Definice tolerování. Technická dokumentace Ing. Lukáš Procházka

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Definice tolerování. Technická dokumentace Ing. Lukáš Procházka"

Transkript

1 Technická dokumentace Ing. Lukáš Procházka Téma: geometrické tolerance 1) Definice geometrických tolerancí 2) Všeobecné geometrické tolerance 3) Základny geometrických tolerancí 4) Druhy geometrických tolerancí Definice tolerování - rozměrové tolerance určují vyhovující rozměry, avšak neřeší zdali je dodržen tvar - geometrické tolerance definují geometrické odchylky tvarů a poloh vůči skutečným - vyhovující geometrické odchylky taktéž zajišťují správnou funkci součástí i zapisují se pouze když je podstatné dodržení tvarů a poloh pro funkci součásti

2 Všeobecné tolerance - obdobně jako u rozměrových tolerancí existují i všeobecné rozměrové tolerance - všeobecné tolerance udává norma ISO : rozměrové tolerance ISO geometrické tolerance ISO z hlediska přesnosti se dělí na 3 třídy přesnosti (rozměrové tolerance mají 4): přesná střední hrubá H K L - všeobecné (nepředepsané) geometrické tolerance: tolerance přímosti a rovinnosti tolerance kolmosti tolerance souměrnosti tolerance kruhového házení - třída všeobecných tolerancí použitá na výkrese se předepisuje do popisového pole - druhé písmeno v pořadí (VELKÉ PÍSMENO) označuje přesnost geometrických tolerancí - uvádí se v kolonce PŘESNOST ISO 2768 třída všeobecných tolerancí

3 Základny - základnami geometrických tolerancí jsou geometricky přesné prvky (osy, plochy, ) - k základnám geometrických tolerancí se vztahují geometrické tolerance prvků - základnou může být: přímka rovinná plocha válcová plocha osa - základny se označují rovnostranným trojúhelníkem (prázdný i plný) - součástí značky je čtvercový rámeček obsahující písmenné označení základny rozměry značky: základnou je rovinná plocha (přímka) základnou je válcová plocha (povrchová přímka) základnou je osa válcové plochy

4 Soustavy základen 1 základna 2 základny 3 základny? Jakými písmeny se označují třídy všeobecných geometrických tolerancí?

5 Přímost - tolerance je vyhovující když skutečná přímka leží mezi 2 rovnoběžnými přímkami - vzdálenost rovnoběžných přímek od sebe je hodnota tolerance Rovinnost - tolerance je vyhovující když skutečná plocha leží mezi 2 rovnoběžnými plochami - vzdálenost rovnoběžných ploch od sebe je hodnota tolerance

6 Kruhovitost - tolerance je vyhovující když skutečný profil leží mezi 2 soustřednými kružnicemi - rozdíl průměrů soustředných kružnic (šířka mezikruží) je hodnota tolerance Válcovitost - tolerance je vyhovující když skutečná válcová plocha leží mezi 2 soustřednými válci - rozdíl průměrů soustředných válců (šířka stěny dutého válce) je hodnota tolerance

7 Rovnoběžnost - tolerance je vyhovující když skutečná plocha leží mezi 2 rovnoběžnými rovinami - vzdálenost rovnoběžných rovin od sebe je hodnota tolerance Kolmost - tolerance je vyhovující když skutečná plocha leží mezi 2 rovinami kolmými na rovinu - vzdálenost rovnoběžných rovin kolmých na základní rovinu je hodnota tolerance

8 Sklon - tolerance je vyhovující když skutečná plocha leží mezi 2 rovinami nakloněnými na rovinu - vzdálenost rovnoběž. rovin nakloněných o úhel α k základní rovinu je hodnota tolerance Poloha prvku - tolerance je vyhovující když osa prvku (díry) v teoreticky přesné poloze leží uvnitř válce - průměr válce je hodnota tolerance

9 Soustřednost a souosost - tolerance je vyhovující když skutečná osa tolerovaného prvku leží uvnitř válce - průměr válce je hodnota tolerance Souměrnost - tolerance je vyhovující když skuteč. rovina souměrnosti leží mezi 2 souměrnými rovinami - vzdálenost souměrných rovin od sebe je hodnota tolerance

10 Tvar profilu - tolerance je vyhovující když skutečný tvar profilu leží mezi 2 ekvidistantními čarami - vzdálenost ekvidistantních čar od sebe je hodnota tolerance Tvar plochy - tolerance je vyhovující když skutečná plocha leží mezi 2 ekvidistantními plochami - vzdálenost ekvidistantních ploch od sebe je hodnota tolerance

11 Kruhové házení obvodové a čelní - tolerance je vyhovující když každý bod kružnice při rotaci leží mezi 2 soustř. kružnicemi - vzdálenost soustředných kružnic se středem v ose rotace je hodnota tolerance Celkové házení - tolerance je vyhovující když každý bod kružnice při rotaci leží mezi 2 rovnoběž. rovinami - vzdálenost rovnoběžných rovin od sebe je hodnota tolerance

STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJÍRENSKÁ a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191. Obor 23-41-M/01 STROJÍRENSTVÍ

STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJÍRENSKÁ a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191. Obor 23-41-M/01 STROJÍRENSTVÍ STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJÍRENSKÁ a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191 Obor 23-41-M/01 STROJÍRENSTVÍ 1. ročník TECHNICKÉ KRESLENÍ PŘEDEPISOVÁNÍ PŘESNOSTI ROZMĚRŮ,

Více

Kótování na strojnických výkresech 1.část

Kótování na strojnických výkresech 1.část Kótování na strojnických výkresech 1.část Pro čtení výkresů, tj. určení rozměrů nebo polohy předmětu, jsou rozhodující kóty. Z tohoto důvodu je kótování jedna z nejzodpovědnějších prací na technických

Více

TVAROVÉ A ROZMĚROVÉ PARAMETRY V OBRAZOVÉ DOKUMENTACI. Druhy kót Části kót Hlavní zásady kótování Odkazová čára Soustavy kót

TVAROVÉ A ROZMĚROVÉ PARAMETRY V OBRAZOVÉ DOKUMENTACI. Druhy kót Části kót Hlavní zásady kótování Odkazová čára Soustavy kót TVAROVÉ A ROZMĚROVÉ PARAMETRY V OBRAZOVÉ DOKUMENTACI Druhy kót Části kót Hlavní zásady kótování Odkazová čára Soustavy kót KÓTOVÁNÍ Kótování jednoznačné určení rozměrů a umístění všech tvarových podrobností

Více

- 1 - Vzdělávací oblast : matematika a její aplikace Vyučovací předmět : : matematika Ročník: 3.

