Fyzikální praktikum FJFI ČVUT v Praze

Rozměr: px
Začít zobrazení ze stránky:

Download "Fyzikální praktikum FJFI ČVUT v Praze"

Transkript

1 Fyzikální praktikum FJFI ČVUT v Praze Úloha 6: Geometrická optika Datum měření: Doba vypracovávání: 10 hodin Skupina: 1, pátek 7:30 Vypracoval: Tadeáš Kmenta Klasifikace: 1 Zadání 1. DÚ: V přípravě odvoďte rovnici (8) uvedenou v [1], načrtněte chod paprsků pro obě metody a zdůvodněte nutnost podmínky e > 4f. Vysvětlete rozdíl mezi Galileovým a Keplerovým dalekohledem. Zjistěte, co je konvenční zraková vzdálenost. 2. Určete ohniskovou vzdálenost spojné čočky +200 ze znalosti polohy předmětu a jeho obrazu (pro minimálně pět konfigurací, proveďte též graficky) a Besselovou metodou. 3. Změřte ohniskovou vzdálenost mikroskopického objektivu a Ramsdenova okuláru Besselovou metodou. V přípravě vysvětlete rozdíl mezi Ramsdenovým a Huygensovým okulárem. 4. Změřte zvětšení lupy při akomodaci oka na konvenční zrakovou vzdálenost. Stanovte z ohniskové vzdálenosti lupy zvětšení při oku akomodovaném na nekonečno. 5. Určete polohy ohniskových rovin tlustých čoček (mikroskopický objektiv a Ramsdenův okulár) nutných pro výpočet zvětšení mikroskopu. 6. Z mikroskopického objektivu a Ramsdenova okuláru sestavte na optické lavici mikroskop a změřte jeho zvětšení. 7. Ze spojky +200 a Ramsdenova okuláru sestavte na optické lavici dalekohled. Změřte jeho zvětšení přímou metodou. 8. Výsledky měření zvětšení mikroskopu a dalekohledu porovnejte s hodnotami vypočítanými z ohniskových vzdáleností. 2 Pomůcky Optická lavice s jezdci a držáky čoček, světelný zdroj pro optickou lavici, mikroskopický objektiv, Ramsdenův okulár v držáku s Abbeho kostkou, spojné čočky +200, matnice, clona se šipkou, pomocný světelný zdroj s milimetrovou stupnicí, křížový vodič s objektivovým mikrometrem, matnička se stupnicí 50 x 0,1 mm, pomocný mikroskop s měřícím okulárem, pomocný dalekohled, kovové měřítko, pásový metr. 1

2 3 Teoretický úvod Pro zobrazování tenkou spojnou čočkou platí čočková rovnice 1 a + 1 a = 1 f, (1) kde a, a jsou vzdálenosti předmětu a obrazu od středu čočky a f je ohnisková vzdálenost čočky. Změříme-li vzdálenosti a, a (obrázek 1), potom ze vztahu (1) pro ohniskovou vzdálenost f plyne vztah f = aa a + a. (2) Obrázek 1: Měření ohniskové vzdálenosti spojné čočky S ze znalosti polohy předmětu a jeho obrazu. Besselova metoda (obrázek 2) určování ohniskové vzdálenosti je založena na změření vzdálenosti e > 4f mezi předmětem a stínítkem a vzdálenosti d coby vzdálenosti dvou poloh spojné čočky, při kterých se na stínítku vytvořil ostrý obraz. Potom pro ohniskovou vzdálenost čočky platí f = e2 d 2 4e. (3) Obrázek 2: Měření ohniskové vzdálenosti Besselovou metodou. S - spojná čočka. 2

3 Pro důkaz vzorce (3) vyjdeme z rovnice (2) a logického vztahu e = a + a. Dosazením dostáváme a(e a) f = e a 2 ae + ef = 0 Diskriminant D je potom roven D = e(e 4f), odkud plyna podmínka pro existenci dvou řešení e > 4f. Potom pro vzdálenosti a 1, a 2, jakožto dvě vzdálenosti spojky od předmětu ve kterých je ostrý obraz dostáváme a 1 = e + e2 4ef, a 2 2 = e e2 4ef. 2 Pro vzdálenost d, jakožto vzdálenost spojky v první a druhé poloze platí d = a 1 a 2 a tedy d = e 2 4ef. Z čehož po vyjádření ohniskové vzdálenosti f již dostáváme vztah (3). Lupa je nejjednodušším optickým přístrojem skládajícím se ze spojné čočky. Zvětšením lupy Z rozumíme poměr tangenty zorného úhlu u, pod nímž vidíme předmět lupou, k tangentě zorného úhlu u, pod nímž se oku jeví v konvenční zrakové vzdálenosti (nejmenší vzdálenost oka od předmětu, ze které lze pozorovat předměty) l = 25 cm. Pod zvětšením lupy se rozumí zvětšení při oku akomodovaném na nekonečno, a tedy platí Z = tan u tan u = l f. (4) Mikroskop se skládá ze dvou spojných čoček objektivu o ohniskové vzdálenosti f 1 a okuláru o ohniskové vzdálenosti f 2. V našem měření budeme sestavovat mikroskop s pomocí Ramsdenova okuláru, jehož čočky jsou, na rozdíl od Huygensova okuláru, vydutou stranou převráceny k sobě. Výsledné zvětšení mikroskopu se dá vyjádřit vztahem Z = l f 1 f 2, (5) kde l = 25 cm je konvenční zraková vzdálenost a je vzdálenost bližších ohniskových rovin neboli optický interval soustavy. Dalekohled je soustava dvou čoček objektivu a okuláru. V případě Galileova dalekohledu je objektiv tvořen spojnou a okulár rozptylnou čočkou, na rozdíl od Keplerova dalekohledu, kde je okulár rovněž tvořen spojkou. Jestliže je ohnisková vzdálenost objektivu f 1 a okuláru f 2, potom pro zvětšení dalekohledu platí vztah a Z = f 1 f 2 (6) 4 Postup měření 4.1 Určení ohniskové vzdálenosti ze znalosti polohy předmětu a jeho obrazu Na optickou lavici umístíme clonu s výřezem ve tvaru šipky, který budeme osvětlovat a světelné paprsky přes spojnou čočku promítat na stínítko - matnici. Uvidíme-li ostrý obraz, pásovým metrem změříme vzdálenost od předmětu k čočce jako a a od čočky k obrazu jako a. 4.2 Určení ohniskové vzdálenosti Besselovou metodou Na optickou lavici umístíme clonu s výřezem šipky, který budeme osvětlovat a na druhý konec stínítko. Tuto vzdálenost změříme posuvným metrem. Mezi stínítko a clonu umístíme spojnou čočku a budeme hledat dvě polohy, ve kterých se vzniknuvší obraz na stínítku jeví ostrý. 3

