2. Schurova věta. Petr Tichý. 3. října 2012

Rozměr: px
Začít zobrazení ze stránky:

Download "2. Schurova věta. Petr Tichý. 3. října 2012"

Transkript

1 2. Schurova věta Petr Tichý 3. října

2 Podobnostní transformace a výpočet vlastních čísel Obecný princip: Úloha: Řešíme-li matematickou úlohu, je často velmi vhodné hledat její ekvivalentní formulaci tak, aby se řešení úlohy podstatně zjednodušilo či se stalo zjevným. Řešení úlohy pak spočívá v nalezení vhodné transformace úlohy. Schurova věta je ilustrativním příkladem. Uvažujme matici A C n n a úlohu nalezení jejího spektra. Podobnostní transformace pomocí regulární matice S, B = S 1 A S, zachovává Jordanův kanonický tvar, tj. i spektrum. Jak volit regulární matici transformace S? 3

3 Praktické výpočty Vstupní data zatížena chybami. A obsahuje kromě původních dat  rovněž chyby reprezentované maticí chyb E, A =  + E. Pak ve skutečnosti hledáme podobnostní transformaci B = S 1 A S = S 1  S + S 1 E S B je podobná  až na transformovanou matici chyb S 1 ES. Její normu pro jednoduchost charakterizujeme odhadem S 1 E S κ(s) E Je-li κ(s) = S S 1 1, může podobnostní transformace výrazně zvětšit chyby obsažené ve vstupních datech. 4

4 Jaké podobnostní transformace používat? ortogonální, unitární B = S 1 A S. Při κ(s) 1 může dojít k výraznému zvětšení chyb na úkor vlastních dat vypovídajících o dané úloze. Vlastní čísla matice B se v takovém případě mohou lišit od vlastních čísel matice  mnohem podstatněji, než by odpovídalo původním chybám dat E. Je velice důležité používat pouze takové podobnostní transformace, které velikosti chyb výrazně nezvětší, κ(s) 1. Příkladem takových transformací jsou unitární transformace. 5

5 Unitární (ortogonální) transformace Řekneme, že čtvercová matice U je unitární, jestliže U U = UU = I, kde I je jednotková matice. Unitární transformace jsou transformace realizované unitárními maticemi. Transformace  + E pomocí unitární matice S, platí S 1 ES = S ES = E. Výpočetní postup by neměl zvyšovat neurčitost výsledku nad neurčitost vstupních dat. V kapitole o singulárním rozkladu ukážeme, že κ(s) = 1 S je násobek unitární matice. 6

6 Na jaký tvar transformovat matici A abychom mohli z tvaru vyčíst vlastní čísla? B = S 1 AS Jordanův kanonický tvar podstatný praktický problém: transformace může být velmi špatně podmíněna. Postačí, když B bude v horním trojúhelníkovém tvaru vlastní čísla jsou na diagonále. Dva požadavky: 1 Transformace musí vynulovat všechny poddiagonální prvky. 2 Transformace nesmí zvýšit neurčitost výsledku nad neurčitost obsaženou v původních datech: omezení se na unitární podobnostní transformace. Lze obecnou matici transformovat pomocí unitárních podobnostních transformací na matici v horním trojúhelníkovém tvaru? 7

7 Schurova věta Schurova věta Pro libovolnou čtvercovou matici A existuje unitární matice U tak, že matice R = U A U je horní trojúhelníková s vlastními čísly matice A na diagonále v libovolném předepsaném pořadí. Důkaz: Indukcí podle řádu matice A. Pro matice řádu n = 1 věta platí. n n + 1: Nechť A C (n+1) (n+1), nechť je dáno uspořádání vlastních čísel matice A. Označme λ první vlastní číslo v tomto uspořádání, nechť x je odpovídající normalizovaný vlastní vektor, Ax = λx, x = 1. 9

8 Důkaz Schurovy věty Doplňme x na čtvercovou unitární matici, H = [x, X]. Platí [ ] [ ] H x A H = Ax x AX λ b X Ax X =, AX 0 C neboť x Ax = λx x = λ a X Ax = λx x je nulový vektor. Dle indukčího předpokladu existuje unitární matice V taková, že V CV je horní trojúhelníková matice s vlastními čísly na diagonále v předepsaném pořadí. Položíme-li [ ] 1 0 U = [x, XV ] = H, 0 V pak R = U AU = je hledaný rozklad. [ V ] [ λ b 0 C ] [ V ] = [ λ b V 0 V CV ] 10

9 Schurův rozklad, Schurova transformace R = U AU A = UR U. Definice: Rozklad A = UR U budeme nazývat Schurovým rozkladem matice A. Matici R nazveme výsledkem Schurovy transformace matice A. Schurův rozklad velmi důležitý, základ algoritmů pro výpočet vlastních čísel matic, funkcí matic aj. Lze jej spočíst (aproximovat) numericky stabilním způsobem (používáme unitární transformace). 11

10 Výpočet Schurova rozkladu Schurův rozklad nelze obecně vypočítat konečným algoritmem Problém hledání vlastních čísel matice lze převést na problém hledání kořenů polynomu. Vlastní čísla matice lze nalézt jako kořeny jejího charakteristického polynomu a naopak, pro každý polynom existuje jeho přidružená (companion) matice taková, že její vlastní čísla jsou rovna kořenům daného polynomu. Existuje vzorec, který pro obecný polynom libovolného řádu určí s použitím +,,, / a jeho kořeny? Věta (Abel, Galois) Obecná polynomiální rovnice n-tého stupně není pro n 5 řešitelná v radikálech. Důsledek: Vlastní čísla matice řádu n 5 nelze obecně na počítači spočíst v konečném počtu kroků. Následkem toho nelze ani Schurův rozklad obecně vypočítat konečným algoritmem. 12

11 Důsledky Schurovy věty Spektrální rozklad pro normální matice Definice: Čtvercová matice A se nazývá normální, komutuje-li se svojí maticí hermitovsky sdruženou, tj. platí-li A A = A A Věta (Spektrální věta pro normální matice) Matice A je normální právě tehdy, když existuje unitární matice U a diagonální matice D tak, že U A U = D, neboli A = UD U. Důkaz: Pokud A = UD U pak A je normální: A A = UD U UD U = UD D U = A A. Indukcí: n n + 1. Dle Schurovy věty existuje unitární matice V a horní trojúhelníková matice R tak, že A = V R V, tj. A = V R V. 14

12 Spektrální věta pro normální matice Důkaz, část II A A = AA R R = R R, tedy R je rovněž normální matice. Označme [ ] ρ r T R =, 0 R 1 kde ρ C, r C n, R 1 C n n. Potom R R = R R [ ] [ ] [ ] [ ] ρ r T ρ 0 ρ 0 ρ r T 0 R 1 r R1 = r R1. 0 R 1 Prvek na pozici (1, 1) ρ 2 + r 2 = ρ 2 r = 0. Prvky na (blokové) pozici (2, 2): R 1 R1 = R1R 1 R 1 je normální. 15