- 1 - Vzdělávací oblast : matematika a její aplikace Vyučovací předmět : : matematika Ročník: 3. - 1 - Vzdělávací oblast : matematika a její aplikace Vyučovací předmět : : matematika Ročník: 3. ČÍSLO A POČETNÍ OPERACE Výstup Učivo Průřezová témata Mezipředmětové vztahy Zápis čísel. Čtení a zápisy

Více

Mezní kalibry. Druhy kalibrů podle přesnosti: - dílenské kalibry - používají ve výrobě, - porovnávací kalibry - pro kontrolu dílenských kalibrů.

Mezní kalibry. Druhy kalibrů podle přesnosti: - dílenské kalibry - používají ve výrobě, - porovnávací kalibry - pro kontrolu dílenských kalibrů. Mezní kalibry Mezními kalibry zjistíme, zda je rozměr součástky v povolených mezích, tj. v toleranci. Mají dobrou a zmetkovou stranu. Zmetková strana je označená červenou barvou. Délka zmetkové části je

Více

ORIENTACE V TECHNICKÉ DOKUMENTACI

ORIENTACE V TECHNICKÉ DOKUMENTACI ORIENTACE V TECHNICKÉ DOKUMENTACI Ve strojírenství je technická dokumentace základním dorozumívacím prostředkem všech lidí, kteří vstupují jak do návrhu ( konstrukce ) výrobku nebo jeho součásti, tak do

Více

Tematický plán pro školní rok 2015/16 Předmět: Matematika Vyučující: Mgr. Iveta Jedličková Týdenní dotace hodin: 5 hodin Ročník: pátý

Tematický plán pro školní rok 2015/16 Předmět: Matematika Vyučující: Mgr. Iveta Jedličková Týdenní dotace hodin: 5 hodin Ročník: pátý ČASOVÉ OBDOBÍ Září Říjen KONKRÉTNÍ VÝSTUPY KONKRÉTNÍ UČIVO PRŮŘEZOVÁ TÉMATA Umí zapsat a přečíst čísla do 1 000 000 Porovnává čísla do 1 000 000 Zaokrouhluje čísla na tisíce, desetitisíce, statisíce Umí

Více

TECHNICKÉ KRESLENÍ A CAD

TECHNICKÉ KRESLENÍ A CAD Přednáška č. 7 V ELEKTROTECHNICE Kótování Zjednodušené kótování základních geometrických prvků Někdy stačí k zobrazení pouze jeden pohled Tenké součásti kvádr Kótování Kvádr (základna čtverec) jehlan Kvalitativní

Více

3.1.4 Trojúhelník. Předpoklady: 3103. Každé tři různé body neležící v přímce určují trojúhelník. C. Co to je, víme. Jak ho definovat?

3.1.4 Trojúhelník. Předpoklady: 3103. Každé tři různé body neležící v přímce určují trojúhelník. C. Co to je, víme. Jak ho definovat? 3..4 Trojúhelní Předpolady: 303 Každé tři různé body neležící v přímce určují trojúhelní. o to je, víme. Ja ho definovat? Př. : Definuj trojúhelní jao průni polorovin. Trojúhelní je průni polorovin, a.

Více

Základní škola a mateřská škola, Ostrava-Hrabůvka, Mitušova 16, příspěvková organizace Školní vzdělávací program 2. stupeň, Matematika.

Základní škola a mateřská škola, Ostrava-Hrabůvka, Mitušova 16, příspěvková organizace Školní vzdělávací program 2. stupeň, Matematika. Matematika Matematika pro žáky 6. až 9. ročníku napomáhá k rozvoji paměti, logického myšlení, kritickému usuzování a srozumitelné a věcné argumentaci prostřednictvím matematických problémů. Žáci si prostřednictvím

Více

DUM 09 téma: P edepisování struktury povrchu

DUM 09 téma: P edepisování struktury povrchu DUM 09 téma: P edepisování struktury povrchu ze sady: 03 tematický okruh sady: Kreslení výrobních výkres ze šablony: 04_Technická dokumentace Ur eno pro :1. ro ník vzd lávací obor: 26-41-M/01 Elektrotechnika

Více

Zobrazení v rovině je předpis, který každému bodu X roviny připisuje právě jeden bod X roviny. Bod X se nazývá vzor, bod X se nazývá obraz.

Zobrazení v rovině je předpis, který každému bodu X roviny připisuje právě jeden bod X roviny. Bod X se nazývá vzor, bod X se nazývá obraz. 7. Shodná zobrazení 6. ročník 7. Shodná zobrazení 7.1. Shodnost geometrických obrazců Zobrazení v rovině je předpis, který každému bodu X roviny připisuje právě jeden bod X roviny. Bod X se nazývá vzor,

Více

TÉMATICKÝ PLÁN OSV. čte, zapisuje a porovnává přirozená čísla do 20, užívá a zapisuje vztah rovnosti a nerovnosti

TÉMATICKÝ PLÁN OSV. čte, zapisuje a porovnává přirozená čísla do 20, užívá a zapisuje vztah rovnosti a nerovnosti TÉMATICKÝ PLÁN MA 1.ročník Očekávaný výstup /dle RVP/ Žák: Konkretizace výstupu, učivo, návrh realizace výstupu PT Číslo a početní operace používá přirozená čísla k modelování reálných situací, počítá

Více

ŠKOLNÍ VZDĚLÁVACÍ PROGRAM

ŠKOLNÍ VZDĚLÁVACÍ PROGRAM Vyučovací předmět: Období ročník: Učební texty: Matematika 2. období 4. ročník R. Blažková: Matematika pro 3. ročník ZŠ (3. díl) (Alter) R. Blažková: Matematika pro 4. ročník ZŠ (1. díl) (Alter) J. Jurtová:

Více

1.9.5 Středově souměrné útvary

1.9.5 Středově souměrné útvary 1.9.5 Středově souměrné útvary Předpoklady: 010904 Př. 1: V obdélníkových rámech jsou nakresleny tři obrázky. Každý je sestaven z jedné přímky a jednoho obdélníku. Jeden z obrázků je středově souměrný.

Více

Základní pojmy Při kontrole výrobků se zjišťuje, zda odpovídají požadavkům rozměry, tvary a jakost ploch při použití předepsaných měřicích postupů.

Základní pojmy Při kontrole výrobků se zjišťuje, zda odpovídají požadavkům rozměry, tvary a jakost ploch při použití předepsaných měřicích postupů. Měření hloubky Základní pojmy Při kontrole výrobků se zjišťuje, zda odpovídají požadavkům rozměry, tvary a jakost ploch při použití předepsaných měřicích postupů. Měřidla Hloubkoměry Jsou určeny pro měření

Více

Název školy. Moravské gymnázium Brno s.r.o. Mgr. Marie Chadimová Mgr. Věra Jeřábková. Autor. Matematika. Planimetrie. Trojúhelníky. Teorie a příklady.

