scintigrafických studií ledvin

Rozměr: px
Začít zobrazení ze stránky:

Download "scintigrafických studií ledvin"

Transkript

1 ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA JADERNÁ A FYZIKÁLNĚ INŽENÝRSKÁ DIPLOMOVÁ PRÁCE Ondřej Tichý

2 ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA JADERNÁ A FYZIKÁLNĚ INŽENÝRSKÁ Katedra matematiky DIPLOMOVÁ PRÁCE Integrální modely dynamických scintigrafických studií ledvin ( Integral models for dynamic renal scintigraphy ) Ondřej Tichý Školitel: Ing. Václav Šmídl, Ph.D. Konzultant: Prof. MUDr. Martin Šámal, DrSc. Akademický rok: 9/

3 Sem dát zadání DP, jeden originál a dvě kopie...

4 Čestné prohlášení Prohlašuji na tomto místě, že jsem předloženou práci vypracoval samostatně a že jsem uvedl veškerou použitou literaturu. V Praze dne 7. května Ondřej Tichý

5 Poděkování Chtěl bych na tomto místě poděkovat svým rodičům za podporu v celém mém studiu a obzvláště pak tatínkovi Miroslavovi za korekturu textu. Dík patří také mému konzultantovi, prof. Šámalovi, za poskytnuté scintigrafické studie, pomoc s kapitolou o Scintigrafii a trpělivé konzultace, které usměrnily směr výzkumu. Největší poděkování však patří mému školiteli, Dr. Václavu Šmídlovi, za příkladné vedení této diplomové práce, hodiny konzultací, cenné nápady, připomínky a za výborné uvedení do celé problematiky.

6 Název práce: Integrální modely dynamických scintigrafických studií ledvin Autor: Ondřej Tichý Obor: Inženýrská informatika Druh práce: Diplomová práce Vedoucí práce: Ing. Václav Šmídl, Ph.D., Ústav teorie informace a automatizace AV ČR Konzultant: Prof. MUDr. Martin Šámal, DrSc., Ústav nukleární medicíny 1.lf UK v Praze Abstrakt: Tato práce se zabývá konvoluční parametrizací v modelu pro faktorovou analýzu ve scintigrafii ledvin. Součástí parametrů tohoto nového modelu jsou přímé diagnostické koeficienty, není tedy nutná následná analýza a interakce s odborným uživatelem. Po představení scintigrafie a Bayesovské teorie se práce věnuje popisu a řešení standardního modelu pro faktorovou analýzu a následně na reálné studii ukazuje jeho funkci. Protože však standardní model není založen na reálných biologických předpokladech, narážíme na jeho omezení při získávání diagnostických parametrů. Hlavním výsledkem této práce je navržení integrálního modelu, který respektuje biologická omezení a zároveň přímo odhaduje diagnostické koeficienty jako své parametry. Tento nový model je řešen pomocí Variačního Bayesova teorému a otestován na reálných scintigrafických studiích. Zabudování nových informací přineslo požadovanou automatizaci diagnostiky a je ukázáno velké zlepšení oproti standardnímu modelu pro faktorovou analýzu. Klíˇcová slova: scintigrafie, Bayesovská statistika, nukleární medicína, obrazová sekvence, konvoluční parametrizace Title: Integral models for dynamic renal scintigraphy Author: Ondřej Tichý Abstract: This work is concerned with a convolution based parametrization of model for factor analysis in renal scintigraphy. Diagnostic coefficients are used as parameter of the new integral model, hence their estimates are direct output of the estimation and no follow-up analysis and interaction with expert user is required. After introduction of the field of scintigraphy and Bayesian theory, the Variational Bayes solution of standard model for factor analysis is described in detail. Suitability of the model is tested on real data. It is shown that the estimated diagnostic coefficients are inadequate since the model do not respect properties of real biological systems. The main contribution of this work is the integral model and estimation of its parameters via the Variational Bayes approximation. The model is designed to respect biological constraints and its parameters are variables used as diagnostic coefficients. The resulting estimation algorithm is tested on real scintigraphic data. It is shown that resulting estimates are much more realistic that of the standard model. Moreover, the estimates of the diagnostic coefficient were achieved without any interaction with expert user. Key words: scintigraphy, Bayesian statistic, nuclear medicine, image sequence, convolutionbased parameterization

7 Obsah 1 Úvod 1 2 Scintigrafické vyšetření Scintigrafie Průběh vyšetření Radionuklidy Scintilační kamera Biologické předpoklady Tvary faktorových křivek Faktorové obrázky Současné metody funkcionální analýzy obrazové sekvence Oblasti zájmu Matematický pohled a vyhodnocení křivek Klinické vyhodnocení Zhodnocení Bayesovská teorie a aproximace Základy Bayesovské teorie Volba apriorního rozdělení Řešení pomocí aproximace EM (expectation minimalization) algoritmus Laplaceova aproximace Markov Chain Monte Carlo (MCMC) aproximace Variační Bayesova aproximace Faktorová analýza obrazových sekvencí Konstrukce standardního modelu pro sekvenci snímků Poznámka k maticové dekompozici VB metoda pro standardní model (4.1) Výsledky standardního modelu Faktorové obrázky a jejich křivky Tranzitní čas Relativní renální clearance Zhodnocení výsledků Integrální model pro funcionální analýzu obrazových sekvencí 32 ii

8 5.1 Konstrukce modelu Základní model dat Model chyb měření Modelování matice obrázků Modelování impulzních retenčních funkcí Model křivky krve Odhadované a závislé proměnné Řešení integrálního modelu VB metodou Sestrojení modelu Výpočet logaritmu sdruženého rozdělení Výpočet VB-marginál Identifikace standardních forem Odhad indexových množin aprioren obrazové a přírůstkové matice Formulace VB-momentů Shrnutí výpočtu Inicializace výpočtu Konvergence výpočtu Výsledky integrálního modelu Popis odhadovaných parametrů Tranzitní čas Relativní renální clearance Vyhodnocení dalších studií Studie Studie Zhodnocení výsledků Závěr a možnosti dalšího pokračování 7.1 Hlavní přínos práce Možnosti dalšího pokračování Zhodnocení A Matematický dodatek 63 A.1 Stopa matice, operátor vec(), Kroneckerův a Hadamardův součin A.2 Normální rozdělení A.2.1 Vícerozměrné normální rozdělení A.2.2 Maticové normální rozdělení A.2.3 Vektorizace v maticovém normálním rozdělení A.2.4 Ořezané normální rozdělení A.3 Gamma rozdělení A.4 Exponenciální rozdělení A.4.1 Ořezané exponenciální rozdělení A.5 Rovnoměrné rozdělení iii

9 B Výpočet logaritmu sdruženého rozdělení 68 C Obrazové sekvence 7 Literatura 72 iv

10 Použité značení Lineární algebra R množina reálných čísel A R p n A je reálná matice rozměru p n; matice budeme obvykle značit velkými písmeny A transpozice matice A A 1 inverze matice A a i i-tý sloupec matice A a i,j resp. (A) i,j člen v i-tém sloupci a j-tém řádku v matici A g i i-tý prvek vektoru g diag(a) diagonála čtvercové matice A, výsledkem je tedy vektor s diagonálními prvky matice A diag(a) čtvercová matice s prvky vektoru a na diagonále tr(a) stopa matice A (viz A.1) vec(a) vektorizace matice A (viz A.1) A B Kroneckerův součin matic A a B o libovolném rozměru (viz A.1) A B Hadamardův součin matic A R p n a B R p n (viz A.1) I n čtvercová jednotková matice rozměru n, tedy (I n ) i,j = 1, pokud i = j a (I n ) i,j =, pokud i j 1 p,q matice jedniček o rozměrech p r p,q matice nul o rozměrech p r Matematická analýza erf(x) Γ(x) χ (a,b) ln(..) exp(..) error funkce (viz A.2.4) gamma funkce (viz A.3) charakteristická funkce intervalu (a, b) (viz A.2.4) přirozený logaritmus argumentu; je-li argumentem matice, rozumí se logaritmus po prvcích exponenciela argumentu; je-li argument matice, rozumí se exponenciela po prvcích Pravděpodobnostní počet E f(x) (..) Â N x (µ, σ) N x (µ, Σ) N X (M, Σ p Σ n ) očekávaná hodnota argumentu vzhledem k funkci f(x) bodový odhad parametru A normální rozdělení skaláru x se střední hodnotou µ a variancí σ vícerozměrné (vektorové) normální rozdělení vektoru x se střední hodnotou µ a Σ (viz A.2.1) maticové normální rozdělení matice X R p n se středního hodnotou M a kovariančními maticemi Σ p a Σ n (viz A.2.2) v

11 tn x (µ, σ, a, b) tn x (µ, σ) G x (α, β) Exp x (λ) t Exp x (λ) U x (a, b) ořezané normální rozdělení skaláru x se střední hodnotou µ a variancí Σ na intervalu (a, b] (viz A.2.4) ořezané normální rozdělení skaláru x se střední hodnotou µ a variancí Σ na intervalu (, + ) gamma rozdělení s parametry α, β (viz A.3) exponenciální rozdělení skaláru x s parametrem λ (viz A.4) ořezané exponenciální rozdělení skaláru x s parametrem λ na intervalu (, + ) (viz A.4.1) rovnoměrné rozdělení skaláru x na intervalu (a, b) (viz A.5) vi