4 4.3 Měření ohniskové vzdálenosti mikroskopického objektivu a Ramsdenova okuláru Besselovou metodou Místo clony se šipkou použijeme jako předmět skleněný kvádřík se stupnicí o velikosti 5 mm, dělenou po 0,1 mm a místo matnice budeme používat pomocný mikroskop. Mikroskopický objektiv je tedy umístěn mezi pomocným mikroskopem ve vzdálenosti předmětové roviny pomocného mikroskopu a předmětem. Ze znalosti dvou poloh mikroskopického objektivu, ve kterém vidíme obraz ostrý, Besselovou metodou určíme ohniskovou vzdálenost. Postup měření při měření Ramsdenova okuláru je stejný jako v případě mikroskopického objektivu, jen používáme Ramsdenův okulár. 4.4 Měření zvětšení lupy Jako lupu použijeme Ramsdenův okluár, jako předmět skleněný kvádřík se stupnicí a jako srovnávací stupnici milimetrové měřítko. Předmět umístíme do konvenční zrakové vzdálenosti l a Abbeho kostku umístíme mezi oko a okulár, což umožní současně pozorovat nezvětšené milimetrové měřítko a zvětšený obraz na stupnici. 4.5 Určení polohy ohniskových rovin tlustých čoček Měření provedeme pomocným dalekohledem. Jestliže se předmět nachází v ohniskové rovině, viděný obraz je ostrý. 4.6 Určení zvětšení mikroskopu Na optické lavici sestavíme mikroskop z mikroskopického objektivu a Ramsdenova okuláru a zvětšení měříme obdobně jako v případě lupy. 4.7 Určení zvětšení dalekohledu Ze spojky +200 a Ramsdenova okuláru sestavíme na optické lavici dalekohled, umístíme na trojnožku a na protější stěně pozorujeme stupnici dělenou po 1 cm. Díky Abbeho kostce vidíme zvětšený i skutečný obraz zároveň a z jejich poměrů opět určíme zvětšení. 5 Naměřené hodnoty 5.1 Určení ohniskové vzdálenosti ze znalosti polohy předmětu a jeho obrazu V tabulce 1 jsou uvedeny naměřené vzdálenosti a mezi předmětem a čočkou, naměřené vzdálenosti a mezi čočkou a ostrým obrazem a vypočtené ohniskové vzdálenosti čočky f dle vzorce (2) spolu s aritmetickým průměrem f a chybou σ f. a [cm] a [cm f [cm] 28,4 53,1 18,50 26,1 67,1 18,79 23,4 99,3 18,94 20,9 182,8 18,76 22,1 132,0 18,93 f [cm] 18,78 σ f [cm] 0,18 Tabulka 1: Naměřené hodnoty při určování f. 4

5 Ohnisková vzdálenost čočky je rovna f = (18,78 ± 0,18) cm. Na obrázku 3 jsou naměřená data zpracována graficky, kde X obsahuje záznamy hodnot a, osa Y hodnoty a. Jelikož vzniklo více průsečíků než jeden, je vyobrazený průsečík dle mne nejpravděpodobnější a ohnisková vzdálenost má hodnotu f = (18,8 ± 0,2) cm. Obrázek 3: Grafické zpracování ohniskové vzdálenosti f. 5.2 Určení ohniskové vzdálenosti Besselovou metodou V tabulce číslo 2 jsou zaznamenány naměřené hodnoty e, coby vzdálenosti mezi předmětem a obrazem a d, coby vzdálenosti dvou poloh čoček, ve kterých byl ostrý obraz. Dále jsou dopočteny hodnoty ohniskové vzdálenosti f dle vzorce (3) s aritmetickým průměrem f a chybou σ f. e [cm] d [cm f [cm] 95,0 44,8 18,47 92,0 40,5 18,54 89,0 36,3 18,55 86,0 32,1 18,50 83,0 27,4 18,49 80,0 22,5 18,42 77,0 15,7 18,45 f [cm] 18,49 σ f [cm] 0,05 Tabulka 2: Ohnisková vzdálenost Besselovou metodou Ohnisková vzdálenost čočky je rovna f 1 = (18,49 ± 0,05) cm. 5.3 Měření ohniskové vzdálenosti mikroskopického objektivu a Ramsdenova okuláru Besselovou metodou Předmětová rovina pomocného mikroskopu leží ve vzdálenosti e 0 = (25,6 ± 0,1) cm. 5

6 5.3.1 Měření ohniskové vzdálenosti mikroskopického objektivu V tabulce číslo 3 jsou uvedeny hodnoty e, coby vzdálenosti mezi předmětem a obrazem a d, coby vzdálenosti dvou poloh čoček, ve kterých byl ostrý obraz. Dále jsou dopočteny hodnoty ohniskové vzdálenosti f dle vzorce (3) s aritmetickým průměrem f a chybou σ f. e [cm] d [cm f [cm] 20,0 14,3 2,44 25,0 19,7 2,37 27,0 21,5 2,47 f [cm] 2,42 σ f [cm] 0,05 Tabulka 3: Ohnisková vzdálenost mikroskopického objektivu Ohnisková vzdálenost mikroskopického objektivu je f 1 = (2,42 ± 0,05) cm Měření ohniskové vzdálenosti Ramsdenova okuláru V tabulce číslo 3 jsou uvedeny hodnoty e, coby vzdálenosti mezi předmětem a obrazem a d, coby vzdálenosti dvou poloh čoček, ve kterých byl ostrý obraz. Dále jsou dopočteny hodnoty ohniskové vzdálenosti f dle vzorce (3) s aritmetickým průměrem f a chybou σ f. e [cm] d [cm f [cm] 70,0 38,4 12,23 50,0 18,0 10,88 f [cm] 11,56 σ f [cm] 0,96 Tabulka 4: Ohnisková vzdálenost Ramsdenova okuláru Ohnisková vzdálenost Ramsdenova okuláru je f = (11,56 ± 0,96) cm, což neodpovídá skutečnosti (viz. kap. 5.4). Pro výpočet ohniskové vzdálenosti tedy použijeme hodnotu pozorovaného zvětšení lupy, která činí Z = 10 a s pomocí vzorce (4) potom f 2 = (2,50 ± 0,12) cm. 5.4 Měření zvětšení lupy Zvětšení lupy jsme stanovili na Z = 10,0 ± 0,5. Pokud vypočteme zvětšení lupy pomocí vzorce (4) s využitím vypočtené ohniskové vzdálenosti v 5.3.2, dostáváme hodnotu Z = 2,1 ± 0,1. Od naší pozorované hodnoty se dosti liší, a udělali jsme chybu v postupu měření při měření ohniskové vzdálenosti Ramsdenova okuláru. Ohniskovou vzdálenost Ramsdenova okuláru jsme proto stanovili pozorovaného zvětšení lupy. 5.5 Určení polohy ohniskových rovin tlustých čoček Ohnisková rovina pro mikroskopický objektiv o 1 = (2,1 ± 0,1) cm. Ohnisková rovina pro Ramsdenův okulár o 2 = (2,7 ± 0,1) cm. 5.6 Určení zvětšení mikroskopu Pozorované zvětšení mikroskopu je Z = 66,7 ± 1,0. Optický interval = (16,0 ± 0,2) cm. Zvětšení mikroskopu dle vztahu (5) pro l = 25 cm, f 1 = (2,42 ± 0,05) cm a f 2 = (2,50 ± 0,12) cm je Z = 66,1 ± 4,4. 6