Název školy. Moravské gymnázium Brno s.r.o. Mgr. Marie Chadimová Mgr. Věra Jeřábková. Autor. Matematika. Planimetrie. Trojúhelníky. Teorie a příklady. Číslo projektu Z.1.07/1.5.00/34.0743 Název školy Moravské gymnázium rno s.r.o. utor Tematická oblast Mgr. Marie hadimová Mgr. Věra Jeřábková Matematika. Planimetrie. Trojúhelníky. Teorie a příklady. Ročník

Více

Měření momentu setrvačnosti z doby kmitu

Měření momentu setrvačnosti z doby kmitu Úloha č. 4 Měření momentu setrvačnosti z doby kmitu Úkoly měření:. Určete moment setrvačnosti vybraných těles, kruhové a obdélníkové desky.. Stanovení momentu setrvačnosti proveďte s využitím dvou rozdílných

Více

c sin Příklad 2 : v trojúhelníku ABC platí : a = 11,6 dm, c = 9 dm, α = 65 0 30. Vypočtěte stranu b a zbývající úhly.

c sin Příklad 2 : v trojúhelníku ABC platí : a = 11,6 dm, c = 9 dm, α = 65 0 30. Vypočtěte stranu b a zbývající úhly. 9. Úvod do středoškolského studia - rozšiřující učivo 9.. Další znalosti o trojúhelníku 9... Sinova věta a = sin b = sin c sin Příklad : V trojúhelníku BC platí : c = 0 cm, α = 45 0, β = 05 0. Vypočtěte

Více

PALETOVÉ REGÁLY SUPERBUILD NÁVOD NA MONTÁŽ

PALETOVÉ REGÁLY SUPERBUILD NÁVOD NA MONTÁŽ PALETOVÉ REGÁLY SUPERBUILD NÁVOD NA MONTÁŽ Charakteristika a použití Příhradový regál SUPERBUILD je určen pro zakládání všech druhů palet, přepravek a beden všech rozměrů a pro ukládání kusového, volně

Více

Vyučovací předmět / ročník: Matematika / 5. Učivo

Vyučovací předmět / ročník: Matematika / 5. Učivo Vzdělávací oblast: Matematika a její aplikace Výstupy žáka Vyučovací předmět / ročník: Matematika / 5. ČÍSLO A POČETNÍ OPERACE Zpracoval: Mgr. Dana Štěpánová orientuje se v posloupnosti přirozených čísel

Více

Výstupy Učivo Téma. Čas. Základní škola a mateřská škola Hať. Školní vzdělávací program. Průřezová témata, kontexty a přesahy,další poznámky

Výstupy Učivo Téma. Čas. Základní škola a mateřská škola Hať. Školní vzdělávací program. Průřezová témata, kontexty a přesahy,další poznámky provádí pamětné a písemné početní Čísla přirozená Opakování září, říjen operace v oboru přirozených čísel porovnává a uspořádává čísla celá a Čísla celá, racionální racionální, provádí početní operace

Více

DUM 07 téma: P edepisování tolerancí

DUM 07 téma: P edepisování tolerancí DUM 07 téma: P edepisování tolerancí ze sady: 03 tematický okruh sady: Kreslení výrobních výkres ze šablony: 04_Technická dokumentace Ur eno pro :1. ro ník vzd lávací obor: 26-41-M/01 Elektrotechnika 18-20-M/01

Více

Základní škola Fr. Kupky, ul. Fr. Kupky 350, 518 01 Dobruška 5.2 MATEMATIKA A JEJÍ APLIKACE - 5.2.1 MATEMATIKA A JEJÍ APLIKACE Matematika 9.

Základní škola Fr. Kupky, ul. Fr. Kupky 350, 518 01 Dobruška 5.2 MATEMATIKA A JEJÍ APLIKACE - 5.2.1 MATEMATIKA A JEJÍ APLIKACE Matematika 9. 5.2 MATEMATIKA A JEJÍ APLIKACE 5.2.1 MATEMATIKA A JEJÍ APLIKACE Matematika 9. ročník RVP ZV Obsah RVP ZV Kód RVP ZV Očekávané výstupy ŠVP Školní očekávané výstupy ŠVP Učivo M9101 provádí početní operace

Více

TEORETICKÝ VÝKRES LODNÍHO TĚLESA

TEORETICKÝ VÝKRES LODNÍHO TĚLESA TEORETICKÝ VÝKRES LODNÍHO TĚLESA BOKORYS (neboli NÁRYS) je jeden ze základních pohledů, ze kterého poznáváme tvar kýlu, zádě, zakřivení paluby, atd. Zobrazuje v osové rovině obrys plavidla. Uvnitř obrysu

Více

Přednáška č.4 Tolerování

Přednáška č.4 Tolerování Fakulta strojní VŠB-TUO Přednáška č.4 Tolerování Tolerování Pro sériovou a hromadnou výrobu je nutná zaměnitelnost a vyměnitelnost součástí strojů. Aby se mohla dodržet tato podmínka je nutné vyrobit součást

Více

PhDr. MILAN KLEMENT, Ph.D.

PhDr. MILAN KLEMENT, Ph.D. UNIVERZITA PALACKÉHO PEDAGOGICKÁ FAKULTA KATEDRA TECHNICKÉ A INFORMAČNÍ VÝCHOVY Sylabus přednášek do předmětu: Technická grafika PhDr. MILAN KLEMENT, Ph.D. OLOMOUC 2005 1. Technická normalizace Ve výrobě

Více

Strojní součásti, konstrukční prvky a spoje

Strojní součásti, konstrukční prvky a spoje Strojní součásti, konstrukční prvky a spoje Šroubové spoje Šrouby jsou nejčastěji používané strojní součástí a neexistuje snad stroj, kde by se nevyskytovaly. Mimo šroubů jsou u některých šroubových spojů

Více

6. přednáška z předmětu GIS1 Souřadnicové systémy a transformace mezi nimi

6. přednáška z předmětu GIS1 Souřadnicové systémy a transformace mezi nimi 6. přednáška z předmětu GIS1 Souřadnicové systémy a transformace mezi nimi Vyučující: Ing. Jan Pacina, Ph.D. e-mail: jan.pacina@ujep.cz Pro přednášku byly použity texty a obrázky od Ing. Magdaleny Čepičkové

Více

3.cvičení. k p = {X, Y } u(x, r 1 = XA ), v(y, r 1 = XA ) u v = {A, R} q = AR. 1. Bodem A kolmici: Zvolím bod X p k(a, r 1 = XA ),

3.cvičení. k p = {X, Y } u(x, r 1 = XA ), v(y, r 1 = XA ) u v = {A, R} q = AR. 1. Bodem A kolmici: Zvolím bod X p k(a, r 1 = XA ), 3.cvičení 1. Bodem A kolmici: Zvolím bod X p k(a, r 1 = XA ), k p = {X, Y } u(x, r 1 = XA ), v(y, r 1 = XA ) u v = {A, R} q = AR Bodem A rovnoběžku: Ještě jednu kolmici. Tři úhly, které je možno rozdělit