12 1 Úvod Významnou úlohu v lékařské diagnostice zaujímá jedna z metod nukleární medicíny, scintigrafie. Ta je založena na snímání distribuce radiofarmaka, aplikovaného do těla pacienta, díky čemuž lze získat nejen tvar, ale i funkci jednotlivých struktur v těle. Základním úkolem následné analýzy je rozlišit na sekvenci snímků jednotlivé obrázky a průběh kontrastní tekutiny v nich, dohromady tzv. faktory. Svojí podstatou však scintigrafie dává relativně málo kvalitní snímky. To je způsobeno nízkým rozlišením scintigrafické kamery (až o řád horší než magnetická rezonance) a problémům se šumem (z okolí, z krevního řečiště, z tkání, atd.). Neexistuje proto žádná automatická metoda, která by provedla celkovou diagnostiku ze získané sekvence. Současné metody jsou značně závislé na zručnosti odborné obsluhy, mnohdy se výsledky mohou značně lišit [1]. Úkolem předkládané práce bude tento nedostatek odstranit. Hlavní úlohou, kterou zastává matematika ve zpracování sekvencí snímků ve scintigrafii, je analýza této sekvence a správné určení diagnostických koeficientů. Protože se analyzuje reálný biologický systém, není možné očekávat teoreticky přesné výsledky. Výhodné metody pro práci s tímto systémem nám přináší Bayesovská statistika. Umožňuje uvlivňovat výpočet dle požadovaných předpokladů a zavádět apriorní předpoklady. Cenou za tyto možnosti je ovšem analytická neřešitelnost [2], je nutno přistoupit k různým formám aproximace. V této práci je použita aproximace pomocí Variačního Bayesova teorému. Problémem současných přístupů v této oblasti je nedostatečné respektování biologických předpokladů, které ovšem nelze opomenout, chceme-li dospět ke správným reálným výsledkům. V předchozí práci autora [3] je naznačeno modelování křivek faktorů jako konvoluce krve s konvolučními jádry jednotlivých faktorů. To je v této práci rozvinuto a zdokonaleno. Práce se dále věnuje vytvoření integrálního modelu pro analýzu scintigrafických obrazových sekvencí, tzn. zabudování potřebných diagnostických koeficientů přímo do výpočtu. To vede k odstranění chyby lidského faktoru, která je v této oblasti nezanedbatelná, a zároveň ke zjednodušení a urychlení celé diagnostiky v praxi. Na závěr je celý postup a nový model otestován na reálných scintigrafických studiích ledvin. 1

13 2 Scintigrafické vyšetření Při vniknutí některých farmak do organismu dochází k jejich nahromadění na konkrétních místech tkáně nebo orgánů, takže pokud by byla dotyčná látka označkována radionuklidem, můžeme toho využít k diagnostice [4]. Těmto látkám se říká radiofarmaka. Měření probíhá typicky na živém organismu (měření in vivo) v relativně hluboko uložených orgánech, proto musí daný radionuklid vyzařovat dostatečně tvrdé záření gamma. Poté lze třírozměrnou distribuci radionuklidu v organismu transformovat na dvourozměrný obraz ve stupních šedi. Signálem při vyšetření je tedy elektromagnetické záření gamma, ostatní doprovodná záření jsou pro nás nežádoucí. 2.1 Scintigrafie Scintigrafie 1 je popsána v [5] takto: Scintigrafie je fyzikálnˇe-elektronická metoda zobrazení distribuce radioindikátoru v organismu na základˇe zevní detekce vycházejícího záˇrení gama. Do metabolismu či krevního oběhu aplikujeme chemickou látku s navázaným radionuklidem. Ta se poté rozloží v organismu podle farmakokinetiky daného radiofarmaka. Jak moc se v konkrétním místě látka koncentruje, záleží na mnoha faktorech, především na intenzitě metabolických a funkčních dějů v orgánech a tkáních. Scintigrafii můžeme rozdělit na dva druhy [6]: Statická: danou oblast zájmu sejmeme jednou či několikrát z různých úhlů, nezáleží tedy na čase (obdoba fotografie). Dynamická: pomocí radioindikátoru sledujeme děj v organismu v čase, vzniká tak sekvence statických snímků (obdoba videa). To nám umožňuje dělat matematickou analýzu měření a sledovat funkce orgánů. Poznamenejme, že nás bude v této práci zajímat především planární scintigrafie, tedy dvojrozměrné zobrazení (naproti tomu tomografická scintigrafie, kde získáváme trojrozměrné zobrazení). Cílem scintigrafického vyšetření je kvantitativní zobrazení distribuce radiofarmak v těle pacienta (viz obrázek 2.1). Na rozdíl od radiodiagnostických metod zobrazujících anatomii vyšetřované části těla, scintigrafie poskytuje diagnostické informace především o funkci orgánů a tkání. 1 Přesněji spíše gamagrafie 2

14 Obrázek 2.1: Sekvence snímků a jejich analýza (převzato z [2]) Průběh vyšetření Názornou ukázku, jak scintigrafie probíhá, vidíme na obr V této kapitole projdeme postupně jednotlivé kroky znázorněné na tomto nákresu a vysvětlíme na nich základní fakta, principy a postupy. Na obr. 2.3 pak vidíme časový průběh vyšetření pomocí dynamické scintigrafie Radionuklidy Radionuklidem nazýváme prvek, jehož atomy mají schopnost se spontálně měnit na atomy jiných prvků (radioaktivní rozpad). Rychlost rozpadu různých prvků je různá, pro každý prvek je však konstantní. Radionuklidy jsou v nukleární medicíně navázany na nosnou látka, farmakum, dohromady tvoří radiofarmaka. Neradioaktivní část radiofarmaka umožňuje sledovat vyšetřovanou funkci tkáně nebo má léčebný účinek. Radionuklid umožňuje sledovat chování označeného farmaka v organismu, případně může mít také vlastní léčebný efekt (terapie radionuklidy). Pro značení diagnostických přípravků se používají zdroje záření gama. 3

15 Obrázek 2.2: Schéma scintigrafického vyšetření (převzato z [5]) Zákon rozpadu Počet rozpadlých jader za jednotku času je přímo úměrný počtu dosud nerozpadlých jader, tedy: dn dt = λn, (2.1) kde N je počet nerozpadlých jader a λ je rozpadová konstanta. Řešením této rovnice dostaneme tvar rozpadového zákona jako: N t = N e λt, (2.2) kde N t je počet zbývajících (nerozpadlých) jader radionuklidu a N je počet jader radionuklidu v čase t =. Poločasem rozpadu pak označíme dobu, za kterou se rozpadne právě polovina jader látky. Statistický pohled Rozpad radionuklidu je spontální děj, má náhodný charakter. Počet vyzářených částic kolísá kolem určité hodnoty a má určitý rozptyl. Děj je popsán Poissonovým zákonem, pro velký počet vyzářených částic (v praxi N > ) lze od Poissonova rozdělení přejít ke Gaussovu normálnímu rozdělení. Vliv pozadí Při detekci záření z radionuklidu si musíme uvědomit další vlivy, které naše měření zkreslují. Nepříznivě ho ovlivňuje například radiace v měřící místnosti, kosmické záření, stopy radionuklidů na detektoru, okolní tkáň atd. Toho si při zpracování snímků vytvořených pomocí scintigrafie musíme být vědomi a neopomenout tuto skutečnost zahrnout do matematického modelu. 4

16 Obrázek 2.3: Časových průběh scintigrafického vyšetření (převzato z [7]) Požadavky na vlastnosti radionuklidů Z uvedeného je zřejmé, že použitelné pro náš účel budou jen některé radionuklidy se specifickými vlastnostmi, především: Poločas rozpadu musí být dostatečně dlouhý, aby byla látka aktivní během celé doby vyšetření, na druhé straně je zbytková radiace po ukončení vyšetření v organismu značně nežádoucí. Emise energie radionuklidu by se měly pohybovat pouze v užitečných hodnotách, obvykle v rozmezí kev až řádově stovky kev (nejvyšší používané záření je 511keV ). Jakékoliv jiné záření si nepřejeme, protože zbytečně zvyšuje radiační zátěž pacienta. Orgán, který chceme vyšetřit, by měl selektivně zachycovat nosnou látku s radionuklidem. Toto zachycení v zájmové oblasti by mělo proběhnout co nejrychleji. Vzhledem k aplikovanému množství musí být zajištěna netoxičnost. Protože výsledné koncentrace radiofarmak ve tkáních jsou nano až pikomolární toxicita většinou nehrozí. Některé používané radionuklidy Prvním radionuklidem užitým v klinické medicíně byl radiojód 131 J s poločasem rozpadu 8 dnů a energií γ 364keV. Jeho klíčový význam je především v diagnostice a léčbě štítné žlázy. Nejdůležitějším radionuklidem pro nukleární medicínu je technicium 99m Tc s poločasem rozpadu 6 hodin a energií γ 1keV [8]. 99m Tc splňuje skoro všechny základní požadované vlastnosti pro scintigrafii a byl proto impulzem pro další rozvoj nukleární medicíny. Z 99m Tc 5

