Základní částice mikrosvěta Jádro. Rozdělení prvků podle elektronové konfigurace. PTP a její zákonitosti

Rozměr: px
Začít zobrazení ze stránky:

Download "Základní částice mikrosvěta Jádro. Rozdělení prvků podle elektronové konfigurace. PTP a její zákonitosti"

Transkript

1 Struktura látek Chemické vazby

2 Obsah Stavba atomu Základní částice mikrosvěta Jádro Elektronový obal Rozdělení prvků podle elektronové konfigurace PTP a její zákonitosti Ch i ká b Chemická vazba Interakce s vazebnými elektrony» Iontová vazba» Kovalentní vazba» Kovová vazba Slabší vazebné interakce» Vodíková vazba» Van der Waalsova vazba

3 Stavba atomu hmotnost elektronu je pouhá 1/1837 hmotnosti protonu většina hmotnosti atomu je soustředěna do jeho jádra výsledný rozměr celého atomu je až 100 tisíckrát větší než je rozměr jádra velikost atomu lze zaznamenat pomocí maximálního zvětšení na transmisním elektronovém mikroskopu k

4 Základní částice mikrosvěta Proton: 1 Neutron: Elektron: 1 p 1 Náboj +1, C Hmotnost m p =1, kg m p = 1836 m e p 1 n e Náboj Hmotnost Náboj Hmotnost 0C mn=1, kg mn= 1839 me 1, C me=9, kg mp = 1839 me

5

6 Jádro Stavební částice jádra jsou směstnányě tá na velmi malém prostoru hustota jádra je asi 1014 kg m -3 mezi kladně nabitými protony působí značné odpudivé síly. Mnohem silnější interakce, které udržují jádra pohromadě jaderné síly - malý dosah - krátká doba interakce - dosah jaderných sil definuje poloměr jádra atomů hmotnostní úbytek - vazebná energie jádra poloměr atomového jádra kloýtarmají kulový tvar pouze některá jádra s magickým počtem protonů i neutronů, většina jader má tvar protáhlého li id k éjád j d k l lá

7 Elektronový lk obal bl Zformuloval vzorec, který postihoval naměřená data a platil pouze za předpokladu, že energie proudí nespojitě, tedy v kvantech, a že energetické kvantum je úměrné frekvenci nebo vlnové délce záření. Planck tento teoretický předpoklad ř d stanovil čistě matematicky, ik z fyzikálního hlediska mu příliš nedůvěřoval. Sám nazýval jeho přijetí Max Planck "aktem zoufalství". 14. prosince 1900 zveřejnil Max Planck teoretické (1900) vysvětlení svého vyzařovacího acího zákona v Německém fyzikálním institutu. t Přijímaná nebo odevzdávaná energie je kvantována, protože každé částici lze přiřadit pouze diskrétní hodnoty vlnové délky. (násobky vlnové délky) jako stojaté vlnění

8 V roce 1905 se chopil Planckovy teorie světelných kvant. Ukázal, že existence kvant by mohla pomoci vysvětlit starou záhadu tzv. fotoelektrického jevu. Einsteinovi to vyneslo Nobelovu cenu za fyziku a ostatní vědci začali brát kvantovou teorii vážně. Albert Einstein Experimentálně zjistil, že veškerá hmotnost atomu je soustředěna v jádře, které je (1905) mnohem menší než celý atom. Předpokládal, že elektrony obíhají kolem jádra po drahách a vytvářejí elektronový obal atomu tzv. planetární model Ruthefordova nukleární koncepce - první koncepce uvažující atomové jádro: kladný náboj je v centru atomu. rozměry jádra jsou v porovnání s rozměry atomu x menší hmotnost jádra je nepoměrně větší než hmotnost elektronů v atomovém obalu Ernst Rutherford síly v bezprostřední blízkosti jádra jsou obrovské. (1911) náboj jádra vyjádřený v energetických kvantech je numericky roven pořadovému (protonovému) číslu atomu a určuje jeho vlastnosti. Nd Nedostatky: kroužící žííelektrony lk odevzdávají dá energii iido okolí, klípostupně ě se přibližují k jádru až zaniknou v rozporu se skutečností.

9 Zavedl do pohybových zákonů klasické mechaniky Planckovu teorii, tím odstranil nedostatky Rutherfordova modelu první kvantově mechanický model atomu. Bohr tak přišel s revoluční myšlenkou: elektrony se mohou pohybovat jen po určitých drahách, a nikoliv mezi nimi, energie elektronu tak nemůže nabývat libovolných hodnot. Niels Bohr (1913) Bohr pokračoval ve studiu struktury atomu na základě Ruthefordova objevu atomového jádra a s využitím Planckovy a Einsteinovy kvantové teorie sestavil teoretický kvantový model atomu vodíku. Od roku 1916 působil v Kodani, kde založil a úspěšně vedl Ústav teoretické fyziky, kterým prošli téměř všichni významní fyzici 1. pol. 20. stol. (tzv. kodaňská škola). Na začátku dvacátých let vypracoval Bohr schéma obsazování energetických hladin atomů elektrony Jeho výzkumy umožnily na konci třicátých let pochopit štěpení atomu.

10 V roce 1923 Arthur Compton experimentálně prokázal, že rentgenové záření má kvantovou podstatu (to svědčí o tom, že fotony lze pojímat jako částice), a o rok později pak Louis de Broglie přišel s důkazem, že hmota má vlnové vlastnosti tzv. duální charakter částic. Louis de Broglie (1924) V letech se zrodil nový obor fyziky, kvantová mechanika, u jehož vzniku stáli Niels Bohr, Erwin Schrödinger, Werner Heisenberg, Max Born a Paul Dirac. Roku 1927 vytvořili tzv. kodaňskou školu kvantové teorie, dospěli k názoru, že atomové jevy jsou jak částicového tak i vlnového charakteru. Šk l h j i Bhů i i k l t it (j ik ětě Škola zahrnuje i Bohrův princip komplementarity (jevy v mikrosvětě jsou neurčité a není možné je popsat jako analogii klasické fyziky), aplikovaný později i na filozofii a biologii.

11 Erwin Schrödinger (1926) Vyšel z Broglieho koncepce "materiálních vln" a již na počátku roku 1926 se objevuje jeho práce Kvantování jako problém vlastních hodnot. Obsahuje tzv. Schrödingerovu rovnici a výpočty, které vedou ke stejným výsledkům jako Bohrova teorie. Z této rovnice je možné určit vlnovou funkci, která má význam amplitudy pravděpodobnosti výskytu částice a její kvadrát představuje hustotu pravděpodobnosti. Část prostoru, v níž se nejpravděpodobněji elektron vyskytuje, se nazývá orbit. Pomocí kvantových čísel vyjadřujeme stavy, v jakých se vyskytují elektrony obíhající kolem jádra, tj. může mít určitou energii a elektronovou hustotu kolem jádra. Jednotlivé orbity charakterizují tři kvantová čísla:

12 Stav jednotlivých elektronů ve všech složitějších atomech se popisuje pomocí systému kvantových čísel. Elektrony ve stavech se stejným n tvoří elektronovou vrstvu neboli slupku. Jednotlivé vrstvy se označují písmeny K-Q. Elektrony ve stavech se stejným n a l tvoří podslupku a mají stejnou energii. Poslední obsazená vrstva se nazývá valenční a je rozhodující pro vznik vazby. Idealizovaný tvar atomového orbitalu 1s (vlevo) a 2s (vpravo) podle rozložení elektronové hustoty. Vše podle Kohout, Melník (1997).