13 Spektrální věta pro normální matice Důkaz, část III Podle indukčního předpokladu existuje unitární matice V 1 tak, že V1 R 1V 1 je diagonální matice D 1. Matici R lze tedy napsat ve tvaru R = [ ρ 0 0 V 1 D 1 V 1 ] = [ V 1 ] [ ρ 0 0 D 1 ] [ V 1 ]. Označíme-li [ 1 0 ] [ ρ 0 ] U V 0 V 1, D 0 D 1, zřejmě platí A = V R V = V [ V 1 ] [ ρ 0 0 D 1 ] [ V 1 ] V = UD U, což dává hledaný rozklad. 16

14 Důsledky A je normální právě tehdy, pokud existují unitární matice U a diagonální matice D tak, že A U = UD. Označme D = diag(λ 1,..., λ n ). Rozepíšeme-li maticovou rovnost po sloupcích, dostaneme Au j = λ j u j, j = 1,..., n. Sloupce matice U jsou normalizované vlastní vektory matice A a prvky na diagonále matice D jsou vlastní čísla matice A. Vlastnosti spektrálního rozkladu normální matice Matice A C n n je normální právě tehdy, pokud existuje ortogonální báze prostoru C n složená z vlastních vektorů matice A. 17

15 Dyadický rozklad (rozvoj) normální matice Součin dvou matic lze zapsat pomocí vnějšího součinu. Potom n A = UD U = λ i u i u i, i=1... dyadický rozklad (rozvoj) normální matice A. Z definice spektrální normy platí λ i u i u i = λ i, i = 1,..., n. Pro Frobeniovu normu normální matice platí n A 2 F = λ i 2 (cvičení). i=1 18

16 Příklady normálních matic Unitární a hermitovské matice Důležité třídy normálních matic: unitární a hermitovské. Věta o unitárních a hermitovských maticích (cvičení) Matice A je unitární právě tehdy, je-li normální a její vlastní čísla leží na jednotkové kružnici. Matice A je hermitovská právě tehdy, je-li normální a všechna její vlastní čísla jsou reálná. Třída normálních matic je totožná s třídou matic, které lze unitární podobnostní transformací převést na diagonální tvar. Nepožadujeme-li, aby matice realizující podobnostní transformaci byla unitární, dostaneme třídu diagonalizovatelných matic: Matici A nazveme diagonalizovatelnou, jestliže existuje regulární matice S taková, že S 1 A S = D, kde D je diagonální matice. 19

17 Diagonalizovatelné matice tj. S 1 A S = D, A S = SD. S regulární Vlastní vektory rovněž tvoří bázi prostoru C n. Tato báze může být špatně podmíněná. Není-li matice diagonalizovatelná defektní matice. Lze každou matici libovolně blízko aproximovat pomocí matice diagonalizovatelé? Ano. Množina diagonalizovatelných matic je hustá v C n n. 20

18 Aproximace libovolné matice pomocí diagonalizovatelné Věta o hustotě diagonalizovatelných matic Pro libovolnou matici A C n n a pro libovolně malé ǫ > 0 existuje diagonalizovatelná matice A ǫ C n n s navzájem různými vlastními čísly tak, že A A ǫ < ǫ. Důkaz: Pomocí Schurovy věty. A = UR U. Není-li matice A diagonalizovatelná alespoň jedno násobné vlastní číslo. Stačí porušit diagonálu matice R pomocí diagonální matice D ǫ tak, aby na perturbované diagonále byly různé hodnoty a zároveň Zvolíme-li D ǫ < ǫ a R ǫ = R + D ǫ. A ǫ UR ǫ U, má matice A ǫ různá vlastní čísla diagonalizovatelná a platí A A ǫ = UR U U(R+D ǫ )U = UD ǫ U = D ǫ < ǫ. 21

19 Třídy matic v C n n 22

20 Reálný Schurův rozklad Schurův rozklad obecně komplexní i pro reálné matice. Motivace přechod do komplexní aritmetiky co nejvíce oddálit. Pro reálné matice - snaha přiblížit se Schurovu rozkladu a zároveň dosáhnout toho, aby výsledné faktory zůstaly reálné. Pro reálné symetrické matice lze přímo Schurův rozklad volit reálný. Definice: Řekneme, že čtvercová reálná matice U je ortogonální, jestliže U T U = UU T = I, kde I je jednotková matice. Ortogonální transformace jsou transformace realizované ortogonálními maticemi. 24

21 Věta o spektrálním rozkladu pro reálné symetrické matice Nechť A je reálná symetrická matice. Potom existují ortogonální matice U a reálná diagonální matice D takové, že D = U T AU. Definice: Čtvercová matice T je horní kvazi-trojúhelníková, pokud je blokově horní trojúhelníková, kde každý blok na hlavní diagonále je buď 1 1 nebo 2 2, T 1,1 T 1,2... T 1,m 0 T 2,2 T 2,m T = T m,m Reálný Schurův rozklad pro obecné pro reálné matice Nechť A je reálná čtvercová matice. Potom existují ortogonální matice U a reálná kvazi-trojúhelníková matice T takové, že T = U T AU. Navíc vlastní čísla každého 2 2 diagonálního bloku matice T tvoří komplexně sdružený pár. 25

22 Funkce matic pro normální matice Jak vhodně zobecnit funkci f : C C na funkci, která dané matici A C n n přiřadí matici f(a) stejné dimenze? Nechť A je normální ( A = UDU, D = diag(λ 1,..., λ n )) a f je analytická. Pak je možné definovat funkci matice pomocí Taylorovy řady f (i) (0) f(z) = z i, i! i=0 kde za proměnnou z dosadíme matici A, tj. ( f (i) (0) f(a) A i f (i) (0) = U i! i! i=0 i=0 = Uf(D)U = U f(λ 1 ) D i )... f(λn) U U. 27

23 Funkce matic pro obecné matice Lze definovat např. pomocí Jordanova kanonického tvaru s r bloky velikosti n 1,..., n r jako f(a) Sf(J)S 1 = S diag(f(j n1 (λ 1 )),..., f(j nr (λ r ))) S 1. V případě, že A není diagonalizovatelná, zbývá definovat vhodně funkci Jordanova bloku f(j nj (λ j )) pro j = 1,..., r. S využitím Taylorovy řady rozvinuté v λ j lze ukázat f(λ j ) f (λ j )... (n j 1)!. f(λ j )... f(j nj (λ j )) =... f (λ j ) f(λ j ) f (n j 1) (λ j ). 28

