ÚVOD DO STUDIA BIOLOGIE

Rozměr: px
Začít zobrazení ze stránky:

Download "ÚVOD DO STUDIA BIOLOGIE"

Transkript

1 UNIVERZITA JANA EVANGELISTY PURKYNĚ V ÚSTÍ NAD LABEM FAKULTA PŘÍRODOVĚDECKÁ ÚVOD DO STUDIA BIOLOGIE STUDIJNÍ OPORA PRO POSLUCHAČE KOMBINOVANÉHO BAKALÁŘSKÉHO STUDIA BIOLOGIE JAN IPSER ÚSTÍ NAD LABEM

2 ÚVODNÍ POZNÁMKA Vážené studentky a studenti, dostává se vám do rukou studijní opora k předmětu Úvod do studia biologie. Je určena vám, frekventantům kombinované formy bakalářského stupně studia biologie realizovaného na Přírodovědecké fakultě Univerzity J. E. Purkyně v Ústí nad Labem. Záměrem autora bylo vytvořit relativně ucelený text obsahující základní informace k tématickým celkům, které jednak tvoří stěžejní část předmětu Úvod do studia biologie (biologické systémy a jejich klasifikace, biologie buňky, biologie populací a společenstev, dědičnost a proměnlivost, biologická evoluce) zařazeného ve studijním programu do prvního ročníku, jednak jsou v průběhu dalšího studia rozvíjeny v rámci výuky dílčích biologických disciplin. Obsahuje podstatné informace k tématickým celkům, které jsou blíže probírány na konzultacích, seminářích a cvičeních. Snahou autora zároveň bylo omezit na nezbytné minimum ty partie, které jsou probírány podrobně v jiných předmětech vašeho studijního programu, aby bylo zamezeno nadměrné duplicitě. Úspěšným zvládnutím uvedeného předmětu byste měli být v obecné rovině vybaveni celkovým přehledem o základních biologických jevech a procesech, znalostmi základních biologických termínů, metod a přístupů požívaných k poznávání živých systémů. Od předmětu Úvod do studia biologie očekáváme, že vám napomůže orientovat se v moderní biologii a jejích trendech. Předmět je pojímán jako určitá propedeutika ke studiu dílčích biologických disciplin, zařazených ve studijním plánu a rozvíjejících již nabyté vědomosti, schopnosti a dovednosti. Značně rozsáhlá partie textu opory je věnována biologii buňky a to především proto, že by měla sloužit jako teoretická část pro praktickou výuku řady laboratorních biologických metod. Tato studijní opora tudíž není koncipována jako učebnice pokrývající proporcionálně všechny stěžejní oblasti biologie, ale jako studijní materiál, který je kompatibilní s příbuznými předměty zařazenými do výše uvedeného studijního programu a tvoří s nimi jednotný celek. Dovoluji si upozornit, že elektronická verze studijní opory Úvod do studia biologie je určena výhradně pro vaše osobní studijní účely a nesmí být dále rozšiřována (kopírována). Přeji vám hodně úspěchů ve studiu zvoleného oboru. V případě potřeby se neostýchejte využít všech dalších obvyklých a dostupných forem komunikace s vyučujícími (elektronické, telefonické, osobní) nad rámec uskutečněných konzultací. Autor 2

3 I. OBECNÉ VLASTNOSTI BIOLOGICKÝCH SYSTÉMŮ Život můžeme definovat na nejobecnější úrovni jako zvláštní formu pohybu hmoty. Základním předmětem biologie je poznání života jako zvláštní formy existence hmoty, poznání struktury a funkcí tohoto zvláštního způsobu bytí. Z hlediska dosaženého stupně poznání biologických věd můžeme na onu zvláštní formu existence hmoty nahlížet jako na dialekticky podmíněnou, časoprostorově ohraničenou, s okolím interagující, hierarchicky uspořádanou a evolvující strukturně-funkční jednotu bílkovin a nukleových kyselin vyznačující se vlastními atributy (tj. atributy živých soustav), principy, zákonitostmi a zákony, které se vyvíjejí na základě existujících fyzikálních a chemických procesů, avšak dosahují kvalitativně vyššího, svébytného stupně vývoje hmoty. Proces poznání se vyvíjí od poznávání makrosvěta dvěma směry: k poznávání megasvěta a k poznávání mikrosvěta. Přiblížení se k poznání podstaty života souvisí především s rozvojem poznání života na stále nižších úrovních mikrosvěta celulární, subcelulární, molekulární, submolekulární. Je zřejmé, že při takto orientovaném studiu života nemůže biologie využívat pouze specifických biologických metod, technik a tradičních přístupů, které byly adekvátní pro studium biologických makroobjektů a makroprocesů. K postižení obecných vlastností života musí biologie nutně respektovat a aplikovat zejména poznatky a metody chemických a fyzikálních věd, obecnou teorii systémů, teorii informace, teorii řízení, teorii nerovnovážné termodynamiky a další. Biologie na úrovni mikrosvěta se neobejde bez tvorby modelů (kybernetických, matematických) a odpovídajícího matematického aparátu při řešení některých problémů, nebo vyhodnocování experimentálně získaných dat. Pro rozvoj biologického poznání mají nesporný význam též logika, filozofie a etika, kteréžto vědy na druhé straně mohou být v mnohém metodami aplikovanými v moderní biologii i výsledky biologických věd inspirovány. Základní strukturní a funkční jednotkou živé hmoty je buňka. Hovoříme o tzv. buněčném principu organizace živých systémů. Každá buňka představuje systém: hmotný, konečný, otevřený, hierarchicky uspořádaný, adaptivní, autoregulující se a autoreprodukující se. Těmto charakteristikám buňky jako systému odpovídají základní atributy života: autoreprodukce, autoregulace, metabolizmus, dědičnost, vývoj (ontogenetický a fylogenetický), růst, pohyb a dráždivost. I.1. BIOLOGICKÝ SYSTÉM JAKO OTEVŘENÝ SYSTÉM V obecné teorii systémů se rozlišují tři základní typy systémů: systém izolovaný, který s okolím nevyměňuje hmotu, energii, ani informaci, systém uzavřený, který s okolím vyměňuje energii a systém otevřený, který s okolím vyměňuje hmotu, energii i informaci. (Pozn.: Někdy se tyto jednotlivé typy systémů charakterizují pouze na základě výměny hmoty a energie s okolím, neboť informace je vždy vázána na hmotu). Systémy izolované a uzavřené se nacházejí ve stavu termodynamické rovnováhy, nebo k tomuto stavu spějí, pokud jsou z něho vychýleny v důsledku náhodných fluktuací. Stav termodynamické rovnováhy (rovnovážný stav) je nejpravděpodobnějším stavem systému, tedy stavem, ve kterém systém dosahuje maximální entropie a je proto systémem neuspořádaným. Živé systémy jsou však systémy uspořádané (organizované); to znamená, že se nacházejí ve stavu vzdáleném od termodynamické rovnováhy (rovnovážného stavu) a tudíž jsou to systémy existující s nižší než maximální pravděpodobností 3