13 Idealizovaný tvar p-orbitalů s různou prostorovou orientací. Idealizovaný tvar s orbitalu vodíku.

14 Pravidla zaplňování orbitalů: 1.Výstavbový princip obsazování elektronů do jednotlivých atomových orbitalů podle jejich rostoucí energie elektronová konfigurace daného atomu. 2.Pauliho princip nemohou existovat dva elektrony, jejichž kvantová čísla by byla všechna stejná, tzn. v orbitu existují maximálně dva elektrony s opačným spinovým číslem,, tato dvojice se označuje jako elektronový pár. Maximální počet elektronů v jednotlivých vrstvách je 2n 2. Na tomto principu je založen periodický systém, který byl potvrzen kvantovou teorií. 3.Hundovo pravidlo stavy (orbitaly) se stejnou energetickou hodnotou se všechny obsazují nejprve jedním elektronem. V rámci slupky s daným hlavním kvantovým číslem vzrůstá energie orbitalů vpořadí s, p, d, f. 4. pravidlo n+1 pomáhá rozhodnout o tom, který ze dvou orbitalů má nižší energii, tzn. bude se obsazovat tdříve.

15 Rozdělení prvků podle elektronové konfigurace Přednesl svoji teorii o triádách prvků (skupiny o třech prvcích), které mají podobné vlastnosti a podobně reagují Johann Wolfgang Döbereiner (1829) Některé trojice Prvek Atomová hmotnost Hustota Cl g/ cm 3 Br g/ cm 3 I g/ cm 3 Ca g/cm 3 Sr g/cm 3 Ba g/cm 3

16 John Alexander Reina Newlands (1864) Tento anglický analytický chemik, navrhl první periodickou tabulku prvků, v které byly prvky uspořádány podle atomové hmotnosti hmotnosti. Tvrdil, že jsou-li prvky takto uspořádány, jako by se u nich opakovaly určité vlastnosti na každém osmém místě tzv. zákon oktáv a přirovnal uspořádání prvků k oktávám á na klávesnici i klavíru. Všichni se jeho nápadu vysmáli, ale o pět let později publikoval ruský chemik Mendělejev nezávisle na Newlandsově práci vyvinutější formu tblk tabulky, jež jžse používá žíádd dodnes. Viktor Meyer (1864) Dal do souvislosti atomový objem a atomovou hmotnost.

17 Zjistil, že u prvků seřazených podle vzrůstající atomové hmotnosti se pravidelně (periodicky) opakují podobné vlastnosti. V několika případech však musel udělat výjimku a předřadit těžší prvek lehčímu. Roku 1869 publikoval l Mendělejev poprvé periodický zákon, který tuto závislost vyjadřuje, a periodickou tabulku prvků, která je grafickým vyjádřením periodického zákona. V tabulce vynechal místa pro prvky, o kterých předpověděl, ř že budou objeveny později. Dnes je známo, že prvky nejsou uspořádány podle relativní atomové hmotnosti, ale podle stoupajícího protonového čísla. To byl také důvod, Dmitrij Ivanovič proč musel Mendělejev předřadit těžší prvek lehčímu. Mendělejevův Mendělejev periodický zákon však byl zpočátku přijat se značným skepticismem a (1869) nebyl dlouhou dobu uznáván. Až s objevením prvků gallia (1875), skandia (1879) a germania (1886), které Mendělejev předpověděl již v roce 1871, byl periodický zákon všeobecně přijat. Glenn T. Seaborg (*1912)

18 PTP a její zákonitosti 7 - period horizontální řady - číslované 1, 2,.. 7, jsou ekvivalentní obsazování elektronů ve valenčních slupkách K, L, M, apod. 16 skupin vertikální sloupce (1-16 nebo IA VIIIA a IB VIIIB (hlavní a vedlejší)), obsahují atomy, v jejichž ji valenční č sféře je stejný počet č elektronů, který odpovídá označení sloupce. vyčleněny lanthanoidy (Z 58 71) a aktinoidy (90 103) - (vnitřně přechodné ř hdéprvky) k) vpravo nahoře nekovy, směrem doleva dolu narůstá kovový charakter některé části skupiny prvků mají své tradiční názvy : alkalické kovy (IA od Li) kovy alkalických zemin (IIA od Ca) chalkogeny (VIA od S) halogeny (VIIA) vzácné plyny (VIIIA) triáda mědi (Cu,Ag,Au) železa (Fe,Co,Ni) lehké platinové kovy (Ru, Rh, Pd) těžké platinové kovy (Os, Ir, Pt)

19

20 Chemická vazba Interakce s vazebnými elektrony Iontová vazba Kovalentní vazba Kovová vazba Slabší vazebné interakce Vodíková vazba Van der Waalsova vazba

21 Kovalentně vázané C ve vrstvě Vrstvy propojeny van der Waalsovými vazbami Kovalentně vázané C ve třech směrech

22 Ve výjimečných případech se v přírodě vyskytují volné atomy, např. jednoatomové molekuly vzácných plynů, ostatní se slučují pomocí valenčních sil do složitějších útvarů. Chemická vazba je síla, která drží skupinu dvou či více atomů pohromadě a uděluje jim funkci základní jednotky. Podstatou slučování jsou změny ve valenční sféře atomů vedoucí ke vzniku společného přetvořeného elektronového systému, který má nižší energii a je tedy stabilnější. Chemickou vazbu charakterizuje disociační energie, která odpovídá práci potřebné k rozštěpení vazby mezi atomy (=množství energie uvolněné při vzniku vazby), a délka vazby.

23 Vztah mezi elektronegativitou a typem vazby Rozdíl elektronegativit typ vazby kovalentní iontový mezi vazebnými atomy charakter nulový kovalentní klesá stoupá střední polárně kovalentní velký iontová

24 Iontová vazba značné elektrostatické síly působící mezi opačně nabitými ionty konfigurace vzácného plynu atom s nižší ionizační energií (elektronegativitou, energie poutající elektrony v atomu) předává valenční elektrony prvku s vyšší hodnotou ionizační energie za vytvoření plně obsazených vnějších hladin vzniklá částice není elektricky neutrální, nese elektrický náboj = ion Dva takové ionty s opačným nábojem jsou k sobě poutány elektrostatickou silou svých opačných nábojů podle Coulombova zákona. V lik t i i č í i lkt tiit áií ítě í Velikost ionizační energie, elektronegativivty, závisí na umístění v periodické tabulce, roste v téže periodě se skupinou a klesá s rostoucí velikostí atomu.

25 Tvar iontů: kulový s různým průměrem Iontová vazba: velmi pevná energie 2-5 ev snadno se rozruší rozpouštědly, např. vodou, dochází k uvolnění ě íiontů, tzv. disociacei Co způsobuje ů iontová vazba? vysoký bod tání - NaCl asi 800 C velmi vysoký bod varu - NaCl 1442 roztoky iontových sloučenin vedou dobře elektrický proud velká mechanická pevnost Příklady látek s iontovou vazbou: NaCl, CaCl 2, MgBr 2, AlF 3, BaO, MnO 2

26 NaCl LiF

27 Vznik dipólového momentu vazba elektronů s rozdílnou elektronegativitou vazebný elektronový pár posunut směrem ě k atomu o vyšší elektronegativitě rozdíl větší než 1,7 vazba iontová Nerovnoměrné rozdělení elektronů elektrickou nesymetrii a atomy získávají náboj Měřítkem polarity chemické vazby: Měřítkem polarity chemické vazby: dipólový moment molekul -hodnota a směr, orientace

28 Dipólové momenty víceatomových molekul:vektorovýsoučet dipólových momentů všech vazeb v molekule včetně dipólových momentů způsobených volným elektronovým párem, např. molekula lkl vody Zákonitosti dipólového momentu: u dvouatomových molekul prvků je nulový (vazby jsou nepolární), viz. vazba kovalentní heterogenní molekuly mají moment větší než nula, vazby jsou polární u iontových sloučenin je vysoký (LiH, KF) víceatomové symetrické sloučeniny jsou nulové (CH 4, CO 2 ) S rostoucí násobností se zvětšuje polární charakter chemické vazby. U některých sloučenin se vytvořený částečný náboj nelokalizuje na tento t atom a způsobuje ů indukovanou polarizaci isousedních vazeb.