Více

Fakulta strojního inženýrství VUT v Brně Ústav konstruování. KONSTRUOVÁNÍ STROJŮ mechanismy. Přednáška 8

Fakulta strojního inženýrství VUT v Brně Ústav konstruování. KONSTRUOVÁNÍ STROJŮ mechanismy. Přednáška 8 Fakulta strojního inženýrství VUT v Brně Ústav konstruování KONSTRUOVÁNÍ STROJŮ mechanismy Přednáška 8 Převody s korigovanými ozubenými koly Obsah Převody s korigovanými ozubenými koly Výroba ozubení odvalováním

Více

Autodesk Inventor 8 vysunutí

Autodesk Inventor 8 vysunutí Nyní je náčrt posazen rohem do počátku souřadného systému. Autodesk Inventor 8 vysunutí Následující text popisuje vznik 3D modelu pomocí příkazu Vysunout. Vyjdeme z náčrtu na obrázku 1. Obrázek 1: Náčrt

Více

Výroba ozubených kol

Výroba ozubených kol Výroba ozubených kol obrábění tvarových (evolventních) ploch vícebřitým nástrojem patří k nejnáročnějším odvětvím strojírenské výroby speciální stroje, přesné nástroje Ozubená kola součásti pohybových

Více

Výukový materiál zpracován v rámci projektu EU peníze školám. Registrační číslo projektu: CZ.1.07/1.5.00/34.0767

Výukový materiál zpracován v rámci projektu EU peníze školám. Registrační číslo projektu: CZ.1.07/1.5.00/34.0767 Výukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.5.00/34.0767 Šablona: III/2 3. č. materiálu: VY_ 32_INOVACE_109 Jméno autora: Václav Hasman Třída/ročník:

Více

Sekční průmyslová vrata, typy kování

Sekční průmyslová vrata, typy kování Sekční průmyslová vrata, typy kování SID Typy kování vrat a jejich parametry S L S R LDB Pro zaměření montážního otvoru průmyslových vrat se měří následující parametry: Označení parametru Název parametru

Více

ŠKOLNÍ VZDĚLÁVACÍ PROGRAM

ŠKOLNÍ VZDĚLÁVACÍ PROGRAM Vyučovací předmět : Období ročník : Učební texty : Matematika 3. období 7. ročník J.Coufalová : Matematika pro 7.ročník ZŠ (Fortuna) O.Odvárko, J.Kadleček : Sbírka úloh z matematiky pro 7.ročník ZŠ (Prometheus)

Více

Výukový materiál zpracován v rámci projektu EU peníze školám

Výukový materiál zpracován v rámci projektu EU peníze školám Výukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.4.00/21.3476 Název materiálu: VY_42_INOVACE_181 Vzdělávací oblast: Matematika a její aplikace Vzdělávací

Více

Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009

Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 4.2.3. Valivá ložiska Ložiska slouží k otočnému nebo posuvnému uložení strojních součástí a k přenosu působících

Více

PODNIKOVÁ NORMA PN KP 4201. TVAROVANÉ / TRAPÉZOVÉ PLECHY z hliníku a slitin hliníku

PODNIKOVÁ NORMA PN KP 4201. TVAROVANÉ / TRAPÉZOVÉ PLECHY z hliníku a slitin hliníku PODNIKOVÁ NORMA PN KP 4201 TVAROVANÉ / TRAPÉZOVÉ PLECHY z hliníku a slitin hliníku Platnost od: 1. ledna 2016 Vydání č.: 1 Předmluva Citované normy ČSN EN ISO 6892-1 Kovové materiály Zkoušení tahem Část

Více

Seznámení s možnostmi Autodesk Inventoru 2012

Seznámení s možnostmi Autodesk Inventoru 2012 Název a adresa školy: Střední škola průmyslová a umělecká, Opava, příspěvková organizace, Praskova 399/8, Opava, 746 01 Název operačního programu: OP Vzdělávání pro konkurenceschopnost, oblast podpory

Více

. Základní měrky reference přesnosti

. Základní měrky reference přesnosti ß Měřící a orýsovací nástroje, zkoušečky. Základní měrky reference přesnosti Paralelní základní měrky se dodávají podle DIN EN ISO 3650 v následujících kalibračních/tolerančních třídách: 1. Kalibrační

Více

Integrovaná střední škola, Hlaváčkovo nám. 673, Slaný

Integrovaná střední škola, Hlaváčkovo nám. 673, Slaný Označení materiálu: VY_32_INOVACE_STEIV_FYZIKA1_17 Název materiálu: Kinetická teorie látek. Tematická oblast: Fyzika 1.ročník Anotace: Prezentace slouží k výuce struktury a vlastnosti látek, složení pevných,

Více

Mechanismy. Vazby členů v mechanismech (v rovině):

Mechanismy. Vazby členů v mechanismech (v rovině): Mechanismy Mechanismus klikový, čtyřkloubový, kulisový, západkový a vačkový jsou nejčastějšími mechanismy ve strojích (kromě převodů). Mechanismy obsahují členy (kliky, ojnice, těhlice, křižáky a další).

Více

Geometrická optika 1

Geometrická optika 1 Geometrická optika 1 Popis pomocí světelných paprsků těmi se šíří energie a informace, zanedbává vlnové vlastnosti světla světelný paprsek = přímka, podél níž se šíří světlo, jeho energie index lomu (základní

Více

1 NÁPRAVA De-Dion Představuje přechod mezi tuhou nápravou a nápravou výkyvnou. Používá se (výhradně) jako náprava hnací.

1 NÁPRAVA De-Dion Představuje přechod mezi tuhou nápravou a nápravou výkyvnou. Používá se (výhradně) jako náprava hnací. 1 NÁPRAVA De-Dion Představuje přechod mezi tuhou nápravou a nápravou výkyvnou. Používá se (výhradně) jako náprava hnací. Skříň rozvodovky spojena s rámem zmenšení neodpružené hmoty. Přenos točivého momentu

Více

Název: Osová souměrnost

Název: Osová souměrnost Název: Osová souměrnost Autor: Mgr. Lukáš Saulich Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy Předmět, mezipředmětové vztahy: matematika a její aplikace Ročník: 3. (1. ročník vyššího gymnázia)

Více

Ozubené řemeny XLH. Ozubené řemeny s palcovou roztečí. Provedení XL, L, H, XH, XXH. Konstrukční charakteristiky. Rozměrové charakteristiky

