Využití zrcadel a čoček

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Využití zrcadel a čoček"

Transkript

1 Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/ Využití zrcadel a čoček V tomto článku uvádíme několik základních přístrojů, které vužívají spojných či rozptylných čoček a zrcadel a pojednání o těchto optických přístrojích. 1. Brýle - jsou pomůckou pro korekci vidění, případně pro ochranu zraku. Brýle obvykle sestávají z pevné obruby, do které jsou upevněny buď čočky umístěné před očima člověka pro vizuální korekci (dioptrické brýle) nebo průhledné zornice pro oční ochranu. Moderní brýle jsou obvykle posazeny plastovými sedýlky na nosu a stranicemi s obvykle plastovými koncovkami za boltce uší, které by měly kopírovat. Dioptrické brýle slouží ke korekci krátkozrakosti nebo dalekozrakosti, případně v kombinaci s korekcí vad oka jako je například astigmatismus. Míra korekce vidění čočkami se vyjadřuje prostřednictvím optické mohutnosti v dioptriích. Dioptrické brýle V případě dioptrických brýlí se rozlišují čočky: pro korekci krátkozrakosti, pro korekci dalekozrakosti, cylindrické čočky mají různou úroveň korekce v různých rovinách, bifokální a multifokální mají různou lámavost v různých místech čoček. Obvykle mají v dolní části skel spojky pro čtení a v horní části slabší spojky nebo rozptylky pro vidění do dálky. pro korekci tupozrakosti (horší vnímání detailů v dáli). Ochranné brýle Ochranné brýle chrání zrak před poškozením, buď mechanickým (např. před odštěpky odletujícími při obrábění materiálů), nebo zářením (např. před ultrafialovým) nebo i tepelným (např. v hutnictví). Motoristické brýle chrání jezdce na motocyklu před rychlým či prudkým proudem vzduchu, který způsobuje slzení, a před létajícím hmyzem. Potápěčské brýle a brýle pro sportovní plavání oddělují očí od vodního prostředí a tím je chrání a zajišťují ostré

2 Sluneční brýle Jsou to vlastně ochranné brýle, které mají začerněné skla aby chránily oči před jasným slunečním světlem, proto se často využívají při opalovaní (v létě nebo na pláži u moře). Speciální brýle Speciální brýle se používají ke sledování 3-D filmů či kreseb, nebo pro vyvolání dojmu virtuální reality. Tyto brýle zajišťují, aby každé oko mohlo sledovat samostatný obraz. Dosahuje se toho buď odlišnými barvami skel (červená a zelená nebo modrá výsledný obraz je pak zdánlivě černobílý) nebo tím, že skla fungují jako polarizační filtry s kolmými rovinami polarizace (zde není žádné omezení na barevnost). Tento systém používají například 3-D kina Imax. 2. Mikroskop První mikroskop jehož základem byly čočky, sestrojili roku 1590 otec a syn Jensenovi, brusiči skla a diamantů.pro svou nepatrnou zvětšovací a rozlišovací schopnost nebylo možno tohoto přístroje používat k vědecké práci. Pak ho ale využil a zdokonalil čalouník, později optik z Delftu, Antonio van Leeuwenhoek ( ).Vytvořil základy nejen mikroskopické techniky,ale ve skutečnosti i základy mikrobiologie jako samostatné vědy. Svými 247 mikroskopy objevil oběh krve v kapilárách, živorodost mšic, jako první spatřil svoje spermie, našel v krvi červené krvinky. Jednoho dne si setřel povlak ze zubů a v něm pod mikroskopem objevil bakterie tvořící shluky a řetězce. Lékaři si mysleli, že tyto bakterie se rodí z hnijícího masa, stejně jako že hnijící maso plodí červy (tzv. teorie samoplození). Ale Francesco Redi ( ) syrové maso zakryl, zamezil tak přístup mouchám a odstranil tak larvy much. Optickou teorii mikroskopu vytvořil kolem roku německý fyzik E.Abbe..Ve svém dalším velmi živém vývoji se stal mikroskop nepostradatelným prostředkem poznání nejen ve vědách biologických,ale i přírodních a technických. Popis mikroskopu Chceme-li zřetelně vidět malý předmět,přibližujeme ho k oku.zvětšujeme tak zorný úhel pozorovaného předmětu a předmět se jeví zdánlivě větší.při pohledu pouhým okem však předmět nemůžeme přiblížit na vzdálenost menší než 25cm od oka(u zdravého oka).je-li předmět blíže,vidíme nezřetelně,rozmazaně.proto nám ke nezvětšení malého nebo nepatrného předmětu slouží mikroskop,který může zvětšovat dvoutisíckrát až třítisíckrát.mikroskop pracuje na principu zvětšení zorného úhlu,které nám pomocí čoček nebo zrcadel umožní zřetelně si prohlédnout malé předměty. Mikroskop se skládá z: Optické soustavy Osvětlovací soustavy Mechanického zařízení Optická soustava je složena ze tří hlavních součástí:

3 Objektiv vytváří zvětšený,skutečný a převrácený obraz předmětu,který se klade za jeho předmětové ohnisko ve vzdálenosti optické délky-d od obrazového ohniska. Okulár umožňuje pozorování obrazu pouhým okem. Předmětem pro okulár se stává obraz vytvořený objektivem.okulár tento obraz mění na zvětšený,převrácený a zdánlivý.pro běžné pozorování se u mikroskopu využívá okuláru Huygensova-okulár je složen ze dvou ploskovypuklých čoček,obrácených rovinnými plochami k oku. První z obou čoček, bližší k oku, se nazývá čočka oční, druhá má název kolektiv V měřicích mikroskopech se často užívá okuláru Ramsdenova. Pro náročnější účely se užívá složitějších typů okulárů např. okuláry periplantické nebo ortoskopické Pro měřicí úkoly se kromě již popsaných okulárních mikrometrů často používají tzv. měřicí okuláry,které dovolují použít většího zvětšení a zorného pole. Tubus - nastavuje vzájemné polohy objektivu a okuláru (veličina D optická délka /interval mikroskopu) Optická délka tubusu leží obvykle v rozmezí hodnot 150 až 200 mm. Konstrukce optických soustav také závisí na způsobu využití mikroskopu: Pro pozorování - jedním okem - monokulární mikroskopy - oběma očima - binokulární mikroskopy - jsou výhodnější, protože při pozorování oběma očima dochází k menší únavě Osvětlovací soustava - zajišťuje osvětlení pozorovaného předmětu: Mikroskopem můžeme pozorovat předměty průhledné i neprůhledné. V prvním případě se předmět osvětluje procházejícím světlem a v druhém případě světlem odraženým. Konstrukce osvětlovací soustavy závisí zřejmě na tom, k jakému druhu pozorování bude mikroskop použit. Především záleží na tom, půjde-li o pozorování v procházejícím nebo v odraženém světle. Kromě toho je v obou případech možné konstruovat osvětlovací soustavu pro práci v tmavém nebo ve světlém poli. Velmi často jsou mikroskopy zařízeny pro práci v polarizovaném světle(světelné vlny kmitají obvykle ve všech směrech kolmých na jejich směr šíření), v takovém případě bývají osvětlovací soustavy vybaveny polarizátorem(snižuje oslnění vyvolané rozptýleným nebo odraženým světlem.). Pro náročnější účely se k osvětlení preparátu využívá především umělých zdrojů, které bývají většinou malých rozměrů. kreslící zařízení - slouží k praktickému měření zvětšení mikroskopu přímou metodou (někdy se dodává jako příslušenství mikroskopu). - skládá se ze skleněné krychle složené ze dvou pravoúhlých hranolů a z rovinného zrcadla. Krychle je vsazena v objímce, která se nasadí na tubus mikroskopu tak, aby krychle byla umístěna před okulárem. Pomocí kreslicího zařízení je možné současně pozorovat obraz předmětu vytvořený mikroskopem a list papíru položený vedle mikroskopu. Vhodný poměr jasů obou obrazů bývá možné dosáhnout pomocí některého filtru, jimiž bývá zařízení vybaveno. Druhy mikroskopů Optický mikroskop je mikroskop, v němž je obraz zvětšován dvěma sadami spojných čoček:objektivem a okulárem. V biologii se pro účely optické mikroskopie užívají objektivy různé síly, tj. různé zvětšovací schopnosti ; okulár již jen zvětšuje obraz vržený objektivem.. Fluorescenční mikroskop - používá se zde ultrafialových paprsků, z elektrických obloukových lamp nebo ze rtuťových výbojek, které vyvolají světélkování předmětu v mikroskopu. Při osvětlení předmětu světlem, které nedopadá do objektivu, lze mikroskopem pozorovat částice průměru asi setiny mikronu, avšak nelze rozeznat jejich tvar.. Ultramikroskop - zkonstruoval v roce 1903 H. Siedentopf a R. Zsigmondy. Pro zobrazení ještě menších částic je třeba použít místo světelných paprsků proudu elektronů, které se uvolňují ze žhavých kovů uvedených na záporný potenciál. Proud elektronů prochází elektr. n. magnet. čočkami, tj. elektr. n. magnet. polem, které umožňuje měnit směr pohybu