24 Cvičení 2.4 Nechť U C n n je unitární matice. Dokažte, že pro všechny vektory x C n, y C n platí Ux, Uy = x, y, Ux = x. 2.5 Dokažte větu: Čtvercová matice je unitární právě tehdy, když je normální a její vlastní čísla leží na jednotkové kružnici. Čtvercová matice je hermitovská právě tehdy, když je normální a všechna její vlastní čísla jsou reálná. 2.6 Dokažte přímo z definice generované maticové normy, že pro matice λ i u i u i, platí λ iu i u i = λ i. Jak vypadají prvky matice u i u i a jaká je její hodnost? 30

25 Cvičení 2.7 Ukažte pomocí spektrální věty o normálních maticích aplikované na matici A A, že spektrální normu libovolné matice A C n m lze vypočítat pomocí vzorce A = (A A) 1/2, kde (B) označuje spektrální poloměr matice B. 2.9 Ukažte, že pro unitární matici U C n n a libovolnou matici A C n n platí U = 1, U = 1, UA = A, AU = A, UA F = A F, AU F = A F Dokažte, že pro normální matici A platí n A 2 F = λ i 2, kde sp(a) = {λ 1,..., λ n }. i=1 31

Učební texty k státní bakalářské zkoušce Matematika Vlastní čísla a vlastní hodnoty. študenti MFF 15. augusta 2008

Učební texty k státní bakalářské zkoušce Matematika Vlastní čísla a vlastní hodnoty. študenti MFF 15. augusta 2008 Učební texty k státní bakalářské zkoušce Matematika Vlastní čísla a vlastní hodnoty študenti MFF 15. augusta 2008 1 14 Vlastní čísla a vlastní hodnoty Požadavky Vlastní čísla a vlastní hodnoty lineárního

Více

Singulární rozklad. Petr Tichý. 31. října 2013

Singulární rozklad. Petr Tichý. 31. října 2013 Singulární rozklad Petr Tichý 31. října 2013 1 Outline 1 Úvod a motivace 2 Zavedení singulárního rozkladu a jeho vlastnosti 3 Výpočet a náklady na výpočet singulárního rozkladu 4 Moor-Penroseova pseudoinverze

Více

Úlohy nejmenších čtverců

Úlohy nejmenších čtverců Úlohy nejmenších čtverců Petr Tichý 7. listopadu 2012 1 Problémy nejmenších čtverců Ax b Řešení Ax = b nemusí existovat, a pokud existuje, nemusí být jednoznačné. Často má smysl hledat x tak, že Ax b.

Více

2.6. VLASTNÍ ČÍSLA A VEKTORY MATIC

2.6. VLASTNÍ ČÍSLA A VEKTORY MATIC .6. VLASTNÍ ČÍSLA A VEKTORY MATIC V této kapitole se dozvíte: jak jsou definována vlastní (charakteristická) čísla a vektory čtvercové matice; co je to charakteristická matice a charakteristický polynom

Více

Vlastní čísla a vlastní vektory

Vlastní čísla a vlastní vektory Kapitola 11 Vlastní čísla a vlastní vektory Základní motivace pro studium vlastních čísel a vektorů pochází z teorie řešení diferenciálních rovnic Tato teorie říká, že obecné řešení lineární diferenciální

Více

Vlastní číslo, vektor

Vlastní číslo, vektor [1] Vlastní číslo, vektor motivace: směr přímky, kterou lin. transformace nezmění invariantní podprostory charakteristický polynom báze, vzhledem ke které je matice transformace nejjednodušší podobnost

Více

[1] Motivace. p = {t u ; t R}, A(p) = {A(t u ); t R} = {t A( u ); t R}

[1] Motivace. p = {t u ; t R}, A(p) = {A(t u ); t R} = {t A( u ); t R} Vlastní číslo, vektor motivace: směr přímky, kterou lin. transformace nezmění invariantní podprostory charakteristický polynom báze, vzhledem ke které je matice transformace nejjednodušší podobnost s diagonální

Více

z = a bi. z + v = (a + bi) + (c + di) = (a + c) + (b + d)i. z v = (a + bi) (c + di) = (a c) + (b d)i. z v = (a + bi) (c + di) = (ac bd) + (bc + ad)i.

z = a bi. z + v = (a + bi) + (c + di) = (a + c) + (b + d)i. z v = (a + bi) (c + di) = (a c) + (b d)i. z v = (a + bi) (c + di) = (ac bd) + (bc + ad)i. KOMLEXNÍ ČÍSLA C = {a + bi; a, b R}, kde i 2 = 1 Číslo komplexně sdružené k z = a + bi je číslo z = a bi. Operace s komplexními čísly: z = a + bi, kde a, b R v = c + di, kde c, d R Sčítání Odčítání Násobení

Více

1 Linearní prostory nad komplexními čísly

1 Linearní prostory nad komplexními čísly 1 Linearní prostory nad komplexními čísly V této přednášce budeme hledat kořeny polynomů, které se dále budou moci vyskytovat jako složky vektorů nebo matic Vzhledem k tomu, že kořeny polynomu (i reálného)

Více

Lineární algebra : Vlastní čísla, vektory a diagonalizace

Lineární algebra : Vlastní čísla, vektory a diagonalizace Lineární algebra : Vlastní čísla, vektory a diagonalizace (14. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 21. dubna 2014, 19:37 1 2 14.1 Vlastní čísla a vlastní vektory Nechť je

Více

Matematika 1 MA1. 2 Determinant. 3 Adjungovaná matice. 4 Cramerovo pravidlo. 11. přednáška ( ) Matematika 1 1 / 29

Matematika 1 MA1. 2 Determinant. 3 Adjungovaná matice. 4 Cramerovo pravidlo. 11. přednáška ( ) Matematika 1 1 / 29 Matematika 1 11. přednáška MA1 1 Opakování 2 Determinant 3 Adjungovaná matice 4 Cramerovo pravidlo 5 Vlastní čísla a vlastní vektory matic 6 Zkouška; konzultace; výběrová matematika;... 11. přednáška (15.12.2010

Více

8 Matice a determinanty

8 Matice a determinanty M Rokyta, MFF UK: Aplikovaná matematika II kap 8: Matice a determinanty 1 8 Matice a determinanty 81 Matice - definice a základní vlastnosti Definice Reálnou resp komplexní maticí A typu m n nazveme obdélníkovou

Více

Maticí typu (m, n), kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru:

Maticí typu (m, n), kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru: 3 Maticový počet 3.1 Zavedení pojmu matice Maticí typu (m, n, kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru: a 11 a 12... a 1k... a 1n a 21 a 22...

Více

Četba: Texty o lineární algebře (odkazy na webových stránkách přednášejícího).