29 Kovalentní vazba Vazba atomů téhož druhu oba rovnocenné atomy si vzájemně doplní vnější elektronové vrstvy na stabilní konfiguraci (oktet). Vazby se účastní sudý počet elektronů 2n (2, 4, 6), nazývají se vazebné, valenční. Nejrozšířenější typ vazby mezi atomy a vyznačuje se splynutím elektronových hladin dvou a více atomů za vzniku molekuly a nezáleží na tom, ke kterému atomu který elektron původně patřil. Pevnost vazby: 400 kj/mol energie je řádově 3-7 ev Např.

30 Čistě kovalentní sloučeniny: nepolární tvoří molekulové krystalové mřížky ve vodném roztoku nepodléhají elektrolytické disociaci obvyklé zejména u organických sloučenin Vazba koordinačně kovalentní - elektronový pár vznikne překrytím orbitu obsahujícího pár s prázdným(vakantním) orbitem atom poskytující vazebný elektronový pár se nazývá donor (dárce), atom přijímající í akceptor (příjemce) Např. [Cu(NH 3 ) 4 ]SO 4 síran tetraamminměďnatý -centrální atom - Cu - ligandy (abecedně) - (NH 3 ) - koordinační číslo - 4

31 Vaznost: počet chemických vazeb, které může atom vytvořit Překrytí dvou orbitů vazba jednoduchá Jednoduchá vazba dvou atomů vodíku. Jednoduchá vazba molekuly HBr. Překryv dvou, či tří vazebných elektronových párů ů vazba dvojná a trojná Trojná vazba v molekule N2.

32 Podle prostorového uspořádání, tedy podle maximálního výskytu vazebného elektronového páru vzhledem ke spojnici jader atomu se rozlišuje vazba: typická pro překryv orbitalů s π typická pro překryv ř orbitalů p Teorie hybridizace: kombinací atomových orbitalů jednoho atomu, které se zapojují do vazby, vznikají nové hybridizované orbitaly. Ty mají takové prostorové uspořádání, které vyhovuje vytvoření dané molekuly a mají všechny stejnou energii (jsou degenerované). V praxi se podle známých stanovených tvarů hybridních orbitalů odvozuje struktura daných molekul (postup by měl být opačný podle experimentálně ě zjištěné ě struktury odvozovat tvar orbitalů, ale zmíněné ě využití teorie je velmi praktické).

33 Kovalentní vazby jsou prostorově orientované. Vazebné úhly jsou určené superpozicí vlnových funkcí obsazených orbitů (hybridizací) a jejich j vzájemnou elektrostatickou interakcí.

34 Kovová vazba typická pro kovy od atomů kovů se oddělí elektrony a zůstanou volné pohyblivé přenáší elektrický proud ve vodičích nejjednodušší model kovové vazby: krystal kovu se skládá z kationtů rozmístěných v pravidelné prostorové mřížce, mezi nimiž se volně pohybují valenční elektrony, tzv. elektronový plyn. Energie kovových vazeb: ~1.5-4 ev Typické fyzikální vlastnosti kovů: lesk, vodivost, kujnost a tažnost, vysoký bod tání a varu Elektrická vodivost kovů: tím vyšší, čím dokonalejší je uspořádání jejich mřížky přítomnost nečistot vede k deformaci mřížky a ke snížení vodivosti vodivost klesá také s rostoucí teplotou, protože tepelný pohyb kationů brání průchodu elektronů

35 Magnetické vlastnosti souvisejí jednak s pohybem volných elektronů, jednak se směrem jejich rotace, tedy spinem: Diamagnetické kovy nulový výsledný magnetický moment v důsledku symetrického tikéh uspořádání elektronů ů vatomu, elektrickou k indukcí získají malý magnetický moment, směřující proti směru vnějšího pole jsou z něj vypuzovány, nezesilují účinek vnějšího magnetického pole. př. Zn, Bi, Cu, Ag, Paramagnetické kovy mají nesymetrické uspořádání elektronů v atomu, každý atom má určitý magnetický moment, pokud se vloží do magnetického pole, magnetické momenty všech atomů se zorientují po směru vnějšího pole, kovy zesilují účinek vnějšího magnetického pole zcela nepatrně. př. Na, K, Li, Al, Pt, Feromagnetické kovy mají trvalé magnetické momenty prostorově ovlivněné uspořádáním atomů vmřížce, Feromagnetické látky dělíme podle jejich vlasmostí na magneticky měkké a magneticky tvrdé. Materiály magneticky měkké se snadno zmagnetizují, ale i snadno odmagnetizuji (nepodrží si své magnetické vlastnosti po zániku vnějšího magnetického pole). Používáme je na stavbu magnetických obvodů u elektrických strojů a přístrojů. Materiály magneticky tvrdé se obtížně magnetizují, ale své vlastnosti si podrží i po zániku vnějšího magnetického pole. Používáme je na výrobu permanentních (stálých) magnetů. př. Fe, Co, Ni,

36 Slabší vazebné interakce Vazba vodíková (vodíkový můstek) atom vodíku vázaný na atom fluóru, dusíku nebo kyslíku, tj. na prvky s vysokou elektronegativitou a volným elektronovým párem atom vodíku je zde vázán silně polární kovalentní vazbou a vazbou vodíkovou Pevnost vazby: 20 kj/mol Vodíkové můstky: intramolekulární - uvnitř téže molekuly, např. DNA intermolekulární mezi dvěma molekulami, např. voda, čpavek Co způsobuje? mění fyzikální vlastnosti látk omezuje volnou pohyblivost molekul, tím zvyšuje bod varu, měrné teplo a viskozitu. Látky s vodíkovou vazbou vytvářejí určité shluky částic. Zvláště důležité jsou pro tvrdnutí maltovin.

37 Van der Waalsovy síly nejslabší mezimolekulové síly vysvětluje se jimi odlišné chování částic v plynném stavu od stavu teoretického (ideálního) Interakce nepolárních atomů vznik okamžitého dipólu, přičemž směr a jeho velikost se rychle mění, ě tzv. indukovaný ýdipól Nejsnadněji se polarizují nepolární molekuly, obtížněji ionty a nejhůře anorganické ionty. Vysvětlení řady jevů: zvýšení teploty varu vzácných plynů, tvorba roztoků, soudržnost molekul v molekulových krystalech

38 Kde se odráží typ vazby? Neočekávané problémy ve stavební praxi Degradační pochody Vývoj materiálové základny ve stavebnictví modifikace hmot ovlivněním jejich vnitřní struktury, návrh nových typů kompozitů, kvalitativně nové hmoty Rozložení a typ vazeb způsobuje značně rozdílné vlastnosti plastů. Vysvětlení některých jevů teploty tání a varu, chování plynů a kapalin, kovové vlastnosti. Způsob vazby atomů rozhoduje o chování molekul a tím i o chování hmoty.

39 Vazba Důležité pojmy Vazebná energie Iontová vazba a iontová sloučenina Kovalentní vazba a polárně kovalentní vazba Kovová vazba Elektronegativita Dipólový moment

40 Literatura Zumdahl, S.S.: Introductury Chemistry, D.C. Heath and Company, Lexington, Massachusetts, Toronto, Brown D.: Andělé a Démoni, ARGO, 2006 Wagner, A., Král, J.: Základy chemie, SNTL, Rais, J. a kol.: Chemie pro nechemické vysoké školy technické, SNTL, 1969 Webovské stránky

Veličiny- základní N A. Látkové množství je dáno podílem N částic v systému a Avogadrovy konstanty NA

Veličiny- základní N A. Látkové množství je dáno podílem N částic v systému a Avogadrovy konstanty NA YCHS, XCHS I. Úvod: plán přednášek a cvičení, podmínky udělení zápočtu a zkoušky. Základní pojmy: jednotky a veličiny, základy chemie. Stavba atomu a chemická vazba. Skupenství látek, chemické reakce,

Více

ATOM VÝVOJ PŘEDSTAV O SLOŽENÍ A STRUKTUŘE ATOMU

ATOM VÝVOJ PŘEDSTAV O SLOŽENÍ A STRUKTUŘE ATOMU Předmět: Ročník: Vytvořil: Datum: CHEMIE PRVNÍ Mgr. Tomáš MAŇÁK 20. říjen 202 Název zpracovaného celku: ATOM VÝVOJ PŘEDSTAV O SLOŽENÍ A STRUKTUŘE ATOMU Leukippos, Démokritos (5. st. př. n. l.; Řecko).