4 a s nižším obsahem entropie, než mají systémy v rovnovážném stavu. Proto za míru uspořádanosti živého systému je možné považovat negentropii udávající vzdálenost daného uspořádaného systému od systému neuspořádaného (tj. systému s maximální entropií). Evoluční vznik, existence a vývoj živých systémů není v rozporu s termodynamickými zákony a principy. Fluktuace, které systém vychýlí dostatečně daleko od rovnovážného nebo jemu blízkého stavu, mohou vést k ustavení nové uspořádanosti, ke vzniku disipativních struktur. Záznam informace do vnitřní paměti systému může rezultovat v ustavení stability uspořádanějšího stacionárního stavu. Tím je naznačena uskutečnitelnost vývojových změn v náležitě organizovaných (uspořádaných) systémech; biologické systémy mezi ně patří. Biologická evoluce je spjata se vznikem uspořádaných systémů a s převažující tendencí jejich vývoje k systémům s vyšší uspořádaností. Na každý biologický objekt lze nahlížet jako na otevřený systém s disipativní strukturou; existence takových systémů je možná za předpokladu akumulace negentropie, zprostředkované interakcemi systému s okolím. Znemožnění interakce otevřeného systému s okolím vede nutně k nárůstu entropie systému, snižování jeho uspořádanosti (organizovanosti) a dříve či později k dosažení rovnovážného stavu. Z biologického hlediska lze smrt označit za stav, ve kterém se dosahuje termodynamické rovnováhy; umírání jako proces končící smrtí je z tohoto hlediska procesem entropizačním. Život a smrt jsou dvě stránky téhož: první je spojeno se vznikem a vývojem uspořádaného systému, druhé s jeho destrukcí. Existence každého živého systému je časově omezená a každý živý systém, jakmile jednou vznikl, spěje neodvratně ke svému zániku. To platí jak pro kteroukoli jednotlivou buňku, tak pro všechny vyšší úrovně organizace živé hmoty. Přestože mezi zástupci různých taxonů evolučně méně či více příbuzných existují četné rozdíly, které reflektují rovněž rozdílný stupeň uspořádanosti toho kterého systému, jsou však nepatrné oproti rozdílům ve stupni uspořádanosti jakéhokoli živého (biologického) systému a jakéhokoli systému neživého (nebiologického). A právě tento rozdíl můžeme považovat za podstatu života jako nové kvality v evoluci vesmíru; života jako kvalitativně vyšší formy pohybu hmoty, než je forma fyzikální a chemická a zároveň nižší, než je forma společenská. Životní projevy a procesy nelze pochopit a vysvětlit jejich redukcí na procesy chemické a fyzikální, ani vnášením antropomorfizujících či sociologizujících přístupů. Obojí odporuje respektování života jako svébytné formy pohybu hmoty s vlastními principy, zákonitostmi a zákony; nutně vede k falešnému, nepřesnému, objektivně nepravdivému poznání. Každý systém je rozložitelný (alespoň v abstrakci) na subsystémy. V biologii buňky za základní systém považujeme buňku a jednotlivé buněčné organely (kompartmenty) za jeho subsystémy. Okolím systému (buňky) je vnější prostředí buňky; to nabývá různých podob v závislosti na tom, o jakou buňku se jedná. U samostatně žijícího prvoka to může být například voda v nádrži, u bakterie prostředí uvnitř hostitelského organizmu, u buňky tkáně mnohobuněčného organizmu bezprostřední okolí dané buňky (extracelulární tekutina), ale také v širším slova smyslu okolí tkáně či orgánu, se kterým daná buňka komunikuje například prostřednictvím mezibuněčných spojů. Jednotlivé subsystémy systému (buňky) vytvářejí strukturně a funkčně propojený celek při zachování menšího či většího stupně relativní autonomie. V buňkách se takto uplatňuje princip kompartmentace, který umožňuje diferenciaci (specializaci), kooperaci i integraci buněčných procesů. V souladu s tímto principem jsou jednotlivé subsystémy v rámci systému zpravidla jednak strukturně a funkčně specializovány, jednak vzájemně kooperují a proto jednotlivé funkce subsystémů mohou být v rámci vyššího celku integrovány (princip integrace). Realizace specifických funkcí buněčných subsystémů je možná při intracelulární prostorové separaci funkčních struktur (princip asymetrie). Tato separace není absolutní; struktury jednotlivých kompartmentů jsou propojeny mezi sebou navzájem, nebo se svým okolím a proto mohou dílčí buněčné procesy na sebe navazovat (spřažené reakce, kaskády), mohou se vzájemně podmiňovat nebo ovlivňovat (autoregulace), kooperovat a doplňovat se (princip komplemetarity). 4

5 Za subsystémy buňky lze označit například buněčné jádro, endoplazmatické retikulum, Golgiho aparát či mitochondrie. Každý z těchto subsystémů představuje specifickou strukturu, která plní specifické funkce; zároveň jsou tyto struktury a/nebo jejich funkční produkty propojeny a vzájemně se podmiňují nebo ovlivňují. Takové propojení struktur a funkcí je možné pouze při vymezeném rozsahu principu specializace v buňce. To se projevuje existencí některých stejných nebo téměř stejných základních struktur vznikajících v důsledku uplatnění jednotného stavebního principu (např. membránový princip). Integrace kooperujících, specializovaných, časoprostorově strukturně a funkčně oddělených subsystémů vede k hierarchickému uspořádání biologických systémů (princip hierarchie). Biologické systémy, existující na vyšší než buněčné úrovni, jsou organizovány analogickým způsobem. I.2. BIOLOGICKÝ SYSTÉM JAKO HMOTNÝ SYSTÉM Jakákoli buňka představuje hmotný objekt a jakýkoli proces realizovaný uvnitř buňky, mezi interagujícími (komunikujícími) buňkami nebo mezi buňkami a jejich okolím je vždy vázán na hmotný substrát; pro možnost realizace jakéhokoli buněčného procesu mimo odpovídající hmotný substrát neexistuje žádné vědecké opodstatnění. Dílčí procesy v buňce podléhají fyzikálním a chemickým zákonům, lze je na jejich základě vysvětlit a při vědomí abstrakce a simplifikace (a pouze za těchto podmínek) je na procesy chemické a fyzikální redukovat. Jakýkoli buněčný proces je spojen s tokem látek, energie a informace, přičemž tyto jednotlivé komponenty (látky, energie, informace) jsou v reálných buněčných systémech navzájem neoddělitelné; izolovat je od sebe lze rovněž pouze v abstrakci, jestliže např. přistupujeme k buňce jako systému látkovému, energetickému nebo informačnímu. Tok látek představuje jakékoli změny v látkovém složení buňky, výměně látek buňky s okolím, v přeměně látek (metabolizmu) a v časoprostorové organizaci (uspořádání) látek. Jinými slovy, tok látek obecně představuje příjem látek z prostředí, jejich přeměnu živým systémem a výdej již neutilizovatelných (odpadních) látek do prostředí (okolí živého systému). Pro chemické složení buněk je charakteristické majoritní zastoupení organických sloučenin (tedy různých uhlíkatých sloučenin), mezi nimiž mají v živých buňkách (ostatně pro život jako vlastnost vyvíjející se hmoty vůbec) specifické postavení především biopolymery fungující jako informační makromolekuly (nukleové kyseliny, proteiny a polysacharidy). Nukleové kyseliny jsou nezbytné pro procesy autoreprodukční. Proteiny jsou jednak strukturními komponentami buňky, jednak plní řadu většinou velmi specifických funkcí; např. bez enzymů by se nemohla uskutečnit většina biochemických procesů (syntetických nebo regulačních), konec konců život jako takový je za pozemských podmínek bez katalytické aktivity enzymů nepředstavitelný. Oligosacharidy a polysacharidy jsou zapojeny do velmi četných dějů intermediárního metabolizmu a jsou též významnými stavebními složkami buněk. Mimo jiné se významně podílejí na ochraně buněk (buněčné stěny) a na rozpoznávacích a transportních buněčných procesech (receptory, antigeny aj.). Jednotlivé buněčné komponenty vytvářejí velmi složité, hierarchicky uspořádané, dynamické struktury, participující na udržení stacionárního stavu (tj. stavu vzdáleného od stavu termodynamické rovnováhy). 5

6 I.3. BIOLOGIOCKÝ SYSTÉM JAKO ENERGETICKÝ SYSTÉM Životní procesy v buňce jako reálném hmotném systému se nemohou uskutečňovat beze změn energie, tj. bez příjmu a výdeje energie (energetická bilance), jejího přenosu a transformace. Připomeňme si, že energie je vlastně nejobecnější mírou pohybu hmoty, je od hmoty neoddělitelná (E = m c 2 ), je její vlastností a proto nemůže být produkována. Primárním vnějším zdrojem energie pro živé systémy je Slunce. Existence takového zdroje energie je nezbytnou podmínkou pro vznik, udržení a progresívní evoluční vývoj uspořádaných stavů biologických systémů prostřednictvím realizace negentropických dějů. Buňky jsou schopné energii s okolím permanentně vyměňovat, uvnitř ji transformovat ve volnou energii a fixovat volnou energii při chemických reakcích. Bez takové výměny energie by buněčné děje záhy ustaly a systém by spěl do stavu termodynamické rovnováhy, protože část energie, přeměněná při intracelulárních transformacích energie na teplo, by nebyla doplněna z vnějšího energetického zdroje a v důsledku toho by se v buňce snižovalo množství energie schopné konat práci. Energie, uvolněná při (bio)chemických reakcích, může být deponována v makroergních vazbách některých sloučenin (např. nukleotidtrifosfátů - NTP) a v případě potřeby z nich zase, jako z pohotově dostupných donorů, uvolněna a dále transformována. Živým systémem neutilizovatelná energie může být uvolňována ve formě tepla a chemických látek s nižším obsahem energie do okolí systému. I.4. BIOLOGICKÝ SYSTÉM JAKO INFORMAČNÍ SYSTÉM Přenos informace je vždy vázán na přenos hmoty nebo energie. Biologické systémy s okolím permanentně vyměňují informace. Buňky jako otevřené systémy využívají takovéto informace v rozsahu, který nenarušuje jejich vnitřní paměť, při regulaci životních procesů způsoby, které umožňují udržet stacionární stav. Přitom se nutně uplatňují četné zpětnovazebné vztahy (zpětné vazby pozitivní a negativní) a další regulační mechanizmy. Mezi celulárními subsystémy i mezi buňkou a jejím okolím se tedy uskutečňuje tok informací, tzn. procesy zahrnující přenos informací, jejich expresi a transformaci, případně jejich vznik a disipaci. Informační tok ve všech živých soustavách neodporuje žádnému z obecných zákonů kybernetiky a teorie informace. Každá buňka disponuje vnitřní pamětí a četnými rekogničními strukturami a mechanizmy. Ústřední roli mezi nimi sehrává genetická paměť a mechanizmy její reprodukce, přenosu a také dědičné proměnlivosti (mutability). Primárním, nepostradatelným zdrojem informací pro zachování organizace živého systému a jeho bezchybnou autoreprodukci jsou nukleové kyseliny (základní informační biomakromolekuly), v jejichž primární struktuře je obsažena genetická informace. Jak je známo z teorie informace, při přenosu informace dochází k šumu. Za specifickou formu šumu v biologických systémech je možné považovat mutaci, tj. relativně stálou, s určitou pravděpodobností vznikající, reprodukovatelnou dědičnou změnu genetické informace (primární struktury nukleových kyselin DNA, příp. RNA). Na mutaci lze však zároveň nahlížet jako na primární událost a potenciální materiální substrát pro evoluční proces. S jistým zjednodušením můžeme konstatovat, že evoluční proces se v zásadě realizuje na základě pozitivně selektovaného šumu (mutace) v genetické informaci. Mezi další informační biomakromolekuly se řadí především proteiny a polysacharidy 6