4 elektronů. Elektronový mikroskop - pracuje s proudem elektronů ve vakuu. Proud elektronů -záření velmi malé vlnové délky. Rastrovací elektronový mikroskop - pracuje tak, že na vzorek dopadá tenký svazek elektronů, který dopadá postupně na všechna místa vzorku. Odražený (emitovaný) paprsek se převádí na viditelný obraz. viditelný obraz se vytváří na fluorescenčním stínítku Mikroskop interferenční - využívá se zejména v technické praxi, např. ve strojírenství. Polarizační mikroskop - je určen pro studium optických vlastností krystalů. Tento mikroskop má v osvětlovacím zařízení a v tubusu zařazeno dvojí polarizační zařízení, které je otočné kolem optické osy. Stereoskopické mikroskopy - dávají plastický obraz. Mikromanipulátor - umožňuje operaci na buňkách za pomoci speciálních zařízení (mikrochirurgie). 3. Fotoaparát Základem každého fotoaparátu je objektiv. Je to jedna z nejdůležitějších součástí fotoaparátu, která umožňuje vytvořit obraz předmětů umístěných před objektivem. Dá se říci, že je to něco jako oko fotoaparátu. Objektiv má hlavní vliv na kvalitu obrazu zobrazeného na snímací čip či film. Jeho důležitost tak nelze nijak opomíjet. Není však jediným parametrem kvality a vzhledu výsledného snímku. Tu též ovlivňuje snímací čip nebo film a následné vlastní zpracování obrazu a vytvoření snímku. Přesto je objektiv prvním a hlavním vlivem, jež určuje, jak kvalitní snímek mohu pořídit. Stává se tak zásadní a jednou z nejdůležitějších součástí fotoaparátu vůbec. Vlastní objektiv je však složen z několika čoček sestavených do jednotlivých skupin, které mohou mít nejen různé tvary a velikosti, ale často jsou i z různých materiálů (skel) s různým indexem lomu. Jsou sestaveny v optické ose objektivu, takzvaně opticky centrované. Navíc se během ostření či zoomování (změně ohniskové vzdálenosti) pohybují.

5 4. Dalekohled Dalekohled je optický přístroj vynalezen na počátku 17. století sloužící k pozorování vzdálených předmětů. První dalekohled vůbec, byl vytvořen holandským výrobcem brýlí Hansem Lippersheyem, který při prohlížení dvou čoček zcela náhodně objevil jejich zvětšovací schopnost. Jeho dalekohled však nebyl příliš výkonný. Za skutečného objevitele zvětšovacího přístroje je považován italský fyzik, astronom a matematik, Galileo Galilei. Ten stejně jako Lippershey použil k zvětšování dvou čoček. Každý dalekohled těchto parametrů, tedy ve kterém jsou použity jen čočky, se nazývá refraktor. Tento termín vychází z principu lomu světla na skle, tedy refrakce. Galilei použil ve svém dalekohledu soustavu jedné spojky a jedné rozptylky. Spojku použil jako objektiv a umístil ji dopředu dalekohledu. Druhá čočka se nazývá okulár a tedy v Galileiho dalekohledu jej představovala rozptylka. Takto sestavený přístroj vytvářel vzpřímený, 33 krát zvětšený obraz. Galilei tento dalekohled používal především k astronomickým pozorováním. Ke stejným účelům vyrobil svůj dalekohled také německý astronom Johannes Kepler. Na rozdíl od Itala však použil dvou spojek. Objektiv vytváří obraz v ohnisku mezi nimi a druhá spojka okulár, tento obraz zvětšuje. Takto vytvořený obraz je však převrácený. Nehodí se tedy pro běžné pozemní pozorování. Je určen výhradně k astronomickým účelům. Dalekohledy určené k pozemskému pozorování se nazývají terestrické. I z refraktoru je možno přidáním třetí čočky vytvořit dalekohled tohoto typu. Největší refraktore na Zemi se nachází v Yerkesově observatoři ve Wisconsinu. Je přes 18 metrů dlouhý a jeho objektiv měří 1 metr. Hlavní nevýhodou prvních refraktorů spočívala v tom, že byl obraz na okrajích zbarven. Tato tzv. barevná vada vzniká tím, že při průchodu bílého světla čočkou nastává kromě lomu také rozklad jako na optickém hranolu. Tuto vadu lze odstranit a dnešní refraktory používají soustavu čoček, které již zmiňovanou vadu nemají. Delší pozorování dalekohledem je pro jedno oko značně únavné. Proto se používají dalekohledy pro obě oči tzv. binokulární dalekohledy. Nejrozšířenější dalekohled tohoto typu se nazývá triedr. Je složen ze dvou Keplerových dalekohledů. Obraz do vzpřímené polohy převrací dvojice hranolů. Kukátko nebo jednoduché polní dalekohledy se skládají ze dvou dalekohledů Galileova typu. Jejich zvětšovací schopnost je značně malá. V dnešní době je zvětšovací schopnost čočkových dalekohledů nedostatečná, jejich obraz je nezřetelný a málo ostrý a kromě toho je výroba velkých čoček značně komplikovaná a nákladná. Proto se používají tzv. reflektory, což jsou dalekohledy zrcadlové. První dalekohled tohoto typu vyrobil roku 1668 Isaac Newton. V jeho dalekohledu světlo přicházelo otevřeným tubusem a dopadalo na kulové zrcadlo umístěné dole. Zrcadlo odráželo světlo zpět do tubusu na rovinné zrcadlo, které bylo nastaveno pod takovým úhlem, aby se paprsky odrazily ke straně tubusu, kde dopadaly na zvětšovací spojku. U Newtonova dalekohledu vznikal velmi ostrý obraz bez barevné vady. O něco později zdokonalil Newtonův dalekohled Cassegrain. V jeho dalekohledu je použito