Četba: Texty o lineární algebře (odkazy na webových stránkách přednášejícího). Předmět: MA 4 Dnešní látka Lineární (vektorový) prostor Normovaný lineární prostor Normy matic a vektorů Symetrické matice, pozitivně definitní matice Gaussova eliminační metoda, podmíněnost matic Četba:

Více

Lineární algebra : Skalární součin a ortogonalita

Lineární algebra : Skalární součin a ortogonalita Lineární algebra : Skalární součin a ortogonalita (15. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 30. dubna 2014, 09:00 1 2 15.1 Prehilhertovy prostory Definice 1. Buď V LP nad

Více

Všechno, co jste kdy chtěli vědět o maticích, ale báli jste se zeptat

Všechno, co jste kdy chtěli vědět o maticích, ale báli jste se zeptat Všechno, co jste kdy chtěli vědět o maticích, ale báli jste se zeptat Čtvercová matice n n, např. může reprezentovat: A = A A 2 A 3 A 2 A 22 A 23 A 3 A 32 A 33 matici koeficientů soustavy n lineárních

Více

Numerické metody a programování

Numerické metody a programování Projekt: Inovace výuky optiky se zaměřením na získání experimentálních dovedností Registrační číslo: CZ.1.7/2.2./28.157 Numerické metody a programování Lekce 4 Tento projekt je spolufinancován Evropským

Více

Soustava m lineárních rovnic o n neznámých je systém

Soustava m lineárních rovnic o n neznámých je systém 1 1.2. Soustavy lineárních rovnic Soustava lineárních rovnic Soustava m lineárních rovnic o n neznámých je systém a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 21 x 1 + a 22 x 2 +... + a 2n x n = b 2...

Více

DEFINICE Z LINEÁRNÍ ALGEBRY

DEFINICE Z LINEÁRNÍ ALGEBRY DEFINICE Z LINEÁRNÍ ALGEBRY Skripta Matematické metody pro statistiku a operační výzkum (Nešetřilová, H., Šařecová, P., 2009). 1. definice Vektorovým prostorem rozumíme neprázdnou množinu prvků V, na které

Více

1. Jordanův kanonický tvar

1. Jordanův kanonický tvar . Jordanův kanonický tvar Obecně nelze pro zadaný lineární operátor ϕ : U U najít bázi α takovou, že (ϕ) α,α by byla diagonální. Obecně však platí, že pro každý lineární operátor ϕ : U U nad komplexními

Více

Matice. Je dána matice A R m,n, pak máme zobrazení A : R n R m.

Matice. Je dána matice A R m,n, pak máme zobrazení A : R n R m. Matice lineárních zobrazení [1] Připomenutí Zobrazení A : L 1 L 2 je lineární, když A( x + y ) = A( x ) + A( y ), A(α x ) = α A( x ). Což je ekvivalentní s principem superpozice: A(α 1 x 1 + + α n x n

Více

a vlastních vektorů Příklad: Stanovte taková čísla λ, pro která má homogenní soustava Av = λv nenulové (A λ i I) v = 0.

a vlastních vektorů Příklad: Stanovte taková čísla λ, pro která má homogenní soustava Av = λv nenulové (A λ i I) v = 0. Výpočet vlastních čísel a vlastních vektorů S pojmem vlastního čísla jsme se již setkali například u iteračních metod pro řešení soustavy lineárních algebraických rovnic. Velikosti vlastních čísel iterační

Více

VYBRANÉ PARTIE Z NUMERICKÉ MATEMATIKY

VYBRANÉ PARTIE Z NUMERICKÉ MATEMATIKY VYBRANÉ PARTIE Z NUMERICKÉ MATEMATIKY Jan Krejčí 31. srpna 2006 jkrejci@physics.ujep.cz http://physics.ujep.cz/~jkrejci Obsah 1 Přímé metody řešení soustav lineárních rovnic 3 1.1 Gaussova eliminace...............................

Více

ALGEBRA. Téma 5: Vektorové prostory

ALGEBRA. Téma 5: Vektorové prostory SLEZSKÁ UNIVERZITA V OPAVĚ Matematický ústav v Opavě Na Rybníčku 1, 746 01 Opava, tel. (553) 684 611 DENNÍ STUDIUM Téma 5: Vektorové prostory Základní pojmy Vektorový prostor nad polem P, reálný (komplexní)

Více

Soustavy. Terminologie. Dva pohledy na soustavu lin. rovnic. Definice: Necht A = (a i,j ) R m,n je matice, b R m,1 je jednosloupcová.

Soustavy. Terminologie. Dva pohledy na soustavu lin. rovnic. Definice: Necht A = (a i,j ) R m,n je matice, b R m,1 je jednosloupcová. [1] Terminologie [2] Soustavy lineárních rovnic vlastnosti množin řešení metody hledání řešení nejednoznačnost zápisu řešení Definice: Necht A = (a i,j ) R m,n je matice, b R m,1 je jednosloupcová matice.

Více

4. LU rozklad a jeho numerická analýza

4. LU rozklad a jeho numerická analýza 4 LU rozklad a jeho numerická analýza Petr Tichý 24 října 2012 1 Úvod Nechť A je regulární matice Řešíme Ax = b LU rozklad (Gaussova eliminace) je jeden z nejdůležitějších nástrojů pro problém řešení soustav

Více

Necht tedy máme přirozená čísla n, k pod pojmem systém lineárních rovnic rozumíme rovnice ve tvaru

Necht tedy máme přirozená čísla n, k pod pojmem systém lineárních rovnic rozumíme rovnice ve tvaru 2. Systémy lineárních rovnic V této kapitole se budeme zabývat soustavami lineárních rovnic s koeficienty z pole reálných případně komplexních čísel. Uvádíme podmínku pro existenci řešení systému lineárních

Více

Uspořádanou n-tici reálných čísel nazveme aritmetický vektor (vektor), ā = (a 1, a 2,..., a n ). Čísla a 1, a 2,..., a n se nazývají složky vektoru

Uspořádanou n-tici reálných čísel nazveme aritmetický vektor (vektor), ā = (a 1, a 2,..., a n ). Čísla a 1, a 2,..., a n se nazývají složky vektoru 1 1. Lineární algebra 1.1. Lineární závislost a nezávislost vektorů. Hodnost matice Aritmetické vektory Uspořádanou n-tici reálných čísel nazveme aritmetický vektor (vektor), ā = (a 1, a 2,..., a n ).

