
Uzavřené a otevřené množiny
Teorie: Uzavřené a otevřené množiny 2. cvičení DEFINICE Nechť M R n. Bod x M nazveme vnitřním bodem množiny M, pokud existuje r > 0 tak, že B(x, r) M. Množinu všech vnitřních bodů značíme Int M. Dále,
Kapitola 7: Neurčitý integrál. 1/14
Kapitola 7: Neurčitý integrál. 1/14 Neurčitý integrál 2/14 Definice: Necht f je funkce definovaná na intervalu I. Funkci F definovanou na intervalu I, pro kterou platí F (x) = f (x) x I nazýváme primitivní
Matematika II, úroveň A ukázkový test č. 1 (2018) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené
2. 3. 2018 Matematika II, úroveň A ukázkový test č. 1 (2018) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené mn. M E n. Zapište a načrtněte množinu D, ve které
EXTRÉMY FUNKCÍ VÍCE PROMĚNNÝCH
EXTRÉMY FUNKCÍ VÍCE PROMĚNNÝCH ÚLOHY ŘEŠITELNÉ BEZ VĚTY O MULTIPLIKÁTORECH Nalezněte absolutní extrémy funkce f na množině M. 1. f(x y) = x + y; M = {x y R 2 ; x 2 + y 2 1} 2. f(x y) = e x ; M = {x y R
AVDAT Nelineární regresní model
AVDAT Nelineární regresní model Josef Tvrdík Katedra informatiky Přírodovědecká fakulta Ostravská univerzita Nelineární regresní model Ey i = f (x i, β) kde x i je k-členný vektor vysvětlujících proměnných
Digitální učební materiál
Digitální učební materiál Číslo projektu: CZ.1.07/1.5.00/34.0548 Název školy: Gymnázium, Trutnov, Jiráskovo náměstí 325 Název materiálu: VY_32_INOVACE_156_IVT Autor: Ing. Pavel Bezděk Tematický okruh:
Aplikovaná numerická matematika
Aplikovaná numerická matematika 6. Metoda nejmenších čtverců doc. Ing. Róbert Lórencz, CSc. České vysoké učení technické v Praze Fakulta informačních technologií Katedra počítačových systémů Příprava studijních
Tento dokument obsahuje zadání pro semestrální programy z PAA. Vypracování. vypracovanou úlohu podle níže uvedených zadání. To mimo jiné znamená, že
Kapitola Zadání Tento dokument obsahuje zadání pro semestrální programy z PAA. Vypracování alespoň jedné úlohy je nutnou podmínkou pro úspěšné složení zkoušky resp. získaní (klasifikovaného) zápočtu (viz.
Iterační výpočty Projekt č. 2
Dokumentace k projektu pro předměty IUS & IZP Iterační výpočty Projekt č. 2 Autor: Jan Kaláb (xkalab00@stud.fit.vutbr.cz) Úvod Úkolem bylo napsat v jazyce C program sloužící k výpočtům matematických funkcí
Diferenciál funkce dvou proměnných. Má-li funkce f = f(x, y) spojité parciální derivace v bodě a, pak lineární formu (funkci)
2. Diferenciál funkce, tečná rovina. Diferenciál funkce dvou proměnných. Má-li funkce f = f(x, y) spojité parciální derivace v bodě a, pak lineární formu (funkci) df(a, h) = x (a)h + (a)h 2, h = (h, h
TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií
TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií MATLB: přednáška 4 Numerické a analytické výpočty Zbyněk Koldovský Projekt ESF CZ.1.07/2.2.00/28.0050 Modernizace
Princip gradientních optimalizačních metod
Princip gradientních optimalizačních metod Tomáš Kroupa 20. května 2014 Tento studijní materiál je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Obsah Úkol a základní
Připomenutí co je to soustava lineárních rovnic
Připomenutí co je to soustava lineárních rovnic Příklad 2x 3y + z = 5 3x + 5y + 2z = 4 x + 2y z = 1 Soustava lineárních rovnic obecně Maticový tvar: a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a
Úvod do programování. Lekce 5
I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í Inovace a zvýšení atraktivity studia optiky reg. č.: CZ.1.07/2.2.00/07.0289 Úvod do programování Lekce 5 Tento projekt je spolufinancován Evropským