7 I.5. PRINCIP HIERARCHIE V ŽIVÝCH SYSTÉMECH Všechny živé systémy jsou hierarchicky uspořádané. Hovoříme o tzv. hierarchickém principu organizace živých systémů, který lze schématicky znázornit následující posloupností jednotlivých organizačních úrovní živých systémů: atomy molekuly a ionty nízkomolekulární látky makromolekulární látky supramolekulární struktury (komplexy) buněčné organely jednotlivé buňky kolonie buněk tkáně orgány soustavy orgánů organizmy populace společenstva ekologické systémy složky biosféry biosféra. Každá z uvedených úrovní je charakteristická množinou (spektrem) pro ni specifických znaků (ve smyslu kvalitativním i kvantitativním) a současně relativní autonomií, v jistém rozsahu limitovanou vlastnostmi (potencialitami) entit nižších úrovní. I.6. AUTOREPRODUKCE Základním předpokladem autoreprodukce je striktní přenos kvantitativně i kvalitativně nezměněné genetické informace z generace na generaci (vertikální přenos) a její adekvátní vyjádření (exprese). Přesný přenos genetické informace je zajištěn mechanizmy buněčného dělení (mitóza, meióza) a souvisí se zmnožením (replikací) DNA před vlastním dělením buněk. Exprese genetické informace se realizuje především prostřednictvím transkripce (přepisu) genetické informace do podoby informační ribonukleové kyseliny (mrna) a tzv. funkčních ribonukleových kyselin ribozomových (rrna) a transferových (trna), a translace (překladu) genetické informace (strukturních genů) do podoby primární struktury polypeptidového řetězce za účasti ribozomů, souboru trna s navázanými aktivovanými molekulami standardních aminokyselin, mrna a souboru translačních faktorů včetně příslušných enzymů. Procesy replikace, transkripce a translace jsou složitě regulované (regulace genové exprese). Regulovány jsou rovněž fáze buněčného cyklu, především v tzv. kontrolních bodech prostřednictvím systému cyklinů a cyklin-dependentních kináz (Cdk) a růstových faktorů. V průběhu biologické evoluce se vyvinulo několik typů a způsobů rozmnožování. Všechny lze v zásadě subsumovat do dvou základních skupin a mechanizmů. Jednu skupinu tvoří rozmnožování nepohlavní a rozmnožování pohlavní. Při studiu většiny biologických procesů na organizmální a vyšší úrovni je třeba přihlížet ke způsobu rozmnožování příslušného druhu. Stručný přehled a charakteristika některých nejčastěji se vyskytujících způsobů rozmnožování je uveden níže. I.6.1. NEPOHLAVNÍ ROZMNOŽOVÁNÍ (AMIXE) Nepohlavní rozmnožování je evolučně původnější, typické pro organizmy nacházející se na nižším stupni fylogenetického vývoje. Mezi jeho charakteristické znaky patří absence gamet a produkce geneticky identických individuí (klonu) prostřednictvím mitotického (nebo jemu analogického amitotického, binárního) dělení, které zajišťuje rovnoměrné rozdělení (v případě amitózy přibližně rovnoměrné) a distribuci zreplikovaných genoforů z mateřské buňky do nově vznikajících ( dceřinných ) buněk. Nepohlavní rozmnožování tedy konzervuje existující genotypy (resp. genomy) a tudíž nepřispívá k rozšíření genetické variability (neuvažujeme-li vliv mutačního procesu). 7

8 BINÁRNÍ DĚLENÍ Jedná se o prosté rozdělení buňky na dvě části (buňky dceřinné), obsahující stejnou genetickou výbavu. Vyskytuje se u bakterií, některých jednobuněčných řas a prvoků. FIZIPARIE Jedná se o způsob rozmnožování na základě dělení (fragmentace) těla mnohobuněčných organizmů, uplatňující se např. u nižších bezobratlých živočichů (láčkovci, ploštěnci, kroužkovci) a souvisí s jejich vysokou regenerační schopností. GEMIPARIE Gemiparií rozumíme vytváření pupenů na výchozích (rodičovkých) organizmech a jejich následné oddělení za vzniku nových, samostatně existujících jedinců (potomků). Vyskytuje se například u láčkovců, mechovek nebo pláštěnců. VEGETATIVNÍ ROZMNOŽOVÁNÍ Tento způsob nepohlavního rozmnožování je typický pro stélkaté rostliny i pro mnohé druhy cévnatých rostlin. U některých taxonů rostlin existují dokonce specifické orgány vegetativního rozmnožování (cibule, hlízy, oddenky, šlahouny apod.). Mezi významné pěstitelské a šlechtitelské metody patří očkování a roubování jako formy vegetativního rozmnožování, uplatňované zejména v ovocnářství. I POHLAVNÍ ROZMNOŽOVÁNÍ (AMFIMIXE) Pohlavní rozmnožování je evolučně odvozenější. Je spojeno s tvorbou gamet prostřednictvím meiózy, která mechanizmem segregace a rekombinace genů zajišťuje vyšší variabilitu genetické informace, přenášené při pohlavním aktu od rodičů na potomky. Při gametogenezi je tedy segregována do jednotlivých gamet sestava chromozomů (resp. genů), odlišná od té, která byla původně obsažena v zárodečných buňkách. Vznikají tak geneticky (genotypově) vysoce heterogenní populace. Pohlavní rozmnožování tudíž vede k rozšíření genetické variability (na rozdíl od rozmnožování nepohlavního). Primární podmínkou zplození nového diploidního (2n) jedince je splynutí dvou haploidních (1n) rodičovských gamet (resp. buněčných jader) za vzniku oplozené samičí gamety (zygoty) s jedním diploidním (2n) buněčným jádrem obsahujícím rovným dílem (tj. vždy jednou polovinou) zastoupený genetický materiál pocházející z obou zúčastněných rodičovských gamet (spermie a vajíčka, pylového zrna a vaječné buňky). Další proliferací a diferenciací zygoty se vyvíjí nový jedinec. Kromě diploidních organizmů existují též organizmy polyploidní, tj. takové, které ve svém genomu obsahují celé násobky (vyšší než dvě) haploidních (základních) sad chromozómů. Je zřejmé, že u polyploidního organizmu, např. tetraploidního, povede meióza k redukci chromozomů na polovinu a proto gamety tetraploida budou diploidní (2n) a po splynutí dvou diploidních gamet (pocházejících od tetraploidních jedinců) se u potomka obnoví tetraploidní (4n) stav. Obecně tedy platí, že při pohlavním způsobu rozmnožování se v průběhu gametogeneze redukuje počet chromozomů (obsah jaderné genetické informace) na polovinu a po oplození se obnovuje (v zygotě) původní počet chromozomů (obsah genetické informace) charakteristický pro somatické buňky příslušného druhu. Princip segregace spolu s principem kombinace (uplatňujícími se při gametogenezi) ve svých důsledcích zaručují konstantní počet chromozomů (karyotypovou stabilitu) jednotlivých druhů organizmů. 8