7 5.7 Určení zvětšení dalekohledu Zvětšení dalekohledu jsme změřili na Z = 7,1 ± 0,5. Teoretickým výpočtem dle vztahu (6) pro f 1 = (18,49 ± 0,05) cm a f 2 = (2,50 ± 0,12) cm je rovno Z = 7,4 ± 0,4. 6 Diskuse Ohniskovou vzdálenost spojné čočky +200 jsme metodou určování ohniskové vzdálenosti ze znalosti polohy předmětu a jeho obrazu určili na f = (18,78 ± 0,18) cm. Grafickou metodou vzniklo mnoho průsečíků, a tak jsme dle oka vytvořili nejpravděpodobnější průsečík a stanovili hodnotu ohniskové vzdálenosti na f = (18,8 ± 0,2) cm. Besselovou metodou bychom z principu měli dosáhnout přesnější hodnoty, což se projevilo v menší chybě měření a hodnota činí ohniskové vzdálenosti činí f = (18,49 ± 0,05) cm. Ohnisková vzdálenost určená Besselovou metodou i po započtení chyb liší. Za správnější hodnotu považujeme tu, získanou Besselovou metodou, jelikož obrazy byly na stínítku ostřejší a odečíst polohu tak bylo lehčí než v případě první metody určování tam je chyby třeba brát s rezervou, neboť ostrost obrazu byla na větším intervalu. Ohniskovou vzdálenost mikroskopického objektivu jsme změřili na f 1 = (2,42 ± 0,05) cm a ohniskovou vzdálenost Ramsdenova okuláru na f 2 = (11,56 ± 0,96) cm. Tato hodnota se záhy ukázala jako chybná a to kvůli špatnému postupu měření, kdy jsme asi nepohlídali vzdálenosti optických přístrojů. Ohniskovou vzdálenost Ramsdenova okuláru jsme proto stanovili ze zvětšení lupy a činí f 2 = (2,50 ± 0,12) cm. Zvětšení lupy jsme naměřili na Z = 10,0 ± 0,5, kde chyby u všech zvětšení jsou stanoveny ze schopnosti našeho oka vidět rozdíl měřítek. Zvětšení mikroskopu jsme změřili na Z = 66,7 ± 1,0. Teoretickým výpočtem dle vztahu (5) jsme obdrželi hodnotu Z = 66,1 ± 4,4. Tyto hodnoty jsou si velmi podobné a dobře se překrývají, i přesto, že ohniskovou vzdálenost Ramsdenova okuláru jsme určili ze zvětšení lupy. Dalekohledem jsme pozorovali zvětšení Z = 7,1 ± 0,5. Výpočtem jsme potom získali hodnotu Z = 7,4 ± 0,4, což se opět kryje s pozorovaným zvětšením a potvrzuje správnost měření. 7 Závěr Ohniskovou vzdálenost spojné čočky +200 jsme určili na f = (18,49 ± 0,05) cm. Ohniskovou vzdálenost mikroskopického objektivu na f 1 = (2,42 ± 0,05) cm a ohniskovou vzdálenost Ramsdenova okuláru na f 2 = (2,50 ± 0,12) cm. Zvětšení lupy jsme změřili na Z = 10,0 ± 0,5, zvětšení mikroskopu na Z = 66,7 ± 1,0 a zvětšení dalekohledu na Z = 7,1 ± 0,5. 8 Reference [1] Návod Ohniskové vzdálenosti čoček a zvětšení optických přístrojů. URL: vut.cz/pluginfile.php/419/mod_resource/content/4/optika-2016-feb-27.pdf [Citace ] 7

FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE. Úloha 6: Geometrická optika. Abstrakt

FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE. Úloha 6: Geometrická optika. Abstrakt FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE Datum měření: 8. 3. 2010 Úloha 6: Geometrická optika Jméno: Jiří Slabý Pracovní skupina: 4 Ročník a kroužek: 2. ročník, 1. kroužek, pondělí 13:30 Spolupracovala: Eliška

Více

Úloha 6: Geometrická optika

Úloha 6: Geometrická optika Úloha 6: Geometrická optika FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE Datum měření: 1.3.2010 Jméno: František Batysta Pracovní skupina: 5 Ročník a kroužek: 2. ročník, pond. odp. Spolupracovník: Štěpán Timr

Více

FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE

FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE Datum měření: 19.3.2011 Jméno: Jakub Kákona Pracovní skupina: 2 Hodina: Po 7:30 Spolupracovníci: Viktor Polák Hodnocení: Ohniskové vzdálenosti a vady čoček a zvětšení

Více

FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE

FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE Datum měření: 0520 Jméno: Jakub Kákona Pracovní skupina: 4 Ročník a kroužek: Pa 9:30 Spolupracovníci: Jana Navrátilová Hodnocení: Geometrická optika - Ohniskové vzdálenosti

Více

5 Geometrická optika

5 Geometrická optika 5 Geometrická optika 27. března 2010 Fyzikální praktikum FJFI ČVUT v Praze Jméno: Vojtěch Horný Datum měření: 22.března 2010 Pracovní skupina: 2 Ročník a kroužek: 2. ročník, pondělí 13:30 Spolupracoval

Více

1 Základní pojmy a vztahy

1 Základní pojmy a vztahy 1 Ohniskové vzdálenosti a vady čoček a zvětšení optických přístrojů Pomůcky: Optická lavice s jezdci a držáky čoček, světelný zdroj pro optickou lavici, mikroskopický objektiv, Ramsdenův okulár v držáku

Více

Abstrakt: Úloha seznamuje studenty se základními pojmy geometrické optiky

Abstrakt: Úloha seznamuje studenty se základními pojmy geometrické optiky Úloha 6 02PRA2 Fyzikální praktikum II Ohniskové vzdálenosti čoček a zvětšení optických přístrojů Abstrakt: Úloha seznamuje studenty se základními pojmy geometrické optiky a principy optických přístrojů.

Více

FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE 6. Geometrická optika Martin Dlask Měřeno 8. 3., , Jakub Šnor Klasifikace

FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE 6. Geometrická optika Martin Dlask Měřeno 8. 3., , Jakub Šnor Klasifikace Úloha Autoři Zaměření FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE 6. Geometrická optika Martin Dlask Měřeno 8. 3., 15. 3., 22. 3. 2013 Jakub Šnor SOFE Klasifikace 1. PRACOVNÍ ÚKOLY 1.1. Určete ohniskovou vzdálenost

Více

17. března 2000. Optická lavice s jezdci a držáky čoček, světelný zdroj pro optickou lavici, mikroskopický

17. března 2000. Optická lavice s jezdci a držáky čoček, světelný zdroj pro optickou lavici, mikroskopický Úloha č. 6 Ohniskové vzdálenosti a vady čoček, zvětšení optických přístrojů Václav Štěpán, sk. 5 17. března 2000 Pomůcky: Optická lavice s jezdci a držáky čoček, světelný zdroj pro optickou lavici, mikroskopický

Více

GEOMETRICKÁ OPTIKA. Znáš pojmy A. 1. Znázorni chod význačných paprsků pro spojku. Čočku popiš a uveď pro ni znaménkovou konvenci.