Modelování systémů a procesů (11MSP) Bohumil Kovář, Jan Přikryl, Miroslav Vlček. 8. přednáška 11MSP pondělí 20. dubna 2015
Modelování systémů a procesů (11MSP) Bohumil Kovář, Jan Přikryl, Miroslav Vlček Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní 8. přednáška 11MSP pondělí 20. dubna 2015 verze: 2015-04-14 12:31
Diferenciální počet funkcí více proměnných
Vysoké učení technické v Brně Fakulta strojního inženýrství Diferenciální počet funkcí více proměnných Doc RNDr Miroslav Doupovec, CSc Neřešené příklady Matematika II OBSAH Obsah I Diferenciální počet
Jazyk C++ I. Šablony 2
Jazyk C++ I Šablony 2 AR 2013/2014 Jazyk C++ I Třídy template class TVektor { T *a; int n; static int PocInstanci; public: TVektor(int _n = 0) : n(_n) { a = new T[n]; PocInstanci++; } ~TVektor()
Matematika II, úroveň A ukázkový test č. 1 (2017) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené
28. 2. 2017 Matematika II, úroveň A ukázkový test č. 1 (2017) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené mn. M E n. Zapište a načrtněte množinu D, ve které
10 Funkce více proměnných
M. Rokyta, MFF UK: Aplikovaná matematika II kap. 10: Funkce více proměnných 16 10 Funkce více proměnných 10.1 Základní pojmy Definice. Eukleidovskou vzdáleností bodů x = (x 1,...,x n ), y = (y 1,...,y
Obsah Obyčejné diferenciální rovnice
Obsah 1 Obyčejné diferenciální rovnice 3 1.1 Základní pojmy............................................ 3 1.2 Obyčejné diferenciální rovnice 1. řádu................................ 5 1.3 Exaktní rovnice............................................
Obyčejné diferenciální rovnice počáteční úloha. KMA / NGM F. Ježek
Občejné diferenciální rovnice počáteční úloha KMA / NGM F. Ježek (JEZEK@KMA.ZCU.CZ) Základní pojm Tp rovnic a podmínek, řád rovnice Počáteční úloha pro občejné diferenciální rovnice Řád metod a počet kroků
Numerické metody optimalizace - úvod
Numerické metody optimalizace - úvod Petr Tichý 16. února 2015 1 Organizace přednášek a cvičení 13 přednášek a cvičení. Zápočet: úloha programování a testování úloh v Matlabu. Další informace na blogu
Numerické algoritmy KAPITOLA 11. Vyhledávání nulových bodů funkcí
Numerické algoritmy KAPITOLA 11 V této kapitole: Vyhledávání nulových bodů funkcí Iterativní výpočet hodnot funkce Interpolace funkcí Lagrangeovou metodou Derivování funkcí Integrování funkcí Simpsonovou
MATEMATIKA II - vybrané úlohy ze zkoušek (2015)
MATEMATIKA II - vybrané úlohy ze zkoušek (2015) doplněné o další úlohy 24. 2. 2015 Nalezené nesrovnalosti ve výsledcích nebo připomínky k tomuto souboru sdělte laskavě F. Mrázovi (e-mail: Frantisek.Mraz@fs.cvut.cz
Primitivní funkce a Riemann uv integrál Lineární algebra Taylor uv polynom Extrémy funkcí více prom ˇenných Matematika III Matematika III Program
Program Primitivní funkce a Riemannův integrál Program Primitivní funkce a Riemannův integrál Lineární algebra Program Primitivní funkce a Riemannův integrál Lineární algebra Taylorův polynom Program Primitivní
Základy programování (IZP)
Základy programování (IZP) Sedmé počítačové cvičení Brno University of Technology, Faculty of Information Technology Božetěchova 1/2, 612 66 Brno - Královo Pole Petr Veigend, iveigend@fit.vutbr.cz 2018/2019,
Dědění, polymorfismus
Programování v jazyce C/C++ Ladislav Vagner úprava Pavel Strnad Dědění. Polymorfismus. Dnešní přednáška Statická a dynamická vazba. Vnitřní reprezentace. VMT tabulka virtuálních metod. Časté chyby. Minulá
Aproximace funkcí. x je systém m 1 jednoduchých, LN a dostatečně hladkých funkcí. x c m. g 1. g m. a 1. x a 2. x 2 a k. x k b 1. x b 2.