9 Je třeba upozornit na některé zvláštnosti pohlavního rozmnožování. Například zygota u některých druhů rostlin (řas) a hub bezprostředně po svém vzniku prochází meiotickým dělením za produkce haploidních pohlavních spor, z nichž se vyvinou haploidní jedinci. APOMIXE Jako apomiktické se označuje takové rozmnožování, při kterém se nový jedinec vyvíjí buď z pohlavní buňky (gamety), anebo z jiné buňky pohlavního aparátu, avšak bez vzniku zygoty (azygoticky). Apomixi tedy lze označit za zvláštní případ amfimixe. PARTENOGENEZE Partenogenezí se rozumí vývoj nového jedince z neoplozeného vajíčka nebo vaječné buňky. Například u včel se z neoplozených vajíček partenogeneticky vyvíjejí samci a proto jsou haploidní, kdežto z oplozených vajíček se vyvíjejí samice, které jsou proto diploidní. Partenogeneze se významně uplatňuje též v reprodučním procesu mšic a některých dalších skupin bezobratlých živočichů. GYNOGENEZE Při gynogenezi se nový jedinec vyvíjí ze samičí gamety, avšak po stimulaci (indukci dělení) samčí gametou. Gynogenezi lze navodit u některých druhů rostlin a bezobratlých živočichů stimulací samičí gamety samčí gametou, která byla před tím enukleována, anebo v níž bylo buněčné jádro inaktivováno (například vlivem radioaktivního ozáření). ANDROGENEZE Při androgenezi se nový jedinec vyvíjí z neoplozené samčí gamety. Androgeneze, indukovaná při kultivaci pylových zrn nebo prašníků za specifických podmínek in vitro, je jednou z efektivních a účelně používaných šlechtitelských metod k produkci haploidních rostlin, neboť v relativně krátkém časovém intervalu lze diploidizací apomikticky vzniklých haploidů získat dokonale homozygotní (dihaploidní) čisté linie. APOGAMETIE Tento způsob rozmnožování se může vyskytnout u cévnatých rostlin. Nový haploidní jedinec (resp. semeno) vzniká z některé synergidy nebo antipody, nikoli z (neoplozené) vaječné buňky. ADVENTIVNÍ EMBRYONIE Vyskytuje se u cévnatých rostlin. V tomto případě se vyvíjí nový jedinec z některé buňky nucellu. I.7. AUTOREGULACE Procesy, uskutečňující se uvnitř živých systémů, jsou regulovány v interakcích s vnějším prostředím (okolím) vzájemně propojenou soustavou zpětných vazeb (pozitivních a negativních) a dalších autoregulačních mechanizmů. V tomto smyslu hovoříme též o biokybernetickém principu organizace živých systémů. Funkce genů, resp. jimi determinované děje v organizmech (buňkách) jsou nejednou modifikovány působením environmentálních faktorů. Příkladem může být vztah mezi endogenně podmíněnou složkou biorytmů a modifikujícím vlivem určitých složek prostředí. Pravděpodobně u všech eukaryotních organizmů se vyskytují vrozené, geneticky determinované regulované cirkadiánní rytmy, které zahrnují cyklicky se uskutečňující biologické aktivity s délkou periody 9

10 blízkou 24 hodinám. I když konkrétní formy této rytmicity biologických aktivit jsou výsledkem interakce genotypu a proměnlivých faktorů vnějšího prostředí, rytmicita přetrvává i při konstantních vnějších podmínkách. U živočichů se na regulačních procesech podílejí celé funkčně k tomu specializované systémy imunitní, endokrinní a nervový. Významným druhem biocyklů u rostlin je tzv. fotoperiodizmus. Termínem fotoperiodizmus se označuje schopnost většiny druhů rostlin kvést pouze při určitém průběhu dynamicky se měnícího poměru délky dne a noci během jednotlivých ročních období. Z tohoto hlediska se rozlišují rostliny krátkého dne (např. rýže, tabák, chryzantéma) a rostliny dlouhého dne (např. špenát, huseníček, ředkev, řepa). Kromě těchto dvou skupin rostlin existují druhy, jejichž schopnost vykvést není závislá na poměru délky dne a noci a ve vztahu k fotoperiodě se tudíž chovají neutrálně (např. rajče). Fotoperiodizmus je jedním z ekologických faktorů, participující na geografickém rozšíření rostlin krátkého a dlouhého dne. Fotoperiodizmus je vysvětlován především na základě dvou modelů: 1. Model fotoperiodizmu u rostlin krátkého dne Podle tohoto modelu rostlina vykvete pouze tehdy, pokud je udržována po určitou minimální dobu ve tmě (tzv. kritická perioda). Přerušení kritické periody světlem o určité vlnové délce (v červené oblasti spektra, např. 660 nm) znemožní vykvetení, naopak osvícení světlem o určité jiné vlnové délce (např. 730 nm) může vést ke zkrácení kritické periody. V těchto procesech sehrávají významnou roli fytochromy (PhyA, PhyB, PhyC, PhyD, PhyE). Fytochromy jsou proteinové homodimery, jejichž řetězce jsou konjugovány s molekulami typu rodopsinu schopnými absorbovat světelnou energii. Jednotlivé typy fytochromů se liší rozsahem absorpčního spektra, resp. absorpčním maximem. Fytochromy se vyskytují ve dvou navzájem přecházejících formách: forma P R (red) absorbuje světlo v červené oblasti spektra, forma P FR (far red) v oblasti delších vlnových délek (> 700 nm). Absorpce červeného světla formou fytochromu P R vede k jeho konverzi na formu P FR a naopak, absorpce světla o vlnové délce větší než 700 nm formou fytochromu P FR vede k jeho konverzi na formu P R. Ve tmě (v noci), tedy v průběhu kritické periody, dochází ke spontánní konverzi formy P FR na formu P R, která je nutná ke spuštění signálu kvetení (florigenu), a k dalším doprovodným reakcím. Ozáření rostliny červeným světlem vede k okamžité konverzi fytochromů formy P R na formu P FR a tím k narušení opačně probíhající konverze v kritické periodě (P FR P R ), což může mít za následek až inhibici kvetení. Naproti tomu iluminace rostliny na počátku kritické periody světlem o vlnové délce větší než 700 nm může vést k poměrnému zkrácení kritické periody, protože je posílena tvorba fytochromu formy P R. 2. Model fotoperiodizmu u rostlin dlouhého dne (model Arabidopsis) U Arabidopsis jako modelového zástupce rostlin dlouhého dne je znám transkripční faktor typu zinkového prstu označovaný jako CONSTANS (CO). Tento faktor se podílí na spuštění celé řady genů, včetně genu FT (flowering locus T), jehož exprese je nezbytná pro navození procesů přeměny apikálních pupenů v pupeny květní. Produkce mrna pro CO-faktor vykazuje cirkadiánní rytmicitu: v ranních a pozdně odpoledních hodinách je vysoká, v průběhu dne je nízká. Faktor CONSTANS je v buňce přes den (zejména kolem poledne) a v noci velmi účinně degradován v proteazomech. Degradace CO-faktoru je spouštěna ranním (dopopledním) světlem, ve kterém je vyšší podíl červené části spektra (kolem 660 nm) a zprostředkována fytochromem B. V pozdně odpoledních hodinách dochází k absorpci světla modré části spektra tzv. kryptochromy a světla o vlnových délkách větších než 700 nm fytochromem A, což vede k inhibici degradace CO-faktoru. Tím se CO-faktor akumuluje a může se projevit jeho regulační funkce, jejímž prostřednictvím se spouští transkripce genů, nutných pro indukci kvetení (gen FT). Existuje představa, že mechanizmus, popsaný pro Arabidopsis, by se mohl uplatňovat i u rostlin krátkého dne. Výsledky studia fotoperiodizmu u některých rostlin krátkého dne (např. rýže) naznačují, že CO-faktor (nebo faktor jemu podobný) působí jako supresor genu FT a tím jako inhibitor kvetení za dlouhého dne. 10

Energetický metabolizmus buňky

Energetický metabolizmus buňky Energetický metabolizmus buňky Buňky vyžadují neustálý přísun energie pro tvorbu a udržování biologického pořádku (život). Tato energie pochází z energie chemických vazeb v molekulách potravy (energie

Více

Číslo a název projektu Číslo a název šablony

Číslo a název projektu Číslo a název šablony Číslo a název projektu Číslo a název šablony DUM číslo a název CZ.1.07/1.5.00/34.0378 Zefektivnění výuky prostřednictvím ICT technologií III/2 - Inovace a zkvalitnění výuky prostřednictvím ICT SSOS_ZE_1.05