6 míst zrcadla rovinného zrcadlo vypuklé, které odráží paprsky do mezery v zrcadle dutém, která se společně se spojkou nachází na zadní straně tubusu. V astronomii se používají reflektory obrovských rozměrů, které jsou schopny odrazit i velmi malé množství světla, které vyzařují hvězdy, které jsou od Země velmi vzdálené. Největší reflektor je umístěn v observatoři Zelenčukskaja na Kavkazu. Jeho zrcadlo má průměr 6 metrů. Je vyrobeno ze skla potaženého tenkou vrstvou hliníku, aby se zvýšila jeho schopnost reflexe. Lze jej používat jako dalekohled Newtonův a rovněž Cassegrainův.

Nejdůležitější pojmy a vzorce učiva fyziky II. ročníku

Nejdůležitější pojmy a vzorce učiva fyziky II. ročníku Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 Nejdůležitější pojmy a vzorce učiva fyziky II. ročníku V tomto článku uvádíme shrnutí poznatků učiva II. ročníku

Více

7. Světelné jevy a jejich využití

7. Světelné jevy a jejich využití 7. Světelné jevy a jejich využití - zápis výkladu - 41. až 43. hodina - B) Optické vlastnosti oka Oko = spojná optická soustava s měnitelnou ohniskovou vzdáleností zjednodušené schéma oka z biologického

Více

OPTIKA Optické přístroje TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY.

OPTIKA Optické přístroje TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY. OPTIKA Optické přístroje TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY. ) Oko Oko je optická soustava, kterou tvoří: rohovka, komorová voda, čočka a sklivec.

Více

Dalekohledy Matěj Drtina, R3.A, GJK Březen 2013

Dalekohledy Matěj Drtina, R3.A, GJK Březen 2013 Dalekohledy Úvod Optický dalekohled (teleskop) je přístroj sloužící k optickému přiblížení pomocí dvou soustav čoček nebo zrcadel Skládá se ze dvou hlavních částí z objektivu, který obraz vytváří a okuláru,

Více

Měření zvětšení dalekohledu a ohniskové vzdálenosti objektivů 1. Cíl úlohy

Měření zvětšení dalekohledu a ohniskové vzdálenosti objektivů 1. Cíl úlohy Měření zvětšení dalekohledu a ohniskové vzdálenosti objektivů 1. Cíl úlohy 2. Úkoly Seznámení se základními prvky a stavbou teleskopických dalekohledů. A) Změřte ohniskovou vzdálenost předložených objektivů

Více

Název školy: Základní škola a Mateřská škola Žalany. Číslo projektu: CZ. 1.07/1.4.00/21.3210. Téma sady: Fyzika 6. 9.

Název školy: Základní škola a Mateřská škola Žalany. Číslo projektu: CZ. 1.07/1.4.00/21.3210. Téma sady: Fyzika 6. 9. Název školy: Základní škola a Mateřská škola Žalany Číslo projektu: CZ. 1.07/1.4.00/21.3210 Téma sady: Fyzika 6. 9. Název DUM: VY_32_INOVACE_4A_17_DALEKOHLEDY Vyučovací předmět: Fyzika Název vzdělávacího

Více

OPTIKA - NAUKA O SVĚTLE

OPTIKA - NAUKA O SVĚTLE OPTIKA OPTIKA - NAUKA O SVĚTLE - jeden z nejstarších oborů yziky - studium světla, zákonitostí jeho šíření a analýza dějů při vzájemném působení světla a látky SVĚTLO elektromagnetické vlnění λ = 380 790

Více

17. března 2000. Optická lavice s jezdci a držáky čoček, světelný zdroj pro optickou lavici, mikroskopický

17. března 2000. Optická lavice s jezdci a držáky čoček, světelný zdroj pro optickou lavici, mikroskopický Úloha č. 6 Ohniskové vzdálenosti a vady čoček, zvětšení optických přístrojů Václav Štěpán, sk. 5 17. března 2000 Pomůcky: Optická lavice s jezdci a držáky čoček, světelný zdroj pro optickou lavici, mikroskopický

Více

OPTICKÉ VLASTNOSTI OKA. ROZKLAD SVĚTLA HRANOLEM 1. OPTICKÉ VLASTNOSTI OKA

OPTICKÉ VLASTNOSTI OKA. ROZKLAD SVĚTLA HRANOLEM 1. OPTICKÉ VLASTNOSTI OKA OPTICKÉ VLASTNOSTI OKA. ROZKLAD SVĚTLA HRANOLEM 1. OPTICKÉ VLASTNOSTI OKA Stavbu lidského oka znáte z vyučování přírodopisu. Zopakujte si ji po dle obrázku. Komorová tekutina, oční čočka a sklivec tvoří

Více

Abstrakt: Úloha seznamuje studenty se základními pojmy geometrické optiky

Abstrakt: Úloha seznamuje studenty se základními pojmy geometrické optiky Úloha 6 02PRA2 Fyzikální praktikum II Ohniskové vzdálenosti čoček a zvětšení optických přístrojů Abstrakt: Úloha seznamuje studenty se základními pojmy geometrické optiky a principy optických přístrojů.

Více

5.2.12 Dalekohledy. y τ τ F 1 F 2. f 2. f 1. Předpoklady: 5211

5.2.12 Dalekohledy. y τ τ F 1 F 2. f 2. f 1. Předpoklady: 5211 5.2.12 Dalekohledy Předpoklady: 5211 Pedagogická poznámka: Pokud necháte studenty oba čočkové dalekohledy sestavit v lavicích nepodaří se Vám hodinu stihnout za 45 minut. Dalekohledy: už z názvu poznáme,

Více

Geometrická optika 1

Geometrická optika 1 Geometrická optika 1 Popis pomocí světelných paprsků těmi se šíří energie a informace, zanedbává vlnové vlastnosti světla světelný paprsek = přímka, podél níž se šíří světlo, jeho energie index lomu (základní

Více

FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE

FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE Datum měření: 0520 Jméno: Jakub Kákona Pracovní skupina: 4 Ročník a kroužek: Pa 9:30 Spolupracovníci: Jana Navrátilová Hodnocení: Geometrická optika - Ohniskové vzdálenosti

Více

GEOMETRICKÁ OPTIKA. Znáš pojmy A. 1. Znázorni chod význačných paprsků pro spojku. Čočku popiš a uveď pro ni znaménkovou konvenci.