Aproximace funkcí Aproximace je výpočet funkčních hodnot funkce z nějaké třídy funkcí, která je v určitém smyslu nejbližší funkci nebo datům, která chceme aproximovat. Třída funkcí, ze které volíme aproximace
Matematika vzorce. Ing. Petr Šídlo. verze
Matematika vzorce Ing. Petr Šídlo verze 0050409 Obsah Jazyk matematiky 3. Výrokový počet.......................... 3.. Logické spojky...................... 3.. Tautologie výrokového počtu...............
Matematika II, úroveň A ukázkový test č. 1 (2016) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené
22. 2. 2016 Matematika II, úroveň A ukázkový test č. 1 (2016) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené mn. M E n. Zapište a načrtněte množinu D, ve které
Přijímací zkouška na navazující magisterské studium 2018
Přijímací zkouška na navazující magisterské studium 208 Studijní program: Studijní obory: Matematika MA, MMIT, MMFT, MSTR, MNVM, MPMSE Varianta A Řešení příkladů pečlivě odůvodněte. Věnujte pozornost ověření
DEFINICE,VĚTYADŮKAZYKÚSTNÍZKOUŠCEZMAT.ANALÝZY Ib
INFORMACE O PRŮBĚHU A POŽADAVKY KE ZKOUŠCE Z MAT. ANALÝZYIbVLS2010/11 Ke zkoušce mohou přistoupit studenti, kteří získali zápočet. Do indexu jej zapíši na zkoušce, pokud cvičící potvrdí, že na něj student
Klasifikace a rozpoznávání. Lineární klasifikátory
Klasifikace a rozpoznávání Lineární klasifikátory Opakování - Skalární součin x = x1 x 2 w = w T x = w 1 w 2 x 1 x 2 w1 w 2 = w 1 x 1 + w 2 x 2 x. w w T x w Lineární klasifikátor y(x) = w T x + w 0 Vyber
Transformujte diferenciální výraz x f x + y f do polárních souřadnic r a ϕ, které jsou definovány vztahy x = r cos ϕ a y = r sin ϕ.