Více

Projekt realizovaný na SPŠ Nové Město nad Metují

Projekt realizovaný na SPŠ Nové Město nad Metují Projekt realizovaný na SPŠ Nové Město nad Metují s finanční podporou v Operačním programu Vzdělávání pro konkurenceschopnost Královéhradeckého kraje Modul 02 Přírodovědné předměty Hana Gajdušková 1 Viry

Více

METABOLISMUS SACHARIDŮ

METABOLISMUS SACHARIDŮ METABOLISMUS SAHARIDŮ A. Odbourávání sacharidů - nejdůležitější zdroj energie pro heterotrofy - oxidací sacharidů až na. získávají aerobní organismy energii ve formě. - úplná oxidace glukosy: složitý proces

Více

Inovace profesní přípravy budoucích učitelů chemie

Inovace profesní přípravy budoucích učitelů chemie Inovace profesní přípravy budoucích učitelů chemie I n v e s t i c e d o r o z v o j e v z d ě l á v á n í CZ.1.07/2.2.00/15.0324 Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem

Více

Eva Benešová. Dýchací řetězec

Eva Benešová. Dýchací řetězec Eva Benešová Dýchací řetězec Dýchací řetězec Během oxidace látek vstupujících do různých metabolických cyklů (glykolýza, CC, beta-oxidace MK) vznikají NADH a FADH 2, které následně vstupují do DŘ. V DŘ

Více

Buněčné dýchání Ch_056_Přírodní látky_buněčné dýchání Autor: Ing. Mariana Mrázková

Buněčné dýchání Ch_056_Přírodní látky_buněčné dýchání Autor: Ing. Mariana Mrázková Registrační číslo projektu: CZ.1.07/1.1.38/02.0025 Název projektu: Modernizace výuky na ZŠ Slušovice, Fryšták, Kašava a Velehrad Tento projekt je spolufinancován z Evropského sociálního fondu a státního

Více

VY_32_INOVACE_003. VÝUKOVÝ MATERIÁL zpracovaný v rámci projektu EU peníze školám

VY_32_INOVACE_003. VÝUKOVÝ MATERIÁL zpracovaný v rámci projektu EU peníze školám VY_32_INOVACE_003 VÝUKOVÝ MATERIÁL zpracovaný v rámci projektu EU peníze školám Registrační číslo projektu: CZ. 1.07. /1. 5. 00 / 34. 0696 Šablona: III/2 Název: Základní znaky života Vyučovací předmět:

Více

Název školy: Střední odborná škola stavební Karlovy Vary Sabinovo náměstí 16, 360 09 Karlovy Vary Autor: Hana Turoňová Název materiálu:

Název školy: Střední odborná škola stavební Karlovy Vary Sabinovo náměstí 16, 360 09 Karlovy Vary Autor: Hana Turoňová Název materiálu: Název školy: Střední odborná škola stavební Karlovy Vary Sabinovo náměstí 16, 360 09 Karlovy Vary Autor: Hana Turoňová Název materiálu: VY_32_INOVACE_04_BUŇKA 1_P1-2 Číslo projektu: CZ 1.07/1.5.00/34.1077

Více

METABOLISMUS SLOUČENINY S MAKROERGNÍMI VAZBAMI

METABOLISMUS SLOUČENINY S MAKROERGNÍMI VAZBAMI METABOLISMUS SLOUČENINY S MAKROERGNÍMI VAZBAMI Obsah Formy organismů Energetika reakcí Metabolické reakce Makroergické sloučeniny Formy organismů Autotrofní x heterotrofní organismy Práce a energie Energie

Více

Buňka. Kristýna Obhlídalová 7.A

Buňka. Kristýna Obhlídalová 7.A Buňka Kristýna Obhlídalová 7.A Buňka Buňky jsou nejmenší a nejjednodušší útvary schopné samostatného života. Buňka je základní stavební a funkční jednotkou živých organismů. Zatímco některé organismy jsou

Více

Buňky, tkáně, orgány, soustavy

Buňky, tkáně, orgány, soustavy Lidská buňka buněčné organely a struktury: Jádro Endoplazmatické retikulum Goldiho aparát Mitochondrie Lysozomy Centrioly Cytoskelet Cytoplazma Cytoplazmatická membrána Buněčné jádro Jadérko Karyoplazma

Více

ÚVOD DO STUDIA BUŇKY příručka pro učitele

ÚVOD DO STUDIA BUŇKY příručka pro učitele Obecné informace ÚVOD DO STUDIA BUŇKY příručka pro učitele Téma úvod do studia buňky je rozvržen na jednu vyučovací hodinu. V tomto tématu jsou probrány a zopakovány základní charakteristiky živých soustav

Více

http://www.accessexcellence.org/ab/gg/chromosome.html

http://www.accessexcellence.org/ab/gg/chromosome.html 3. cvičení Buněčný cyklus Mitóza Modifikace mitózy 1 DNA, chromosom genetická informace organismu chromosom = strukturní podoba DNA během dělení (mitózy) řetězec DNA (chromonema) histony další enzymatické

Více

5. Příjem, asimilace a fyziologické dopady anorganického dusíku. 5. Příjem, asimilace a fyziologické dopady anorganického dusíku

5. Příjem, asimilace a fyziologické dopady anorganického dusíku. 5. Příjem, asimilace a fyziologické dopady anorganického dusíku 5. Příjem, asimilace a fyziologické dopady anorganického dusíku Zdroje dusíku dostupné v půdě: Amonné ionty + Dusičnany = největší zdroj dusíku v půdě Organický dusík (aminokyseliny, aminy, ureidy) zpracování

Více

Sylabus pro předmět Biochemie pro jakost

Sylabus pro předmět Biochemie pro jakost Sylabus pro předmět Biochemie pro jakost Kód předmětu: BCHJ Název v jazyce výuky: Biochemie pro Jakost Název česky: Biochemie pro Jakost Název anglicky: Biochemistry Počet přidělených ECTS kreditů: 6 Forma

Více

Biologie 30 Metabolismus, fotosyntéza, dýchání, glykolýza, kvašení

Biologie 30 Metabolismus, fotosyntéza, dýchání, glykolýza, kvašení Číslo projektu CZ.1.07/1.5.00/34.0743 Název školy Autor Tematická oblast Moravské gymnázium Brno s.r.o. RNDr. Monika Jörková Biologie 30 Metabolismus, fotosyntéza, dýchání, glykolýza, kvašení Ročník 1.

Více

Metabolismus, taxonomie a identifikace bakterií. Karel Holada khola@lf1.cuni.cz

Metabolismus, taxonomie a identifikace bakterií. Karel Holada khola@lf1.cuni.cz Metabolismus, taxonomie a identifikace bakterií Karel Holada khola@lf1.cuni.cz Klíčová slova Obligátní aeroby Obligátní anaeroby Aerotolerantní b. Fakultativní anaeroby Mikroaerofilní b. Kapnofilní bakterie

Více

umožňují enzymatické systémy živé protoplazmy, nezbytný je kyslík,

umožňují enzymatické systémy živé protoplazmy, nezbytný je kyslík, DÝCHÁNÍ ROSTLIN systém postupných oxidoredukčních reakcí v živých buňkách, při kterých se z organických látek uvolňuje energie, která je zachycena jako krátkodobá energetická zásoba v ATP, umožňují enzymatické

Více

Centrální dogma molekulární biologie

Centrální dogma molekulární biologie řípravný kurz LF MU 2011/12 Centrální dogma molekulární biologie Nukleové kyseliny 1865 zákony dědičnosti (Johann Gregor Mendel) 1869 objev nukleových kyselin (Miescher) 1944 genetická informace v nukleových

Více

Metabolismus příručka pro učitele

Metabolismus příručka pro učitele Metabolismus příručka pro učitele Obecné informace Téma Metabolismus je určeno na čtyři až pět vyučovacích hodin. Toto téma je zpracováno jako jeden celek a záleží na vyučujícím, jak jej rozdělí. Celek

Více

FYZIOLOGIE ROSTLIN. Přednášející: Doc. Ing. Václav Hejnák, Ph.D. Tel.: 224382514 E-mail: hejnak @af.czu.cz

FYZIOLOGIE ROSTLIN. Přednášející: Doc. Ing. Václav Hejnák, Ph.D. Tel.: 224382514 E-mail: hejnak @af.czu.cz FYZIOLOGIE ROSTLIN Přednášející: Doc. Ing. Václav Hejnák, Ph.D. Tel.: 224382514 E-mail: hejnak @af.czu.cz Studijní literatura: Hejnák,V., Zámečníková,B., Zámečník, J., Hnilička, F.: Fyziologie rostlin.