Ozubené řemeny XLH. Ozubené řemeny s palcovou roztečí. Provedení XL, L, H, XH, XXH. Konstrukční charakteristiky. Rozměrové charakteristiky XLH Provedení XL, L, H, XH, XXH Ozubené řemeny s palcovou roztečí Konstrukční charakteristiky Rozvodové řemeny se zuby na vnitřní straně jsou složeny z následujících částí a prvků viz obrázek: A) Tažné

Více

ČÁST PÁTÁ POZEMKY V KATASTRU NEMOVITOSTÍ

ČÁST PÁTÁ POZEMKY V KATASTRU NEMOVITOSTÍ ČÁST PÁTÁ POZEMKY V KATASTRU NEMOVITOSTÍ Pozemkem se podle 2 písm. a) katastrálního zákona rozumí část zemského povrchu, a to část taková, která je od sousedních částí zemského povrchu (sousedních pozemků)

Více

Průniky rotačních ploch

Průniky rotačních ploch Gymnázium Christiana Dopplera, Zborovská 45, Praha 5 ROČNÍKOVÁ PRÁCE Průniky rotačních ploch Vypracoval: Vojtěch Trnka Třída: 8. M Školní rok: 2012/2013 Seminář: Deskriptivní geometrie Prohlašuji, že jsem

Více

Cvičení 3 z předmětu CAD I PARAMETRICKÉ 3D MODELOVÁNÍ

Cvičení 3 z předmětu CAD I PARAMETRICKÉ 3D MODELOVÁNÍ Cvičení 3 z předmětu CAD I PARAMETRICKÉ 3D MODELOVÁNÍ Cílem cvičení je procvičení předchozích zkušeností tvorby modelu rotační součásti a využití rotačního pole naskicovaných prvků. Jak bylo slíbeno v

Více

Měření kruhovitosti/válcovitosti ROUNDTEST RA-2200

Měření kruhovitosti/válcovitosti ROUNDTEST RA-2200 Přístroje na měření tvaru Měření kruhovitosti/válcovitosti ROUNDTEST RA-2200 PRC 161 Měřicí systém kruhovitosti/válcovitosti, který nabízí nejvyšší přesnost ve své třídě, výjimečně snadné používání a multifunkční

Více

Vyhláška č. 294/2015 Sb., kterou se provádějí pravidla provozu na pozemních komunikacích

Vyhláška č. 294/2015 Sb., kterou se provádějí pravidla provozu na pozemních komunikacích Změny 1 vyhláška č. 294/2015 Sb. Vyhláška č. 294/2015 Sb., kterou se provádějí pravidla provozu na pozemních komunikacích a která s účinností od 1. ledna 2016 nahradí vyhlášku č. 30/2001 Sb. Umístění svislých

Více

EMOTIVE bezobložková zárubeň pro otočné dveře

EMOTIVE bezobložková zárubeň pro otočné dveře EMOTIVE bezobložková zárubeň pro otočné dveře Součástí dodávky zárubně jsou tyto komponenty : 1. Zazdívací rám : složený skládá se z 1 ks nadpraží, 2 ks bočnic 2. Rozpěrky : 2 ks na standardní průchozí

Více

5.2.1 Matematika povinný předmět

5.2.1 Matematika povinný předmět 5.2.1 Matematika povinný předmět Učební plán předmětu 1. ročník 2. ročník 3. ročník 6. ročník 7. ročník 8. ročník 9. ročník 4 4+1 4+1 4+1 4+1 4 4 3+1 4+1 Vzdělávací oblast Matematika a její aplikace v

Více

Č část četnost. 部 分 频 率 relativní četnost 率, 相 对 频 数

Č část četnost. 部 分 频 率 relativní četnost 率, 相 对 频 数 A absolutní člen 常 量 成 员 absolutní hodnota čísla 绝 对 值 algebraický výraz 代 数 表 达 式 ar 公 亩 aritmetický průměr 算 术 均 数 aritmetika 算 术, 算 法 B boční hrana 侧 棱 boční hrany jehlanu 角 锥 的 侧 棱 boční stěny jehlanu

Více

MECHANIKA TUHÉ TĚLESO

MECHANIKA TUHÉ TĚLESO Projekt Efektivní Učení Reformou oblastí gymnaziálního vzělávání je spolufinancován Evropským sociálním fonem a státním rozpočtem České republiky. Implementace ŠVP MECHANIKA TUHÉ TĚLESO Učivo - Tuhé těleso

Více

SYLABUS 5. PŘEDNÁŠKY Z INŽENÝRSKÉ GEODÉZIE

SYLABUS 5. PŘEDNÁŠKY Z INŽENÝRSKÉ GEODÉZIE SYLABUS 5. PŘEDNÁŠKY Z INŽENÝRSKÉ GEODÉZIE (Měření a vytyčování úhlů a svislic) 3. ročník bakalářského studia studijní program G studijní obor G doc. Ing. Jaromír Procházka, CSc. listopad 2015 1 5. ÚHLOVÉ

Více

Poznámka 1: Každý příklad začneme pro přehlednost do nového souboru tímto krokem:

Poznámka 1: Každý příklad začneme pro přehlednost do nového souboru tímto krokem: Mongeovo promítání základní úlohy metrické (skutečná velikost úsečky - sklápění, kolmice k rovině, vzdálenost bodu od roviny, vzdálenost bodu od přímky, rovina kolmá k přímce, otáčení roviny, trojúhelník

Více

Učební osnovy Vzdělávací oblast: Matematika a její aplikace Vzdělávací obor: Volitelný předmět Matematický seminář ročník 8.

Učební osnovy Vzdělávací oblast: Matematika a její aplikace Vzdělávací obor: Volitelný předmět Matematický seminář ročník 8. Učební osnovy Vzdělávací oblast: Matematika a její aplikace Vzdělávací obor: Volitelný předmět Matematický seminář ročník 8. Výuka matematického semináře bude probíhat jednou týdně v dvouhodinovém bloku.

Více

Souřadnicové soustavy (systémy) na území naší republiky Klady a rozměry mapových listů velkých a středních měřítek. Kartografie.