GEOMETRICKÁ OPTIKA. Znáš pojmy A. 1. Znázorni chod význačných paprsků pro spojku. Čočku popiš a uveď pro ni znaménkovou konvenci. Znáš pojmy A. Znázorni chod význačných paprsků pro spojku. Čočku popiš a uveď pro ni znaménkovou konvenci. Tenká spojka při zobrazování stačí k popisu zavést pouze ohniskovou vzdálenost a její střed. Znaménková

Více

Fyzikální praktikum FJFI ČVUT v Praze

Fyzikální praktikum FJFI ČVUT v Praze Fyzikální praktikum FJFI ČVUT v Praze Úloha 4: Balrmerova série Datum měření: 13. 5. 016 Doba vypracovávání: 7 hodin Skupina: 1, pátek 7:30 Vypracoval: Tadeáš Kmenta Klasifikace: 1 Zadání 1. DÚ: V přípravě

Více

Základní pojmy Zobrazení zrcadlem, Zobrazení čočkou Lidské oko, Optické přístroje

Základní pojmy Zobrazení zrcadlem, Zobrazení čočkou Lidské oko, Optické přístroje Optické zobrazování Základní pojmy Zobrazení zrcadlem, Zobrazení čočkou Lidské oko, Optické přístroje Základní pojmy Optické zobrazování - pomocí paprskové (geometrické) optiky - využívá model světelného

Více

Fyzikální sekce přírodovědecké fakulty Masarykovy univerzity v Brně FYZIKÁLNÍ PRAKTIKUM. Fyzikální praktikum 2

Fyzikální sekce přírodovědecké fakulty Masarykovy univerzity v Brně FYZIKÁLNÍ PRAKTIKUM. Fyzikální praktikum 2 Fyzikální sekce přírodovědecké fakulty Masarykovy univerzity v Brně FYZIKÁLNÍ PRAKTIKUM Fyzikální praktikum 2 Zpracoval: Markéta Kurfürstová Naměřeno: 16. října 2012 Obor: B-FIN Ročník: II Semestr: III

Více

SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH

SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH MECHANIKA MOLEKULOVÁ FYZIKA A TERMIKA ELEKTŘINA A MAGNETISMUS KMITÁNÍ A VLNĚNÍ OPTIKA FYZIKA MIKROSVĚTA ODRAZ A LOM SVĚTLA 1) Index lomu vody je 1,33. Jakou rychlost má

Více

Optické zobrazování - čočka

Optické zobrazování - čočka I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Laboratorní práce č. 10 Optické zobrazování - čočka

Více

Zadání. Pracovní úkol. Pomůcky

Zadání. Pracovní úkol. Pomůcky Pracovní úkol Zadání 1. Změřte ohniskovou vzdálenost tenké ploskovypuklé (plankonvexní) čočky jednak Besselovou metodou, jednak metodou dvojího zvětšení. 2. Z následujících možností vyberte jednu: a. Změřte

Více

Úloha č. 5. Měření zvětšení lupy a mikroskopu

Úloha č. 5. Měření zvětšení lupy a mikroskopu Fzikání praktikum IV. Měření zvětšení up a mikroskopu - verze 01 Úoha č. 5 Měření zvětšení up a mikroskopu 1) Pomůck: Stojan upa měřítka mikroskop průhedné měřítko do mikroskopu stojan s měřítkem osvětovací

Více

Měření zvětšení dalekohledu a ohniskové vzdálenosti objektivů 1. Cíl úlohy

Měření zvětšení dalekohledu a ohniskové vzdálenosti objektivů 1. Cíl úlohy Měření zvětšení dalekohledu a ohniskové vzdálenosti objektivů 1. Cíl úlohy 2. Úkoly Seznámení se základními prvky a stavbou teleskopických dalekohledů. A) Změřte ohniskovou vzdálenost předložených objektivů

Více

Zadání. Pracovní úkol. Pomůcky

Zadání. Pracovní úkol. Pomůcky Pracovní úkol Zadání 1. Z přiložených objektivů vyberte dva, použijte je jako lupy a změřte jejich zvětšení a zorná pole přímou metodou. Odhadněte maximální chybu měření. 2. Změřte zvětšení a zorná pole

Více

Lupa a mikroskop příručka pro učitele

Lupa a mikroskop příručka pro učitele Obecné informace Lupa a mikroskop příručka pro učitele Pro vysvětlení chodu světelných paprsků lupou a mikroskopem je nutno navázat na znalosti o zrcadlech a čočkách. Hodinová dotace: 1 vyučovací hodina

Více

DUM č. 5 v sadě. 12. Fy-3 Průvodce učitele fyziky pro 4. ročník

DUM č. 5 v sadě. 12. Fy-3 Průvodce učitele fyziky pro 4. ročník projekt GML Brno Docens DUM č. 5 v sadě 12. Fy-3 Průvodce učitele fyziky pro 4. ročník Autor: Miroslav Kubera Datum: 05.04.2014 Ročník: 4B Anotace DUMu: Písemný test navazuje na témata probíraná v hodinách

Více

2. Optika II. 2.1. Zobrazování dutým zrcadlem

2. Optika II. 2.1. Zobrazování dutým zrcadlem 2. Optika II Popis stavebnice: jedná se o žákovskou verzi předcházející stavebnice, umístěné v lehce přenosném dřevěném kufříku. Experimenty, které jsou uspořádány v příručce, jsou určeny především pro

Více

Fyzikální praktikum FJFI ČVUT v Praze

Fyzikální praktikum FJFI ČVUT v Praze Fyzikální praktikum FJFI ČVUT v Praze Úloha 4: Cavendishův experiment Datum měření: 3. 1. 015 Skupina: 8, čtvrtek 7:30 Vypracoval: Tadeáš Kmenta Klasifikace: 1 Zadání 1. DÚ: V přípravě odvoďte vztah pro

Více

PRAKTIKUM III. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK

PRAKTIKUM III. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM III. úlohač.20 Název: Stavba Michelsonova interferometru a ověření jeho funkce Pracoval: Lukáš Ledvina stud.skup.14 dne:3.3.2010

Více

Geometrická optika. Optické přístroje a soustavy. převážně jsou založeny na vzájemné interakci světelného pole s látkou nebo s jiným fyzikálním polem

Geometrická optika. Optické přístroje a soustavy. převážně jsou založeny na vzájemné interakci světelného pole s látkou nebo s jiným fyzikálním polem Optické přístroje a soustav Geometrická optika převážně jsou založen na vzájemné interakci světelného pole s látkou nebo s jiným fzikálním polem Důsledkem této t to interakce je: změna fzikáln lních vlastností

Více

Název: Měření ohniskové vzdálenosti tenkých čoček různými metodami

Název: Měření ohniskové vzdálenosti tenkých čoček různými metodami Název: Měření ohniskové vzdálenosti tenkých čoček různými metodami Autor: Mgr. Lucia Klimková Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy Předmět (mezipředmětové vztahy) : Fyzika (Matematika)

Více

Fyzikální praktikum FJFI ČVUT v Praze

Fyzikální praktikum FJFI ČVUT v Praze Fyzikální praktikum FJFI ČVUT v Praze Úloha 9: Rozšíření rozsahu miliampérmetru a voltmetru. Cejchování kompenzátorem. Datum měření: 15. 10. 2015 Skupina: 8, čtvrtek 7:30 Vypracoval: Tadeáš Kmenta Klasifikace:

Více

5.2.12 Dalekohledy. y τ τ F 1 F 2. f 2. f 1. Předpoklady: 5211

5.2.12 Dalekohledy. y τ τ F 1 F 2. f 2. f 1. Předpoklady: 5211 5.2.12 Dalekohledy Předpoklady: 5211 Pedagogická poznámka: Pokud necháte studenty oba čočkové dalekohledy sestavit v lavicích nepodaří se Vám hodinu stihnout za 45 minut. Dalekohledy: už z názvu poznáme,

Více

Aplikovaná optika I: příklady k procvičení celku Geometrická optika. Jana Jurmanová

Aplikovaná optika I: příklady k procvičení celku Geometrická optika. Jana Jurmanová Aplikovaná optika I: příklady k procvičení celku Geometrická optika Jana Jurmanová Geometrická optika Následující úlohy řešte graficky či výpočtem. 1. Předmět vysoký 1cm je umístěn 30cm od spojky, která

Více

FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE

FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE Datum měření: 1.4.2011 Jméno: Jakub Kákona Pracovní skupina: 4 Ročník a kroužek: Pa 9:30 Spolupracovníci: Jana Navrátilová Hodnocení: Měření s polarizovaným světlem

Více

Ing. Jakub Ulmann. Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově

Ing. Jakub Ulmann. Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově 07_10_Zobrazování optickými soustavami II Ing. Jakub Ulmann Zobrazování optickými soustavami 1. Optické

Více

Optické zobrazení - postup, kterým získáváme optické obrazy bodů a předmětů

Optické zobrazení - postup, kterým získáváme optické obrazy bodů a předmětů Optické soustav a optická zobrazení Přímé vidění - paprsek od zobrazovaného předmětu dopadne přímo do oka Optická soustava - soustava optických prostředí a jejich rozhraní, která mění chod paprsků Optické

Více

Tabulka I Měření tloušťky tenké vrstvy

Tabulka I Měření tloušťky tenké vrstvy Pracovní úkol 1. Změřte tloušťku tenké vrstvy ve dvou různých místech. 2. Vyhodnoťte získané tloušťky a diskutujte, zda je vrstva v rámci chyby nepřímého měření na obou místech stejně silná. 3. Okalibrujte

Více

2. Vyhodnoťte získané tloušťky a diskutujte, zda je vrstva v rámci chyby nepřímého měření na obou místech stejně silná.

2. Vyhodnoťte získané tloušťky a diskutujte, zda je vrstva v rámci chyby nepřímého měření na obou místech stejně silná. 1 Pracovní úkoly 1. Změřte tloušťku tenké vrstvy ve dvou různých místech. 2. Vyhodnoťte získané tloušťky a diskutujte, zda je vrstva v rámci chyby nepřímého měření na obou místech stejně silná. 3. Okalibrujte

Více

Podle studijních textů k úloze [1] se divergence laserového svaku definuje jako

Podle studijních textů k úloze [1] se divergence laserového svaku definuje jako Úkoly 1. Změřte divergenci laserového svazku. 2. Z optické stavebnice sestavte Michelsonův interferometr. K rozšíření svazku sestavte Galileův teleskop. Ze známých ohniskových délek použitých čoček spočtěte,

Více

h n i s k o v v z d á l e n o s t s p o j n ý c h č o č e k

h n i s k o v v z d á l e n o s t s p o j n ý c h č o č e k h n i s k o v v z d á l e n o s t s p o j n ý c h č o č e k Ú k o l : P o t ř e b : Změřit ohniskové vzdálenosti spojných čoček různými metodami. Viz seznam v deskách u úloh na pracovním stole. Obecná

Více

FYZIKA, OPTIKA, OPTICKÁ ZOBRAZENÍ

FYZIKA, OPTIKA, OPTICKÁ ZOBRAZENÍ Škola: Autor: DUM: Vzdělávací obor: Tematický okruh: Téma: Masarykovo gymnázium Vsetín Mgr. Jarmila Vyškovská MGV_F_SS_1S3_D10_Z _OPT_Opticke_pristroje_- lupa_mikroskop_pl Člověk a příroda Fyzika Optika

Více

Fyzikální praktikum FJFI ČVUT v Praze

Fyzikální praktikum FJFI ČVUT v Praze Fyzikální praktikum FJFI ČVUT v Praze Úloha 5: Měření teploty wolframového vlákna Datum měření: 1. 4. 2016 Doba vypracovávání: 12 hodin Skupina: 1, pátek 7:30 Vypracoval: Tadeáš Kmenta Klasifikace: 1 Zadání

Více

R8.1 Zobrazovací rovnice čočky

R8.1 Zobrazovací rovnice čočky Fyzika pro střední školy II 69 R8 Z O B R A Z E N Í Z R C A D L E M A Č O Č K O U R8.1 Zobrazovací rovnice čočky V kap. 8.2 je ke konstrukci chodu světelných paprsků při zobrazování tenkou čočkou použit

Více

Měření vlnové délky spektrálních čar rtuťové výbojky pomocí optické mřížky

Měření vlnové délky spektrálních čar rtuťové výbojky pomocí optické mřížky Měření vlnové délky spektrálních čar rtuťové výbojky pomocí optické mřížky Úkol : 1. Určete mřížkovou konstantu d optické mřížky a porovnejte s hodnotou udávanou výrobcem. 2. Určete vlnovou délku λ jednotlivých

Více

FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE

FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE Datum měření: 18.4.2012 Jméno: Jakub Kákona Pracovní skupina: 2 Hodina: Po 7:30 Spolupracovníci: Viktor Polák Hodnocení: Měření s polarizovaným světlem Abstrakt V

Více

Fyzikální praktikum FJFI ČVUT v Praze

Fyzikální praktikum FJFI ČVUT v Praze Fyzikální praktikum FJFI ČVUT v Praze Úloha 2: Hysterezní smyčka Datum měření: 11. 3. 2016 Doba vypracovávání: 10 hodin Skupina: 1, pátek 7:30 Vypracoval: Tadeáš Kmenta Klasifikace: 1 Zadání 1. DÚ: Zjistěte,

Více

1. Z přiložených objektivů vyberte dva, použijte je jako lupy a změřte jejich zvětšení a zorná pole přímou metodou.

1. Z přiložených objektivů vyberte dva, použijte je jako lupy a změřte jejich zvětšení a zorná pole přímou metodou. 1 Pracovní úkoly 1. Z přiložených objektivů vyberte dva, použijte je jako lupy a změřte jejich zvětšení a zorná pole přímou metodou. 2. Změřte zvětšení a zorná pole mikroskopu pro všechny možné kombinace

Více

Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově 07_10_Zobrazování optickými soustavami 1

Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově 07_10_Zobrazování optickými soustavami 1 Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově 07_10_Zobrazování optickými soustavami 1 Ing. Jakub Ulmann Zobrazování optickými soustavami 1. Optické

Více

Fyzikální sekce přírodovědecké fakulty Masarykovy univerzity v Brně FYZIKÁLNÍ PRAKTIKUM. F3240 Fyzikální praktikum 2

Fyzikální sekce přírodovědecké fakulty Masarykovy univerzity v Brně FYZIKÁLNÍ PRAKTIKUM. F3240 Fyzikální praktikum 2 Fyzikální sekce přírodovědecké fakulty Masarykovy univerzity v Brně FYZIKÁLNÍ PRAKTIKUM F340 Fyzikální praktikum Zpracoval: Dvořák Martin Naměřeno: 0. 0. 009 Obor: B-FIN Ročník: II. Semestr: III. Testováno:

Více

Fyzikální praktikum FJFI ČVUT v Praze

Fyzikální praktikum FJFI ČVUT v Praze Fyzikální praktikum FJFI ČVUT v Praze Úloha 9: Měření s polarizovaným světlem Datum měření: 29. 4. 2016 Doba vypracovávání: 8 hodin Skupina: 1, pátek 7:30 Vypracoval: Tadeáš Kmenta Klasifikace: 1 Zadání

Více

F - Lom světla a optické přístroje

F - Lom světla a optické přístroje F - Lom světla a optické přístroje Autor: Mgr. Jaromír Juřek Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. VARIACE 1 Tento dokument byl

Více

VY_32_INOVACE_FY.12 OPTIKA II

VY_32_INOVACE_FY.12 OPTIKA II VY_32_INOVACE_FY.12 OPTIKA II Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Jiří Kalous Základní a mateřská škola Bělá nad Radbuzou, 2011 Optická čočka je optická soustava dvou centrovaných

Více

Optika. Zápisy do sešitu

Optika. Zápisy do sešitu Optika Zápisy do sešitu Světelné zdroje. Šíření světla. 1/3 Světelné zdroje - bodové - plošné Optická prostředí - průhledné (sklo, vzduch) - průsvitné (matné sklo) - neprůsvitné (nešíří se světlo) - čirá

Více

FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE

FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE Datum měření: 18.4.2012 Jméno: Jakub Kákona Pracovní skupina: 2 Hodina: Po 7:30 Spolupracovníci: Viktor Polák Hodnocení: Měření s polarizovaným světlem Abstrakt V

Více

9. Geometrická optika

9. Geometrická optika 9. Geometrická optika 1 Popis pomocí světelných paprsků těmi se šíří energie a informace, zanedbává vlnové vlastnosti světla světelný paprsek = křivka (často přímka), podél níž se šíří světlo, jeho energie

Více

OPTIKA Optické přístroje TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY.

OPTIKA Optické přístroje TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY. OPTIKA Optické přístroje TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY. ) Oko Oko je optická soustava, kterou tvoří: rohovka, komorová voda, čočka a sklivec.

Více

2.1.18 Optické přístroje

2.1.18 Optické přístroje 2.1.18 Optické přístroje Předpoklad: 020117 Pomůck: kompletní optické souprav I kdž máme zdravé oči (správné brýle) a skvěle zaostřeno, neuvidíme všechno. Př. 1: Co děláš, kdž si chceš prohlédnout malé,

Více

VUT v Brně Fakulta strojního inženýrství

VUT v Brně Fakulta strojního inženýrství 09 Zamiřování HPZ a ZAMĚŘOVAČE VUT v Brně Fakulta strojního inženýrství Róbert Jankových (jankovych@fme.vutbr.cz ) Brno, 13. listopadu 2012 Studijní literatura Osnova Princip zamiřování zbraní Klasifikace

Více

PRAKTIKUM II Elektřina a magnetismus

PRAKTIKUM II Elektřina a magnetismus Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM II Elektřina a magnetismus Úloha č.: IV Název: Měření malých odporů Pracoval: Pavel Brožek stud. skup. 12 dne 19.12.2008 Odevzdal

Více

25. Zobrazování optickými soustavami

25. Zobrazování optickými soustavami 25. Zobrazování optickými soustavami Zobrazování zrcadli a čočkami. Lidské oko. Optické přístroje. Při optickém zobrazování nemusíme uvažovat vlnové vlastnosti světla a stačí považovat světlo za svazek

Více

Úkoly. 1 Teoretický úvod. 1.1 Mikroskop

Úkoly. 1 Teoretický úvod. 1.1 Mikroskop Úkoly 1. Z přiložených objektivů vyberte dva, použijte je jako lupy a změřte jejich zvětšení a zorná pole přímou metodou. Odhadněte maximální chyby měření. 2. Změřte zvětšení a zorná pole mikroskopu pro

Více

Fyzikální praktikum FJFI ČVUT v Praze

Fyzikální praktikum FJFI ČVUT v Praze Fyzikální praktikum FJFI ČVUT v Praze Úloha 6: Kalibrace teploměru, skupenské teplo Datum měření: 17. 12. 2015 Skupina: 8, čtvrtek 7:30 Vypracoval: Tadeáš Kmenta Klasifikace: Část I Kalibrace rtuťového

Více

Fyzika_7_zápis_7.notebook April 28, 2015

Fyzika_7_zápis_7.notebook April 28, 2015 OPTICKÉ PŘÍSTROJE 1) Optické přístroje se využívají zejména k pozorování: velmi malých těles velmi vzdálených těles 2) Optické přístroje dělíme na: a) subjektivní: obraz je zaznamenáván okem např. lupa,

Více

Určení geometrických a fyzikálních parametrů čočky

Určení geometrických a fyzikálních parametrů čočky C Určení geoetrickýc a yzikálníc paraetrů čočky Úkoly :. Určete poloěry křivosti ploc čočky poocí séroetru. Zěřte tloušťku čočky poocí digitálnío posuvnéo ěřítka 3. Zěřte oniskovou vzdálenost spojné čočky

Více

Fyzikální praktikum FJFI ČVUT v Praze

Fyzikální praktikum FJFI ČVUT v Praze Fyzikální praktikum FJFI ČVUT v Praze Úloha 10: Interference a ohyb větla Datum měření: 6. 5. 2016 Doba vypracovávání: 7 hodin Skupina: 1, pátek 7:30 Vypracoval: Tadeáš Kmenta Klaifikace: 1 Zadání 1. Bonu:

Více

Měření ohniskové vzdálenosti objektivu přímou metodou

Měření ohniskové vzdálenosti objektivu přímou metodou Měření ohniskové vzdálenosti objektivu přímou metodou návod ke cvičení z předmětu otonika (X34OT) 22. srpna 2007 Katedra Radioelektronik ČVUT akulta elektrotechnická, Technická 2, 166 27 Praha, Česká Republika

Více

Laboratorní práce č. 1: Měření délky

Laboratorní práce č. 1: Měření délky Přírodní vědy moderně a interaktivně FYZIKA 3. ročník šestiletého a 1. ročník čtyřletého studia Laboratorní práce č. 1: Měření délky G Gymnázium Hranice Přírodní vědy moderně a interaktivně FYZIKA 3.