Více

DUM VY_52_INOVACE_12CH33

DUM VY_52_INOVACE_12CH33 Základní škola Kaplice, Školní 226 DUM VY_52_INOVACE_12CH33 autor: Kristýna Anna Rolníková období vytvoření: říjen 2011 duben 2012 ročník, pro který je vytvořen: 9. vzdělávací oblast: vzdělávací obor:

Více

Sacharidy a polysacharidy (struktura a metabolismus)

Sacharidy a polysacharidy (struktura a metabolismus) Sacharidy a polysacharidy (struktura a metabolismus) Sacharidy Živočišné tkáně kolem 2 %, rostlinné 85-90 % V buňkách rozličné fce: Zdroj a zásobárna energie (glukóza, škrob, glykogen) Výztuž a ochrana

Více

Biochemie. ochrana životního prostředí analytická chemie chemická technologie Forma vzdělávání: Platnost: od 1. 9. 2009 do 31. 8.

Biochemie. ochrana životního prostředí analytická chemie chemická technologie Forma vzdělávání: Platnost: od 1. 9. 2009 do 31. 8. Studijní obor: Aplikovaná chemie Učební osnova předmětu Biochemie Zaměření: ochrana životního prostředí analytická chemie chemická technologie Forma vzdělávání: denní Celkový počet vyučovacích hodin za

Více

SSOS_ZE_1.10 Příroda projevy živé hmoty

SSOS_ZE_1.10 Příroda projevy živé hmoty Číslo a název projektu Číslo a název šablony CZ.1.07/1.5.00/34.0378 Zefektivnění výuky prostřednictvím ICT technologií III/2 - Inovace a zkvalitnění výuky prostřednictvím ICT DUM číslo a název SSOS_ZE_1.10

Více

Obecná biologie a genetika B53 volitelný předmět pro 4. ročník

Obecná biologie a genetika B53 volitelný předmět pro 4. ročník Obecná biologie a genetika B53 volitelný předmět pro 4. ročník Charakteristika vyučovacího předmětu Vyučovací předmět vychází ze vzdělávací oblasti Člověk a příroda, vzdělávacího oboru Biologie. Mezipředmětové

Více

B4, 2007/2008, I. Literák

B4, 2007/2008, I. Literák B4, 2007/2008, I. Literák ENERGIE, KATALÝZA, BIOSYNTÉZA Živé organismy vytvářejí a udržují pořádek ve světě, který spěje k čím dál většímu chaosu Druhá věta termodynamiky: Ve vesmíru nebo jakékoliv izolované

Více

Praktické cvičení č. 11 a 12 - doplněno

Praktické cvičení č. 11 a 12 - doplněno Praktické cvičení č. 11 a 12 - doplněno Téma: Metabolismus eukaryotické buňky Pomůcky: pracovní list, učebnice botaniky Otázky k opakování: Co je anabolismus a co je katabolisimus? Co jsou enzymy a jak

Více

Buňka. Buňka (cellula) základní stavební a funkční jednotka organismů, schopná samostatné existence. Cytologie nauka o buňkách

Buňka. Buňka (cellula) základní stavební a funkční jednotka organismů, schopná samostatné existence. Cytologie nauka o buňkách Buňka Historie 1655 - Robert Hooke (1635 1703) - použil jednoduchý mikroskop k popisu pórů v řezu korku. Nazval je, podle podoby k buňkám včelích plástů, buňky. 18. - 19. St. - vznik buněčné biologie jako

Více

Střední průmyslová škola strojnická Olomouc, tř. 17. listopadu 49

Střední průmyslová škola strojnická Olomouc, tř. 17. listopadu 49 Střední průmyslová škola strojnická Olomouc, tř. 17. listopadu 49 Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205 Šablona: III/2 Přírodovědné

Více

Biochemie Ch52 volitelný předmět pro 4. ročník

Biochemie Ch52 volitelný předmět pro 4. ročník Biochemie Ch52 volitelný předmět pro 4. ročník Charakteristika vyučovacího předmětu Vyučovací předmět vychází ze vzdělávací oblasti Člověk a příroda, vzdělávacího oboru Chemie. Mezipředmětové přesahy a

Více

03a-Chemické reakce v živých organizmech FRVŠ 1647/2012

03a-Chemické reakce v živých organizmech FRVŠ 1647/2012 C3181 Biochemie I 03a-Chemické reakce v živých organizmech FRVŠ 1647/2012 Petr Zbořil 9/23/2014 1 Obsah Obecné rysy metabolismu Chemické reakce a jejich energetika Makroergické sloučeniny Petr Zbořil 9/23/2014

Více

Buňka buňka je základní stavební a funkční jednotka živých organismů

Buňka buňka je základní stavební a funkční jednotka živých organismů Buňka - buňka je základní stavební a funkční jednotka živých organismů - je pozorovatelná pouze pod mikroskopem - na Zemi existuje několik typů buněk: 1. buňky bez jádra (prokaryotní buňky)- bakterie a

Více

Tabulace učebního plánu. Obecná chemie. Vzdělávací obsah pro vyučovací předmět : Ročník: 1.ročník a kvinta

Tabulace učebního plánu. Obecná chemie. Vzdělávací obsah pro vyučovací předmět : Ročník: 1.ročník a kvinta Tabulace učebního plánu Vzdělávací obsah pro vyučovací předmět : CHEMIE Ročník: 1.ročník a kvinta Obecná Bezpečnost práce Názvosloví anorganických sloučenin Zná pravidla bezpečnosti práce a dodržuje je.

Více

DYNAMICKÁ BIOCHEMIE. Daniel Nechvátal :: www.gymzn.cz/nechvatal

DYNAMICKÁ BIOCHEMIE. Daniel Nechvátal :: www.gymzn.cz/nechvatal DYNAMICKÁ BIOCHEMIE Daniel Nechvátal :: www.gymzn.cz/nechvatal Energetický metabolismus děje potřebné pro zabezpečení života organismu ANABOLISMUS skladné reakce, spotřeba E KATABOLISMUS rozkladné reakce,

Více

UNIVERZITA KARLOVA V PRAZE 3. LÉKAŘSKÁ FAKULTA (tématické okruhy požadavků pro přijímací zkoušku)

UNIVERZITA KARLOVA V PRAZE 3. LÉKAŘSKÁ FAKULTA (tématické okruhy požadavků pro přijímací zkoušku) UNIVERZITA KARLOVA V PRAZE 3. LÉKAŘSKÁ FAKULTA (tématické okruhy požadavků pro přijímací zkoušku) B I O L O G I E 1. Definice a obory biologie. Obecné vlastnosti organismů. Základní klasifikace organismů.

Více

Stavba dřeva. Základy cytologie. přednáška

Stavba dřeva. Základy cytologie. přednáška Základy cytologie přednáška Buňka definice, charakteristika strana 2 2 Buňky základní strukturální a funkční jednotky živých organismů Základní charakteristiky buněk rozmanitost (diverzita) - např. rostlinná

Více

Didaktické testy z biochemie 2

Didaktické testy z biochemie 2 Didaktické testy z biochemie 2 Metabolismus Milada Roštejnská Helena Klímová br. 1. Schéma metabolismu Zažívací trubice Sacharidy Bílkoviny Lipidy Ukládány jako glykogen v játrech Ukládány Ukládány jako

Více

Termodynamika (td.) se obecně zabývá vzájemnými vztahy a přeměnami různých druhů

Termodynamika (td.) se obecně zabývá vzájemnými vztahy a přeměnami různých druhů Termodynamika (td.) se obecně zabývá vzájemnými vztahy a přeměnami různých druhů energií (mechanické, tepelné, elektrické, magnetické, chemické a jaderné) při td. dějích. Na rozdíl od td. cyklických dějů

Více

Dědičnost pohlaví Genetické principy základních způsobů rozmnožování

Dědičnost pohlaví Genetické principy základních způsobů rozmnožování Dědičnost pohlaví Vznik pohlaví (pohlavnost), tj. komplexu znaků, vlastností a funkcí, které vymezují exteriérové i funkční diference mezi příslušníky téhož druhu, je výsledkem velmi komplikované série

Více

Zkoumání přírody. Myšlení a způsob života lidí vyšší nervová činnost odlišnosti člověka od ostatních organismů

Zkoumání přírody. Myšlení a způsob života lidí vyšší nervová činnost odlišnosti člověka od ostatních organismů Předmět: PŘÍRODOPIS Ročník: 9. Časová dotace: 1 hodina týdně Výstup předmětu Rozpracované očekávané výstupy Učivo předmětu Přesahy, poznámky Konkretizované tématické okruhy realizovaného průřezového tématu