Ukázka 1 Necht má funkce z = f(x, y) spojité parciální derivace. Napište rovnici tečné roviny ke grafu této funkce v bodě A = [ x 0, y 0, z 0 ]. Transformujte diferenciální výraz x f x + y f y do polárních
2. FUNKCE JEDNÉ PROMĚNNÉ
2. FUNKCE JEDNÉ PROMĚNNÉ Funkce 2.. Definice Říkáme, že na množině D reálných čísel je definována funkce f jedné reálné proměnné, je-li dán předpis, podle kterého je ke každému číslu x D přiřazeno právě
Matematika I A ukázkový test 1 pro 2011/2012. x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a
Matematika I A ukázkový test 1 pro 2011/2012 1. Je dána soustava rovnic s parametrem a R x y + z = 1 a) Napište Frobeniovu větu. x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a b) Vyšetřete počet řešení soustavy
PŘIJÍMACÍ TEST z informatiky a matematiky pro navazující magisterské studium Fakulta informatiky a managementu Univerzity Hradec Králové
PŘIJÍMACÍ TEST z informatiky a matematiky pro navazující magisterské studium Fakulta informatiky a managementu Univerzity Hradec Králové Registrační číslo Hodnocení část A Hodnocení část B Hodnocení A+B
Jazyk matematiky. 2.1. Matematická logika. 2.2. Množinové operace. 2.3. Zobrazení. 2.4. Rozšířená číslená osa
2. Jazyk matematiky 2.1. Matematická logika 2.2. Množinové operace 2.3. Zobrazení 2.4. Rozšířená číslená osa 1 2.1 Matematická logika 2.1.1 Výrokový počet logická operace zapisujeme čteme česky negace
Teorie. Hinty. kunck6am
kytaristka@gmail.com www.natur.cuni.cz/ kunck6am 5. cvičení Teorie Definice. Necht funkce f je definována na neprázdném otevřeném intervalu I. Řekneme, že funkce F je primitivní funkce k f na I, jestliže
Derivace. Petr Hasil. Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF)
Petr Hasil Přednáška z matematiky Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipĺıny společného základu (reg. č. CZ.1.07/2.2.00/28.0021)
Typy příkladů na písemnou část zkoušky 2NU a vzorová řešení (doc. Martišek 2017)
Typy příkladů na písemnou část zkoušky NU a vzorová řešení (doc. Martišek 07). Vhodnou iterační metodou (tj. metodou se zaručenou konvergencí) řešte soustavu: x +x +4x 3 = 3.5 x 3x +x 3 =.5 x +x +x 3 =.5
Vlastní (charakteristická) čísla a vlastní (charakteristické) Pro zadanou čtvercovou matici A budeme řešit maticovou
1 Vlastní (charakteristická) čísla a vlastní (charakteristické) vektory matice Pro zadanou čtvercovou matici A budeme řešit maticovou rovnici A x = λ x, kde x je neznámá matice o jednom sloupci (sloupcový
LDF MENDELU. Simona Fišnarová (MENDELU) LDR druhého řádu VMAT, IMT 1 / 22
Lineární diferenciální rovnice druhého řádu Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF)
- speciální symboly + - * / =., < > <> <= >= a další. Klíčová slova jsou chráněnými útvary, které nelze použít ve významu identifikátorů.
Základní symboly - písmena A B C Y Z a b c y z - číslice 0 1 2 9 - speciální symboly + - * / =., < > = a další - klíčová slova and array begin case const a další Klíčová slova jsou chráněnými útvary,
Programování v jazyce C pro chemiky (C2160) 12. Specifické problémy při vývoji vědeckého softwaru
Programování v jazyce C pro chemiky (C2160) 12. Specifické problémy při vývoji vědeckého softwaru Reprezentace reálnách čísel v počítači Reálná čísla jsou v počítači reprezentována jako čísla tvaru ±x
1 Zobrazení 1 ZOBRAZENÍ 1. Zobrazení a algebraické struktury. (a) Ukažte, že zobrazení f : x
1 ZOBRAZENÍ 1 Zobrazení a algebraické struktury 1 Zobrazení Příklad 1.1. (a) Ukažte, že zobrazení f : x na otevřený interval ( 1, 1). x x +1 je bijekce množiny reálných čísel R (b) Necht a, b R, a < b.