Více

Struktura látekl Chemické vazby

Struktura látekl Chemické vazby Struktura látekl Chemické vazby Obsah Stavba atomu Základní částice mikrosvěta Jádro Elektronový obal Rozdělení prvků podle elektronové konfigurace PTP a její zákonitosti Chemická vazba Interakce s vazebnými

Více

Jméno autora: Mgr. Ladislav Kažimír Datum vytvoření: 23.01.2013 Číslo DUMu: VY_32_INOVACE_06_Ch_OB Ročník: I. Vzdělávací oblast: Přírodovědné

Jméno autora: Mgr. Ladislav Kažimír Datum vytvoření: 23.01.2013 Číslo DUMu: VY_32_INOVACE_06_Ch_OB Ročník: I. Vzdělávací oblast: Přírodovědné Jméno autora: Mgr. Ladislav Kažimír Datum vytvoření: 23.01.2013 Číslo DUMu: VY_32_INOVACE_06_Ch_OB Ročník: I. Vzdělávací oblast: Přírodovědné vzdělávání Vzdělávací obor: Chemie Tematický okruh: Obecná

Více

Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto

Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto Periodická soustava prvků Chemické prvky V současné době známe 104 chemických prvků. Většina z nich se vyskytuje v přírodě. Jen malá část byla

Více

Chemie = přírodní věda zkoumající složení a strukturu látek a jejich přeměny v látky jiné

Chemie = přírodní věda zkoumající složení a strukturu látek a jejich přeměny v látky jiné Otázka: Obecná chemie Předmět: Chemie Přidal(a): ZuzilQa Základní pojmy v chemii, periodická soustava prvků Chemie = přírodní věda zkoumající složení a strukturu látek a jejich přeměny v látky jiné -setkáváme

Více

Jádro se skládá z kladně nabitých protonů a neutrálních neutronů -> nukleony

Jádro se skládá z kladně nabitých protonů a neutrálních neutronů -> nukleony Otázka: Atom a molekula Předmět: Chemie Přidal(a): Dituse Atom = základní stavební částice všech látek Skládá se ze 2 částí: o Kladně nabité jádro o Záporně nabitý elektronový obal Jádro se skládá z kladně

Více

37 MOLEKULY. Molekuly s iontovou vazbou Molekuly s kovalentní vazbou Molekulová spektra

37 MOLEKULY. Molekuly s iontovou vazbou Molekuly s kovalentní vazbou Molekulová spektra 445 37 MOLEKULY Molekuly s iontovou vazbou Molekuly s kovalentní vazbou Molekulová spektra Soustava stabilně vázaných atomů tvoří molekulu. Podle počtu atomů hovoříme o dvoj-, troj- a více atomových molekulách.

Více

6.3.2 Periodická soustava prvků, chemické vazby

6.3.2 Periodická soustava prvků, chemické vazby 6.3. Periodická soustava prvků, chemické vazby Předpoklady: 060301 Nejjednodušší atom: vodík s jediným elektronem v obalu. Ostatní prvky mají více protonů v jádře i více elektronů v obalu změny oproti

Více

Šablona III/2 číslo materiálu 393

Šablona III/2 číslo materiálu 393 Šablona III/2 číslo materiálu 393 Jméno autora Mgr. Alena Krejčíková Třída/ ročník 1. ročník Datum vytvoření 20.10.2013 Vzdělávací oblast: Tematická oblast: Předmět: Anotace: Klíčová slova: Druh učebního

Více

Jméno autora: Mgr. Ladislav Kažimír Datum vytvoření: 08.03.2013 Číslo DUMu: VY_32_INOVACE_09_Ch_OB Ročník: I. Vzdělávací oblast: Přírodovědné

Jméno autora: Mgr. Ladislav Kažimír Datum vytvoření: 08.03.2013 Číslo DUMu: VY_32_INOVACE_09_Ch_OB Ročník: I. Vzdělávací oblast: Přírodovědné Jméno autora: Mgr. Ladislav Kažimír Datum vytvoření: 08.03.2013 Číslo DUMu: VY_32_INOVACE_09_Ch_OB Ročník: I. Vzdělávací oblast: Přírodovědné vzdělávání Vzdělávací obor: Chemie Tematický okruh: Obecná

Více

Ch - Stavba atomu, chemická vazba

Ch - Stavba atomu, chemická vazba Ch - Stavba atomu, chemická vazba Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. VARIACE 1 Tento dokument byl

Více

Orbitaly ve víceelektronových atomech

Orbitaly ve víceelektronových atomech Orbitaly ve víceelektronových atomech Elektrony jsou přitahovány k jádru ale také se navzájem odpuzují. Repulzní síly způsobené dalšími elektrony stíní přitažlivý účinek atomového jádra. Efektivní náboj

Více

Látkové množství. 6,022 10 23 atomů C. Přípravný kurz Chemie 07. n = N. Doporučená literatura. Látkové množství n. Avogadrova konstanta N A

Látkové množství. 6,022 10 23 atomů C. Přípravný kurz Chemie 07. n = N. Doporučená literatura. Látkové množství n. Avogadrova konstanta N A Doporučená literatura Přípravný kurz Chemie 2006/07 07 RNDr. Josef Tomandl, Ph.D. Mailto: tomandl@med.muni.cz Předmět: Přípravný kurz chemie J. Vacík a kol.: Přehled středoškolské chemie. SPN, Praha 1990,

Více

SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH

SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH MECHANIKA MOLEKULOVÁ FYZIKA A TERMIKA ELEKTŘINA A MAGNETISMUS KMITÁNÍ A VLNĚNÍ OPTIKA FYZIKA MIKROSVĚTA ATOM, ELEKTRONOVÝ OBAL 1) Sestavte tabulku: a) Do prvního sloupce

Více

Struktura elektronového obalu

Struktura elektronového obalu Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 Struktura elektronového obalu Představy o modelu atomu se vyvíjely tak, jak se zdokonalovaly možnosti vědy

Více

Protonové číslo Z - udává počet protonů v jádře atomu, píše se jako index vlevo dole ke značce prvku

Protonové číslo Z - udává počet protonů v jádře atomu, píše se jako index vlevo dole ke značce prvku Stavba jádra atomu Protonové Z - udává protonů v jádře atomu, píše se jako index vlevo dole ke značce prvku Neutronové N - udává neutronů v jádře atomu Nukleonové A = Z + N, udává nukleonů (protony + neutrony)

Více

Chemie. Mgr. Petra Drápelová Mgr. Jaroslava Vrbková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou

Chemie. Mgr. Petra Drápelová Mgr. Jaroslava Vrbková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou Chemie Mgr. Petra Drápelová Mgr. Jaroslava Vrbková Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou CHEMICKÁ VAZBA VY_32_INOVACE_03_3_07_CH Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou CHEMICKÁ VAZBA Volné atomy v přírodě

Více

Ch - Periodický zákon, periodická tabulka prvků

Ch - Periodický zákon, periodická tabulka prvků Ch - Periodický zákon, periodická tabulka prvků Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. VARIACE 1 Tento

Více

DIGITÁLNÍ UČEBNÍ MATERIÁL. Ing. Alena Musilová ŠVP cukrář-cukrovinkář; ZPV chemie, 1. ročník ŠVP kuchař-číšník;zpv chemie, 1.