GEOMETRICKÁ OPTIKA. Znáš pojmy A. 1. Znázorni chod význačných paprsků pro spojku. Čočku popiš a uveď pro ni znaménkovou konvenci. Znáš pojmy A. Znázorni chod význačných paprsků pro spojku. Čočku popiš a uveď pro ni znaménkovou konvenci. Tenká spojka při zobrazování stačí k popisu zavést pouze ohniskovou vzdálenost a její střed. Znaménková

Více

naše vlajka: Řešení prvního úkolu kategorie 3 druhý stupeň: Trochu teorie a historie: Kamarádi ZŠ Chrast S chutí do toho a půl je hotovo,

naše vlajka: Řešení prvního úkolu kategorie 3 druhý stupeň: Trochu teorie a historie: Kamarádi ZŠ Chrast S chutí do toho a půl je hotovo, Řešení prvního úkolu kategorie 3 druhý stupeň: Kamarádi ZŠ Chrast S chutí do toho a půl je hotovo, rádi spolu tvoříme, na úkol se těšíme naše vlajka: Trochu teorie a historie: Dalekohled Dalekohled umožňuje

Více

Rozdělení přístroje zobrazovací

Rozdělení přístroje zobrazovací Optické přístroje úvod Rozdělení přístroje zobrazovací obraz zdánlivý subjektivní přístroje lupa mikroskop dalekohled obraz skutečný objektivní přístroje fotoaparát projekční přístroje přístroje laboratorní

Více

VY_32_INOVACE_06_UŽITÍ ČOČEK_28

VY_32_INOVACE_06_UŽITÍ ČOČEK_28 VY_32_INOVACE_06_UŽITÍ ČOČEK_28 Autor: Mgr. Pavel Šavara Škola: Základní škola Slušovice, okres Zlín, příspěvková organizace Název projektu: Zkvalitnění ICT ve slušovské škole Anotace Materiál (DUM digitální

Více

Základní pojmy Zobrazení zrcadlem, Zobrazení čočkou Lidské oko, Optické přístroje

Základní pojmy Zobrazení zrcadlem, Zobrazení čočkou Lidské oko, Optické přístroje Optické zobrazování Základní pojmy Zobrazení zrcadlem, Zobrazení čočkou Lidské oko, Optické přístroje Základní pojmy Optické zobrazování - pomocí paprskové (geometrické) optiky - využívá model světelného

Více

FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE

FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE Datum měření: 19.3.2011 Jméno: Jakub Kákona Pracovní skupina: 2 Hodina: Po 7:30 Spolupracovníci: Viktor Polák Hodnocení: Ohniskové vzdálenosti a vady čoček a zvětšení

Více

VY_32_INOVACE_FY.12 OPTIKA II

VY_32_INOVACE_FY.12 OPTIKA II VY_32_INOVACE_FY.12 OPTIKA II Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Jiří Kalous Základní a mateřská škola Bělá nad Radbuzou, 2011 Optická čočka je optická soustava dvou centrovaných

Více

1. Teorie mikroskopových metod

1. Teorie mikroskopových metod 1. Teorie mikroskopových metod A) Mezi první mikroskopové metody patřilo barvení biologických preparátů vhodnými barvivy, což způsobilo ovlivnění amplitudy světla prošlého preparátem, který pak byl snadno

Více

R8.1 Zobrazovací rovnice čočky

R8.1 Zobrazovací rovnice čočky Fyzika pro střední školy II 69 R8 Z O B R A Z E N Í Z R C A D L E M A Č O Č K O U R8.1 Zobrazovací rovnice čočky V kap. 8.2 je ke konstrukci chodu světelných paprsků při zobrazování tenkou čočkou použit

Více

DALEKOHLEDY. Masarykova univerzita v Brně Lékařská fakulta

DALEKOHLEDY. Masarykova univerzita v Brně Lékařská fakulta Masarykova univerzita v Brně Lékařská fakulta DALEKOHLEDY OPTICKÝ PRINCIP, VÝVOJ, VYUŽITÍ V TECHNICKÉ A OPTOMETRICKÉ PRAXI, METODY POSOUZENÍ KVALITY VÝROBKU Bakalářská práce Vedoucí: Mgr. Jitka Bělíková

Více

8.1. ELEKTROMAGNETICKÉ ZÁŘENÍ A JEHO SPEKTRUM. Viditelné světlo Rozklad bílého světla:

8.1. ELEKTROMAGNETICKÉ ZÁŘENÍ A JEHO SPEKTRUM. Viditelné světlo Rozklad bílého světla: 8. Optika 8.1. ELEKTROMAGNETICKÉ ZÁŘENÍ A JEHO SPEKTRUM Jak vzniká elektromagnetické záření? 1.. 2.. Spektrum elektromagnetického záření: Infračervené záření: Viditelné světlo Rozklad bílého světla:..

Více

Optické přístroje. Lidské oko

Optické přístroje. Lidské oko Optické přístroje Lidské oko Oko je kulovitého tvaru o průměru asi 4 mm, má hlavní části: Rohovka Duhovka Zornice (oční pupila): otvor v duhovce, průměr se mění s osvětlením oka (max.,5 mm) Oční čočka:

Více

Optika OPTIKA. June 04, 2012. VY_32_INOVACE_113.notebook

Optika OPTIKA. June 04, 2012. VY_32_INOVACE_113.notebook Optika Základní škola Nový Bor, náměstí Míru 128, okres Česká Lípa, příspěvková organizace e mail: info@zsnamesti.cz; www.zsnamesti.cz; telefon: 487 722 010; fax: 487 722 378 Registrační číslo: CZ.1.07/1.4.00/21.3267

Více

PÍSEMNÁ ZPRÁVA ZADAVATELE

PÍSEMNÁ ZPRÁVA ZADAVATELE PÍSEMNÁ ZPRÁVA ZADAVATELE Identifikační údaje zadávacího řízení Název zakázky Druh zakázky Název projektu Číslo projektu Dodávka pomůcek pro výuku fyziky a biologie Dodávky Inovace ve výuce fyziky a biologie

Více

Uvidět znamená uvěřit

Uvidět znamená uvěřit To je on! HLEDÁ SE...ouha! K nevíře V roce 1609 italský hvězdář Galileo Galilei jako první pozoroval oblohu dalekohledem. Brzy se však se zlou potázal, neboť prohlásil, že podle jeho pozorování Země obíhá

Více

OPTIKA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda

OPTIKA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda OPTIKA Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda Základní poznatky Zdroje světla světlo vzniká různými procesy (Slunce, žárovka, svíčka, Měsíc) Bodový zdroj Plošný zdroj Základní poznatky Optická prostředí

Více

Měření horizontálních a vertikálních úhlů Úhloměrné přístroje a jejich konstrukce Horizontace a centrace Přesnost a chyby v měření úhlů.