17 navíc vzniká 99 Tc s poločasem rozpadu 2 5 let, takže jej lze považovat za prakticky stabilní. Energie záření je ideální pro clonění kolimátorem i pro detekci a snadno se získává ve formě aniontu technecistanu 99m TcO 4, který se dále dobře váže na biologické látky. Jako další lze uvést: thalium 1 Tl (perfuze myokardu), galium 67 Ga (scintigrafie nádorů a zánětlivých ložisek) a krypton 81m Kr (ventilační scintigrafie plic) Scintilační kamera K popisu scintilační kamery opět užijeme [5]: Scintilaˇcní kamera je pˇrístroj, který snímá fotony záˇrení γ souˇcasnˇe z celého zorného pole, pˇrevádí je na elektrické impulsy a pomocí nich pak na displeji vytváˇrí scintigrafický obraz distribuce radioindikátoru v tomto zorném poli. Jedná se tedy o značně složité zařízení jak konstrukcí, tak principem. Naším úkolem není scintilační kameru dokonale popsat, spíše nám půjde o pochopení, jak funguje. Ve vyšetřovaném objektu se pohybují radionuklidy, které izotropně vyzařují záření gama. Abychom zachytili částice letící pouze v jednom směru a získali tak dvourozměrnou projekci, vložíme záření do cesty olověnou desku (někdy wolframovou) s maticí otvorů. Ta odstíní částice, které nejdou přesně ve směru osy otvorů. Za olověnou maticí je pak velkoplošný scintilační krystal, který při dopadu fotonu vyvolá v daném místě záblesk, který je snímám a převedem na elektrický impulz ve fotonásobiči. Pro další zpracování je pak důležitá digitalizace scintigrafických snímků a jejich uložení do paměti počítače. 2.2 Biologické předpoklady Rozeberme základní vlastnosti měřených a odhadovaných křivek. V první řadě si musíme uvědomit, jaké faktory snímáme scintigrafickou kamerou při vyšetření ledvin. Ledvina se skládá ze dvou hlavních částí, parenchymu a pánvičky (pelvis). Tyto dvě části se překrývají, a prolínají, pro správnou analýzu je však důležité je umět oddělit. Základní snímané části ve scintigrafii ledvin jsou: srdce krevní pozadí parenchym pánvička tkáňové pozadí další orgány. 6

18 2.2.1 Tvary faktorových křivek Srdce je orgán, k jehož naplnění konstrastní látkou dojde jako první, je-li, jako v našem případě, aplikováno radiofarmakum do krve ([9]). Z krevního oběhu je tato látka čištěna ledvinami, teoreticky se dá očekávat exponenciální tvar křivky krve, jak je ukázáno na obrázku 2.4. y 5 15 čas [min] Obrázek 2.4: Typický průběh křivky krve (srdce a krevní pozadí) Ze srdce se poté látka krví distribuuje do celého těla, nejprve do velkých cév a poté do celého krevního řečiště. Radiofarmakum je vytvářeno tak, aby bylo selektivně zachytáváno v cílovém orgánu, v ledvině. V počátku celé sekvence však můžeme pozorovat i další orgány, do kterých se radiofarmakum dostalo přes krev. Tento fakt ztěžuje celou analýzu, pomoci nám může to, že průběh křivky v nich je poměrně rychlý a tedy je šance tyto orgány detekovat a tím automaticky odečíst z výsledných snímků. Další problém s detekcí krevního pozadí nám vyvstává v tom, že probíhá přirozená difuze mezi krví a tkáněmi. Tím vniká další typ pozadí, tzv. tkáňové pozadí, které přebírá a zase vypouští radiofarmakum z a do krve. Lokálně se tedy může stát, že je křivka krve v jedné chvíli mírně rostoucí, globálně by však mělo docházet k poklesu aktivity v krvi. V dynamické scintigrafii ledvin dochází k největší selekci radiofarmaka v ledvinách, zaměříme se tedy nyní na tento orgán. Ledvinu musíme rozdělit na dvě hlavní části, na parenchym a pánvičku. Ty jsou navzájem propojeny a každá má rozdílnou dynamiku. Také jejich oddělení je jedním z hlavních úkolů analýzy. Parenchym tvoří větší část ledviny a v něm dochází k zachytávání kontrastní látky z krve. Pánvička je menší a k jejímu plnění a z našeho pohledu tedy k její aktivaci dochází později, nebot do ní přitéká tekutina z parenchymu. Tento bod nastává typicky po 2 až 3 minutách, v závislosti na věku a použité kontrastní látce ([]). Pánvička je však již určitě aktivovaná ve 7

19 y parenchym pelvis čas [min] Obrázek 2.5: Typický průběh křivky parenchymu a pánvičky chvíli, kdy má křivka parenchymu své maximum. V tomto bodě je přítok do pánvičky a přítok do parenchymu vyrovnán. Typické průběhy parenchymu a pánvičky u zdravé ledviny vidíme na obrázku 2.5. Každá křivka faktoru (x) je dána výsledkem konvoluce svého konvolučního jádra (u) s křivkou krve (b) ([11], [12], [13]). Dohromady tedy: x t = t b t m+1 u m. (2.3) m=1 Tato konvoluční jádra (nazývaná v nukleární medicíně impulzní retenˇcní funkce) mají typický teoretický tvar, který je znázorněn na obrázku 2.6. Pakliže je faktor aktivní hned od počátku sekvence, začíná konstantní plato od nuly, pokud tomu tak není (např. pánvička), je jeho začátek posunut Faktorové obrázky Faktorové obrázky získané ve scintigrafii představují ve většině případů nějaké orgány, případně jejich části. Typicky jsou tedy kompaktní a omezené. Díky předpokladům: snímaná tkáň se vzhledem ke scintigrafické kameře nehýbe orgány nemění svůj tvar během měření změna objemu kapaliny uvnitř orgánu je lineárně úměrná počtu vyzářovaných částic 8

20 y krev parenchym pelvis tkáňové pozadí čas [min] Obrázek 2.6: Teoretický tvar konvolučních jader jednotlivých faktorů (u zdravého pacienta) můžeme naměřená data modelovat jako lineární kombinaci jednotlivých orgánů (nebo jejich částí). Naším základním úkolem je pak zjistit tvar jednotlivých orgánů a průběh průtoku kontrastní tekutiny v nich (viz obrázek 2.1). Každý snímek sekvence (index t) lze matematicky vyjádřit jako d t = r a t x t + e t, (2.4) kde r je počet faktorů, a t je faktorový obrázek, x t je faktorová křivka a e t představuje šum. Tyto předpoklady by měl respektovat i matematický model, který správně odhadne jednotlivé faktorové obrázky a jejich křivky. 2.3 Současné metody funkcionální analýzy obrazové sekvence Podívejme se nyní na celý problém analýzy obrazové sekvence z matematického hlediska. Pokusíme se popsat základní biologické předpoklady, které na jednotlivé výsledné i pomocné křivky klademe. To bude mít vliv na následnout faktorovou analýzu a získání diagnostických 9

21 koeficientů. Dodejme ještě, že v současné době provádí analýzu expert (lékař či laborant) pomocí vizuálního dojmu, zda daný faktor obsahuje nebo neobsahuje konkrétní pixel je zcela na něm. Obdobné je to např. s určením, kde daná křivka začíná a končí (viz např. obrázky 2. a 2.11). Vytvoření a vyřešení matematického modelu, který vysvětluje data, snímaná scintigrafickou kamerou, ještě nemusí znamenat, že jsme nalezli biologicky správné řešení. Výsledek může být velice vzdálen biologickým předpokladům. Již sestavením modelu totiž vtiskáváme případnému řešení námi danou podobu, která může být v podstatě libovolná. Jako příklad uved me následující: mějme za úkol rozložit číslo d na a x. Náš matematický model tedy bude mít tvar d = ax. Ovšem pokud nespecifikujeme vlastnosti tohoto rozkladu, pak je možných řešení nekonečně mnoho, protože např. 12 = 3 4, ale i 2 6 atd. (pro další viz [2], [14]). Velký vliv na řešení celého problému má tedy již konstrukce modelu, ve kterém můžeme říci, jak si přejeme data rozložit. S ohledem na to musíme konstruovat naše modely i v následujících kapitolách Oblasti zájmu Jedním ze základních kroků při analýze obrazových sekvencí vzniklých scintigrafií je definování tzv. oblastí zájmů (region of interest - ROI). Ty poté slouží k měření aktivity v označené oblasti, výsledkem je časová křivka, které se využívá k výpočtu kvantitativních diagnostických parametrů. Problém s tím spojený vysvětlíme na příkladu. Na obrázku 2.7 vidíme snímek dutiny břišní. My dokážeme pouhým pohledem rozlišit tři základní struktury, které se na obrázku nacházejí, konkrétně dvě ledviny a v horní části srdce. Počítač ovšem tyto struktury tak snadno nedetekuje, v klinické praxi jsou proto skoro vždy určovány uživatelem, tedy lékařem. Obrázek 2.7: Snímek dutiny břišní