Programování v C++ 1, 14. cvičení
Programování v C++ 1, 14. cvičení výpustka, přetěžování funkcí, šablony funkcí 1 1 Fakulta jaderná a fyzikálně inženýrská České vysoké učení technické v Praze Zimní semestr 2018/2019 Přehled 1 2 funkcí
Numerické metody a programování. Lekce 7
Numerické metody a programování Lekce 7 Řešení nelineárních rovnic hledáme řešení x problému f x = 0 strategie: odhad řešení iterační proces postupného zpřesňování řešení výpočet skončen pokud je splněno
Úvod do programovacích jazyků (Java)
Úvod do programovacích jazyků (Java) Michal Krátký Katedra informatiky VŠB Technická univerzita Ostrava Úvod do programovacích jazyků (Java), 2007/2008 c 2006 2008 Michal Krátký Úvod do programovacích
OPTIMALIZACE. (přehled metod)
OPTIMALIZACE (přehled metod) Typy optimalizačních úloh Optimalizace bez omezení Nederivační metody Derivační metody Optimalizace s omezeními Lineární programování Nelineární programování Globální optimalizace
2D transformací. červen Odvození transformačního klíče vybraných 2D transformací Metody vyrovnání... 2
Výpočet transformačních koeficinetů vybraných 2D transformací Jan Ježek červen 2008 Obsah Odvození transformačního klíče vybraných 2D transformací 2 Meto vyrovnání 2 2 Obecné vyjádření lineárních 2D transformací
Programování v C++ 3, 3. cvičení
Programování v C++ 3, 3. cvičení úvod do objektově orientovaného programování 1 1 Fakulta jaderná a fyzikálně inženýrská České vysoké učení technické v Praze Zimní semestr 2018/2019 Přehled Dokončení spojového
DERIVACE FUKNCÍ VÍCE PROMĚNNÝCH
DERIVACE FUKNCÍ VÍCE PROMĚNNÝCH Reálná funkce dvou proměnných a definiční obor Kartézský součin R R značíme R 2 R 2 je množina všech uspořádaných dvojic reálných čísel (rovina) Prvk R 2 jsou bod v rovině
Program SMP pro kombinované studium
Zadání příkladů k procvičení na seminář Program SMP pro kombinované studium Nejdůležitější typy příkladů - minimum znalostí před zkouškovou písemkou 1) Matice 1. Pro matice 1 0 2 1 0 3 B = 7 3 4 4 2 0
8.3). S ohledem na jednoduchost a názornost je výhodné seznámit se s touto Základní pojmy a vztahy. Definice
9. Lineární diferenciální rovnice 2. řádu Cíle Diferenciální rovnice, v nichž hledaná funkce vystupuje ve druhé či vyšší derivaci, nazýváme diferenciálními rovnicemi druhého a vyššího řádu. Analogicky
Teorie. Hinty. kunck6am
kytaristka@gmail.com www.natur.cuni.cz/ kunck6am 5. cvičení Teorie Definice. Necht funkce f je definována na neprázdném otevřeném intervalu I. Řekneme, že funkce F je primitivní funkce k f na I, jestliže
Základní spádové metody
Základní spádové metody Petr Tichý 23. října 2013 1 Metody typu line search Problém Idea metod min f(x), f : x R Rn R. n Dána počáteční aproximace x 0. Iterační proces (krok k): (a) zvol směr d k, (b)
VÝUKOVÝ MATERIÁL. Bratislavská 2166, 407 47 Varnsdorf, IČO: 18383874 www.vosassvdf.cz, tel. +420412372632 Číslo projektu
VÝUKOVÝ MATERIÁL Identifikační údaje školy Vyšší odborná škola a Střední škola, Varnsdorf, příspěvková organizace Bratislavská 2166, 407 47 Varnsdorf, IČO: 18383874 www.vosassvdf.cz, tel. +420412372632
NÁHODNÁ VELIČINA. 3. cvičení
NÁHODNÁ VELIČINA 3. cvičení Náhodná veličina Náhodná veličina funkce, která každému výsledku náhodného pokusu přiřadí reálné číslo. Je to matematický model popisující více či méně dobře realitu, který
Derivace funkce Otázky
funkce je jedním z hlavních nástrojů matematické analýzy. V příští části ukážeme, jak mnoho různorodých aplikací derivace má. Geometricky lze derivaci funkce v nějakém bodě chápat jako směrnici tečny grafu
naopak více variant odpovědí, bude otázka hodnocena jako nesprávně zodpovězená.