DIGITÁLNÍ UČEBNÍ MATERIÁL. Ing. Alena Musilová ŠVP cukrář-cukrovinkář; ZPV chemie, 1. ročník ŠVP kuchař-číšník;zpv chemie, 1. DIGITÁLNÍ UČEBNÍ MATERIÁL Číslo projektu CZ.1.07/1.5.00/34.0763 Název školy SOUpotravinářské, Jílové u Prahy, Šenflukova 220 Název materiálu INOVACE_32_ZPV-CH 1/04/02/1 Autor Obor; předmět, ročník Tematická

Více

Struktura atomů a molekul

Struktura atomů a molekul Struktura atomů a molekul Obrazová příloha Michal Otyepka tento text byl vysázen systémem L A TEX2 ε ii Úvod Dokument obsahuje všechny obrázky tak, jak jsou uvedeny ve druhém vydání skript Struktura atomů

Více

Opakování

Opakování Slabé vazebné interakce Opakování Co je to atom? Opakování Opakování Co je to atom? Atom je nejmenší částice hmoty, chemicky dále nedělitelná. Skládá se z atomového jádra obsahujícího protony a neutrony

Více

ATOMOVÉ JÁDRO. Nucleus Složení: Proton. Neutron 1 0 n částice bez náboje Proton + neutron = NUKLEON PROTONOVÉ číslo: celkový počet nukleonů v jádře

ATOMOVÉ JÁDRO. Nucleus Složení: Proton. Neutron 1 0 n částice bez náboje Proton + neutron = NUKLEON PROTONOVÉ číslo: celkový počet nukleonů v jádře ATOM 1 ATOM Hmotná částice Dělit lze: Fyzikálně ANO Chemicky Je z nich složena každá látka Složení: Atomové jádro (protony, neutrony) Elektronový obal (elektrony) NE Elektroneutrální částice: počet protonů

Více

Elektronový obal atomu

Elektronový obal atomu Elektronový obal atomu Vlnění o frekvenci v se může chovat jako proud částic (kvant - fotonů) o energii E = h.v Částice pohybující se s hybností p se může chovat jako vlna o vlnové délce λ = h/p Kde h

Více

FYZIKA 4. ROČNÍK. Kvantová fyzika. Fotoelektrický jev (FJ)

FYZIKA 4. ROČNÍK. Kvantová fyzika. Fotoelektrický jev (FJ) Stěny černého tělesa mohou vysílat záření jen po energetických kvantech (M.Planck-1900). Velikost kvanta energie je E = h f f - frekvence záření, h - konstanta Fotoelektrický jev (FJ) - dopadající záření

Více

Chemické repetitorium. Václav Pelouch

Chemické repetitorium. Václav Pelouch ZÁKLADY OBECNÉ A KLINICKÉ BIOCHEMIE 2004 Chemické repetitorium Václav Pelouch kapitola ve skriptech - 1 Anorganická a obecná chemie Stavba atomu Atom je nejmenší částice hmoty, která obsahuje jádro (složené

Více

OPTIKA Fotoelektrický jev TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY.

OPTIKA Fotoelektrický jev TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY. OPTIKA Fotoelektrický jev TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY. Světlo jako částice Kvantová optika se zabývá kvantovými vlastnostmi optického

Více

ATOM. Autor: Mgr. Stanislava Bubíková. Datum (období) tvorby: 25. 7. 2012. Ročník: osmý

ATOM. Autor: Mgr. Stanislava Bubíková. Datum (období) tvorby: 25. 7. 2012. Ročník: osmý ATOM Autor: Mgr. Stanislava Bubíková Datum (období) tvorby: 25. 7. 2012 Ročník: osmý Vzdělávací oblast: Člověk a příroda / Chemie / Částicové složení látek a chemické prvky 1 Anotace: Žáci se seznámí se

Více

Chemická vazba Něco málo opakování Něco málo opakování Co je to atom? Něco málo opakování Co je to atom? Atom je nejmenší částice hmoty, chemicky dále nedělitelná. Skládá se z atomového jádra obsahujícího

Více

Od kvantové mechaniky k chemii

Od kvantové mechaniky k chemii Od kvantové mechaniky k chemii Jan Řezáč UOCHB AV ČR 19. září 2017 Jan Řezáč (UOCHB AV ČR) Od kvantové mechaniky k chemii 19. září 2017 1 / 33 Úvod Vztah mezi molekulovou strukturou a makroskopickými vlastnostmi

Více

Geochemie endogenních procesů 1. část

Geochemie endogenních procesů 1. část Geochemie endogenních procesů 1. část geochemie = použití chemických nástrojů na studium Země a dalších planet Sluneční soustavy počátky v 15. století spjaté zejména s kvalitou vody a půdy rozmach a první

Více

Test pro 8. třídy A. 3) Vypočítej kolik potřebuješ gramů soli na přípravu 600 g 5 % roztoku.

Test pro 8. třídy A. 3) Vypočítej kolik potřebuješ gramů soli na přípravu 600 g 5 % roztoku. Test pro 8. třídy A 1) Rozhodni, zda je správné tvrzení: Vzduch je homogenní směs. a) ano b) ne 2) Přiřaď k sobě: a) voda-olej A) suspenze b) křída ve vodě B) emulze c) vzduch C) aerosol 3) Vypočítej kolik

Více

Chemie. Mgr. Petra Drápelová Mgr. Jaroslava Vrbková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou

Chemie. Mgr. Petra Drápelová Mgr. Jaroslava Vrbková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou Chemie Mgr. Petra Drápelová Mgr. Jaroslava Vrbková Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou PERIODICKÁ TABULKA PRVKŮ PERIODICKÝ ZÁKON VY_32_INOVACE_03_3_06_CH Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou Dmitrij

Více

Gymnázium a Střední odborná škola, Rokycany, Mládežníků 1115

Gymnázium a Střední odborná škola, Rokycany, Mládežníků 1115 Gymnázium a Střední odborná škola, Rokycany, Mládežníků 5 Číslo projektu: CZ..07/.5.00/34.040 Číslo šablony: 7 Název materiálu: Ročník: Identifikace materiálu: Jméno autora: Předmět: Tématický celek: Atom

Více

Vybrané podivnosti kvantové mechaniky

Vybrané podivnosti kvantové mechaniky Vybrané podivnosti kvantové mechaniky Pole působnosti kvantové mechaniky Středem zájmu KM jsou mikroskopické objekty Typické rozměry 10 10 až 10 16 m Typické energie 10 22 až 10 12 J Studované objekty:

Více

Jiøí Vlèek ZÁKLADY STØEDOŠKOLSKÉ CHEMIE obecná chemie anorganická chemie organická chemie Obsah 1. Obecná chemie... 1 2. Anorganická chemie... 29 3. Organická chemie... 48 4. Laboratorní cvièení... 69

Více

Atom a molekula - maturitní otázka z chemie

Atom a molekula - maturitní otázka z chemie Atom a molekula - maturitní otázka z chemie by jx.mail@centrum.cz - Pond?lí, Únor 09, 2015 http://biologie-chemie.cz/atom-a-molekula-maturitni-otazka-z-chemie/ Otázka: Atom a molekula P?edm?t: Chemie P?idal(a):

Více

Chemická vazba. Příčinou nestability atomů a jejich ochoty tvořit vazbu je jejich elektronový obal.

Chemická vazba. Příčinou nestability atomů a jejich ochoty tvořit vazbu je jejich elektronový obal. Chemická vazba Volné atomy v přírodě jen zcela výjimečně (vzácné plyny). Atomy prvků mají snahu se navzájem slučovat a vytvářet molekuly prvků nebo sloučenin. Atomy jsou v molekulách k sobě poutány chemickou

Více

Složení látek a chemická vazba Číslo variace: 1

Složení látek a chemická vazba Číslo variace: 1 Složení látek a chemická vazba Číslo variace: 1 Zkoušecí kartičku si PODEPIŠ a zapiš na ni ČÍSLO VARIACE TESTU (číslo v pravém horním rohu). Odpovědi zapiš na zkoušecí kartičku, do testu prosím nepiš.