Souřadnicové soustavy (systémy) na území naší republiky Klady a rozměry mapových listů velkých a středních měřítek. Kartografie. Souřadnicové soustavy (systémy) na území naší republiky Klady a rozměry mapových listů velkých a středních měřítek Kartografie přednáška 4 Souřadnicové systémy na území ČR každý stát nebo skupina států

Více

Podniková norma energetiky pro rozvod elektrické energie ŽELEZOBETONOVÉ PATKY PRO DŘEVĚNÉ SLOUPY VENKOVNÍCH VEDENÍ DO 45 KV

Podniková norma energetiky pro rozvod elektrické energie ŽELEZOBETONOVÉ PATKY PRO DŘEVĚNÉ SLOUPY VENKOVNÍCH VEDENÍ DO 45 KV Podniková norma energetiky pro rozvod elektrické energie REAS ČR, ZSE ŽELEZOBETONOVÉ PATKY PRO DŘEVĚNÉ SLOUPY VENKOVNÍCH VEDENÍ DO 45 KV PNE 34 8211 Odsouhlasení normy Konečný návrh podnikové normy energetiky

Více

info@novingrosty.cz 420 595 782 426 NOVING ROŠTY s.r.o. Na Baštici 168, 738 01 Staré Město, okres Frýdek-Místek Tel./ fax: 595 782 425-6

info@novingrosty.cz 420 595 782 426 NOVING ROŠTY s.r.o. Na Baštici 168, 738 01 Staré Město, okres Frýdek-Místek Tel./ fax: 595 782 425-6 info@novingrosty.cz 420 595 782 426 TAHOKOVOVÉ PODLAHOVÉ ROŠTY A SCHODIŠŤOVÉ STUPNĚ ČSN EN ISO 9001:2001 www.novingrosty.cz NOVING ROŠTY s.r.o. Na Baštici 168, 738 01 Staré Město, okres Frýdek-Místek Tel./

Více

SM 23 STROJNÍ VÝROBA JEDNODUCHÝCH SOUČÁSTÍ

SM 23 STROJNÍ VÝROBA JEDNODUCHÝCH SOUČÁSTÍ SM 23 STROJNÍ VÝROBA JEDNODUCHÝCH SOUČÁSTÍ část původního dokumentu (původní text viz Obnova a modernizace technických oborů v Olomouckém kraji, registrační číslo CZ.1.07/1.1.04/02.0071) NÁVRH JEDNODUCHÝCH

Více

Instrukce Měření umělého osvětlení

Instrukce Měření umělého osvětlení Instrukce Měření umělého osvětlení Označení: Poskytovatel programu PT: Název: Koordinátor: Zástupce koordinátora: Místo konání: PT1 UO-15 Zdravotní ústav se sídlem v Ostravě, Centrum hygienických laboratoří

Více

STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJÍRENSKÁ a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191. Obor 23-41-M/01 STROJÍRENSTVÍ

STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJÍRENSKÁ a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191. Obor 23-41-M/01 STROJÍRENSTVÍ STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJÍRENSKÁ a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191 Obor 23-41-M/01 STROJÍRENSTVÍ 1. ročník TECHNICKÉ KRESLENÍ KRESLENÍ SOUČÁSTÍ A SPOJŮ 2 LOŽISKA

Více

doc. Dr. Ing. Elias TOMEH e-mail: elias.tomeh@tul.cz

doc. Dr. Ing. Elias TOMEH e-mail: elias.tomeh@tul.cz doc. Dr. Ing. Elias TOMEH e-mail: elias.tomeh@tul.cz Elias Tomeh / Snímek 1 Nevyváženost rotorů rotačních strojů je důsledkem změny polohy (posunutí, naklonění) hlavních os setrvačnosti rotorů vzhledem

Více

2.1.7 Zrcadlo I. Předpoklady: 020106. Pomůcky: zrcadla, laser, rozprašovač, bílý a černý papír, velký úhloměr

2.1.7 Zrcadlo I. Předpoklady: 020106. Pomůcky: zrcadla, laser, rozprašovač, bílý a černý papír, velký úhloměr 2.1.7 Zrcadlo I ředpoklady: 020106 omůcky: zrcadla, laser, rozprašovač, bílý a černý papír, velký úhloměr ř. 1: Nakresli dva obrázky. Na prvním zachyť, jak vidíme vzdálené předměty, na druhém jak vidíme

Více

Všeobecně lze říci, že EUCOR má několikanásobně vyšší odolnost proti otěru než tavený čedič a řádově vyšší než speciální legované ocele a litiny.

Všeobecně lze říci, že EUCOR má několikanásobně vyšší odolnost proti otěru než tavený čedič a řádově vyšší než speciální legované ocele a litiny. KATALOGOVÝ LIST E-02 A. CHARAKTERISTIKA EUCOR je obchodní označení korundo-baddeleyitového materiálu, respektive odlitků, vyráběných tavením vhodných surovin v elektrické obloukové peci, odléváním vzniklé

Více

Tématická oblast Programování CNC strojů a CAM systémy Příprava součásti pro obrábění

Tématická oblast Programování CNC strojů a CAM systémy Příprava součásti pro obrábění Číslo projektu CZ.1.07/1.5.00/34.0556 Číslo materiálu VY_32_INOVACE_VC_CAM_11 Název školy Střední průmyslová škola a Vyšší odborná škola Příbram, Hrabákova 271, Příbram II Autor Martin Vacek Tématická

Více

VY_32_INOVACE_241_Konstrukční spoje_pwp

VY_32_INOVACE_241_Konstrukční spoje_pwp Číslo projektu Číslo materiálu Název školy Autor CZ.1.07/1.5.00/34.0880 VY_32_INOVACE_241_Konstrukční spoje_pwp Střední odborná škola a Střední odborné učiliště Česká Lípa, 28. října 2707, příspěvková

Více

Předepisování přesnosti rozměrů, tvaru a polohy

Předepisování přesnosti rozměrů, tvaru a polohy Předepisování přesnosti rozměrů, tvaru a polohy Geometrické tolerance Na správné funkci součásti se kromě přesnosti rozměrů a jakosti povrchu významně podílí také geometricky přesný tvar funkčních ploch.

Více

DUM 02 téma: Popisové pole na výrobním výkrese

DUM 02 téma: Popisové pole na výrobním výkrese DUM 02 téma: Popisové pole na výrobním výkrese ze sady: 03 tematický okruh sady: Kreslení výrobních výkres ze šablony: 04_Technická dokumentace Ur eno pro :1. ro ník vzd lávací obor: 26-41-M/01 Elektrotechnika

Více

Řešené příklady z OPTIKY II

Řešené příklady z OPTIKY II Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 Řešené příklady z OPTIKY II V následujícím článku uvádíme několik vybraných příkladů z tématu Optika i s uvedením

Více

MONTÁŽNÍ A UŽIVATELSKÝ NÁVOD SPRCHOVÝ KOUT PREMIUM PSDKR 1/90 S

MONTÁŽNÍ A UŽIVATELSKÝ NÁVOD SPRCHOVÝ KOUT PREMIUM PSDKR 1/90 S 763 64 Spytihněv č.p. 576, okres Zlín tel.:+420 577 110 311, fax:+420 577 110 315 teiko@teiko.cz; www.teiko.cz zelená linka 800 100 050 MONTÁŽNÍ A UŽIVATELSKÝ NÁVOD SPRCHOVÝ KOUT PREMIUM PSDKR 1/90 S ver.