Více

Optika pro mikroskopii materiálů I

Optika pro mikroskopii materiálů I Optika pro mikroskopii materiálů I Jan.Machacek@vscht.cz Ústav skla a keramiky VŠCHT Praha +42-0- 22044-4151 Osnova přednášky Základní pojmy optiky Odraz a lom světla Interference, ohyb a rozlišení optických

Více

Nejdůležitější pojmy a vzorce učiva fyziky II. ročníku

Nejdůležitější pojmy a vzorce učiva fyziky II. ročníku Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 Nejdůležitější pojmy a vzorce učiva fyziky II. ročníku V tomto článku uvádíme shrnutí poznatků učiva II. ročníku

Více

Rozdělení přístroje zobrazovací

Rozdělení přístroje zobrazovací Optické přístroje úvod Rozdělení přístroje zobrazovací obraz zdánlivý subjektivní přístroje lupa mikroskop dalekohled obraz skutečný objektivní přístroje fotoaparát projekční přístroje přístroje laboratorní

Více

MĚŘENÍ VLNOVÝCH DÉLEK SVĚTLA MŘÍŽKOVÝM SPEKTROMETREM

MĚŘENÍ VLNOVÝCH DÉLEK SVĚTLA MŘÍŽKOVÝM SPEKTROMETREM MĚŘENÍ VLNOVÝCH DÉLEK SVĚTLA MŘÍŽKOVÝM SPEKTROMETREM Difrakce (ohyb) světla je jedním z několika projevů vlnových vlastností světla. Z těchto důvodů světlo při setkání s překážkou nepostupuje dále vždy

Více

Univerzita Tomáše Bati ve Zlíně

Univerzita Tomáše Bati ve Zlíně Univerzita Tomáše Bati ve líně LABORATORNÍ CVIČENÍ YIKY II Název úloh: Měření ohniskové vzdálenosti čočk Jméno: Petr Luzar Skupina: IT II/ Datum měření:.listopadu 007 Obor: Informační technologie Hodnocení:

Více

ZÁKLADY FYZIKÁLNÍCH MĚŘENÍ FJFI ČVUT V PRAZE. Úloha 5: Měření tíhového zrychlení

ZÁKLADY FYZIKÁLNÍCH MĚŘENÍ FJFI ČVUT V PRAZE. Úloha 5: Měření tíhového zrychlení ZÁKLADY FYZIKÁLNÍCH MĚŘENÍ FJFI ČVUT V PRAZE Datum měření: číslo skupiny: Spolupracovali: 1 Úvod 1.1 Pracovní úkoly [1] Úloha 5: Měření tíhového zrychlení Jméno: Ročník, kruh: Klasifikace: 1. V domácí

Více

Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK

Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK FYZIKÁLNÍ PRAKTIKUM III Úloha číslo: 16 Název: Měření indexu lomu Fraunhoferovou metodou Vypracoval: Ondřej Hlaváč stud. skup.: F dne:

Více

S v ě telné jevy. Optika - nauka - o světle, jeho vlastnostech a účincích - o přístrojích, které jsou založeny na zákonech šíření světla

S v ě telné jevy. Optika - nauka - o světle, jeho vlastnostech a účincích - o přístrojích, které jsou založeny na zákonech šíření světla S v ě telné jevy Optika - nauka - o světle, jeho vlastnostech a účincích - o přístrojích, které jsou založeny na zákonech šíření světla Světelný zdroj - těleso v kterém světlo vzniká a vysílá je do okolí

Více

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í OPTICKÉ ZOBRAZOVÁNÍ. Zrcdl prcují n principu odrzu světl druhy: rovinná kulová relexní plochy: ) rovinná zrcdl I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í obyčejné kovová vrstv npřená n sklo

Více

M I K R O S K O P I E

M I K R O S K O P I E Inovace předmětu KBB/MIK SVĚTELNÁ A ELEKTRONOVÁ M I K R O S K O P I E Rozvoj a internacionalizace chemických a biologických studijních programů na Univerzitě Palackého v Olomouci CZ.1.07/2.2.00/28.0066

Více

OPTIKA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda

OPTIKA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda OPTIKA Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda Základní poznatky Zdroje světla světlo vzniká různými procesy (Slunce, žárovka, svíčka, Měsíc) Bodový zdroj Plošný zdroj Základní poznatky Optická prostředí

Více

7. Světelné jevy a jejich využití

7. Světelné jevy a jejich využití 7. Světelné jevy a jejich využití - zápis výkladu - 41. až 43. hodina - B) Optické vlastnosti oka Oko = spojná optická soustava s měnitelnou ohniskovou vzdáleností zjednodušené schéma oka z biologického

Více

Optika OPTIKA. June 04, 2012. VY_32_INOVACE_113.notebook

Optika OPTIKA. June 04, 2012. VY_32_INOVACE_113.notebook Optika Základní škola Nový Bor, náměstí Míru 128, okres Česká Lípa, příspěvková organizace e mail: info@zsnamesti.cz; www.zsnamesti.cz; telefon: 487 722 010; fax: 487 722 378 Registrační číslo: CZ.1.07/1.4.00/21.3267

Více

Laboratorní úloha č. 3 Spřažená kyvadla. Max Šauer

Laboratorní úloha č. 3 Spřažená kyvadla. Max Šauer Laboratorní úloha č. 3 Spřažená kyvadla Max Šauer 17. prosince 2003 Obsah 1 Úkol měření 2 2 Seznam použitých přístrojů a pomůcek 2 3 Výsledky měření 2 3.1 Stanovení tuhosti vazbové pružiny................

Více

Laboratorní práce č. 3: Měření vlnové délky světla

Laboratorní práce č. 3: Měření vlnové délky světla Přírodní vědy moderně a interaktivně SEMINÁŘ FYZIKY Laboratorní práce č. 3: Měření vlnové délky světla G Gymnázium Hranice Přírodní vědy moderně a interaktivně SEMINÁŘ FYZIKY Gymnázium G Hranice Test

Více

Úloha 10: Interference a ohyb světla

Úloha 10: Interference a ohyb světla Úloha 10: Interference a ohyb světla FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE Datum měření: 29.3.2010 Jméno: František Batysta Pracovní skupina: 5 Ročník a kroužek: 2. ročník, pond. odp. Spolupracovník: Štěpán

Více

PRAKTIKUM II Elektřina a magnetismus

PRAKTIKUM II Elektřina a magnetismus Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM II Elektřina a magnetismus Úloha č.: II Název: Měření odporů Pracoval: Pavel Brožek stud. skup. 12 dne 28.11.2008 Odevzdal

Více

3. OPTICKÉ ZOBRAZENÍ

3. OPTICKÉ ZOBRAZENÍ FYZIKA PRO IV. ROČNÍK GYMNÁZIA - OPTIKA 3. OPTICKÉ ZOBRAZENÍ Mgr. Monika Bouchalová Gymnázium, Havířov-Město, Komenského 2, p.o. Tento digitální učební materiál (DUM) vznikl na základě řešení projektu

Více

Název: Čočková rovnice

Název: Čočková rovnice Název: Čočková rovnice Autor: Mgr. Lucia Klimková Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy Předmět (mezipředmětové vztahy) : Fyzika (Matematika) Tematický celek: Optika Ročník: 5. (3.