Měření horizontálních a vertikálních úhlů Úhloměrné přístroje a jejich konstrukce Horizontace a centrace Přesnost a chyby v měření úhlů. Měření horizontálních a vertikálních úhlů Úhloměrné přístroje a jejich konstrukce Horizontace a centrace Přesnost a chyby v měření úhlů Kartografie přednáška 10 Měření úhlů prostorovou polohu směru, vycházejícího

Více

Pracovní list SVĚTELNÉ JEVY Jméno:

Pracovní list SVĚTELNÉ JEVY Jméno: Zadání projektu Optické jevy Časový plán: Zadání projektu, přidělení funkcí, časový a pracovní plán 9. 5. Vlastní práce 4 vyučovací hodiny do 22. 5. Prezentace 24.5. Test a odevzdání portfólií ke kontrole

Více

Optika. Zápisy do sešitu

Optika. Zápisy do sešitu Optika Zápisy do sešitu Světelné zdroje. Šíření světla. 1/3 Světelné zdroje - bodové - plošné Optická prostředí - průhledné (sklo, vzduch) - průsvitné (matné sklo) - neprůsvitné (nešíří se světlo) - čirá

Více

Název školy: Základní škola a Mateřská škola Ţalany. Číslo projektu: CZ. 1.07/1.4.00/21.3210. Téma sady: Fyzika 6. 9.

Název školy: Základní škola a Mateřská škola Ţalany. Číslo projektu: CZ. 1.07/1.4.00/21.3210. Téma sady: Fyzika 6. 9. Název školy: Základní škola a Mateřská škola Ţalany Číslo projektu: CZ. 1.07/1.4.00/21.3210 Téma sady: Fyzika 6. 9. Název DUM: VY_32_INOVACE_4A_15_OPTICKÉ_VLASTNOSTI_OKA Vyučovací předmět: Fyzika Název

Více

Ing. Jakub Ulmann. Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově

Ing. Jakub Ulmann. Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově 07_10_Zobrazování optickými soustavami II Ing. Jakub Ulmann Zobrazování optickými soustavami 1. Optické

Více

SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH

SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH MECHANIKA MOLEKULOVÁ FYZIKA A TERMIKA ELEKTŘINA A MAGNETISMUS KMITÁNÍ A VLNĚNÍ OPTIKA FYZIKA MIKROSVĚTA ODRAZ A LOM SVĚTLA 1) Index lomu vody je 1,33. Jakou rychlost má

Více

Viková, M. : MIKROSKOPIE II Mikroskopie II M. Viková

Viková, M. : MIKROSKOPIE II Mikroskopie II M. Viková II Mikroskopie II M. Viková LCAM DTM FT TU Liberec, martina.vikova@tul.cz Osvětlovac tlovací soustava I Výsledkem Köhlerova nastavení je rovnoměrné a maximální osvětlení průhledného preparátu, ležícího

Více

OPTICKÝ KUFŘÍK OA1 410.9973 Návody k pokusům

OPTICKÝ KUFŘÍK OA1 410.9973 Návody k pokusům OPTICKÝ KUFŘÍK OA 40.9973 Návody k pokusům Učitelská verze NÁVODY K POKUSŮM OPTIKA 2 NÁVODY K POKUSŮM OPTIKA SEZNAM POKUSŮ ŠÍŘENÍ SVĚTLA Přímočaré šíření světla (..) Stín a polostín (.2.) ODRAZ SVĚTLA

Více

Základní pojmy. Je násobkem zvětšení objektivu a okuláru

Základní pojmy. Je násobkem zvětšení objektivu a okuláru Vznik obrazu v mikroskopu Mikroskop se skládá z mechanické části (podstavec, stojan a stolek s křížovým posunem), osvětlovací části (zdroj světla, kondenzor, clona) a optické části (objektivy a okuláry).

Více

Fungování předmětu. Technologické trendy v AV tvorbě, stereoskopie 2

Fungování předmětu. Technologické trendy v AV tvorbě, stereoskopie 2 Fungování předmětu 12 vyučovacích hodin ve 4 blocích Evidence docházky Zimní semestr zakončen prezentací Aktuální informace a materiály na smetana.filmovka.cz Technologické trendy v AV tvorbě, stereoskopie

Více

FYZIKA na LF MU cvičná. 1. Který z následujících souborů jednotek neobsahuje jen základní nebo odvozené jednotky soustavy SI?

FYZIKA na LF MU cvičná. 1. Který z následujících souborů jednotek neobsahuje jen základní nebo odvozené jednotky soustavy SI? FYZIKA na LF MU cvičná 1. Který z následujících souborů jednotek neobsahuje jen základní nebo odvozené jednotky soustavy SI? A. kandela, sekunda, kilogram, joule B. metr, joule, kalorie, newton C. sekunda,

Více

Konstrukce teleskopů. Miroslav Palatka

Konstrukce teleskopů. Miroslav Palatka Přednášky - Přístroje pro astronomii 1 Konstrukce teleskopů Miroslav Palatka Palatka SLO/PA1 2011 1 Reflektory Zrcadlové teleskopy Palatka SLO/PA1 2011 2 Ideální optická soustava BOD-BOD, PŘÍMKA-PŘÍMKA,

Více

FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE. Úloha 6: Geometrická optika. Abstrakt

FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE. Úloha 6: Geometrická optika. Abstrakt FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE Datum měření: 8. 3. 2010 Úloha 6: Geometrická optika Jméno: Jiří Slabý Pracovní skupina: 4 Ročník a kroužek: 2. ročník, 1. kroužek, pondělí 13:30 Spolupracovala: Eliška

Více

Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/ Zobrazení čočkou

Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/ Zobrazení čočkou Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 Zobrazení čočkou Čočky, stejně jako zrcadla, patří pro mnohé z nás do běžného života. Někdo nosí brýle, jiný

Více

PŘEHLED KLASICKÝCH A MODERNÍCH MIKROSKOPICKÝCH METOD

PŘEHLED KLASICKÝCH A MODERNÍCH MIKROSKOPICKÝCH METOD PŘEHLED KLASICKÝCH A MODERNÍCH MIKROSKOPICKÝCH METOD Jan Hošek Ústav přístrojové a řídící techniky, Fakulta strojní, ČVUT v Praze, Technická 4, 166 07 Praha 6, Česká republika Ústav termomechaniky AV ČR,

Více

Mikroskopy. Světelný Konfokální Fluorescenční Elektronový

Mikroskopy. Světelný Konfokální Fluorescenční Elektronový Mikroskopy Světelný Konfokální Fluorescenční Elektronový Světelný mikroskop Historie 1590-1610 - Vyrobeny první přístroje, které lze považovat za použitelný mikroskop (Hans a Zaccharis Janssenové z Middleburgu

Více

ŠKOLNÍ VZDĚLÁVACÍ PROGRAM

ŠKOLNÍ VZDĚLÁVACÍ PROGRAM Vyučovací předmět : Období ročník : Učební texty : Fyzika 3. období 8. ročník M.Macháček : Fyzika pro ZŠ a VG 7/1 (Prometheus), M.Macháček : Fyzika pro ZŠ a VG 7/2 (Prometheus) M.Macháček : Fyzika 8/1

Více

Geometrická optika. Optické přístroje a soustavy. převážně jsou založeny na vzájemné interakci světelného pole s látkou nebo s jiným fyzikálním polem

Geometrická optika. Optické přístroje a soustavy. převážně jsou založeny na vzájemné interakci světelného pole s látkou nebo s jiným fyzikálním polem Optické přístroje a soustav Geometrická optika převážně jsou založen na vzájemné interakci světelného pole s látkou nebo s jiným fzikálním polem Důsledkem této t to interakce je: změna fzikáln lních vlastností