Více

Vysoce pružné spojky typu SET 100; 132; 200; 250; 315; 500; 750kW. s možností montáže brzdy

Vysoce pružné spojky typu SET 100; 132; 200; 250; 315; 500; 750kW. s možností montáže brzdy Kapitálová skupina Fasing Vysoce pružné spojky typu SET 100; 132; 200; 250; 315; 500; 750kW s možností montáže brzdy INFORMÁTOR NÁVOD K OBSLUZE A OPRAVÁM KATALOG SOUČÁSTÍ Vydání 2011 I M2 c KOPIE ORIGINÁLU

Více

Matematika. Charakteristika vyučovacího předmětu. Výchovné a vzdělávací strategie pro rozvíjení klíčových kompetencí žáků

Matematika. Charakteristika vyučovacího předmětu. Výchovné a vzdělávací strategie pro rozvíjení klíčových kompetencí žáků Vzdělávací obor: Matematika a její aplikace Matematika Obsahové, časové a organizační vymezení Charakteristika vyučovacího předmětu 1.-2. ročník 4 hodiny týdně 3.-5. ročník 5 hodin týdně Vzdělávací obsah

Více

Dveře plné ocelové falcované/ s polodrážkou s požární odolností EW 30 DP1

Dveře plné ocelové falcované/ s polodrážkou s požární odolností EW 30 DP1 OBSAH : Úvod, kontakty 1. Charakteristika a použití 2. Standardní rozměry 3. Popis standardního provedení 4. Technické parametry 5. Nadstandardní provedení za příplatek 6. Stavební příprava 7. Záruční

Více

MONTÁŽNÍ NÁVOD DELTA DESIGN PLECHOVÉ KAZETY, LAMELY A TRAPÉZY

MONTÁŽNÍ NÁVOD DELTA DESIGN PLECHOVÉ KAZETY, LAMELY A TRAPÉZY MONTÁŽNÍ NÁVOD DELTA DESIGN PLECHOVÉ KAZETY, LAMELY A TRAPÉZY VŠEOBECNĚ PRACOVNÍ POSTUP 1. Projektová dokumentace zpracovává se na základě dokumentace skutečného provedení stavby - dodá investor, nebo

Více

70 350 x 110 10H7 6,5 4622260 70 500 x 110 10H7 9,5 4622261 120 700 x 180 12H7 30 4622262

70 350 x 110 10H7 6,5 4622260 70 500 x 110 10H7 9,5 4622261 120 700 x 180 12H7 30 4622262 8-6 Zařízení pro kontrolu obvodového házení 818 Pro rychlou a jednoduchou kontrolu obvodového házení Měřicí deska: Rovinnost dosedací plochy dle DIN 876/1 2 T-drážky pro upevnění upínacích koníků popř.

Více

DLAŽBA PLOŠNÁ HLADKÁ povrch Standard

DLAŽBA PLOŠNÁ HLADKÁ povrch Standard TECHNICKÝ LIST BETONOVÉ DLAŽEBNÍ DESKY DLAŽBA PLOŠNÁ HLADKÁ povrch Standard Dlaždice 30/30; Dlaždice 40/40; Dlaždice 50/50 betonové dlažební desky na bázi cementu a plniva (kameniva) modifikované zušlechťujícími

Více

Učební texty Montáže - Rozebiratelné a nerozebiratelné spoje

Učební texty Montáže - Rozebiratelné a nerozebiratelné spoje Předmět: Ročník: Vytvořil: Datum: Praxe 2 Fleišman Luděk 29.5.2012 Název zpracovaného celku: Učební texty Montáže - Rozebiratelné a nerozebiratelné spoje Rozebiratelné spoje Def.: Spoje, které lze rozebrat

Více

Ústav stavebního zkušebníctví Zkušební laboratoř Jiřího Potůčka 115, 530 09 Pardubice ČSN EN 12390-7 ČSN EN 1097-5 ČSN EN 12504-1 ČSN 73 1322

Ústav stavebního zkušebníctví Zkušební laboratoř Jiřího Potůčka 115, 530 09 Pardubice ČSN EN 12390-7 ČSN EN 1097-5 ČSN EN 12504-1 ČSN 73 1322 Zkoušky: List 1 z 5 1 * Zkouška konzistence - zkouška sednutím 2 * Zkouška konzistence - zkouška rozlitím 3 * Zkouška objemové hmotnosti 4 * Zkouška obsahu vzduchu. Tlaková metoda 5 Zkouška pevnosti v

Více

Fakulta bezpečnostního inženýrství Vysoká škola báňská Technická univerzita Ostrava Tunely Požární bezpečnost část B2

Fakulta bezpečnostního inženýrství Vysoká škola báňská Technická univerzita Ostrava Tunely Požární bezpečnost část B2 Fakulta bezpečnostního inženýrství Vysoká škola báňská Technická univerzita Ostrava Tunely Požární bezpečnost část B2 Ostrava, 2013 Ing. Isabela Bradáčová, Ing. Petr Kučera, Ph.D. Osnova bloku B Bezpečnostní

Více

Měření prostorové průchodnosti tratí

Měření prostorové průchodnosti tratí Štefan Mayerberger, Vít Bureš Klíčové slovo: průchodnost tratí. Cíl projektu Měření prostorové průchodnosti tratí Ve firmě ROT-HSware spol. s r.o. ve spolupráci s Výzkumným ústavem železničním, pracoviště

Více

BRICSCAD V13. Přímé modelování

BRICSCAD V13. Přímé modelování BRICSCAD V13 Přímé modelování Protea spol. s r.o. Makovského 1339/16 236 00 Praha 6 - Řepy tel.: 235 316 232, 235 316 237 fax: 235 316 038 e-mail: obchod@protea.cz web: www.protea.cz Copyright Protea spol.

Více

1. Popis... 3. 2. Provedení... 3 III. TECHNICKÉ ÚDAJE 6. 4. Základní parametry... 6 IV. ÚDAJE PRO OBJEDNÁVKU 6 V. MATERIÁL, POVRCHOVÁ ÚPRAVA 6

1. Popis... 3. 2. Provedení... 3 III. TECHNICKÉ ÚDAJE 6. 4. Základní parametry... 6 IV. ÚDAJE PRO OBJEDNÁVKU 6 V. MATERIÁL, POVRCHOVÁ ÚPRAVA 6 Tyto technické podmínky stanoví řadu vyráběných velikostí a provedení krycích mřížek (dále jen mřížek) KMM. Platí pro výrobu, navrhování, objednávání, dodávky, montáž a provoz. I. OBSAH II. VŠEOBECNĚ 3

Více

Návrh opevnění. h s. h min. hmax. nános. r o r 2. výmol. Obr. 1 Definice koryta v oblouku z hlediska topografie dna. Vztah dle Apmanna B