Datum:... Jméno:... Přijímací řízení pro akademický rok 28/9 na magisterské studijní obor Finanční informatiky a statistika Písemná část přijímací zkoušky z matematiky Za každou správnou odpověd se získávají
Jazyk C++, některá rozšíření oproti C
Karel Müller, Josef Vogel (ČVUT FIT) Jazyk C++, některá rozšíření oproti C BI-PA2, 2011, Přednáška 1 1/22 Jazyk C++, některá rozšíření oproti C Ing. Josef Vogel, CSc Katedra softwarového inženýrství Katedra
Více o konstruktorech a destruktorech
Více o konstruktorech a destruktorech Více o konstruktorech a o přiřazení... inicializovat objekt lze i pomocí jiného objektu lze provést přiřazení mezi objekty v původním C nebylo možné provést přiřazení
āā ā ā ā ā ā ā ā ā ā ā ā ā ā ā ā ā ā ā ā ā ā ā ā ā ā ā ā ā ā ā ā ā ā ā ā ā ā ā ā ā ā ā ā ā ā ā ā ā ā ā ā ā ā ā ā ā ā ā ā ā ā ā ā ā ā ā ā ā ā ā ā ā ā ā ā ā ā ā ā ā ā ā ā ā ā ā ā ā ā ā ā ā ā ā ā
5.3. Implicitní funkce a její derivace
Výklad Podívejme se na následující problém. Uvažujme množinu M bodů [x,y] R 2, které splňují rovnici F(x, y) = 0, M = {[x,y] D F F(x,y) = 0}, kde z = F(x,y) je nějaká funkce dvou proměnných. Je-li F(x,y)
Derivace funkce DERIVACE A SPOJITOST DERIVACE A KONSTRUKCE FUNKCÍ. Aritmetické operace
Derivace funkce Derivace je jedním z hlavních nástrojů matematické analýzy. V příští části ukážeme, jak mnoho různorodých aplikací derivace má. Geometricky lze derivaci funkce v nějakém bodě chápat jako
Kristýna Kuncová. Matematika B2
(8) Funkce více proměnných Kristýna Kuncová Matematika B2 Kristýna Kuncová (8) Funkce více proměnných 1 / 19 Parciální derivace Definice Derivaci funkce f : R R v bodě a definujeme jako limitu f f (a +
Funkce jedn e re aln e promˇ enn e Derivace Pˇredn aˇska ˇr ıjna 2015
Funkce jedné reálné proměnné Derivace Přednáška 2 15. října 2015 Obsah 1 Funkce 2 Limita a spojitost funkce 3 Derivace 4 Průběh funkce Informace Literatura v elektronické verzi (odkazy ze STAGu): 1 Lineární
terminologie předchozí kapitoly: (ϕ, Ω) - plocha, S - geometrický obraz plochy
2. Plošný integrál. Poznámka. Obecně: integrování přes k-rozměrné útvary (k-plochy) v R n. Omezíme se na případ k = 2, n = 3. Definice. Množina S R 3 se nazve plocha, pokud S = ϕ(), kde R 2 je otevřená
+ n( 1)n+1 (x 7) n, poloměr konvergence 6. 3.Poloměr konvergence je vždy +. a) f(x) = x n. (x 7) n, h(x) = 7 + 7(n+1)( 1) n. ( 1)n
VÝSLEDKY I. TAYLORŮV POLYNOM. a + b + 4 4 c + 0 d e + + 4 f + + 4 g + 70 4 h 4 4. a b c d - e log a f 0 g h i j k - 4. a 7 b 4. a AK absolutně konverguje b D diverguje c D d AK e D f AK g AK II. MOCNINNÉ
Kapitola 4: Extrémy funkcí dvou proměnných 1/5
Kapitola 4: Extrémy funkcí dvou proměnných 1/5 Lokální extrémy Definice: Necht f : M R 2 R a (x 0, y 0 ) M. Říkáme, že fce f má v bodě (x 0, y 0 ) lokální maximum (resp. lokální minimum) jestliže existuje