Více

Matematika B101MA1, B101MA2

Matematika B101MA1, B101MA2 Matematika B101MA1, B101MA2 Zařazení předmětu: povinný předmět 1.ročníku bc studia 2 semestry Rozsah předmětu: prezenční studium 2 + 2 kombinované studium 16 + 0 / semestr Zakončení předmětu: ZS zápočet

Více

)(x 2 + 3x + 4),

)(x 2 + 3x + 4), 3 IREDUCIBILNÍ ROZKLADY POLYNOMŮ V T [X] 3 Ireducibilní rozklady polynomů v T [x] - rozklady polynomů na ireducibilní (dále nerozložitelné) prvky v oboru integrity polynomů jedné neurčité x nad tělesem

Více

MATICE. a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij]

MATICE. a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij] MATICE Matice typu m/n nad tělesem T je soubor m n prvků z tělesa T uspořádaných do m řádků a n sloupců: a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij] a m1 a m2 a mn Prvek a i,j je prvek matice A na místě

Více

1 Determinanty a inverzní matice

1 Determinanty a inverzní matice Determinanty a inverzní matice Definice Necht A = (a ij ) je matice typu (n, n), n 2 Subdeterminantem A ij matice A příslušným pozici (i, j) nazýváme determinant matice, která vznikne z A vypuštěním i-tého

Více

1 Vektorové prostory.

1 Vektorové prostory. 1 Vektorové prostory DefiniceMnožinu V, jejíž prvky budeme označovat a, b, c, z, budeme nazývat vektorovým prostorem právě tehdy, když budou splněny následující podmínky: 1 Je dáno zobrazení V V V, které

Více

Matice. Modifikace matic eliminační metodou. α A = α a 2,1, α a 2,2,..., α a 2,n α a m,1, α a m,2,..., α a m,n

Matice. Modifikace matic eliminační metodou. α A = α a 2,1, α a 2,2,..., α a 2,n α a m,1, α a m,2,..., α a m,n [1] Základní pojmy [2] Matice mezi sebou sčítáme a násobíme konstantou (lineární prostor) měníme je na jiné matice eliminační metodou násobíme je mezi sebou... Matice je tabulka čísel s konečným počtem

Více

Symetrické a kvadratické formy

Symetrické a kvadratické formy Symetrické a kvadratické formy Aplikace: klasifikace kvadrik(r 2 ) a kvadratických ploch(r 3 ), optimalizace(mpi) BI-LIN (Symetrické a kvadratické formy) 1 / 20 V celé přednášce uvažujeme číselné těleso

Více

Soustavy lineárních rovnic a determinanty

Soustavy lineárních rovnic a determinanty Soustavy lineárních rovnic a determinanty Petr Hasil Přednáška z matematiky Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipĺıny

Více

SVD rozklad a pseudoinverse

SVD rozklad a pseudoinverse SVD rozklad a pseudoinverse Odpřednesenou látku naleznete v kapitole 12 skript Abstraktní a konkrétní lineární algebra. Jiří Velebil: Lineární algebra 19.12.2016: SVD rozklad a pseudoinverse 1/21 Cíle

Více

Skalární součin je nástroj, jak měřit velikost vektorů a úhly mezi vektory v reálných a komplexních vektorových prostorech.

Skalární součin je nástroj, jak měřit velikost vektorů a úhly mezi vektory v reálných a komplexních vektorových prostorech. Kapitola 9 Skalární součin Skalární součin je nástroj, jak měřit velikost vektorů a úhly mezi vektory v reálných a komplexních vektorových prostorech. Definice 9.1 Je-li x = (x 1,..., x n ) T R n 1 reálný

Více

stránkách přednášejícího.

stránkách přednášejícího. Předmět: MA 4 Dnešní látka Iterační metoda Jacobiova iterační metoda Gaussova-Seidelova iterační metoda Superrelaxační metoda (metoda SOR) Metoda sdružených gradientů Četba: Text o lineární algebře v Příručce

Více

Základy matematiky pro FEK

Základy matematiky pro FEK Základy matematiky pro FEK 2. přednáška Blanka Šedivá KMA zimní semestr 2016/2017 Blanka Šedivá (KMA) Základy matematiky pro FEK zimní semestr 2016/2017 1 / 20 Co nás dneska čeká... Závislé a nezávislé

Více

ALGEBRA. Téma 4: Grupy, okruhy a pole

ALGEBRA. Téma 4: Grupy, okruhy a pole SLEZSKÁ UNIVERZITA V OPAVĚ Matematický ústav v Opavě Na Rybníčku 1, 746 01 Opava, tel. (553) 684 611 DENNÍ STUDIUM Téma 4: Grupy, okruhy a pole Základní pojmy unární operace, binární operace, asociativita,

Více

Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice

Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice Vektorové podprostory K množina reálných nebo komplexních čísel, U vektorový prostor nad K. Lineární kombinace vektorů u 1, u 2,...,u

Více

1 Báze a dimenze vektorového prostoru 1

1 Báze a dimenze vektorového prostoru 1 1 Báze a dimenze vektorového prostoru 1 Báze a dimenze vektorového prostoru 1 2 Aritmetické vektorové prostory 7 3 Eukleidovské vektorové prostory 9 Levá vnější operace Definice 5.1 Necht A B. Levou vnější

Více

18. První rozklad lineární transformace

18. První rozklad lineární transformace Matematický ústav Slezské univerzity v Opavě Učební texty k přednášce ALGEBRA II, letní semestr 2000/2001 Michal Marvan 18. První rozklad lineární transformace Úmluva. Vtéto přednášce V je vektorový prostor

Více

2. Určete jádro KerL zobrazení L, tj. nalezněte alespoň jednu jeho bázi a určete jeho dimenzi.

2. Určete jádro KerL zobrazení L, tj. nalezněte alespoň jednu jeho bázi a určete jeho dimenzi. Řešené příklady z lineární algebry - část 3 Typové příklady s řešením Příklad 3.1: Zobrazení L: P 3 R 23 je zobrazení z prostoru P 3 všech polynomů do stupně 3 (včetně nulového polynomu) do prostoru R

Více

Kapitola 5. Symetrické matice

Kapitola 5. Symetrické matice Kapitola 5 Symetrické matice Symetrické matice mají mezi všemi maticemi významné postavení. Nejen, že se častěji vyskytují v aplikacích, ale i jejich matematické vlastnosti jsou specifické. V této kapitole

Více

a počtem sloupců druhé matice. Spočítejme součin A.B. Označme matici A.B = M, pro její prvky platí:

a počtem sloupců druhé matice. Spočítejme součin A.B. Označme matici A.B = M, pro její prvky platí: Řešené příklady z lineární algebry - část 1 Typové příklady s řešením Příklady jsou určeny především k zopakování látky před zkouškou, jsou proto řešeny se znalostmi učiva celého semestru. Tento fakt se

Více

4. Trojúhelníkový rozklad p. 1/20

4. Trojúhelníkový rozklad p. 1/20 4. Trojúhelníkový rozklad 4. Trojúhelníkový rozklad p. 1/20 4. Trojúhelníkový rozklad p. 2/20 Trojúhelníkový rozklad 1. Permutační matice 2. Trojúhelníkové matice 3. Trojúhelníkový (LU) rozklad 4. Výpočet

Více

Několik aplikací. Kapitola 12

Několik aplikací. Kapitola 12 Kapitola 12 Několik aplikací Diskrétní a rychlá Fourierova transformace Diskrétní Fourierova transformace spočívá ve změně reprezentace polynomu s koeficienty v nějakém tělese T Obvyklá reprezentace polynomu

Více

Cvičení z Lineární algebry 1

Cvičení z Lineární algebry 1 Cvičení z Lineární algebry Michael Krbek podzim 2003 2392003 Hodina Jsou dána komplexní čísla z = +2 i a w = 2 i Vyjádřete c algebraickém tvaru (z + w) 3,, (zw), z w 2 Řešte v komplexním oboru rovnice

Více

Co je obsahem numerických metod?