22 Problém s jakýmkoliv implicitním nastavením je ilustrován na obrázcích 2.8 a 2.9. Okřídlené tvrzení, že neexistují dva stejní lidé platí i v tomto případě. Pokud by šlo předpokládat, že rozmístění orgánů bude vždy stejné, mohli bychom je hledat v určitých typických oblastech (viz obr. 2.8). Jak však vidíme, v tomto případě jsou ledviny rozmístěny jinak a levá ledvina není ve své ROI zahrnuta celá, což by mohlo vést ke značně zkresleným výsledkům. Proto je nutno interakce s lékařem, který vyznačí ROI přesně dle konkrétního pacienta (obr. 2.9). Obrázek 2.8: Základní nastavení Obrázek 2.9: Konkrétní ROI Uvědomme si, že určování ROI je slabým článkem celého vyšetření, nebot interakce s uživatelem zanáší téměř vždy nepřesnost. Klasické metody zpracování však ROI využívají a jsou tedy do značné míry závislé i na zkušenostech a zručnosti obsluhy Matematický pohled a vyhodnocení křivek Podaří-li se nám získat výsledné tvary křivek jednotlivých faktorů, je třeba je dále analyzovat. Uved me některé základní přístupy. Patlak-Rutlandův graf Prvním možným přístupem je sestrojení tzv. Patlak-Rutlandova grafu [15]. Tato metoda předpokládá, že kontrastní látka do orgánů vstupuje a setrvává v nich. Orgány jsou tedy něco jako integrátory vstupní aktivity. Je však nutné určit polohu orgánu, případně oblast zájmu, ve které orgán leží. Necht počet dopadů částic v oblasti zájmu je dán funkcír(t) a aktivita v krvi funkcí B(t). Potom R(t) = a B(t) dt + bb(t), (2.5) kde konstanta a určuje schopnost absorbce kontrastní látky orgánem a konstanta b vyjadřuje vliv pozadí. 11

23 Tento model analyzujeme vydělením celé rovnice funkcí krve B(t) a dostáváme R(t) B(t) dt B(t) = a + b, (2.6) B(t) což je graf závislosti R(t). Výsledkem je tedy přímka se směrnicí a a vertikálním B(t) posunem b, ze které vyčteme potřebné informace. Úskalí tohoto přístupu je v tom, jak přesně zvládneme naměřit či vypočítat zmíněné funkce. Výsledek je také závislý na zručnosti odborné obsluhy [16], jak vidíme na obrázcích 2. a Volba délky lineárního úseku je častá chyba lidského faktoru. Zároveň si můžeme všimnout, že jsme celá data transformovali na jedinou křivku, čímž dochází ke ztrátě části informace. B(t) na R B(t) dt.5 Patlak Rutland plot 3 Patlak Rutland plot R(t)/P(t) R(t)/P(t) pseudo time P(t)/P(t) Obrázek 2.: Ihned zřejmý tvar Patlak- Rutlandova grafu (z [16] ) pseudo time P(t)/P(t) Obrázek 2.11: Problematický tvar Patlak- Rutlandova grafu (z [16] ) Dekonvoluce Druhý přístup je založen na předpokladu, že křivka každého faktoru je modelována jako konvoluce křivky krve a konvolučního jádra každého faktoru ([11], [], [15], [12]), jak bylo diskutováno již výše. Naším cílem je určit impulzní retenční funkci H(t). Výjimečně však můžeme aplikovat radiofarmakum přímo do vyšetřovaného orgánu, častěji je aplikováno do krve a z něj teprve přechází dále. Množství kontrastní látky v orgánu, Q(t) je tedy dáno konvolucí H(t) a vstupní funkcí orgánu, I(t), což můžeme zapsat jako Q(t) = T I(T t)h(t) dt (2.7) a měřit hodnoty I(t) a Q(t). Vyřešením uvedené konvoluční rovnice pak dostaneme hodnoty H(t), ze kterých opět vyčteme potřebné informace. 12

24 Tento postup je v principu jednoduchý, v praxi však nařáží na mnohé problémy, především určení správné vstupní křivky a na šum. Poznamenejme, že porovnání Patlak-Rutlandova grafu a dekonvoluce nalezneme v [13]. Oba jsou do značné míry závislé na správném určení a odečtení šumu (který tvoří samotný princip metody), krevního a tkáňového pozadí atd. Možností, jak tento šum odstranit je to, že vezmeme nějaké referenční pozadí a to pak od celého orgánu odečteme. Narážíme tím však na problém, jak takové referenční pozadí volit a zda tím neodečítáme moc velkou nebo malou hodnotu. Jak je ukázáno v [1], rozdíl výsledku oproti skutečnosti může být až 25% v závislosti na volbě referenčního pozadí, což je enormně velké číslo. Analýza hlavních komponent Analýza hlavních komponent (též Principal Component Analysis, PCA) je obecně postup sloužící k dekorelaci dat. Důležitým předpokladem této metody je, že pozorujeme superpozici jednotlivých faktorů. To je přesně náš případ, nebot ve scintigrafii sledujeme transformaci třírozměrného prostoru na dvourozměrný snímek, který je lineární kombinací jednotlivých faktorů. Základní princip je následující: mějme datovou (výstup experimentu) matici D a tu rozložme jako D = P ΛP, (2.8) kde Λ je diagonální matice vlastních čísel matice D a P je matice vlastních vektorů příslušných k matici Λ, přičemž platí, že P P je rovno jednotkové matici. Prvních r největších vlastních čísel a k nim příslušných vlastních vektorů jsou nejvýznamější faktory v datech D. Obecnější případ pak řeší tzv. Singular value decomposition. Nepříjemností při tomto rozkladu je opět šum. Použití této techniky je demonstrováno např. v [17]. Model faktorové analýzy Faktorová analýza vychází z předchozí podkapitoly (PCA) a z kapitoly Datová matice D zde obsahuje ve sloupcích všechny snímky sekvence. D se pak snažíme rozložit na matice A a X, kde A obsahuje ve sloupcích jednotlivé faktorové obrázky a X obsahuje ve sloupcích jednotlivé křivky. Model lze zapsat jako: D = AX + E, (2.9) kde E představuje šum. Poznamenejme, že toto bude základní model dat pro celou tuto práci Klinické vyhodnocení K určení správné diagnózy pacienta by vzhledem k výše popsaným přístupům bylo zapotřebí matematika - lékaře. To je v praxi náročný požadavek, proto je potřeba výsledek analýzy kvantifikovat a transformovat ideálně na jedno číslo, jehož hodnota by byla dosatečně vypovídající 13

Konvoluční model dynamických studií ledvin. seminář AS UTIA

Konvoluční model dynamických studií ledvin. seminář AS UTIA Konvoluční model dynamických studií ledvin Ondřej Tichý seminář AS UTIA.. Obsah prezentace Scintigrafická obrazová sekvence a její analýza Konstrukce standardního modelu a jeho řešení Experiment Ovlivnění

Více

1 Linearní prostory nad komplexními čísly

1 Linearní prostory nad komplexními čísly 1 Linearní prostory nad komplexními čísly V této přednášce budeme hledat kořeny polynomů, které se dále budou moci vyskytovat jako složky vektorů nebo matic Vzhledem k tomu, že kořeny polynomu (i reálného)

Více

5. Lokální, vázané a globální extrémy

5. Lokální, vázané a globální extrémy 5 Lokální, vázané a globální extrémy Studijní text Lokální extrémy 5 Lokální, vázané a globální extrémy Definice 51 Řekneme, že f : R n R má v bodě a Df: 1 lokální maximum, když Ka, δ Df tak, že x Ka,

Více

Odhad parametrů N(µ, σ 2 )

Odhad parametrů N(µ, σ 2 ) Odhad parametrů N(µ, σ 2 ) Mějme statistický soubor x 1, x 2,, x n modelovaný jako realizaci náhodného výběru z normálního rozdělení N(µ, σ 2 ) s neznámými parametry µ a σ. Jaký je maximální věrohodný

Více

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení 2 Zpracování naměřených dat Důležitou součástí každé experimentální práce je statistické zpracování naměřených dat. V této krátké kapitole se budeme věnovat určení intervalů spolehlivosti získaných výsledků

Více

časovém horizontu na rozdíl od experimentu lépe odhalit chybné poznání reality.