Více

[KVANTOVÁ FYZIKA] K katoda. A anoda. M mřížka

[KVANTOVÁ FYZIKA] K katoda. A anoda. M mřížka 10 KVANTOVÁ FYZIKA Vznik kvantové fyziky zapříčinilo několik základních jevů, které nelze vysvětlit pomocí klasické fyziky. Z tohoto důvodu musela vzniknout nová teorie, která by je přijatelně vysvětlila.

Více

Fotoelektrický jev je uvolňování elektronů z látky vlivem dopadu světelného záření.

Fotoelektrický jev je uvolňování elektronů z látky vlivem dopadu světelného záření. FYZIKA pracovní sešit pro ekonomické lyceum. 1 Jiří Hlaváček, OA a VOŠ Příbram, 2015 FYZIKA MIKROSVĚTA Kvantové vlastnosti světla (str. 241 257) Fotoelektrický jev je uvolňování elektronů z látky vlivem

Více

Atomové jádro Elektronový obal elektron (e) záporně proton (p) kladně neutron (n) elektroneutrální

Atomové jádro Elektronový obal elektron (e) záporně proton (p) kladně neutron (n) elektroneutrální STAVBA ATOMU Výukový materiál pro základní školy (prezentace). Zpracováno v rámci projektu Snížení rizik ohrožení zdraví člověka a životního prostředí podporou výuky chemie na ZŠ. Číslo projektu: CZ.1.07/1.1.16/02.0018

Více

Ing. Stanislav Jakoubek

Ing. Stanislav Jakoubek Ing. Stanislav Jakoubek Číslo DUMu III/2-1-3-3 III/2-1-3-4 III/2-1-3-5 Název DUMu Vnější a vnitřní fotoelektrický jev a jeho teorie Technické využití fotoelektrického jevu Dualismus vln a částic Ing. Stanislav

Více

Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/

Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/ Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/07.0354 Předmět: LRR/CHPB1/Chemie pro biology 1 Elektronový obal Mgr. Karel Doležal Dr. Cíl přednášky: seznámit posluchače se stavbou

Více

ANODA KATODA elektrolyt:

ANODA KATODA elektrolyt: Ukázky z pracovních listů 1) Naznač pomocí šipek, které částice putují k anodě a které ke katodě. Co je elektrolytem? ANODA KATODA elektrolyt: Zn 2+ Cl - Zn 2+ Zn 2+ Cl - Cl - Cl - Cl - Cl - Zn 2+ Cl -

Více

Vazby v pevných látkách

Vazby v pevných látkách Vazby v pevných látkách Hlavní body 1. Tvorba pevných látek 2. Van der Waalsova vazba elektrostatická interakce indukovaných dipólů 3. Iontová vazba elektrostatická interakce iontů 4. Kovalentní vazba

Více

Chemie. Mgr. Petra Drápelová Mgr. Jaroslava Vrbková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou

Chemie. Mgr. Petra Drápelová Mgr. Jaroslava Vrbková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou Chemie Mgr. Petra Drápelová Mgr. Jaroslava Vrbková Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou ELEKTRONOVÝ OBAL ATOMU VY_32_INOVACE_03_3_04_CH Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou Elektron je nositelem základního

Více

Přirovnání. Elektrony = obyvatelé panelového domu Kde bydlí paní Kostková? Musíme udat patro a číslo bytu.

Přirovnání. Elektrony = obyvatelé panelového domu Kde bydlí paní Kostková? Musíme udat patro a číslo bytu. Kvantová čísla Dostupné z Metodického portálu www.rvp.cz, ISSN: 1802-4785, financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Přirovnání Elektrony = obyvatelé

Více

VY_52_INOVACE_08_II.1.23_TABULKA, PERIODICKÁ SOUSTAVA PRVKŮ TABULKA PERIODICKÁ SOUSTAVA PRVKŮ

VY_52_INOVACE_08_II.1.23_TABULKA, PERIODICKÁ SOUSTAVA PRVKŮ TABULKA PERIODICKÁ SOUSTAVA PRVKŮ VY_52_INOVACE_08_II.1.23_TABULKA, PERIODICKÁ SOUSTAVA PRVKŮ TABULKA PERIODICKÁ SOUSTAVA PRVKŮ PERIODICKÁ SOUSTAVA PRVKŮ 8. TŘÍDA PERIODICKÝ ZÁKON FYZIKÁLNÍ A CHEMICKÉ VLASTNOSTI PRVKŮ JSOU PERIODICKOU

Více

Pracovní list: Opakování učiva 8. ročníku

Pracovní list: Opakování učiva 8. ročníku Pracovní list: Opakování učiva 8. ročníku Komentář ke hře: 1. Třída se rozdělí do čtyř skupin. Vždy spolu soupeří dvě skupiny a vítězné skupiny se pak utkají ve finále. 2. Každé z čísel skrývá otázku.

Více

Inovace studia molekulární a buněčné biologie

Inovace studia molekulární a buněčné biologie Investice do rozvoje vzdělávání Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Investice do rozvoje vzdělávání

Více

Chemické výpočty. výpočty ze sloučenin

Chemické výpočty. výpočty ze sloučenin Cheické výpočty výpočty ze sloučenin Cheické výpočty látkové nožství n, 1 ol obsahuje stejný počet stavebních částic, kolik je atoů ve 1 g uhlíku 1 C počet částic v 1 olu stanovuje Avogadrova konstanta

Více

VLASTNOSTI KOVŮ. Autor: Mgr. Stanislava Bubíková. Datum (období) tvorby: 12. 10. 2012. Ročník: osmý

VLASTNOSTI KOVŮ. Autor: Mgr. Stanislava Bubíková. Datum (období) tvorby: 12. 10. 2012. Ročník: osmý Autor: Mgr. Stanislava Bubíková VLASTNOSTI KOVŮ Datum (období) tvorby: 12. 10. 2012 Ročník: osmý Vzdělávací oblast: Člověk a příroda / Chemie / Částicové složení látek a chemické prvky 1 Anotace: Žáci

Více

Periodická soustava prvků

Periodická soustava prvků Periodická soustava prvků 1829 Döbereiner Triády: Li, Na, K; Ca, Sr, Ba; S, Se, Te; Cl, Br, I; 1870 Meyer - atomové objemy 1869, 1871 Mendelejev předpověď vlastností chybějících prvků (Sc, Ga, Ge, Tc,

Více

Stavba atomu. protony p + nukleony neutrony n 0. elektrony e -

Stavba atomu. protony p + nukleony neutrony n 0. elektrony e - Stavba atomu atom (elektroneutrální) jádro (kladně nabité) elektronový obal (záporně nabitý) protony p + nukleony neutrony n 0 elektrony e - Mikročástice Klidová hmotnost (kg) Klidová hmotnost (u) Náboj

Více

Registrační číslo projektu: CZ.1.07/1.4.00/21.2939. Název projektu: Investice do vzdělání - příslib do budoucnosti

Registrační číslo projektu: CZ.1.07/1.4.00/21.2939. Název projektu: Investice do vzdělání - příslib do budoucnosti Registrační číslo projektu: CZ.1.07/1.4.00/21.2939 Název projektu: Investice do vzdělání - příslib do budoucnosti Číslo přílohy: VY_číslo šablony_inovace_číslo přílohy Autor Datum vytvoření vzdělávacího

Více

postaven náš svět CERN

postaven náš svět CERN Standardní model elementárních částic a jejich interakcí aneb Cihly a malta, ze kterých je postaven náš svět CERN Jiří Rameš, Fyzikální ústav AV ČR, v.v.i. Czech Teachers Programme, CERN, 3.-7. 3. 2008

Více

Inovace výuky prostřednictvím šablon pro SŠ

Inovace výuky prostřednictvím šablon pro SŠ Název projektu Číslo projektu Název školy Autor Název šablony Název DUMu Stupeň a typ vzdělávání Vzdělávací oblast Vzdělávací obor Tematický okruh Inovace výuky prostřednictvím šablon pro SŠ CZ.1.07/1.5.00/34.0748