Více

Nukleové kyseliny. Nukleové kyseliny. Genetická informace. Gen a genom. Složení nukleových kyselin. Centrální dogma molekulární biologie

Nukleové kyseliny. Nukleové kyseliny. Genetická informace. Gen a genom. Složení nukleových kyselin. Centrální dogma molekulární biologie Centrální dogma molekulární biologie ukleové kyseliny 1865 zákony dědičnosti (Johann Gregor Transkripce D R Translace rotein Mendel) Replikace 1869 objev nukleových kyselin (Miescher) 1944 nukleové kyseliny

Více

Výukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.5.00/34.0996

Výukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.5.00/34.0996 Výukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.5.00/34.0996 Šablona: III/2 č. materiálu: VY_32_INOVACE_CHE_412 Jméno autora: Třída/ročník: Mgr. Alena

Více

Bílkoviny a rostlinná buňka

Bílkoviny a rostlinná buňka Bílkoviny a rostlinná buňka Bílkoviny Rostliny --- kontinuální diferenciace vytváření orgánů: - mitotická dělení -zvětšování buněk a tvorba buněčné stěny syntéza bílkovin --- fotosyntéza syntéza bílkovin

Více

Název: Hmoto, jsi živá? I

Název: Hmoto, jsi živá? I Název: Hmoto, jsi živá? I Výukové materiály Téma: Obecné vlastnosti živé hmoty Úroveň: střední škola Tematický celek: Obecné zákonitosti přírodovědných disciplín a principy poznání ve vědě Předmět (obor):

Více

Buňka. základní stavební jednotka organismů

Buňka. základní stavební jednotka organismů Buňka základní stavební jednotka organismů Buňka Buňka je základní stavební a funkční jednotka těl organizmů. Toto se netýká virů (z lat. virus jed, je drobný vnitrobuněčný cizopasník nacházející se na

Více

Co nás učí nádory? Prof. RNDr. Jana Šmardová, CSc. Ústav patologie FN Brno Přírodovědecká a Lékařská fakulta MU Brno

Co nás učí nádory? Prof. RNDr. Jana Šmardová, CSc. Ústav patologie FN Brno Přírodovědecká a Lékařská fakulta MU Brno Co nás učí nádory? Prof. RNDr. Jana Šmardová, CSc. Ústav patologie FN Brno Přírodovědecká a Lékařská fakulta MU Brno Brno, 17.5.2011 Izidor (Easy Door) Osnova přednášky 1. Proč nás rakovina tolik zajímá?

Více

Konsultační hodina. základy biochemie pro 1. ročník. Přírodní látky Úvod do metabolismu Glykolysa Krebsův cyklus Dýchací řetězec Fotosynthesa

Konsultační hodina. základy biochemie pro 1. ročník. Přírodní látky Úvod do metabolismu Glykolysa Krebsův cyklus Dýchací řetězec Fotosynthesa Konsultační hodina základy biochemie pro 1. ročník Přírodní látky Úvod do metabolismu Glykolysa Krebsův cyklus Dýchací řetězec Fotosynthesa Přírodní látky 1 Co to je? Cukry (Sacharidy) Organické látky,

Více

TECHNIKA PRO ZPRACOVÁNÍ ODPADŮ (13)

TECHNIKA PRO ZPRACOVÁNÍ ODPADŮ (13) 3. června 2015, Brno Připravil: doc. Mgr. Monika Vítězová, Ph.D. TECHNIKA PRO ZPRACOVÁNÍ ODPADŮ (13) Základní biologické principy využívané v rámci zpracování Inovace studijních programů AF a ZF MENDELU

Více

ENZYMY. RNDr. Lucie Koláčná, Ph.D.

ENZYMY. RNDr. Lucie Koláčná, Ph.D. ENZYMY RNDr. Lucie Koláčná, Ph.D. Enzymy: katalyzátory živé buňky jednoduché nebo složené proteiny Apoenzym: proteinová část Kofaktor: nízkomolekulová neaminokyselinová struktura nezbytně nutná pro funkci

Více

ZŠ ÚnO, Bratří Čapků 1332

ZŠ ÚnO, Bratří Čapků 1332 Animovaná chemie Top-Hit Analytická chemie Analýza anorganických látek Důkaz aniontů Důkaz kationtů Důkaz kyslíku Důkaz vody Gravimetrická analýza Hmotnostní spektroskopie Chemická analýza Nukleární magnetická

Více

Voda jako životní prostředí ph a CO 2

Voda jako životní prostředí ph a CO 2 Hydrobiologie pro terrestrické biology Téma 8: Voda jako životní prostředí ph a CO 2 Koncentrace vodíkových iontů a systém rovnováhy forem oxidu uhličitého Koncentrace vodíkových iontů ph je dána mírou

Více

Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/07.0354

Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/07.0354 I n v e s t i c e d o r o z v o j e v z d ě l á v á n í Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/07.0354 Tento projekt je spolufinancován Evropským sociálním fondem a státním

Více

-dědičnost= schopnost rodičů předat vlastnosti v podobě vloh potomkům

-dědičnost= schopnost rodičů předat vlastnosti v podobě vloh potomkům Otázka: Molekulární základy dědičnosti Předmět: Biologie Přidal(a): KatkaS GENETIKA =dědičnost, proměnlivost organismu -dědičnost= schopnost rodičů předat vlastnosti v podobě vloh potomkům -umožní zachovat

Více

Výuka genetiky na PřF OU K. MALACHOVÁ

Výuka genetiky na PřF OU K. MALACHOVÁ Výuka genetiky na PřF OU K. MALACHOVÁ KATEDRA BIOLOGIE A EKOLOGIE BAKALÁŘSKÉ STUDIJNÍ PROGRAMY Experimentální Systematická Aplikovaná (prezenční, kombinovaná) Jednooborová Dvouoborová KATEDRA BIOLOGIE

Více

Inovace studia molekulární a buněčné biologie

Inovace studia molekulární a buněčné biologie Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. OBVSB/Obecná virologie Tento projekt je spolufinancován Evropským

Více

Učební osnovy předmětu Biologie

Učební osnovy předmětu Biologie (kvinta a sexta) Učební osnovy předmětu Biologie Charakteristika předmětu Vyučovací předmět vychází ze vzdělávací oblasti Člověk a příroda, vzdělávacích oborů Biologie a Geologie. Integruje část vzdělávacího

Více

Sekunda (2 hodiny týdně) Chemické látky a jejich vlastnosti Směsi a jejich dělení Voda, vzduch

Sekunda (2 hodiny týdně) Chemické látky a jejich vlastnosti Směsi a jejich dělení Voda, vzduch Sekunda (2 hodiny týdně) Chemické látky a jejich vlastnosti Směsi a jejich dělení Voda, vzduch Atom, složení a struktura Chemické prvky-názvosloví, slučivost Chemické sloučeniny, molekuly Chemická vazba

Více

BUŇKA A ENERGIE. kajman brýlový Caiman crocodilus Kostarika, 2004. Biologie 6, 2015/2016, Ivan Literák

BUŇKA A ENERGIE. kajman brýlový Caiman crocodilus Kostarika, 2004. Biologie 6, 2015/2016, Ivan Literák BUŇKA A ENERGIE kajman brýlový Caiman crocodilus Kostarika, 2004 Biologie 6, 2015/2016, Ivan Literák ENERGIE, KATALÝZA, BIOSYNTÉZA Živé organismy vytvářejí a udržují POŘÁDEK VE SVĚTĚ, KTERÝ SPĚJE K ČÍM

Více

Degenerace genetického kódu

Degenerace genetického kódu AJ: degeneracy x degeneration CJ: degenerace x degenerace Degenerace genetického kódu Genetický kód je degenerovaný, resp. redundantní, což znamená, že dva či více kodonů může kódovat jednu a tutéž aminokyselinu.

Více

V organismu se bílkoviny nedají nahradit žádnými jinými sloučeninami, jen jako zdroj energie je mohou nahradit sacharidy a lipidy.