časovém horizontu na rozdíl od experimentu lépe odhalit chybné poznání reality. Modelování dynamických systémů Matematické modelování dynamických systémů se využívá v různých oborech přírodních, technických, ekonomických a sociálních věd. Použití matematického modelu umožňuje popsat

Více

příkladů do cvičení. V textu se objeví i pár detailů, které jsem nestihl (na které jsem zapomněl) a(b u) = (ab) u, u + ( u) = 0 = ( u) + u.

příkladů do cvičení. V textu se objeví i pár detailů, které jsem nestihl (na které jsem zapomněl) a(b u) = (ab) u, u + ( u) = 0 = ( u) + u. Několik řešených příkladů do Matematiky Vektory V tomto textu je spočteno několik ukázkových příkladů které vám snad pomohou při řešení příkladů do cvičení. V textu se objeví i pár detailů které jsem nestihl

Více

Normální (Gaussovo) rozdělení

Normální (Gaussovo) rozdělení Normální (Gaussovo) rozdělení Normální (Gaussovo) rozdělení popisuje vlastnosti náhodné spojité veličiny, která vzniká složením různých náhodných vlivů, které jsou navzájem nezávislé, kterých je velký

Více

Nejdřív spočítáme jeden příklad na variaci konstant pro lineární diferenciální rovnici 2. řádu s kostantními koeficienty. y + y = 4 sin t.

Nejdřív spočítáme jeden příklad na variaci konstant pro lineární diferenciální rovnici 2. řádu s kostantními koeficienty. y + y = 4 sin t. 1 Variace konstanty Nejdřív spočítáme jeden příklad na variaci konstant pro lineární diferenciální rovnici 2. řádu s kostantními koeficienty. Příklad 1 Najděte obecné řešení rovnice: y + y = 4 sin t. Co

Více

TECHNICKÁ UNIVERZITA V LIBERCI

TECHNICKÁ UNIVERZITA V LIBERCI TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií Základní pojmy diagnostiky a statistických metod vyhodnocení Učební text Ivan Jaksch Liberec 2012 Materiál vznikl

Více

Maticí typu (m, n), kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru:

Maticí typu (m, n), kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru: 3 Maticový počet 3.1 Zavedení pojmu matice Maticí typu (m, n, kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru: a 11 a 12... a 1k... a 1n a 21 a 22...

Více

2.6. VLASTNÍ ČÍSLA A VEKTORY MATIC

2.6. VLASTNÍ ČÍSLA A VEKTORY MATIC .6. VLASTNÍ ČÍSLA A VEKTORY MATIC V této kapitole se dozvíte: jak jsou definována vlastní (charakteristická) čísla a vektory čtvercové matice; co je to charakteristická matice a charakteristický polynom

Více

Matematika B101MA1, B101MA2

Matematika B101MA1, B101MA2 Matematika B101MA1, B101MA2 Zařazení předmětu: povinný předmět 1.ročníku bc studia 2 semestry Rozsah předmětu: prezenční studium 2 + 2 kombinované studium 16 + 0 / semestr Zakončení předmětu: ZS zápočet

Více

Aplikovaná numerická matematika

Aplikovaná numerická matematika Aplikovaná numerická matematika 6. Metoda nejmenších čtverců doc. Ing. Róbert Lórencz, CSc. České vysoké učení technické v Praze Fakulta informačních technologií Katedra počítačových systémů Příprava studijních

Více

Diferenciální rovnice 1

Diferenciální rovnice 1 Diferenciální rovnice 1 Základní pojmy Diferenciální rovnice n-tého řádu v implicitním tvaru je obecně rovnice ve tvaru,,,, = Řád diferenciální rovnice odpovídá nejvyššímu stupni derivace v rovnici použitému.

Více

Regresní analýza 1. Regresní analýza

Regresní analýza 1. Regresní analýza Regresní analýza 1 1 Regresní funkce Regresní analýza Důležitou statistickou úlohou je hledání a zkoumání závislostí proměnných, jejichž hodnoty získáme při realizaci experimentů Vzhledem k jejich náhodnému

Více

7. Rozdělení pravděpodobnosti ve statistice

7. Rozdělení pravděpodobnosti ve statistice 7. Rozdělení pravděpodobnosti ve statistice Statistika nuda je, má však cenné údaje, neklesejte na mysli, ona nám to vyčíslí Jednou z úloh statistiky je odhad (výpočet) hodnot statistického znaku x i,

Více

a vlastních vektorů Příklad: Stanovte taková čísla λ, pro která má homogenní soustava Av = λv nenulové (A λ i I) v = 0.

a vlastních vektorů Příklad: Stanovte taková čísla λ, pro která má homogenní soustava Av = λv nenulové (A λ i I) v = 0. Výpočet vlastních čísel a vlastních vektorů S pojmem vlastního čísla jsme se již setkali například u iteračních metod pro řešení soustavy lineárních algebraických rovnic. Velikosti vlastních čísel iterační

Více

fakulty MENDELU v Brně (LDF) s ohledem na disciplíny společného základu http://akademie.ldf.mendelu.cz/cz (reg. č. CZ.1.07/2.2.00/28.

fakulty MENDELU v Brně (LDF) s ohledem na disciplíny společného základu http://akademie.ldf.mendelu.cz/cz (reg. č. CZ.1.07/2.2.00/28. Základy lineárního programování Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem

Více

Soustavy. Terminologie. Dva pohledy na soustavu lin. rovnic. Definice: Necht A = (a i,j ) R m,n je matice, b R m,1 je jednosloupcová.

Soustavy. Terminologie. Dva pohledy na soustavu lin. rovnic. Definice: Necht A = (a i,j ) R m,n je matice, b R m,1 je jednosloupcová. [1] Terminologie [2] Soustavy lineárních rovnic vlastnosti množin řešení metody hledání řešení nejednoznačnost zápisu řešení Definice: Necht A = (a i,j ) R m,n je matice, b R m,1 je jednosloupcová matice.

Více

Úlohy nejmenších čtverců

Úlohy nejmenších čtverců Úlohy nejmenších čtverců Petr Tichý 7. listopadu 2012 1 Problémy nejmenších čtverců Ax b Řešení Ax = b nemusí existovat, a pokud existuje, nemusí být jednoznačné. Často má smysl hledat x tak, že Ax b.

Více

Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice

Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice Vektorové podprostory K množina reálných nebo komplexních čísel, U vektorový prostor nad K. Lineární kombinace vektorů u 1, u 2,...,u

Více

Učební texty k státní bakalářské zkoušce Matematika Vlastní čísla a vlastní hodnoty. študenti MFF 15. augusta 2008

Učební texty k státní bakalářské zkoušce Matematika Vlastní čísla a vlastní hodnoty. študenti MFF 15. augusta 2008 Učební texty k státní bakalářské zkoušce Matematika Vlastní čísla a vlastní hodnoty študenti MFF 15. augusta 2008 1 14 Vlastní čísla a vlastní hodnoty Požadavky Vlastní čísla a vlastní hodnoty lineárního

Více

IB112 Základy matematiky

IB112 Základy matematiky IB112 Základy matematiky Řešení soustavy lineárních rovnic, matice, vektory Jan Strejček IB112 Základy matematiky: Řešení soustavy lineárních rovnic, matice, vektory 2/53 Obsah Soustava lineárních rovnic

Více

Úloha - rozpoznávání číslic

Úloha - rozpoznávání číslic Úloha - rozpoznávání číslic Vojtěch Franc, Tomáš Pajdla a Tomáš Svoboda http://cmp.felk.cvut.cz 27. listopadu 26 Abstrakt Podpůrný text pro cvičení předmětu X33KUI. Vysvětluje tři způsoby rozpoznávání

Více

Afinita je stručný název pro afinní transformaci prostoru, tj.vzájemně jednoznačné afinní zobrazení bodového prostoru A n na sebe.

Afinita je stručný název pro afinní transformaci prostoru, tj.vzájemně jednoznačné afinní zobrazení bodového prostoru A n na sebe. 4 Afinita Afinita je stručný název pro afinní transformaci prostoru, tj.vzájemně jednoznačné afinní zobrazení bodového prostoru A n na sebe. Poznámka. Vzájemně jednoznačným zobrazením rozumíme zobrazení,

Více

Afinita je stručný název pro afinní transformaci prostoru, tj.vzájemně jednoznačné afinní zobrazení bodového prostoru A n na sebe.

Afinita je stručný název pro afinní transformaci prostoru, tj.vzájemně jednoznačné afinní zobrazení bodového prostoru A n na sebe. 8 Afinita Afinita je stručný název pro afinní transformaci prostoru, tj.vzájemně jednoznačné afinní zobrazení bodového prostoru A n na sebe. Poznámka. Vzájemně jednoznačným zobrazením rozumíme zobrazení,

Více

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004.

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Prostá regresní a korelační analýza 1 1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Problematika závislosti V podstatě lze rozlišovat mezi závislostí nepodstatnou, čili náhodnou

Více

LDF MENDELU. Simona Fišnarová (MENDELU) Základy lineárního programování VMAT, IMT 1 / 25

LDF MENDELU. Simona Fišnarová (MENDELU) Základy lineárního programování VMAT, IMT 1 / 25 Základy lineárního programování Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem

Více

VYBRANÉ PARTIE Z NUMERICKÉ MATEMATIKY

VYBRANÉ PARTIE Z NUMERICKÉ MATEMATIKY VYBRANÉ PARTIE Z NUMERICKÉ MATEMATIKY Jan Krejčí 31. srpna 2006 jkrejci@physics.ujep.cz http://physics.ujep.cz/~jkrejci Obsah 1 Přímé metody řešení soustav lineárních rovnic 3 1.1 Gaussova eliminace...............................