Více

Základní škola Náchod Plhov: ŠVP Klíče k životu

Základní škola Náchod Plhov: ŠVP Klíče k životu VZDĚLÁVACÍ OBLAST: VZDĚLÁVACÍ OBOR: PŘEDMĚT: ČLOVĚK A PŘÍRODA FYZIKA FYZIKA 7. ROČNÍK Téma, učivo Rozvíjené kompetence, očekávané výstupy Mezipředmětové vztahy Poznámky Hustota látek odvození vzorce, výpočet

Více

Reg.č.. CZ.1.07/1.4.00/21.1720 kladní škola T. G. Masaryka, Hrádek nad Nisou, Komenského 478, okres Liberec, příspp. spěvková organizace

Reg.č.. CZ.1.07/1.4.00/21.1720 kladní škola T. G. Masaryka, Hrádek nad Nisou, Komenského 478, okres Liberec, příspp. spěvková organizace Reg.č.. CZ.1.07/1.4.00/21.1720 Příjemce: ZákladnZ kladní škola T. G. Masaryka, Hrádek nad Nisou, Komenského 478, okres Liberec, příspp spěvková organizace Název projektu: Kvalitní podmínky nky- kvalitní

Více

Praktická geometrická optika

Praktická geometrická optika Praktická geometrická optika Václav Hlaváč České vysoké učení technické v Praze Fakulta elektrotechnická, katedra kybernetiky Centrum strojového vnímání http://cmp.felk.cvut.cz/ hlavac, hlavac@fel.cvut.cz

Více

λ, (20.1) 3.10-6 infračervené záření ultrafialové γ a kosmické mikrovlny

λ, (20.1) 3.10-6 infračervené záření ultrafialové γ a kosmické mikrovlny Elektromagnetické vlny Optika, část fyziky zabývající se světlem, patří spolu s mechanikou k nejstarším fyzikálním oborům. Podle jedné ze starověkých teorií je světlo vyzařováno z oka a oko si jím ohmatává

Více

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 1. 10. 2012. Číslo DUM: VY_32_INOVACE_20_FY_C

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 1. 10. 2012. Číslo DUM: VY_32_INOVACE_20_FY_C Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 1. 10. 2012 Číslo DUM: VY_32_INOVACE_20_FY_C Ročník: II. Fyzika Vzdělávací oblast: Přírodovědné vzdělávání Vzdělávací obor: Fyzika Tematický okruh:

Více

F - Lom světla a optické přístroje

F - Lom světla a optické přístroje F - Lom světla a optické přístroje Autor: Mgr. Jaromír Juřek Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. VARIACE 1 Tento dokument byl

Více

Měření ohniskových vzdáleností čoček, optické soustavy

Měření ohniskových vzdáleností čoček, optické soustavy Úloha č. 9 Měření ohniskových vzdáleností čoček, optické soustavy Úkoly měření: 1. Stanovte ohniskovou vzdálenost zadaných tenkých čoček na základě měření předmětové a obrazové vzdálenosti: - zvětšeného

Více

Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: Lasery - druhy

Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: Lasery - druhy Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 Lasery - druhy Laser je tvořen aktivním prostředím, rezonátorem a zdrojem energie. Zdrojem energie, který může

Více

Praktická geometrická optika

Praktická geometrická optika Praktická geometrická optika Václav Hlaváč České vysoké učení technické v Praze Centrum strojového vnímání (přemosťuje skupiny z) Český institut informatiky, robotiky a kybernetiky Fakulta elektrotechnická,

Více

Astrooptika Jaroslav Řeháček

Astrooptika Jaroslav Řeháček Astrooptika Jaroslav Řeháček katedra optiky, PřF Univerzity Palackého v Olomouci Obsah Historický vývoj Trochu teorie Refraktory Reflektory Katadioptrické systémy Moderní astrooptika Velké pozemské teleskopy

Více

vede sice ke zvýšení kontrastu, zároveň se ale snižuje rozlišení a ostrost obrazu (Obr. 46).

vede sice ke zvýšení kontrastu, zároveň se ale snižuje rozlišení a ostrost obrazu (Obr. 46). 4. cvičení Metody zvýšení kontrastu obrazu (1. část) 1. Přivření kondenzorové clony nebo snížení kondenzoru vede sice ke zvýšení kontrastu, zároveň se ale snižuje rozlišení a ostrost obrazu (Obr. 46).

Více

2 Mikroskopické studium struktury semikrystalických polymerů

2 Mikroskopické studium struktury semikrystalických polymerů 2 Mikroskopické studium struktury semikrystalických polymerů Teorie Morfologie polymerů Morfologie polymerů jako součást polymerní vědy se zabývá studiem nadmolekulární struktury polymerů. Zkoumá uspořádání

Více

9 FYZIKA. 9.1 Charakteristika vyučovacího předmětu. 9.2 Vzdělávací obsah

9 FYZIKA. 9.1 Charakteristika vyučovacího předmětu. 9.2 Vzdělávací obsah 9 FYZIKA 9.1 Charakteristika vyučovacího předmětu Obsahové vymezení Vzdělávací obsah vyučovacího předmětu je vytvořen na základě rozpracování oboru Fyzika ze vzdělávací oblasti Člověk a příroda. Vzdělávání

Více

HVĚZDÁŘSKÝ DALEKOHLED. Návod k použití

HVĚZDÁŘSKÝ DALEKOHLED. Návod k použití HVĚZDÁŘSKÝ DALEKOHLED Návod k použití CZ DŮLEŽITÉ VAROVÁNÍ Nikdy se nedívejte dalekohledem na Slunce ani do jeho blízkosti a pokud svěříte dalekohled dětem, mějte je vždy pod dohledem. Poškození zraku

Více

Fyzikální vzdělávání. 1. ročník. Učební obor: Kuchař číšník Kadeřník. Implementace ICT do výuky č. CZ.1.07/1.1.02/02.0012 GG OP VK

Fyzikální vzdělávání. 1. ročník. Učební obor: Kuchař číšník Kadeřník. Implementace ICT do výuky č. CZ.1.07/1.1.02/02.0012 GG OP VK Fyzikální vzdělávání 1. ročník Učební obor: Kuchař číšník Kadeřník 1 Vlnění a optika 1. ročník Učební obor: Kuchař číšník Kadeřník 2 mechanické kmitání a vlnění - základní druhy mechanického vlnění a jejich

Více

Fyzika_7_zápis_7.notebook April 28, 2015

Fyzika_7_zápis_7.notebook April 28, 2015 OPTICKÉ PŘÍSTROJE 1) Optické přístroje se využívají zejména k pozorování: velmi malých těles velmi vzdálených těles 2) Optické přístroje dělíme na: a) subjektivní: obraz je zaznamenáván okem např. lupa,

Více

Katadioptrické soustavy Argunova, Popova a Klevcova.