Co je obsahem numerických metod? Numerické metody Úvod Úvod Co je obsahem numerických metod? Numerické metody slouží k přibližnému výpočtu věcí, které se přesně vypočítat bud nedají vůbec, nebo by byl výpočet neúměrně pracný. Obsahem

Více

Připomenutí co je to soustava lineárních rovnic

Připomenutí co je to soustava lineárních rovnic Připomenutí co je to soustava lineárních rovnic Příklad 2x 3y + z = 5 3x + 5y + 2z = 4 x + 2y z = 1 Soustava lineárních rovnic obecně Maticový tvar: a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a

Více

MASARYKOVA UNIVERZITA. Rozklady matic

MASARYKOVA UNIVERZITA. Rozklady matic MASARYKOVA UNIVERZITA Přírodovědecká fakulta Rozklady matic Bakalářská práce Brno 8 Antonín Tulach PODĚKOVÁNÍ Chtěl bych poděkovat RNDr. Martinovi Tajovskému za vedení bakalářské práce, cenné rady a připomínky

Více

Vlastní (charakteristická) čísla a vlastní (charakteristické) Pro zadanou čtvercovou matici A budeme řešit maticovou

Vlastní (charakteristická) čísla a vlastní (charakteristické) Pro zadanou čtvercovou matici A budeme řešit maticovou 1 Vlastní (charakteristická) čísla a vlastní (charakteristické) vektory matice Pro zadanou čtvercovou matici A budeme řešit maticovou rovnici A x = λ x, kde x je neznámá matice o jednom sloupci (sloupcový

Více

Determinanty. Obsah. Aplikovaná matematika I. Pierre Simon de Laplace. Definice determinantu. Laplaceův rozvoj Vlastnosti determinantu.

Determinanty. Obsah. Aplikovaná matematika I. Pierre Simon de Laplace. Definice determinantu. Laplaceův rozvoj Vlastnosti determinantu. Determinanty Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah 1 Determinanty Definice determinantu Sarrusovo a křížové pravidlo Laplaceův rozvoj Vlastnosti determinantu Výpočet determinantů 2 Inverzní

Více

Aplikovaná numerická matematika

Aplikovaná numerická matematika Aplikovaná numerická matematika 6. Metoda nejmenších čtverců doc. Ing. Róbert Lórencz, CSc. České vysoké učení technické v Praze Fakulta informačních technologií Katedra počítačových systémů Příprava studijních

Více

ftp://math.feld.cvut.cz/pub/olsak/linal/

ftp://math.feld.cvut.cz/pub/olsak/linal/ Petr Olšák Výcuc z textu Lineární algebra určeno pro promítání na přednášce Úvod do algebry http://www.olsak.net/linal.html ftp://math.feld.cvut.cz/pub/olsak/linal/ http://math.feld.cvut.cz/skripta/ua/

Více

z textu Lineární algebra

z textu Lineární algebra 2 Úvodní poznámky Petr Olšák Výcuc z textu Lineární algebra určeno pro promítání na přednášce Úvod do algebry http://www.olsak.net/linal.html ftp://math.feld.cvut.cz/pub/olsak/linal/ http://math.feld.cvut.cz/skripta/ua/

Více

Michal Zamboj. December 23, 2016

Michal Zamboj. December 23, 2016 Meziřádky mezi kuželosečkami - doplňkový materiál k přednášce Geometrie Michal Zamboj December 3, 06 Pozn. Najdete-li chybu, neváhejte mi napsat, může to ušetřit tápání Vašich kolegů. Pozn. v dokumentu

Více

[1] LU rozklad A = L U

[1] LU rozklad A = L U [1] LU rozklad A = L U někdy je třeba prohodit sloupce/řádky a) lurozklad, 8, b) P. Olšák, FEL ČVUT, c) P. Olšák 2010, d) BI-LIN, e) L, f) 2009/2010, g)l. Viz p. d. 4/2010 Terminologie BI-LIN, lurozklad,

Více

DIPLOMOVÁ PRÁCE. Vlastní čísla matic

DIPLOMOVÁ PRÁCE. Vlastní čísla matic UNIVERZITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDECKÁ FAKULTA KATEDRA MATEMATICKÉ ANALÝZY A APLIKACÍ MATEMATIKY DIPLOMOVÁ PRÁCE Vlastní čísla matic Vedoucí diplomové práce: RNDr. Jitka Machalová, Ph.D. Rok odevzdání:

Více

9 Kolmost vektorových podprostorů

9 Kolmost vektorových podprostorů 9 Kolmost vektorových podprostorů Od kolmosti dvou vektorů nyní přejdeme ke kolmosti dvou vektorových podprostorů. Budeme se zabývat otázkou, kdy jsou dva vektorové podprostory na sebe kolmé a jak to poznáme.

Více

Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava luk76/la1

Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava    luk76/la1 Lineární algebra 5. přednáška: Báze a řešitelnost soustav Dalibor Lukáš Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava email: dalibor.lukas@vsb.cz http://homel.vsb.cz/ luk76/la1 Text

Více

1 Soustavy lineárních rovnic

1 Soustavy lineárních rovnic 1 Soustavy lineárních rovnic 1.1 Základní pojmy Budeme uvažovat soustavu m lineárních rovnic o n neznámých s koeficienty z tělesa T (potom hovoříme o soustavě m lineárních rovnic o n neznámých nad tělesem

Více

a + b + c = 2 b + c = 1 a b = a 1 2a 1 + a a 3 + a 5 + 2a 2 + a 2 + a

a + b + c = 2 b + c = 1 a b = a 1 2a 1 + a a 3 + a 5 + 2a 2 + a 2 + a Zadání A. 1. Polynom P (x) má v uspořádané bázi (x 2 + x 1, 2x 2 x 1, x 2 + x + 2) souřadnice (1, 1, 1). Najděte jeho souřadnice vzhledem k uspořádané bázi (x 2 1, x 2 + x 1, x 2 + x). Nejprve si spočítáme

Více

Numerické metody lineární algebry

Numerické metody lineární algebry Numerické metody lineární algebry 1 Úvod 11 Úlohy lineární algebry 1 Řešení soustav lineárních rovnic A x = b Řešení soustavy s regulární čtvercovou maticí A řádu n n pro 1 nebo více pravých stran Výpočet