Více

2. Schurova věta. Petr Tichý. 3. října 2012

2. Schurova věta. Petr Tichý. 3. října 2012 2. Schurova věta Petr Tichý 3. října 2012 1 Podobnostní transformace a výpočet vlastních čísel Obecný princip: Úloha: Řešíme-li matematickou úlohu, je často velmi vhodné hledat její ekvivalentní formulaci

Více

stránkách přednášejícího.

stránkách přednášejícího. Předmět: MA 4 Dnešní látka Iterační metoda Jacobiova iterační metoda Gaussova-Seidelova iterační metoda Superrelaxační metoda (metoda SOR) Metoda sdružených gradientů Četba: Text o lineární algebře v Příručce

Více

2D transformací. červen Odvození transformačního klíče vybraných 2D transformací Metody vyrovnání... 2

2D transformací. červen Odvození transformačního klíče vybraných 2D transformací Metody vyrovnání... 2 Výpočet transformačních koeficinetů vybraných 2D transformací Jan Ježek červen 2008 Obsah Odvození transformačního klíče vybraných 2D transformací 2 Meto vyrovnání 2 2 Obecné vyjádření lineárních 2D transformací

Více

Matematika 1 MA1. 2 Determinant. 3 Adjungovaná matice. 4 Cramerovo pravidlo. 11. přednáška ( ) Matematika 1 1 / 29

Matematika 1 MA1. 2 Determinant. 3 Adjungovaná matice. 4 Cramerovo pravidlo. 11. přednáška ( ) Matematika 1 1 / 29 Matematika 1 11. přednáška MA1 1 Opakování 2 Determinant 3 Adjungovaná matice 4 Cramerovo pravidlo 5 Vlastní čísla a vlastní vektory matic 6 Zkouška; konzultace; výběrová matematika;... 11. přednáška (15.12.2010

Více

Klasifikace a rozpoznávání. Lineární klasifikátory

Klasifikace a rozpoznávání. Lineární klasifikátory Klasifikace a rozpoznávání Lineární klasifikátory Opakování - Skalární součin x = x1 x 2 w = w T x = w 1 w 2 x 1 x 2 w1 w 2 = w 1 x 1 + w 2 x 2 x. w w T x w Lineární klasifikátor y(x) = w T x + w 0 Vyber

Více

Lingebraické kapitolky - Analytická geometrie

Lingebraické kapitolky - Analytická geometrie Lingebraické kapitolky - Analytická geometrie Jaroslav Horáček KAM MFF UK 2013 Co je to vektor? Šipička na tabuli? Ehm? Množina orientovaných úseček majících stejný směr. Prvek vektorového prostoru. V

Více

Téma 2: Pravděpodobnostní vyjádření náhodných veličin

Téma 2: Pravděpodobnostní vyjádření náhodných veličin 0.05 0.0 0.05 0.0 0.005 Nominální napětí v pásnici Std Mean 40 60 80 00 0 40 60 Std Téma : Pravděpodobnostní vyjádření náhodných veličin Přednáška z předmětu: Spolehlivost a bezpečnost staveb 4. ročník

Více

Nukleární medicína je obor zabývající se diagnostikou a léčbou pomocí otevřených radioaktivních zářičů, aplikovaných do vnitřního prostředí

Nukleární medicína je obor zabývající se diagnostikou a léčbou pomocí otevřených radioaktivních zářičů, aplikovaných do vnitřního prostředí Nukleární medicína je obor zabývající se diagnostikou a léčbou pomocí otevřených radioaktivních zářičů, aplikovaných do vnitřního prostředí organismu. zobrazovací (in vivo) diagnostika laboratorní (in

Více

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují 1. u + v = v + u, u, v V 2. (u + v) + w = u + (v + w),

Více

1 Vektorové prostory.

1 Vektorové prostory. 1 Vektorové prostory DefiniceMnožinu V, jejíž prvky budeme označovat a, b, c, z, budeme nazývat vektorovým prostorem právě tehdy, když budou splněny následující podmínky: 1 Je dáno zobrazení V V V, které

Více

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1 Logistická regrese Menu: QCExpert Regrese Logistická Modul Logistická regrese umožňuje analýzu dat, kdy odezva je binární, nebo frekvenční veličina vyjádřená hodnotami 0 nebo 1, případně poměry v intervalu

Více

Cvičení 5 - Inverzní matice

Cvičení 5 - Inverzní matice Cvičení 5 - Inverzní matice Pojem Inverzní matice Buď A R n n. A je inverzní maticí k A, pokud platí, AA = A A = I n. Matice A, pokud existuje, je jednoznačná. A stačí nám jen jedna rovnost, aby platilo,

Více

ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ

ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ Parametrické vyjádření přímky v rovině Máme přímku p v rovině určenou body A, B. Sestrojíme vektor u = B A. Pro bod B tím pádem platí: B = A + u. Je zřejmé,

Více

1 Modelování systémů 2. řádu

1 Modelování systémů 2. řádu OBSAH Obsah 1 Modelování systémů 2. řádu 1 2 Řešení diferenciální rovnice 3 3 Ukázka řešení č. 1 9 4 Ukázka řešení č. 2 11 5 Ukázka řešení č. 3 12 6 Ukázka řešení č. 4 14 7 Ukázka řešení č. 5 16 8 Ukázka

Více

Všechno, co jste kdy chtěli vědět o maticích, ale báli jste se zeptat

Všechno, co jste kdy chtěli vědět o maticích, ale báli jste se zeptat Všechno, co jste kdy chtěli vědět o maticích, ale báli jste se zeptat Čtvercová matice n n, např. může reprezentovat: A = A A 2 A 3 A 2 A 22 A 23 A 3 A 32 A 33 matici koeficientů soustavy n lineárních

Více

Fyzikální korespondenční seminář MFF UK

Fyzikální korespondenční seminář MFF UK Úloha I.S... náhodná 10 bodů; průměr 7,04; řešilo 45 studentů a) Zkuste vlastními slovy popsat, co je to náhodná veličina a jaké má vlastnosti (postačí vlastními slovy objasnit následující pojmy: náhodná

Více

AVDAT Nelineární regresní model

AVDAT Nelineární regresní model AVDAT Nelineární regresní model Josef Tvrdík Katedra informatiky Přírodovědecká fakulta Ostravská univerzita Nelineární regresní model Ey i = f (x i, β) kde x i je k-členný vektor vysvětlujících proměnných

Více

MATICE. a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij]

MATICE. a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij] MATICE Matice typu m/n nad tělesem T je soubor m n prvků z tělesa T uspořádaných do m řádků a n sloupců: a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij] a m1 a m2 a mn Prvek a i,j je prvek matice A na místě

Více

11 Analýza hlavních komponet

11 Analýza hlavních komponet 11 Analýza hlavních komponet Tato úloha provádí transformaci měřených dat na menší počet tzv. fiktivních dat tak, aby většina informace obsažená v původních datech zůstala zachována. Jedná se tedy o úlohu

Více

1 Determinanty a inverzní matice

1 Determinanty a inverzní matice Determinanty a inverzní matice Definice Necht A = (a ij ) je matice typu (n, n), n 2 Subdeterminantem A ij matice A příslušným pozici (i, j) nazýváme determinant matice, která vznikne z A vypuštěním i-tého

Více

9. T r a n s f o r m a c e n á h o d n é v e l i č i n y

9. T r a n s f o r m a c e n á h o d n é v e l i č i n y 9. T r a n s f o r m a c e n á h o d n é v e l i č i n Při popisu procesů zpracováváme vstupní údaj, hodnotu x tak, že výstupní hodnota závisí nějakým způsobem na vstupní, je její funkcí = f(x). Pokud

Více

2. Numerické výpočty. 1. Numerická derivace funkce

2. Numerické výpočty. 1. Numerická derivace funkce 2. Numerické výpočty Excel je poměrně pohodlný nástroj na provádění různých numerických výpočtů. V příkladu si ukážeme možnosti výpočtu a zobrazení diferenciálních charakteristik analytické funkce, přičemž

Více

1. Přednáška. Ing. Miroslav Šulai, MBA

1. Přednáška. Ing. Miroslav Šulai, MBA N_OFI_2 1. Přednáška Počet pravděpodobnosti Statistický aparát používaný ve financích Ing. Miroslav Šulai, MBA 1 Počet pravděpodobnosti -náhodné veličiny 2 Počet pravděpodobnosti -náhodné veličiny 3 Jevy