Více

R10 F Y Z I K A M I K R O S V Ě T A. R10.1 Fotovoltaika

R10 F Y Z I K A M I K R O S V Ě T A. R10.1 Fotovoltaika Fyzika pro střední školy II 84 R10 F Y Z I K A M I K R O S V Ě T A R10.1 Fotovoltaika Sluneční záření je spojeno s přenosem značné energie na povrch Země. Její velikost je dána sluneční neboli solární

Více

Chemická vazba. John Dalton Amadeo Avogadro

Chemická vazba. John Dalton Amadeo Avogadro Chemická vazba John Dalton 1766-1844 Amadeo Avogadro 1776-1856 Výpočet molekuly 2, metoda valenční vazby Walter eitler 1904-1981 Fritz W. London 1900-1954 Teorie molekulových orbitalů Friedrich und 1896-1997

Více

ZŠ ÚnO, Bratří Čapků 1332

ZŠ ÚnO, Bratří Čapků 1332 Úvodní obrazovka Menu (vlevo nahoře) Návrat na hlavní stránku Obsah Výsledky Poznámky Záložky edunet Konec Chemie 1 (pro 12-16 let) LangMaster Obsah (střední část) výběr tématu - dvojklikem v seznamu témat

Více

Kam kráčí současná fyzika

Kam kráčí současná fyzika Kam kráčí současná fyzika Situace před II. světovou válkou Kvantová teorie (Max Planck, 1900) teorie malého a lehkého Teorie relativity (Albert Einstein) teorie rychlého (speciální relativita) Teorie velkého

Více

Gymnázium Jiřího Ortena, Kutná Hora

Gymnázium Jiřího Ortena, Kutná Hora Předmět: Náplň: Třída: Počet hodin: Pomůcky: Chemie (CHE) Obecná chemie 1. ročník a kvinta 2 hodiny týdně Školní tabule, interaktivní tabule, tyčinkové a kalotové modely molekul, zpětný projektor, transparenty,

Více

2. ATOM. Dualismus částic: - elektron se chová jako hmotná částice, ale také jako vlnění

2. ATOM. Dualismus částic: - elektron se chová jako hmotná částice, ale také jako vlnění Na www.studijni-svet.cz zaslal(a): Kikusska94 2. ATOM HISTORIE NÁZORŮ NA STAVBU ATOMU - Leukippos (490 420 př. n. l.) - Demokritos (460 340 př. n. l.) - látka je tvořená atomy, které se dále nedělí (atomos

Více

ÈÁST VII - K V A N T O V Á F Y Z I K A

ÈÁST VII - K V A N T O V Á F Y Z I K A Kde se nacházíme? ÈÁST VII - K V A N T O V Á F Y Z I K A 29 Èásticové vlastnosti elektromagnetických vln 30 Vlnové vlastnosti èástic 31 Schrödingerova formulace kvantové mechaniky Kolem roku 1900-1915

Více

Teorie hybridizace. Vysvětluje vznik energeticky rovnocenných kovalentních vazeb a umožňuje předpovědět prostorový tvar molekul.

Teorie hybridizace. Vysvětluje vznik energeticky rovnocenných kovalentních vazeb a umožňuje předpovědět prostorový tvar molekul. Chemická vazba co je chemická vazba charakteristiky chemické vazby jak vzniká vazba znázornění chemické vazby kovalentní a koordinační vazba vazba σ a π jednoduchá, dvojná a trojná vazba polarita vazby

Více

Stavba atomu. Created with novapdf Printer (www.novapdf.com). Please register to remove this message.

Stavba atomu. Created with novapdf Printer (www.novapdf.com). Please register to remove this message. Stavba atomu Atom je v chemii základní stavební částice, jeho průměr je přibližně 10-10 m. Je složen z jádra a obalu. Atomové jádro obsahuje protony p + (kladný náboj) a neutrony n 0 (neutrální částice).

Více

DOUČOVÁNÍ KVINTA CHEMIE

DOUČOVÁNÍ KVINTA CHEMIE 1. ÚVOD DO STUDIA CHEMIE 1) Co studuje chemie? 2) Rozděl chemii na tři důležité obory. DOUČOVÁNÍ KVINTA CHEMIE 2. NÁZVOSLOVÍ ANORGANICKÝCH SLOUČENIN 1) Pojmenuj: BaO, N 2 0, P 4 O 10, H 2 SO 4, HMnO 4,

Více

Ch - Elektronegativita, chemická vazba

Ch - Elektronegativita, chemická vazba Ch - Elektronegativita, chemická vazba Autor: Mgr. Jaromír Juřek Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s využitím odkazu na www.jarjurek.cz. VARIACE 1 Tento dokument

Více

8.STAVBA ATOMU ELEKTRONOVÝ OBAL

8.STAVBA ATOMU ELEKTRONOVÝ OBAL 8.STAVBA ATOMU ELEKTRONOVÝ OBAL 1) Popiš Daltonovu atomovou teorii postuláty. (urči, které platí dodnes) 2) Popiš Rutherfordův planetární model atomu a jeho přínos. 3) Bohrův model atomu vysvětli kvantování

Více

Elektronový obal atomu

Elektronový obal atomu Elektronový obal atomu Ondřej Havlíček.ročník F-Vt/SŠ Jsoucno je vždy něco, co jsme si sami zkonstruovali ve své mysli. Podstata takovýchto konstrukcí nespočívá v tom, že by byly odvozeny ze smyslových

Více

Periodická tabulka prvků

Periodická tabulka prvků Periodická tabulka prvků 17. století s objevem dalších a dalších prvků nutnost systematizace J. W. Döberreiner (1829) teorie o triádách prvků triáda kovů (lithium, sodík, draslík reagují podobným způsobem)

Více

Polymorfismus kovů Při změně podmínek (zejména teploty), nebo např.mechanickým působením změna krystalické struktury.

Polymorfismus kovů Při změně podmínek (zejména teploty), nebo např.mechanickým působením změna krystalické struktury. Struktura kovů Kovová vazba Krystalová mříž: v uzlových bodech kationy (pro atom H: m jádro :m obal = 2000:1), Mezi kationy: delokalizovaný elektronový plyn, vyplňuje celé kovu těleso. Hmotu udržuje elektrostatická

Více

Periodická soustava prvků Prvky známé od nepaměti: Au, Ag, Fe, S, C, Zn, Cu, Sn, Pb, Hg, Bi P první objevený prvek, Hennig Brand (1669) Lavoisier

Periodická soustava prvků Prvky známé od nepaměti: Au, Ag, Fe, S, C, Zn, Cu, Sn, Pb, Hg, Bi P první objevený prvek, Hennig Brand (1669) Lavoisier Periodická soustava prvků Prvky známé od nepaměti: Au, Ag, Fe, S, C, Zn, Cu, Sn, Pb, Hg, Bi P první objevený prvek, Hennig Brand (1669) Lavoisier 1789 33 (21) prvků Traité Élémentaire de Chimie (1789)

Více

CHEMICKY ČISTÁ LÁTKA A SMĚS

CHEMICKY ČISTÁ LÁTKA A SMĚS CHEMICKY ČISTÁ LÁTKA A SMĚS Látka = forma hmoty, která se skládá z velkého množství základních stavebních částic: atomů, iontů a... Látky se liší podle druhu částic, ze kterých se skládají. Druh částic

Více

Atomové jádro, elektronový obal

Atomové jádro, elektronový obal Atomové jádro, elektronový obal 1 / 9 Atomové jádro Atomové jádro je tvořeno protony a neutrony Prvek je látka skládající se z atomů se stejným počtem protonů Nuklid je systém tvořený prvky se stejným

Více

Nejdůležitější pojmy a vzorce učiva fyziky II. ročníku

Nejdůležitější pojmy a vzorce učiva fyziky II. ročníku Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 Nejdůležitější pojmy a vzorce učiva fyziky II. ročníku V tomto článku uvádíme shrnutí poznatků učiva II. ročníku

Více

2. 1 S T R U K T U R A A V L A S T N O S T I A T O M O V É H O J Á D R A

2. 1 S T R U K T U R A A V L A S T N O S T I A T O M O V É H O J Á D R A 2. Jaderná fyzika 9 2. 1 S T R U K T U R A A V L A S T N O S T I A T O M O V É H O J Á D R A V této kapitole se dozvíte: o historii vývoje modelů stavby atomového jádra od dob Rutherfordova experimentu;

Více

ATOMOVÁ STRUKTURA. Demokritos, staré Řecko: Veškerá hmota je tvořena malými neviditelnými částicemi, atomy.