Více

Učební texty k státní bakalářské zkoušce Matematika Skalární součin. študenti MFF 15. augusta 2008

Učební texty k státní bakalářské zkoušce Matematika Skalární součin. študenti MFF 15. augusta 2008 Učební texty k státní bakalářské zkoušce Matematika Skalární součin študenti MFF 15. augusta 2008 1 10 Skalární součin Požadavky Vlastnosti v reálném i komplexním případě Norma Cauchy-Schwarzova nerovnost

Více

1. Matice a maticové operace. 1. Matice a maticové operace p. 1/35

1. Matice a maticové operace. 1. Matice a maticové operace p. 1/35 1. Matice a maticové operace 1. Matice a maticové operace p. 1/35 1. Matice a maticové operace p. 2/35 Matice a maticové operace 1. Aritmetické vektory 2. Operace s aritmetickými vektory 3. Nulový a opačný

Více

Odhad stavu matematického modelu křižovatek

Odhad stavu matematického modelu křižovatek Odhad stavu matematického modelu křižovatek Miroslav Šimandl, Miroslav Flídr a Jindřich Duník Katedra kybernetiky & Výzkumné centrum Data-Algoritmy-Rozhodování Fakulta aplikovaných věd Západočeská univerzita

Více

dx se nazývá diferenciál funkce f ( x )

dx se nazývá diferenciál funkce f ( x ) 6 Výklad Definice 6 Nechť je 0 vnitřním bodem definičního oboru D f funkce f ( ) Funkce proměnné d = 0 definovaná vztahem df ( 0) = f ( 0) d se nazývá diferenciál funkce f ( ) v bodě 0, jestliže platí

Více

příkladů do cvičení. V textu se objeví i pár detailů, které jsem nestihl (na které jsem zapomněl) a(b u) = (ab) u, u + ( u) = 0 = ( u) + u.

příkladů do cvičení. V textu se objeví i pár detailů, které jsem nestihl (na které jsem zapomněl) a(b u) = (ab) u, u + ( u) = 0 = ( u) + u. Několik řešených příkladů do Matematiky Vektory V tomto textu je spočteno několik ukázkových příkladů které vám snad pomohou při řešení příkladů do cvičení. V textu se objeví i pár detailů které jsem nestihl

Více

12. Determinanty. 12. Determinanty p. 1/25

12. Determinanty. 12. Determinanty p. 1/25 12. Determinanty 12. Determinanty p. 1/25 12. Determinanty p. 2/25 Determinanty 1. Induktivní definice determinantu 2. Determinant a antisymetrické formy 3. Výpočet hodnoty determinantu 4. Determinant

Více

P 1 = P 1 1 = P 1, P 1 2 =

P 1 = P 1 1 = P 1, P 1 2 = 1 Výpočet inverzní matice Věta 1 Necht P U elementární matice vzniklá el úpravou U Pak je P U regulární Důkaz: Protože elementární úprava U je invertovatelná, existuje el úprava U, která vrací změny U

Více

Numerické metody lineární algebry

Numerické metody lineární algebry Numerické metody lineární algebry 1 Úvod 11 Úlohy lineární algebry 1 Řešení soustav lineárních rovnic A x = b Řešení soustavy s regulární čtvercovou maticí A řádu n n pro jednu nebo více pravých stran

Více

Cvičení 5 - Inverzní matice

Cvičení 5 - Inverzní matice Cvičení 5 - Inverzní matice Pojem Inverzní matice Buď A R n n. A je inverzní maticí k A, pokud platí, AA = A A = I n. Matice A, pokud existuje, je jednoznačná. A stačí nám jen jedna rovnost, aby platilo,

Více

VĚTY Z LINEÁRNÍ ALGEBRY

VĚTY Z LINEÁRNÍ ALGEBRY VĚTY Z LINEÁRNÍ ALGEBRY Skripta Matematické metody pro statistiku a operační výzkum (Nešetřilová, H., Šařecová, P., 2009). 1. věta Nechť M = {x 1, x 2,..., x k } je množina vektorů z vektorového prostoru

Více

Vyučující: Jan Chleboun, místnost B-305, linka 3866 Konzultace: čtvrtek 13:00-14:40 nebo dle dohody

Vyučující: Jan Chleboun, místnost B-305, linka 3866 Konzultace: čtvrtek 13:00-14:40 nebo dle dohody Předmět: MA04 Vyučující: Jan Chleboun, místnost B-305, linka 3866 (jan.chleboun@cvut.cz) Konzultace: čtvrtek 13:00-14:40 nebo dle dohody Sledovat informace na webových stránkách vyučujícího (o zkoušce,

Více

α 1 α 2 + α 3 = 0 2α 1 + α 2 + α 3 = 0

α 1 α 2 + α 3 = 0 2α 1 + α 2 + α 3 = 0 Vzhledem k tomu, že jsem to psala ve velkém spěchu, mohou se vyskytnout nějaké chybičky. Pokud nějaké najdu, opravím je hned po prázdninách. Zadání A. 1. Vektory u, v, w jsou lineárně nezávislé. Rozhodněte,

Více

19 Hilbertovy prostory

19 Hilbertovy prostory M. Rokyta, MFF UK: Aplikovaná matematika III kap. 19: Hilbertovy prostory 34 19 Hilbertovy prostory 19.1 Úvod, základní pojmy Poznámka (připomenutí). Necht (X,(, )) je vektorový prostor se skalárním součinem

Více

5. Lokální, vázané a globální extrémy

5. Lokální, vázané a globální extrémy 5 Lokální, vázané a globální extrémy Studijní text Lokální extrémy 5 Lokální, vázané a globální extrémy Definice 51 Řekneme, že f : R n R má v bodě a Df: 1 lokální maximum, když Ka, δ Df tak, že x Ka,

Více

Soustavy lineárních rovnic

Soustavy lineárních rovnic Soustavy lineárních rovnic Základy vyšší matematiky LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipĺıny společného

Více

Cvičení z Numerických metod I - 12.týden

Cvičení z Numerických metod I - 12.týden Máme systém lineárních rovnic Cvičení z Numerických metod I - týden Přímé metody řešení systému lineárních rovnic Ax = b, A = a a n a n a nn Budeme hledat přesné řešení soustavy x = x x n, b = b b n, x

Více

Soustavy lineárních rovnic-numerické řešení. October 2, 2008

Soustavy lineárních rovnic-numerické řešení. October 2, 2008 Soustavy lineárních rovnic-numerické řešení October 2, 2008 (Systém lin. rovnic) Systém rovnic a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2... a n1 x 1 + a n2 x 2 + + a