Více

Odhad stavu matematického modelu křižovatek

Odhad stavu matematického modelu křižovatek Odhad stavu matematického modelu křižovatek Miroslav Šimandl, Miroslav Flídr a Jindřich Duník Katedra kybernetiky & Výzkumné centrum Data-Algoritmy-Rozhodování Fakulta aplikovaných věd Západočeská univerzita

Více

Soustavy lineárních diferenciálních rovnic I. řádu s konstantními koeficienty

Soustavy lineárních diferenciálních rovnic I. řádu s konstantními koeficienty Soustavy lineárních diferenciálních rovnic I řádu s konstantními koeficienty Definice a) Soustava tvaru x = ax + a y + az + f() t y = ax + a y + az + f () t z = a x + a y + a z + f () t se nazývá soustava

Více

pracovní list studenta

pracovní list studenta Výstup RVP: Klíčová slova: pracovní list studenta Funkce kvadratická funkce Mirek Kubera žák načrtne grafy požadovaných funkcí, formuluje a zdůvodňuje vlastnosti studovaných funkcí, modeluje závislosti

Více

Náhodný vektor a jeho charakteristiky

Náhodný vektor a jeho charakteristiky Náhodný vektor a jeho číselné charakteristiky 1 Náhodný vektor a jeho charakteristiky V následující kapitole budeme věnovat pozornost pouze dvourozměřnému náhodnému vektoru, i když uvedené pojmy a jejich

Více

CVIČNÝ TEST 5. OBSAH I. Cvičný test 2. Mgr. Václav Zemek. II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19

CVIČNÝ TEST 5. OBSAH I. Cvičný test 2. Mgr. Václav Zemek. II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19 CVIČNÝ TEST 5 Mgr. Václav Zemek OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19 I. CVIČNÝ TEST 1 Zjednodušte výraz (2x 5) 2 (2x 5) (2x + 5) + 20x. 2 Určete nejmenší trojciferné

Více

Necht tedy máme přirozená čísla n, k pod pojmem systém lineárních rovnic rozumíme rovnice ve tvaru

Necht tedy máme přirozená čísla n, k pod pojmem systém lineárních rovnic rozumíme rovnice ve tvaru 2. Systémy lineárních rovnic V této kapitole se budeme zabývat soustavami lineárních rovnic s koeficienty z pole reálných případně komplexních čísel. Uvádíme podmínku pro existenci řešení systému lineárních

Více

Matice. Modifikace matic eliminační metodou. α A = α a 2,1, α a 2,2,..., α a 2,n α a m,1, α a m,2,..., α a m,n

Matice. Modifikace matic eliminační metodou. α A = α a 2,1, α a 2,2,..., α a 2,n α a m,1, α a m,2,..., α a m,n [1] Základní pojmy [2] Matice mezi sebou sčítáme a násobíme konstantou (lineární prostor) měníme je na jiné matice eliminační metodou násobíme je mezi sebou... Matice je tabulka čísel s konečným počtem

Více

ANALYTICKÁ GEOMETRIE V ROVINĚ

ANALYTICKÁ GEOMETRIE V ROVINĚ ANALYTICKÁ GEOMETRIE V ROVINĚ Analytická geometrie vyšetřuje geometrické objekty (body, přímky, kuželosečky apod.) analytickými metodami. Podle prostoru, ve kterém pracujeme, můžeme analytickou geometrii

Více

Diagnostika regrese pomocí grafu 7krát jinak

Diagnostika regrese pomocí grafu 7krát jinak StatSoft Diagnostika regrese pomocí grafu 7krát jinak V tomto článečku si uděláme exkurzi do teorie regresní analýzy a detailně se podíváme na jeden jediný diagnostický graf. Jedná se o graf Předpovědi

Více

Operační výzkum. Teorie her cv. Hra v normálním tvaru. Optimální strategie. Maticové hry.

Operační výzkum. Teorie her cv. Hra v normálním tvaru. Optimální strategie. Maticové hry. Operační výzkum Teorie her cv. Hra v normálním tvaru. Optimální strategie. Maticové hry. Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty

Více

Regresní a korelační analýza

Regresní a korelační analýza Regresní a korelační analýza Mějme dvojici proměnných, které spolu nějak souvisí. x je nezávisle (vysvětlující) proměnná y je závisle (vysvětlovaná) proměnná Chceme zjistit funkční závislost y = f(x).

Více

11. přednáška 10. prosince Kapitola 3. Úvod do teorie diferenciálních rovnic. Obyčejná diferenciální rovnice řádu n (ODR řádu n) je vztah

11. přednáška 10. prosince Kapitola 3. Úvod do teorie diferenciálních rovnic. Obyčejná diferenciální rovnice řádu n (ODR řádu n) je vztah 11. přednáška 10. prosince 2007 Kapitola 3. Úvod do teorie diferenciálních rovnic. Obyčejná diferenciální rovnice řádu n (ODR řádu n) je vztah F (x, y, y, y,..., y (n) ) = 0 mezi argumentem x funkce jedné

Více

Vyhodnocení 2D rychlostního pole metodou PIV programem Matlab (zpracoval Jan Kolínský, dle programu ing. Jana Novotného)

Vyhodnocení 2D rychlostního pole metodou PIV programem Matlab (zpracoval Jan Kolínský, dle programu ing. Jana Novotného) Vyhodnocení 2D rychlostního pole metodou PIV programem Matlab (zpracoval Jan Kolínský, dle programu ing. Jana Novotného) 1 Obecný popis metody Particle Image Velocimetry, nebo-li zkráceně PIV, je měřící

Více

2 Spojité modely rozhodování

2 Spojité modely rozhodování 2 Spojité modely rozhodování Jak již víme z přednášky, diskrétní model rozhodování lze zapsat ve tvaru úlohy hodnocení variant: f(a i ) max, a i A = {a 1, a 2,... a p }, kde f je kriteriální funkce a A

Více

Statistická teorie učení

Statistická teorie učení Statistická teorie učení Petr Havel Marek Myslivec přednáška z 9. týdne 1 Úvod Představme si situaci výrobce a zákazníka, který si u výrobce objednal algoritmus rozpoznávání. Zákazník dodal experimentální

Více

a počtem sloupců druhé matice. Spočítejme součin A.B. Označme matici A.B = M, pro její prvky platí:

a počtem sloupců druhé matice. Spočítejme součin A.B. Označme matici A.B = M, pro její prvky platí: Řešené příklady z lineární algebry - část 1 Typové příklady s řešením Příklady jsou určeny především k zopakování látky před zkouškou, jsou proto řešeny se znalostmi učiva celého semestru. Tento fakt se

Více

Logaritmické a exponenciální funkce

Logaritmické a exponenciální funkce Kapitola 4 Logaritmické a exponenciální funkce V této kapitole se budeme zabývat exponenciálními a logaritmickými funkcemi. Uvedeme si definice vlastnosti a vztah mezi nimi. 4.1 Exponenciální funkce Exponenciální

Více

Aplikace teoretických postupů pro ocenění rizika při upisování pojistných smluv v oblasti velkých rizik

Aplikace teoretických postupů pro ocenění rizika při upisování pojistných smluv v oblasti velkých rizik Aplikace teoretických postupů pro ocenění rizika při upisování pojistných smluv v oblasti velkých rizik Ondřej Pavlačka Praha, 18. ledna 2011 Cíle projektu Vytvořit matematický model pro oceňování přijímaného

Více

Funkce a lineární funkce pro studijní obory

Funkce a lineární funkce pro studijní obory Variace 1 Funkce a lineární funkce pro studijní obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Funkce

Více

Numerické metody a programování

Numerické metody a programování Projekt: Inovace výuky optiky se zaměřením na získání experimentálních dovedností Registrační číslo: CZ.1.7/2.2./28.157 Numerické metody a programování Lekce 4 Tento projekt je spolufinancován Evropským

Více

1 Mnohočleny a algebraické rovnice

1 Mnohočleny a algebraické rovnice 1 Mnohočleny a algebraické rovnice 1.1 Pojem mnohočlenu (polynomu) Připomeňme, že výrazům typu a 2 x 2 + a 1 x + a 0 říkáme kvadratický trojčlen, když a 2 0. Číslům a 0, a 1, a 2 říkáme koeficienty a písmenem

Více

vzorek1 0.0033390 0.0047277 0.0062653 0.0077811 0.0090141... vzorek 30 0.0056775 0.0058778 0.0066916 0.0076192 0.0087291

vzorek1 0.0033390 0.0047277 0.0062653 0.0077811 0.0090141... vzorek 30 0.0056775 0.0058778 0.0066916 0.0076192 0.0087291 Vzorová úloha 4.16 Postup vícerozměrné kalibrace Postup vícerozměrné kalibrace ukážeme na úloze C4.10 Vícerozměrný kalibrační model kvality bezolovnatého benzinu. Dle následujících kroků na základě naměřených

Více

Jednoduchá exponenciální rovnice

Jednoduchá exponenciální rovnice Jednoduchá exponenciální rovnice Z běžné rovnice se exponenciální stává, pokud obsahuje proměnnou v exponentu. Obecně bychom mohli exponenciální rovnici zapsat takto: a f(x) = b g(x), kde a, b > 0. Typickým

Více

10. Předpovídání - aplikace regresní úlohy

10. Předpovídání - aplikace regresní úlohy 10. Předpovídání - aplikace regresní úlohy Regresní úloha (analýza) je označení pro statistickou metodu, pomocí nichž odhadujeme hodnotu náhodné veličiny (tzv. závislé proměnné, cílové proměnné, regresandu

Více

Numerická matematika 1

Numerická matematika 1 Numerická matematika 1 Obsah 1 Řešení nelineárních rovnic 3 1.1 Metoda půlení intervalu....................... 3 1.2 Metoda jednoduché iterace..................... 4 1.3 Newtonova metoda..........................