Více

Obr. 1: Optická lavice s příslušenstvím při měření přímou metodou. 2. Určení ohniskové vzdálenosti spojky Besselovou metodou

Obr. 1: Optická lavice s příslušenstvím při měření přímou metodou. 2. Určení ohniskové vzdálenosti spojky Besselovou metodou MĚŘENÍ PARAMETRŮ OPTICKÝCH SOUSTAV Zákldním prmetrem kždé zobrzovcí soustvy je především její ohnisková vzdálenost. Existuje několik metod k jejímu určení le téměř všechny jsou ztíženy určitou nepřesností

Více

Fyzikální kabinet GymKT Gymnázium J. Vrchlického, Klatovy

Fyzikální kabinet GymKT Gymnázium J. Vrchlického, Klatovy Fzikální kbinet GmKT Gmnázium J. Vrchlického, Kltov stženo z http:kbinet.zik.net Optické přístroje Subjektivní optické přístroje - vtvářejí zánlivý (neskutečný) obrz, který pozorujeme okem (subjektivně)

Více

Krafková, Kotlán, Hiessová, Nováková, Nevímová

Krafková, Kotlán, Hiessová, Nováková, Nevímová Krafková, Kotlán, Hiessová, Nováková, Nevímová Optická čočka je optická soustava dvou centrovaných ploch, nejčastěji kulových, popř. jedné kulové a jedné rovinné plochy. Čočka je tvořena z průhledného

Více

Studium ultrazvukových vln

Studium ultrazvukových vln Číslo úlohy: 8 Jméno: Vojtěch HORNÝ Spolupracoval: Jaroslav Zeman Datum měření: 12. 10. 2009 Číslo kroužku: pondělí 13:30 Číslo skupiny: 6 Klasifikace: Fyzikální praktikum FJFI ČVUT v Praze Studium ultrazvukových

Více

Maticová optika. Lenka Přibylová. 24. října 2010

Maticová optika. Lenka Přibylová. 24. října 2010 Maticová optika Lenka Přibylová 24. října 2010 Maticová optika Při průchodu světla optickými přístroji dochází k transformaci světelného paprsku, vlnový vektor mění úhel, který svírá s optickou osou, paprsek

Více

Ověření výpočtů geometrické optiky

Ověření výpočtů geometrické optiky Ověření výpočtů geometrické optiky V úloze se demonstrují základní výpočty související s volbou objektivu v kameře. Měřící pracoviště se skládá z řádkové kamery s CCD snímačem L133, opatřeného objektivem,

Více

Fyzikální praktikum FJFI ČVUT v Praze

Fyzikální praktikum FJFI ČVUT v Praze Fyzikální praktikum FJFI ČVUT v Praze Úloha 1: Akustika Datum měření: 4. 3. 2016 Doba vypracovávání: 10 hodin Skupina: 1, pátek 7:30 Vypracoval: Tadeáš Kmenta Klasifikace: 1 Zadání 1. DÚ: Spočítejte, jakou

Více

2 (3) kde S je plocha zdroje. Protože jas zdroje není závislý na směru, lze vztah (5) přepsat do tvaru:

2 (3) kde S je plocha zdroje. Protože jas zdroje není závislý na směru, lze vztah (5) přepsat do tvaru: Pracovní úkol 1. Pomocí fotometrického luxmetru okalibrujte normální žárovku (stanovte její svítivost). Pro určení svítivosti normální žárovky (a její chyby) vyneste do grafu závislost osvětlení na převrácené

Více

Fyzika 2 - rámcové příklady Geometrická optika

Fyzika 2 - rámcové příklady Geometrická optika Fyzika 2 - rámcové příklady Geometrická optika 1. Stanovte absolutní index lomu prostředí, jestliže rychlost elektromagnetických vln v daném prostředí dosahuje hodnoty 0,65c. Jaký je rozdíl optických drah

Více

Základní pojmy a vztahy: Vlnová délka (λ): vzdálenost dvou nejbližších bodů vlnění kmitajících ve stejné fázi

Základní pojmy a vztahy: Vlnová délka (λ): vzdálenost dvou nejbližších bodů vlnění kmitajících ve stejné fázi LRR/BUBCV CVIČENÍ Z BUNĚČNÉ BIOLOGIE 1. SVĚTELNÁ MIKROSKOPIE A PREPARÁTY V MIKROSKOPII TEORETICKÝ ÚVOD: Mikroskopie je základní metoda, která nám umožňuje pozorovat velmi malé biologické objekty. Díky

Více

1. Změřte momenty setrvačnosti kvádru vzhledem k hlavním osám setrvačnosti.

1. Změřte momenty setrvačnosti kvádru vzhledem k hlavním osám setrvačnosti. 1 Pracovní úkoly 1. Změřte momenty setrvačnosti kvádru vzhledem k hlavním osám setrvačnosti.. Určete složky jednotkového vektoru ve směru zadané obecné osy rotace kvádru v souřadné soustavě dané hlavními

Více

PRAKTIKUM III. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Název: Studium ohybových jevů v laserovém svazku

PRAKTIKUM III. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Název: Studium ohybových jevů v laserovém svazku Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM III. Úloha č. 6 Název: Studium ohybových jevů v laserovém svazku Pracoval: Lukáš Vejmelka obor (kruh) FMUZV (73) dne 10.3.2014

Více

3. Optika III. 3.1. Přímočaré šíření světla

3. Optika III. 3.1. Přímočaré šíření světla 3. Optika III Popis soupravy: Souprava Haftoptik s níž je prováděn soubor experimentů Optika III je určena k demonstraci optických jevů pomocí segmentů se silnými magnety. Ty umožňují jejich fixaci na

Více

OPTIKA - NAUKA O SVĚTLE

OPTIKA - NAUKA O SVĚTLE OPTIKA OPTIKA - NAUKA O SVĚTLE - jeden z nejstarších oborů yziky - studium světla, zákonitostí jeho šíření a analýza dějů při vzájemném působení světla a látky SVĚTLO elektromagnetické vlnění λ = 380 790

Více

naše vlajka: Řešení prvního úkolu kategorie 3 druhý stupeň: Trochu teorie a historie: Kamarádi ZŠ Chrast S chutí do toho a půl je hotovo,

naše vlajka: Řešení prvního úkolu kategorie 3 druhý stupeň: Trochu teorie a historie: Kamarádi ZŠ Chrast S chutí do toho a půl je hotovo, Řešení prvního úkolu kategorie 3 druhý stupeň: Kamarádi ZŠ Chrast S chutí do toho a půl je hotovo, rádi spolu tvoříme, na úkol se těšíme naše vlajka: Trochu teorie a historie: Dalekohled Dalekohled umožňuje

Více

PRAKTIKUM II Elektřina a magnetismus

PRAKTIKUM II Elektřina a magnetismus Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM II Elektřina a magnetismus Úloha č.: VIII Název: Měření impedancí rezonanční metodou Pracoval: Pavel Brožek stud. skup. 12

Více

Jednoduchý elektrický obvod

Jednoduchý elektrický obvod 21 25. 05. 22 01. 06. 23 22. 06. 24 04. 06. 25 28. 02. 26 02. 03. 27 13. 03. 28 16. 03. VI. A Jednoduchý elektrický obvod Jednoduchý elektrický obvod Prezentace zaměřená na jednoduchý elektrický obvod

Více

Zákon odrazu. Úhel odrazu je roven úhlu dopadu, přičemž odražené paprsky zůstávají v rovině dopadu.

Zákon odrazu. Úhel odrazu je roven úhlu dopadu, přičemž odražené paprsky zůstávají v rovině dopadu. 1. ZÁKON ODRAZU SVĚTLA, ODRAZ SVĚTLA, ZOBRAZENÍ ZRCADLY, Dívejme se skleněnou deskou, za kterou je tmavší pozadí. Vidíme v ní vlastní obličej a současně vidíme předměty za deskou. Obojí však slaběji než

Více