Více

(4x) 5 + 7y = 14, (2y) 5 (3x) 7 = 74,

(4x) 5 + 7y = 14, (2y) 5 (3x) 7 = 74, 1. V oboru celých čísel řešte soustavu rovnic (4x) 5 + 7y = 14, (2y) 5 (3x) 7 = 74, kde (n) k značí násobek čísla k nejbližší číslu n. (P. Černek) Řešení. Z první rovnice dané soustavy plyne, že číslo

Více

Vektorový prostor. Př.1. R 2 ; R 3 ; R n Dvě operace v R n : u + v = (u 1 + v 1,...u n + v n ), V (E 3 )...množina vektorů v E 3,

Vektorový prostor. Př.1. R 2 ; R 3 ; R n Dvě operace v R n : u + v = (u 1 + v 1,...u n + v n ), V (E 3 )...množina vektorů v E 3, Vektorový prostor Příklady: Př.1. R 2 ; R 3 ; R n...aritmetický n-rozměrný prostor Dvě operace v R n : součet vektorů u = (u 1,...u n ) a v = (v 1,...v n ) je vektor u + v = (u 1 + v 1,...u n + v n ),

Více

Kapitola 11: Vektory a matice 1/19

Kapitola 11: Vektory a matice 1/19 Kapitola 11: Vektory a matice 1/19 2/19 Prostor R n R n = {(x 1,..., x n ) x i R, i = 1,..., n}, n N x = (x 1,..., x n ) R n se nazývá vektor x i je i-tá souřadnice vektoru x rovnost vektorů: x = y i =

Více

MOORE-PENROSEOVA INVERZE MATICE A JEJÍ APLIKACE. 1. Úvod

MOORE-PENROSEOVA INVERZE MATICE A JEJÍ APLIKACE. 1. Úvod Kvaternion 1/2013, 7 14 7 MOORE-PENROSEOVA INVERZE MATICE A JEJÍ APLIKACE LADISLAV SKULA Abstrakt V článku je uvedena definice pseudoinverzní matice, ukázána její existence a jednoznačnost a zmíněny dvě

Více

Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague

Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague spektra e Tomáš Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague 1 / 70 spektra e 1 2 3 spektra e Hessenbergovy 4 2 / 70 - aplikace (eigenvalues and eigenvectors)

Více

(u, v) u. v. cos φ =

(u, v) u. v. cos φ = LA 3. cvičení Ortogonalita, Gramm-Schmitův ortonormalizační proces Lukáš Pospíšil, Martin Hasal,2 Ortogonální systém vektorů Poznámka: Motivace - připomeňme si Kosinovu větu v obecném tvaru kde φ je úhel

Více

Řešení. Hledaná dimenze je (podle definice) rovna hodnosti matice. a 1 2. 1 + a 2 2 1

Řešení. Hledaná dimenze je (podle definice) rovna hodnosti matice. a 1 2. 1 + a 2 2 1 Příklad 1. Určete všechna řešení následující soustavy rovnic nad Z 2 : 0 0 0 1 1 1 0 1 0 1 1 1 1 1 0 1 0 1 0 1 1 Gaussovou eliminací převedeme zadanou soustavu na ekvivalentní soustavu v odstupňovaném

Více

Numerické řešení soustav lineárních rovnic

Numerické řešení soustav lineárních rovnic Numerické řešení soustav lineárních rovnic irko Navara Centrum strojového vnímání, katedra kybernetiky elektrotechnická fakulta ČVUT, Praha http://cmpfelkcvutcz/~navara 30 11 2016 Úloha: Hledáme řešení

Více

Obecná úloha lineárního programování

Obecná úloha lineárního programování Obecná úloha lineárního programování Úloha Maximalizovat hodnotu c T x (tzv. účelová funkce) za podmínek Ax b (tzv. omezující podmínky) kde A je daná reálná matice typu m n a c R n, b R m jsou dané reálné

Více

SOUSTAVY LINEÁRNÍCH ALGEBRAICKÝCH ROVNIC

SOUSTAVY LINEÁRNÍCH ALGEBRAICKÝCH ROVNIC SOUSTAVY LINEÁRNÍCH ALGEBRAICKÝCH ROVNIC Pojmy: Algebraická rovnice... rovnice obsahující pouze celé nezáporné mocniny neznámé x, tj. a n x n + a n 1 x n 1 +... + a x + a 1 x + a 0 = 0, kde n je přirozené

Více

Eukleidovský prostor a KSS Eukleidovský prostor je bodový prostor, ve kterém je definována vzdálenost dvou bodů (metrika)

Eukleidovský prostor a KSS Eukleidovský prostor je bodový prostor, ve kterém je definována vzdálenost dvou bodů (metrika) Eukleidovský prostor a KSS Eukleidovský prostor je bodový prostor, ve kterém je definována vzdálenost dvou bodů (metrika) Kartézská soustava souřadnic je dána počátkem O a uspořádanou trojicí bodů E x,

Více

11 Analýza hlavních komponet

11 Analýza hlavních komponet 11 Analýza hlavních komponet Tato úloha provádí transformaci měřených dat na menší počet tzv. fiktivních dat tak, aby většina informace obsažená v původních datech zůstala zachována. Jedná se tedy o úlohu

Více

Soustavy lineárních rovnic-numerické řešení

Soustavy lineárních rovnic-numerické řešení Soustavy lineárních rovnic-numerické řešení November 9, 2008 Soustavy lineárních rovnic-numerické řešení 1 / 52 (Systém lin. rovnic) Systém rovnic a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22

Více

Úvod do kvantového počítání

Úvod do kvantového počítání 2. přednáška Katedra počítačů, Fakulta elektrotechnická České vysoké učení technické v Praze 17. března 2005 Opakování Část I Přehled z minulé hodiny Opakování Alternativní výpočetní modely Kvantové počítače

Více

Číselné vektory, matice, determinanty

Číselné vektory, matice, determinanty Číselné vektory, matice, determinanty Základy vyšší matematiky LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipĺıny

Více

POŽADAVKY K SOUBORNÉ ZKOUŠCE Z MATEMATIKY

POŽADAVKY K SOUBORNÉ ZKOUŠCE Z MATEMATIKY POŽADAVKY K SOUBORNÉ ZKOUŠCE Z MATEMATIKY Bakalářský studijní program B1101 (studijní obory - Aplikovaná matematika, Matematické metody v ekonomice, Aplikovaná matematika pro řešení krizových situací)

Více

1 Mnohočleny a algebraické rovnice

1 Mnohočleny a algebraické rovnice 1 Mnohočleny a algebraické rovnice 1.1 Pojem mnohočlenu (polynomu) Připomeňme, že výrazům typu a 2 x 2 + a 1 x + a 0 říkáme kvadratický trojčlen, když a 2 0. Číslům a 0, a 1, a 2 říkáme koeficienty a písmenem

Více