Více

Riemannův určitý integrál

Riemannův určitý integrál Riemannův určitý integrál 1. Motivační příklad Příklad (Motivační příklad pro zavedení Riemannova integrálu). Nechť,. Vypočtěme obsah vybarvené oblasti ohraničené grafem funkce, osou a svislými přímkami

Více

Diferenciální rovnice

Diferenciální rovnice Obyčejné diferenciální rovnice - studijní text pro cvičení v předmětu Matematika - 2. Studijní materiál byl připraven pracovníky katedry E. Novákovou, M. Hyánkovou a L. Průchou za podpory grantu IG ČVUT

Více

Střední hodnota a rozptyl náhodné. kvantilu. Ing. Michael Rost, Ph.D.

Střední hodnota a rozptyl náhodné. kvantilu. Ing. Michael Rost, Ph.D. Střední hodnota a rozptyl náhodné veličiny, vybraná rozdělení diskrétních a spojitých náhodných veličin, pojem kvantilu Ing. Michael Rost, Ph.D. Príklad Předpokládejme že máme náhodnou veličinu X která

Více

(Auto)korelační funkce. 2. 11. 2015 Statistické vyhodnocování exp. dat M. Čada www.fzu.cz/ ~ cada

(Auto)korelační funkce. 2. 11. 2015 Statistické vyhodnocování exp. dat M. Čada www.fzu.cz/ ~ cada (Auto)korelační funkce 1 Náhodné procesy Korelace mezi náhodnými proměnnými má široké uplatnění v elektrotechnické praxi, kde se snažíme o porovnávání dvou signálů, které by měly být stejné. Příkladem

Více

12 DYNAMIKA SOUSTAVY HMOTNÝCH BODŮ

12 DYNAMIKA SOUSTAVY HMOTNÝCH BODŮ 56 12 DYNAMIKA SOUSTAVY HMOTNÝCH BODŮ Těžiště I. impulsová věta - věta o pohybu těžiště II. impulsová věta Zákony zachování v izolované soustavě hmotných bodů Náhrada pohybu skutečných objektů pohybem

Více

Téma 2: Pravděpodobnostní vyjádření náhodných veličin

Téma 2: Pravděpodobnostní vyjádření náhodných veličin 0.025 0.02 0.015 0.01 0.005 Nominální napětí v pásnici Std Mean 140 160 180 200 220 240 260 Std Téma 2: Pravděpodobnostní vyjádření náhodných veličin Přednáška z předmětu: Pravděpodobnostní posuzování

Více

Nestranný odhad Statistické vyhodnocování exp. dat M. Čada

Nestranný odhad Statistické vyhodnocování exp. dat M. Čada Nestranný odhad 1 Parametr θ Máme statistický (výběrový) soubor, který je realizací náhodného výběru 1, 2, 3,, n z pravděpodobnostní distribuce, která je kompletně stanovena jedním nebo více parametry

Více

Soustavy lineárních rovnic

Soustavy lineárních rovnic Soustavy lineárních rovnic Základy vyšší matematiky LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipĺıny společného

Více

Matematické modelování dopravního proudu

Matematické modelování dopravního proudu Matematické modelování dopravního proudu Ondřej Lanč, Alena Girglová, Kateřina Papežová, Lucie Obšilová Gymnázium Otokara Březiny a SOŠ Telč lancondrej@centrum.cz Abstrakt: Cílem projektu bylo seznámení

Více

INTEGRÁLY S PARAMETREM

INTEGRÁLY S PARAMETREM INTEGRÁLY S PARAMETREM b a V kapitole o integraci funkcí více proměnných byla potřeba funkce g(x) = f(x, y) dy proměnné x. Spojitost funkce g(x) = b a f(x, y) dy proměnné x znamená vlastně prohození limity

Více

CVIČNÝ TEST 15. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17

CVIČNÝ TEST 15. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 CVIČNÝ TEST 15 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST VÝCHOZÍ TEXT K ÚLOZE 1 Je dána čtvercová mřížka, v níž každý čtverec má délku

Více

Algoritmus pro hledání nejkratší cesty orientovaným grafem

Algoritmus pro hledání nejkratší cesty orientovaným grafem 1.1 Úvod Algoritmus pro hledání nejkratší cesty orientovaným grafem Naprogramoval jsem v Matlabu funkci, která dokáže určit nejkratší cestu v orientovaném grafu mezi libovolnými dvěma vrcholy. Nastudoval

Více

REÁLNÁ FUNKCE JEDNÉ PROMĚNNÉ

REÁLNÁ FUNKCE JEDNÉ PROMĚNNÉ REÁLNÁ FUNKCE JEDNÉ PROMĚNNÉ 5 přednáška S funkcemi se setkáváme na každém kroku ve všech přírodních vědách ale i v každodenním životě Každá situace kdy jsou nějaký jev nebo veličina jednoznačně určeny

Více

9 Kolmost vektorových podprostorů

9 Kolmost vektorových podprostorů 9 Kolmost vektorových podprostorů Od kolmosti dvou vektorů nyní přejdeme ke kolmosti dvou vektorových podprostorů. Budeme se zabývat otázkou, kdy jsou dva vektorové podprostory na sebe kolmé a jak to poznáme.

Více

Co je obsahem numerických metod?

Co je obsahem numerických metod? Numerické metody Úvod Úvod Co je obsahem numerických metod? Numerické metody slouží k přibližnému výpočtu věcí, které se přesně vypočítat bud nedají vůbec, nebo by byl výpočet neúměrně pracný. Obsahem

Více

Stanovení radiační zátěže z vyšetření tlustého střeva pomocí 67. Ga-citrátu. Mihalová P., Vrba T., Buncová M. XXXIII. Dni radiačnej ochrany, Vyhne

Stanovení radiační zátěže z vyšetření tlustého střeva pomocí 67. Ga-citrátu. Mihalová P., Vrba T., Buncová M. XXXIII. Dni radiačnej ochrany, Vyhne Stanovení radiační zátěže z vyšetření tlustého střeva pomocí 67 Ga-citrátu Mihalová P., Vrba T., Buncová M. Obsah prezentace Algoritmus vyšetření Odhad radiační zátěže pro jednotlivé diagnózy Výpočet z

Více

Markovské metody pro modelování pravděpodobnosti

Markovské metody pro modelování pravděpodobnosti Markovské metody pro modelování pravděpodobnosti rizikových stavů 1 Markovský řetězec Budeme uvažovat náhodný proces s diskrétním časem (náhodnou posloupnost) X(t), t T {0, 1, 2,... } s konečnou množinou

Více

Jana Vránová, 3. lékařská fakulta UK

Jana Vránová, 3. lékařská fakulta UK Jana Vránová, 3. lékařská fakulta UK Vznikají při zkoumání vztahů kvalitativních resp. diskrétních znaků Jedná se o analogii s korelační analýzou spojitých znaků Přitom předpokládáme, že každý prvek populace

Více

Soustavy lineárních rovnic a determinanty

Soustavy lineárních rovnic a determinanty Soustavy lineárních rovnic a determinanty Petr Hasil Přednáška z matematiky Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipĺıny

Více

Obr. P1.1 Zadání úlohy v MS Excel

Obr. P1.1 Zadání úlohy v MS Excel Přílohy Příloha 1 Řešení úlohy lineárního programování v MS Excel V této příloze si ukážeme, jak lze řešit úlohy lineárního programování pomocí tabulkového procesoru MS Excel. Výpočet budeme demonstrovat

Více

Volba zobrazení (Direct Current, Scaling) - FFT 1D, FFT 2D

Volba zobrazení (Direct Current, Scaling) - FFT 1D, FFT 2D Volba zobrazení (Direct Current, Scaling) - FFT 1D, FFT 2D Jiří Stančík Fakulta chemická, Vysoké učení technické v Brně Purkyňova 118, 61200 Brno e-mail: HTUxcstancik@fch.vutbr.czUTH Úkolem této práce

Více

Regresní analýza. Ekonometrie. Jiří Neubauer. Katedra ekonometrie FVL UO Brno kancelář 69a, tel

Regresní analýza. Ekonometrie. Jiří Neubauer. Katedra ekonometrie FVL UO Brno kancelář 69a, tel Regresní analýza Ekonometrie Jiří Neubauer Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Jiří Neubauer (Katedra ekonometrie UO Brno) Regresní analýza 1 / 23

Více