ATOMOVÁ STRUKTURA. Demokritos, staré Řecko: Veškerá hmota je tvořena malými neviditelnými částicemi, atomy. ATOMOVÁ STRUKTURA Demokritos, staré Řecko: Veškerá hmota je tvořena malými neviditelnými částicemi, atomy. Daltonova atomová teorie, 1807 Všechny prvky jsou tvořené z velmi malých částic, které nazval

Více

Gymnázium a Střední odborná škola, Rokycany, Mládežníků 1115

Gymnázium a Střední odborná škola, Rokycany, Mládežníků 1115 Číslo projektu: Gymnázium a Střední odborná škola, Rokycany, Mládežníků 1115 Číslo šablony: 26 Název materiálu: Ročník: Identifikace materiálu: Jméno autora: Předmět: Tematický celek: Anotace: CZ.1.07/1.5.00/3.010

Více

John Dalton Amadeo Avogadro

John Dalton Amadeo Avogadro Spojením atomů vznikají molekuly... John Dalton 1766 1844 Amadeo Avogadro 1776 1856 Výpočet molekuly 2, metoda valenční vazby Walter eitler 1904 1981 Fritz W. London 1900 1954 Teorie molekulových orbitalů

Více

Průvodka. CZ.1.07/1.5.00/ Zkvalitnění výuky prostřednictvím ICT. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT

Průvodka. CZ.1.07/1.5.00/ Zkvalitnění výuky prostřednictvím ICT. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Průvodka Číslo projektu Název projektu Číslo a název šablony klíčové aktivity CZ.1.07/1.5.00/34.0802 Zkvalitnění výuky prostřednictvím ICT III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce

Více

Cvičení a úlohy z předmětu Obecná chemie

Cvičení a úlohy z předmětu Obecná chemie Univerzita Jana Evangelisty Purkyně Fakulta životního prostředí Cvičení a úlohy z předmětu Obecná chemie Tomáš Loučka Ústí nad Labem 2014 Název: Autor: Cvičení a úlohy z předmětu Obecná chemie doc. Ing.

Více

MATERIÁLY PRO ELEKTROTECHNIKU

MATERIÁLY PRO ELEKTROTECHNIKU Vysoká škola báňská Technická univerzita Ostrava MATERIÁLY PRO ELEKTROTECHNIKU učební text Jaromír Drápala Ostrava 2013 ` Recenze: Ing. Dušan Nohavica, CSc. Název: Materiály pro elektrotechniku Autor:

Více

Průvodka. CZ.1.07/1.5.00/ Zkvalitnění výuky prostřednictvím ICT. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT

Průvodka. CZ.1.07/1.5.00/ Zkvalitnění výuky prostřednictvím ICT. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Průvodka Číslo projektu Název projektu Číslo a název šablony klíčové aktivity CZ.1.07/1.5.00/34.0802 Zkvalitnění výuky prostřednictvím ICT III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce

Více

Úvod do moderní fyziky. lekce 3 stavba a struktura atomu

Úvod do moderní fyziky. lekce 3 stavba a struktura atomu Úvod do moderní fyziky lekce 3 stavba a struktura atomu Vývoj představ o stavbě atomu 1904 J. J. Thomson pudinkový model atomu 1909 H. Geiger, E. Marsden experiment s ozařováním zlaté fólie alfa částicemi

Více

Moravské gymnázium Brno s.r.o. RNDr. Miroslav Štefan

Moravské gymnázium Brno s.r.o. RNDr. Miroslav Štefan Číslo projektu Název školy Autor Tematická oblast Ročník CZ.1.07/1.5.00/34.0743 Moravské gymnázium Brno s.r.o. RNDr. Miroslav Štefan Chemie ATOM 1. ročník Datum tvorby 11.10.2013 Anotace a) určeno pro

Více

4.3. Kvantové vlastnosti elektromagnetického záření

4.3. Kvantové vlastnosti elektromagnetického záření 4.3. Kvantové vlastnosti elektromagnetického záření 4.3.1. Fotony, fotoelektrický a Comptonův jev 1. Klasifikovat obor kvantová optika.. Popsat foton a jeho vlastnosti jako kvantum energie elektromagnetického

Více

Skupenské stavy. Kapalina Částečně neuspořádané Volný pohyb částic nebo skupin částic Částice blíže u sebe

Skupenské stavy. Kapalina Částečně neuspořádané Volný pohyb částic nebo skupin částic Částice blíže u sebe Skupenské stavy Plyn Zcela neuspořádané Hodně volného prostoru Zcela volný pohyb částic Částice daleko od sebe Kapalina Částečně neuspořádané Volný pohyb částic nebo skupin částic Částice blíže u sebe

Více

Gymnázium Jiřího Ortena, Kutná Hora

Gymnázium Jiřího Ortena, Kutná Hora Předmět: Seminář chemie (SCH) Náplň: Obecná chemie, anorganická chemie, chemické výpočty, základy analytické chemie Třída: 3. ročník a septima Počet hodin: 2 hodiny týdně Pomůcky: Vybavení odborné učebny,

Více

Částicové složení látek atom,molekula, nuklid a izotop

Částicové složení látek atom,molekula, nuklid a izotop Částicové složení látek atom,molekula, nuklid a izotop ATOM základní stavební částice všech hmotných těles jádro 100 000x menší než atom působí jaderné síly p + n 0 [1] e - stejný počet protonů a elektronů

Více

Na Zemi tvoří vodík asi 15 % atomů všech prvků. Chemické slučování je děj, při kterém z látek jednodušších vznikají látky složitější.

Na Zemi tvoří vodík asi 15 % atomů všech prvků. Chemické slučování je děj, při kterém z látek jednodušších vznikají látky složitější. Nejjednodušší prvek. Na Zemi tvoří vodík asi 15 % atomů všech prvků. Chemické slučování je děj, při kterém z látek jednodušších vznikají látky složitější. Vodík tvoří dvouatomové molekuly, je lehčí než

Více

ELEKTROTECHNICKÉ MATERIÁLY

ELEKTROTECHNICKÉ MATERIÁLY ELEKTROTECHNICKÉ MATERIÁLY PŘEDNÁŠÍ: Prof. Ing. Jaromír r Drápala, CSc. VEDOUCÍ CVIČEN ENÍ : Ing. Kateřina Skotnicová, Ph.D. (A622) Čt 7.15-8.45; 9.00-10.30 Ing. Ivo Szurman, Ph.D. (J304) Čt 12.30-14.00;

Více

Pavel Cejnar. pavel.cejnar @ mff.cuni.cz. Ústav částicové a jaderné fyziky Matematicko-fyzikální fakulta University Karlovy v Praze

Pavel Cejnar. pavel.cejnar @ mff.cuni.cz. Ústav částicové a jaderné fyziky Matematicko-fyzikální fakulta University Karlovy v Praze Podivuhodná říše kvant Pavel Cejnar pavel.cejnar @ mff.cuni.cz Ústav částicové a jaderné fyziky Matematicko-fyzikální fakulta University Karlovy v Praze Hvězdárna a planetárium Brno, 22. 1. 2015 Podivuhodná

Více