Návrh opevnění. h s. h min. hmax. nános. r o r 2. výmol. Obr. 1 Definice koryta v oblouku z hlediska topografie dna. Vztah dle Apmanna B Topografie dna v oblouku. Stanovení hloubky výmolu v konkávní části břehu a nánosu v konvexní části břehu. Výpočet se provádí pro stejný průtok, pro nějž byla stanovena odolnost břehů, tj. Q 20. Q 20 B

Více

Dřevoobráběcí stroje. Quality Guide. Vyhodnocení nástrojů

Dřevoobráběcí stroje. Quality Guide. Vyhodnocení nástrojů Dřevoobráběcí stroje Quality Guide Vyhodnocení nástrojů 2 PrůVoDce kvalitou Vyhodnocení nástrojů Dávno jsou pryč doby, kdy se nástroje od sebe výrazně odlišovali kvalitou a vzhledem provedení. V současnosti

Více

TECHNICKÝ LIST BETONOVÉ TVÁRNICE

TECHNICKÝ LIST BETONOVÉ TVÁRNICE TECHNICKÝ LIST BETONOVÉ TVÁRNICE BETONOVÁ CIHLA Cihla betonová cihla na bázi cementu a plniva (kameniva) modifikované zušlechťujícími přísadami s povrchovou úpravou History povrchová úprava History vzniká

Více

MANUÁL PRO HODNOCENÍ OTEVŘENÝCH TESTOVÝCH ÚLOH MATEMATIKA SADA B (TEST PRO PŘIJÍMACÍ ZKOUŠKY DO 8LETÉHO GYMNÁZIA)

MANUÁL PRO HODNOCENÍ OTEVŘENÝCH TESTOVÝCH ÚLOH MATEMATIKA SADA B (TEST PRO PŘIJÍMACÍ ZKOUŠKY DO 8LETÉHO GYMNÁZIA) PH-M5MBCINT MANUÁL PRO HODNOCENÍ OTEVŘENÝCH TESTOVÝCH ÚLOH MATEMATIKA SADA B (TEST PRO PŘIJÍMACÍ ZKOUŠKY DO 8LETÉHO GYMNÁZIA) 1. TYPY TESTOVÝCH ÚLOH V TESTU První dvě úlohy (1 2) jsou tzv. úzce otevřené

Více

OPTIMUM M A S C H I N E N - G E R M A N Y

OPTIMUM M A S C H I N E N - G E R M A N Y www.1bow.cz tel. 585 378 012 OPTIMUM Návod k obsluze Verze 1.1 Dělící hlava TA 125 Návod pečlivě uschovejte pro další použití! OPTIMUM Dělící hlava 1 Rozsah aplikací Dělící hlava TA 125 se používá jako

Více

Antény. Zpracoval: Ing. Jiří. Sehnal. 1.Napájecí vedení 2.Charakteristické vlastnosti antén a základní druhy antén

Antény. Zpracoval: Ing. Jiří. Sehnal. 1.Napájecí vedení 2.Charakteristické vlastnosti antén a základní druhy antén ANTÉNY Sehnal Zpracoval: Ing. Jiří Antény 1.Napájecí vedení 2.Charakteristické vlastnosti antén a základní druhy antén Pod pojmem anténa rozumíme obecně prvek, který zprostředkuje přechod elektromagnetické

Více

Základní prvky a všeobecná lyžařská průprava

Základní prvky a všeobecná lyžařská průprava Základní prvky a všeobecná lyžařská průprava Základní prvky a všeobecná lyžařská průprava na běžeckých lyžích Základními prvky nazýváme prvky elementární přípravy a pohybových dovedností, jejichž zvládnutí

Více

SYLABUS PŘEDNÁŠKY 6b Z INŽENÝRSKÉ GEODÉZIE (Polohové vytyčování) 4. ročník bakalářského studia studijní program G studijní obor G

SYLABUS PŘEDNÁŠKY 6b Z INŽENÝRSKÉ GEODÉZIE (Polohové vytyčování) 4. ročník bakalářského studia studijní program G studijní obor G SYLABUS PŘEDNÁŠKY 6b Z INŽENÝRSKÉ GEODÉZIE (Polohové vytyčování) 4. ročník bakalářského studia studijní program G studijní obor G říjen 2014 1 1O POLOHOVÉ VYTYČOVÁNÍ Pod pojem polohového vytyčování se

Více

1.7. Mechanické kmitání

1.7. Mechanické kmitání 1.7. Mechanické kmitání. 1. Umět vysvětlit princip netlumeného kmitavého pohybu.. Umět srovnat periodický kmitavý pohyb s periodickým pohybem po kružnici. 3. Znát charakteristické veličiny periodického

Více

HERZ svěrné šroubení pro ocelové a měděné trubky

HERZ svěrné šroubení pro ocelové a měděné trubky HERZ svěrné pro ocelové a měděné trubky Technický list pro 6273 6292 Vydání AUT 0406 Vydání CZ 0608 5151 M 22 1,5 15 mm Svěrný kroužek, gumové těsnění (EPDM) na potrubí, svěrná matice M 22 1,5. Provedení

Více

3.5.8 Otočení. Předpoklady: 3506

3.5.8 Otočení. Předpoklady: 3506 3.5.8 Otočení Předpoklady: 3506 efinice úhlu ze základní školy: Úhel je část roviny ohraničená dvojicí polopřímek se společným počátečním bodem (konvexní a nekonvexní úhel). Nevýhody této definice: Nevíme,

Více

Téma, učivo Rozvíjené kompetence, očekávané výstupy Mezipředmětové vztahy Opakování učiva 2. ročníku Sčítání a odčítání oboru do 100

Téma, učivo Rozvíjené kompetence, očekávané výstupy Mezipředmětové vztahy Opakování učiva 2. ročníku Sčítání a odčítání oboru do 100 VZDĚLÁVACÍ OBLAST: VZDĚLÁVACÍ OBOR: PŘEDMĚT: MATEMATIKA A JEJÍ APLIKACE MATEMATIKA MATEMATIKA 3. ROČNÍK Téma, učivo Rozvíjené kompetence, očekávané výstupy Mezipředmětové vztahy Opakování učiva 2. ročníku

Více

VY_32_INOVACE_253_Konstrukční spoje_pwp

VY_32_INOVACE_253_Konstrukční spoje_pwp Číslo projektu Číslo materiálu Název školy Autor CZ.1.07/1.5.00/34.0880 VY_32_INOVACE_253_Konstrukční spoje_pwp Střední odborná škola a Střední odborné učiliště Česká Lípa, 28. října 2707, příspěvková

Více

Technické a materiálové požadavky pro technickoprovozni evidenci vodních toků v. 2011_02

Technické a materiálové požadavky pro technickoprovozni evidenci vodních toků v. 2011_02 Geodetická data 1.1 Základní zásady V rámci zpracování TPE jsou pořizována geodetická data, z nichž lze následně vycházet při výpočtu záplavových území, studií odtokových poměrů a ostatních činností při

Více