Katadioptrické soustavy Argunova, Popova a Klevcova. Katadioptrické soustavy Argunova, Popova a Klevcova. Zdeněk Rail, Daniel Jareš, Vít Lédl Ústav fyziky plazmatu AV ČR,v.v.i.- OD Skálova 89,51101 Turnov e-mail : vod@ipp.cas.cz Referát se zabývá dvojzrcadlovými

Více

Lupa a mikroskop příručka pro učitele

Lupa a mikroskop příručka pro učitele Obecné informace Lupa a mikroskop příručka pro učitele Pro vysvětlení chodu světelných paprsků lupou a mikroskopem je nutno navázat na znalosti o zrcadlech a čočkách. Hodinová dotace: 1 vyučovací hodina

Více

Obsah Chyba! Záložka není definována. Chyba! Záložka není definována.

Obsah Chyba! Záložka není definována. Chyba! Záložka není definována. Obsah Na úvod... 3 Upozornění... 3 Seznámení s dalekohledy... 4 Živočichové na polích a na loukách... Chyba! Záložka není definována. Hmyz v zemědělské krajině... Chyba! Záložka není definována. Obojživelníci

Více

Krafková, Kotlán, Hiessová, Nováková, Nevímová

Krafková, Kotlán, Hiessová, Nováková, Nevímová Krafková, Kotlán, Hiessová, Nováková, Nevímová Optická čočka je optická soustava dvou centrovaných ploch, nejčastěji kulových, popř. jedné kulové a jedné rovinné plochy. Čočka je tvořena z průhledného

Více

Optické p ístroje. Mikroskop

Optické p ístroje. Mikroskop Optické p ístroje Mikroskop Seminární práce z fyziky Vypracovali: Jana Rybková, Eli ka Kolá ová, Hana Straková, Tereza Pokorná Základní kola a Mate ská kola, Nový Hradec Králové, Pe inova146 Duben 2010

Více

Název a číslo materiálu VY_32_INOVACE_ICT_FYZIKA_OPTIKA

Název a číslo materiálu VY_32_INOVACE_ICT_FYZIKA_OPTIKA Název a číslo materiálu VY_32_INOVACE_ICT_FYZIKA_OPTIKA OPTIKA ZÁKLADNÍ POJMY Optika a její dělení Světlo jako elektromagnetické vlnění Šíření světla Odraz a lom světla Disperze (rozklad) světla OPTIKA

Více

Mikroskop včera a dnes a jeho využití ve fyzikálním praktiku

Mikroskop včera a dnes a jeho využití ve fyzikálním praktiku Mikroskop včera a dnes a jeho využití ve fyzikálním praktiku JIŘÍ TESAŘ 1, VÍT BEDNÁŘ 2 Jihočeská univerzita v Českých Budějovicích 1, Západočeská univerzita v Plzni 2 Abstrakt Úvodní část příspěvku je

Více

1.3. Cíle vzdělávání v oblasti citů, postojů, hodnot a preferencí

1.3. Cíle vzdělávání v oblasti citů, postojů, hodnot a preferencí 1. Pojetí vyučovacího předmětu 1.1. Obecný cíl vyučovacího předmětu Obecným cílem je zprostředkovat základní fyzikální poznatky potřebné v odborném i dalším vzdělání a praktickém životě a také naučit žáky

Více

telná technika Literatura: tlení,, vlastnosti oka, prostorový úhel Ing. Jana Lepší http://webs.zcu.cz/fel/kee/st/st.pdf

telná technika Literatura: tlení,, vlastnosti oka, prostorový úhel Ing. Jana Lepší http://webs.zcu.cz/fel/kee/st/st.pdf Světeln telná technika Literatura: Habel +kol.: Světelná technika a osvětlování - FCC Public Praha 1995 Ing. Jana Lepší Sokanský + kol.: ČSO Ostrava: http://www.csorsostrava.cz/index_publikace.htm http://www.csorsostrava.cz/index_sborniky.htm

Více

8 b) POLARIMETRIE. nepolarizovaná vlna

8 b) POLARIMETRIE. nepolarizovaná vlna 1. TEORETICKÝ ÚVO Rotační polarizace Světlo má zároveň povahu vlnového i korpuskulárního záření. V optických jevech se světlo chová jako příčné vlnění, přičemž světelné kmity probíhají všemi směry a směr

Více

Digitální učební materiál. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce podpory Gymnázium, Jevíčko, A. K.

Digitální učební materiál. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce podpory Gymnázium, Jevíčko, A. K. Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím

Více

Název: Smyslová soustava

Název: Smyslová soustava Název: Smyslová soustava Výukové materiály Autor: Mgr. Blanka Machová Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy Předmět, mezipředmětové vztahy: Biologie Ročník: 4. a 5. (2. a 3. vyššího

Více

Sada Optika. Kat. číslo 100.7200

Sada Optika. Kat. číslo 100.7200 Sada Optika Kat. číslo 100.7200 Strana 1 z 63 Všechna práva vyhrazena. Dílo a jeho části jsou chráněny autorskými právy. Jeho použití v jiných než zákonem stanovených případech podléhá předchozímu písemnému

Více

Typy světelných mikroskopů

Typy světelných mikroskopů Typy světelných mikroskopů Johann a Zacharias Jansenové (16. stol.) Systém dvou čoček délka 1,2 m 17. stol. Typy světelných mikroskopů Jednočočkový mikroskop 17. stol. Typy světelných mikroskopů Italský

Více

5.6. Člověk a jeho svět

5.6. Člověk a jeho svět 5.6. Člověk a jeho svět 5.6.1. Fyzika ŠVP ZŠ Luštěnice, okres Mladá Boleslav verze 2012/2013 Charakteristika vyučujícího předmětu FYZIKA I. Obsahové vymezení Vyučovací předmět Fyzika vychází z obsahu vzdělávacího

Více

25. Zobrazování optickými soustavami

25. Zobrazování optickými soustavami 25. Zobrazování optickými soustavami Zobrazování zrcadli a čočkami. Lidské oko. Optické přístroje. Při optickém zobrazování nemusíme uvažovat vlnové vlastnosti světla a stačí považovat světlo za svazek

Více

Michal Bílek Karel Johanovský. Zobrazovací jednotky

Michal Bílek Karel Johanovský. Zobrazovací jednotky Michal Bílek Karel Johanovský SPŠ - JIA Zobrazovací jednotky CRT, LCD, Plazma, OLED E-papír papír, dataprojektory 1 OBSAH Úvodem Aditivní model Gamut Pozorovací úhel CRT LCD Plazma OLED E-Paper Dataprojektory

Více

Aplikovaná optika I: příklady k procvičení celku Geometrická optika. Jana Jurmanová

Aplikovaná optika I: příklady k procvičení celku Geometrická optika. Jana Jurmanová Aplikovaná optika I: příklady k procvičení celku Geometrická optika Jana Jurmanová Geometrická optika Následující úlohy řešte graficky či výpočtem. 1. Předmět vysoký 1cm je umístěn 30cm od spojky, která

Více

Hodnocení kvality optických přístrojů III

Hodnocení kvality optických přístrojů III Hodnocení kvality optických přístrojů III Ronchiho test Potřeba testovat kvalitu optických přístrojů je stejně stará jako optické přístroje samy. Z počátečních přístupů typu pokus-omyl v polovině 18. století

Více

2.1.18 Optické přístroje

2.1.18 Optické přístroje 2.1.18 Optické přístroje Předpoklad: 020117 Pomůck: kompletní optické souprav I kdž máme zdravé oči (správné brýle) a skvěle zaostřeno, neuvidíme všechno. Př. 1: Co děláš, kdž si chceš prohlédnout malé,

Více

Věra Keselicová. duben 2013

Věra Keselicová. duben 2013 VY_52_INOVACE_VK50 Jméno autora výukového materiálu Datum (období), ve kterém byl VM vytvořen Ročník, pro který je VM určen Vzdělávací oblast, obor, okruh, téma Anotace Věra Keselicová duben 2013 7. ročník

Více

Geometrická optika. předmětu. Obrazový prostor prostor za optickou soustavou (většinou vpravo), v němž může ležet obraz - - - 1 -

Geometrická optika. předmětu. Obrazový prostor prostor za optickou soustavou (většinou vpravo), v němž může ležet obraz - - - 1 - Geometrická optika Optika je část fyziky, která zkoumá podstatu světla a zákonitosti světelných jevů, které vznikají při šíření světla a při vzájemném působení světla a látky. Světlo je elektromagnetické

Více

POZOROVÁNÍ PŘÍRODY PŘÍRODU MŮŽEME POZOROVAT NÁSLEDUJÍCÍMI ZPŮSOBY: 1. Pouhým okem. Obr. č. 1. Obr. č. 2

POZOROVÁNÍ PŘÍRODY PŘÍRODU MŮŽEME POZOROVAT NÁSLEDUJÍCÍMI ZPŮSOBY: 1. Pouhým okem. Obr. č. 1. Obr. č. 2 POZOROVÁNÍ PŘÍRODY Příroda je různorodá a rozmanitá. Lidské oko, které je určené ke vnímání zrakových podnětů, není natolik dokonalé, aby postřehlo vše, co si přejeme vidět. Proto lidé postupně vytvořili

Více

KULOVÁ ZRCADLA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Optika - Septima

KULOVÁ ZRCADLA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Optika - Septima KULOVÁ ZRCADLA Mgr. Jan Ptáčník - GJVJ - Fyzika - Optika - Septima Zakřivená zrcadla Zrcadla, která nejsou rovinná Platí pro ně zákon odrazu, deformují obraz My se budeme zabývat speciálním typem zakřivených

Více

Optické přístroje. Oko

Optické přístroje. Oko Optické přístroje Oko Oko je orgán živočichů reagující na světlo. Obratlovci a hlavonožci mají jednoduché oči, členovci, kteří mají menší rozměry a jednoduché oko by trpělo difrakčními jevy, mají složené

Více

Název: Pozorování a měření emisních spekter různých zdrojů

Název: Pozorování a měření emisních spekter různých zdrojů Název: Pozorování a měření emisních spekter různých zdrojů Autor: Doc. RNDr. Milan Rojko, CSc. Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy Předmět, mezipředmětové vztahy: fyzika, chemie Ročník:

Více

Světlo. barevné spektrum

Světlo. barevné spektrum Světlo Světlo je elektromagnetické záření o vlnové délce 400 700 nm. Šíří se přímočaře a ve vakuu je jeho rychlost 300 000 km/s. Může být tělesy vyzařováno, odráženo, nebo pohlcováno. Těleso, které vyzařuje

Více

Fyzika 2 - rámcové příklady Geometrická optika

Fyzika 2 - rámcové příklady Geometrická optika Fyzika 2 - rámcové příklady Geometrická optika 1. Stanovte absolutní index lomu prostředí, jestliže rychlost elektromagnetických vln v daném prostředí dosahuje hodnoty 0,65c. Jaký je rozdíl optických drah

Více

Seminární práce Lidské oko Fyzika

Seminární práce Lidské oko Fyzika Střední škola informačních technologií, s.r.o. Seminární práce Lidské oko Fyzika Dávid Ivan EPS 2 čtvrtek, 26. února 2009 Obsah 1.0 Anatomie lidského oka 1.1 Složení oka 2.0 Vady oka 2.1 Krátkozrakost

Více

5.2.7 Zobrazení spojkou I

5.2.7 Zobrazení spojkou I 5.2.7 Zobrazení spojkou I Předpoklady: 5203, 5206 Pedagogická poznámka: Obsah hodiny neodpovídá vyučovací hodině. Kvůli dalším hodinám je třeba dojít alespoň k příkladu 8. případě, že žákům dáte stavebnice

Více

Metodické poznámky k souboru úloh Optika

Metodické poznámky k souboru úloh Optika Metodické poznámky k souboru úloh Optika Baterka Teoreticky se světlo šíří "nekonečně daleko", intenzita světla však klesá s druhou mocninou vzdálenosti. Děti si často myslí, že světlo se nešíří příliš

Více

Řešené příklady z OPTIKY II

Řešené příklady z OPTIKY II Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 Řešené příklady z OPTIKY II V následujícím článku uvádíme několik vybraných příkladů z tématu Optika i s uvedením

Více

Optické zobrazení - postup, kterým získáváme optické obrazy bodů a předmětů

Optické zobrazení - postup, kterým získáváme optické obrazy bodů a předmětů Optické soustav a optická zobrazení Přímé vidění - paprsek od zobrazovaného předmětu dopadne přímo do oka Optická soustava - soustava optických prostředí a jejich rozhraní, která mění chod paprsků Optické

Více

Fyzika pro chemiky II. Jarní semestr 2014. Elektromagnetické vlny a optika Fyzika mikrosvěta Fyzika pevných látek. Petr Mikulík. Maloúhlový rozptyl

Fyzika pro chemiky II. Jarní semestr 2014. Elektromagnetické vlny a optika Fyzika mikrosvěta Fyzika pevných látek. Petr Mikulík. Maloúhlový rozptyl Fyzika pro chemiky II Jarní semestr 2014 Elektromagnetické vlny a optika Fyzika mikrosvěta Fyzika pevných látek Petr Mikulík Ústav fyziky kondenzovaných látek Přírodovědecká fakulta Masarykova univerzita,

Více

OPTIKA Polarizace světla TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY.

OPTIKA Polarizace světla TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY. OPTIKA Polarizace světla TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY. Světlo je příčné elektromagnetické vlnění. Vektor intenzity E elektrického pole

Více

Paprsková optika. Zobrazení zrcadly a čočkami. Rovinné zrcadlo. periskop 13.11.2014. zobrazování optickými soustavami.

Paprsková optika. Zobrazení zrcadly a čočkami. Rovinné zrcadlo. periskop 13.11.2014. zobrazování optickými soustavami. Paprsková optika Zobrazení zrcadl a čočkami zobrazování optickými soustavami tvořené zrcadl a čočkami obecné označení: objekt, který zobrazujeme, nazýváme předmět cílem je nalézt jeho obraz vzdálenost

Více

Otázky z optiky. Fyzika 4. ročník. Základní vlastnosti, lom, odraz, index lomu

Otázky z optiky. Fyzika 4. ročník. Základní vlastnosti, lom, odraz, index lomu Otázky z optiky Základní vlastnosti, lom, odraz, index lomu ) o je světlo z fyzikálního hlediska? Jaké vlnové délky přísluší viditelnému záření? - elektromagnetické záření (viditelné záření) o vlnové délce

Více