V organismu se bílkoviny nedají nahradit žádnými jinými sloučeninami, jen jako zdroj energie je mohou nahradit sacharidy a lipidy. BÍLKOVINY Bílkoviny jsou biomakromolekulární látky, které se skládají z velkého počtu aminokyselinových zbytků. Vytvářejí látkový základ života všech organismů. V tkáních vyšších organismů a člověka je

Více

Dýchací řetězec (DŘ)

Dýchací řetězec (DŘ) Dýchací řetězec (DŘ) Vladimíra Kvasnicová animace na internetu: http://vcell.ndsu.nodak.edu/animations/etc/index.htm http://vcell.ndsu.nodak.edu/animations/atpgradient/index.htm http://www.wiley.com/college/pratt/0471393878/student/animations/oxidative_phosphorylation/index.html

Více

sloučeniny C, H, O Cukry = glycidy = sacharidy staré názvy: uhlohydráty, uhlovodany, karbohydráty

sloučeniny C, H, O Cukry = glycidy = sacharidy staré názvy: uhlohydráty, uhlovodany, karbohydráty sloučeniny C, H, O Cukry = glycidy = sacharidy staré názvy: uhlohydráty, uhlovodany, karbohydráty triviální (glukóza, fruktóza ) vědecké (α-d-glukosa) organické látky nezbytné pro život hlavní zdroj energie

Více

OBECNÁ CHARAKTERISTIKA ŽIVÝCH ORGANISMŮ - PRACOVNÍ LIST

OBECNÁ CHARAKTERISTIKA ŽIVÝCH ORGANISMŮ - PRACOVNÍ LIST OBECNÁ CHARAKTERISTIKA ŽIVÝCH ORGANISMŮ - PRACOVNÍ LIST Datum: 26. 8. 2013 Projekt: Registrační číslo: Číslo DUM: Škola: Jméno autora: Název sady: Název práce: Předmět: Ročník: Studijní obor: Časová dotace:

Více

Molekulárn. rní. biologie Struktura DNA a RNA

Molekulárn. rní. biologie Struktura DNA a RNA Molekulárn rní základy dědičnosti Ústřední dogma molekulárn rní biologie Struktura DNA a RNA Ústřední dogma molekulárn rní genetiky - vztah mezi nukleovými kyselinami a proteiny proteosyntéza replikace

Více

Okruhy otázek ke zkoušce

Okruhy otázek ke zkoušce Okruhy otázek ke zkoušce 1. Úvod do biologie. Vznik života na Zemi. Evoluční vývoj organizmů. Taxonomie organizmů. Původ a vývoj člověka, průběh hominizace a sapientace u předků člověka vyšších primátů.

Více

Gymnázium Aloise Jiráska, Litomyšl, T. G. Masaryka 590

Gymnázium Aloise Jiráska, Litomyšl, T. G. Masaryka 590 , T. G. Masaryka 590 Dodatek č. 1 ke Školnímu vzdělávacímu programu pro nižší stupeň gymnázia (zpracován podle RVP ZV) Tímto dodatkem se mění osnovy předmětu Biologie a geologie pro primu od školního roku

Více

Respirace. (buněčné dýchání) O 2. Fotosyntéza Dýchání. Energie záření teplo BIOMASA CO 2 (-COO - ) = -COOH -CHO -CH 2 OH -CH 3

Respirace. (buněčné dýchání) O 2. Fotosyntéza Dýchání. Energie záření teplo BIOMASA CO 2 (-COO - ) = -COOH -CHO -CH 2 OH -CH 3 Respirace (buněčné dýchání) Fotosyntéza Dýchání Energie záření teplo chem. energie CO 2 (ATP, NAD(P)H) O 2 Redukce za spotřeby NADPH BIOMASA CO 2 (-COO - ) = -COOH -CHO -CH 2 OH -CH 3 oxidace produkující

Více

živé organismy získávají energii ze základních živin přeměnou látek v živinách si syntetizují potřebné sloučeniny, dochází k uvolňování energie některé látky organismy nedovedou syntetizovat, proto musí

Více

Střední průmyslová škola strojnická Olomouc, tř. 17. listopadu 49. Výukový materiál zpracovaný v rámci projektu Výuka moderně

Střední průmyslová škola strojnická Olomouc, tř. 17. listopadu 49. Výukový materiál zpracovaný v rámci projektu Výuka moderně Střední průmyslová škola strojnická Olomouc, tř. 17. listopadu 49 Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205 Šablona: III/2 Přírodovědné

Více

Škola: Střední škola obchodní, České Budějovice, Husova 9. Inovace a zkvalitnění výuky prostřednictvím ICT

Škola: Střední škola obchodní, České Budějovice, Husova 9. Inovace a zkvalitnění výuky prostřednictvím ICT Škola: Střední škola obchodní, České Budějovice, Husova 9 Projekt MŠMT ČR: EU PENÍZE ŠKOLÁM Číslo projektu: CZ.1.07/1.5.00/34.0536 Název projektu školy: Výuka s ICT na SŠ obchodní České Budějovice Šablona

Více

VAKUOLA. membránou ohraničený váček membrána se nazývá tonoplast. běžná u rostlin, zvířata specializované funkce či její nepřítomnost

VAKUOLA. membránou ohraničený váček membrána se nazývá tonoplast. běžná u rostlin, zvířata specializované funkce či její nepřítomnost VAKUOLA membránou ohraničený váček membrána se nazývá tonoplast běžná u rostlin, zvířata specializované funkce či její nepřítomnost VAKUOLA Funkce: uložiště odpadů a uskladnění chemických látek (fenolické

Více

Organely vyskytující se pouze u rostlinné bu ky. Bun ná st na neživá sou ást všech rostlinných bun k (celulóza)

Organely vyskytující se pouze u rostlinné bu ky. Bun ná st na neživá sou ást všech rostlinných bun k (celulóza) Organely vyskytující se pouze u rostlinné bu ky Bun ná st na neživá sou ást všech rostlinných bun k (celulóza) Plastidy semiautonomní organely charakteristické pro zelené rostliny 1. Bezbarvé leukoplasty

Více

Základy biochemie KBC/BCH

Základy biochemie KBC/BCH ÚVOD Základy biochemie KBC/BCH Přednáška 4 h, Út, Pá od 8:00 do 9:30 Počet kreditů - 4 Materiály budou na webu KBC Další výukové materiály http://ibiochemie.upol.cz Zkouška písemná předtermíny v týdnu

Více

Výuka genetiky na Přírodovědecké fakultě UK v Praze

Výuka genetiky na Přírodovědecké fakultě UK v Praze Výuka genetiky na Přírodovědecké fakultě UK v Praze Studium biologie na PřF UK v Praze Bakalářské studijní programy / obory Biologie Biologie ( duhový bakalář ) Ekologická a evoluční biologie ( zelený

Více

Cukry (Sacharidy) Sacharidy a jejich metabolismus. Co to je?

Cukry (Sacharidy) Sacharidy a jejich metabolismus. Co to je? Sacharidy a jejich metabolismus Co to je? Cukry (Sacharidy) Organické látky, které obsahují karbonylovou skupinu (C=O) a hydroxylové skupiny (-O) vázané na uhlících Aldosy: karbonylová skupina na konci

Více

AUTOTROFNÍ A HETEROTROFNÍ VÝŽIVA ROSTLIN, VODNÍ REŽIM ROSTLIN, RŮST A POHYB ROSTLIN

AUTOTROFNÍ A HETEROTROFNÍ VÝŽIVA ROSTLIN, VODNÍ REŽIM ROSTLIN, RŮST A POHYB ROSTLIN Otázka: Výživa rostlin, vodní režim rostlin, růst a pohyb rostlin Předmět: Biologie Přidal(a): Cougee AUTOTROFNÍ A HETEROTROFNÍ VÝŽIVA ROSTLIN, VODNÍ REŽIM ROSTLIN, RŮST A POHYB ROSTLIN 1. autotrofní způsob

Více

Oligobiogenní prvky bývají běžnou součástí organismů, ale v těle jich již podstatně méně (do 1%) než prvků makrobiogenních.

Oligobiogenní prvky bývají běžnou součástí organismů, ale v těle jich již podstatně méně (do 1%) než prvků makrobiogenních. 1 (3) CHEMICKÉ SLOŢENÍ ORGANISMŮ Prvky Stejné prvky a sloučeniny se opakují ve všech formách života, protože mají shodné principy stavby těla i metabolismu. Např. chemické děje při dýchání jsou stejné

Více

Vzdělávací materiál. vytvořený v projektu OP VK CZ.1.07/1.5.00/34.0211. Anotace. Metabolismus sacharidů. VY_32_INOVACE_Ch0216.

Vzdělávací materiál. vytvořený v projektu OP VK CZ.1.07/1.5.00/34.0211. Anotace. Metabolismus sacharidů. VY_32_INOVACE_Ch0216. Vzdělávací materiál vytvořený v projektu VK Název školy: Gymnázium, Zábřeh, náměstí svobození 20 Číslo projektu: Název projektu: Číslo a název klíčové aktivity: CZ.1.07/1.5.00/34.0211 Zlepšení podmínek

Více

Struktura a funkce biomakromolekul KBC/BPOL

Struktura a funkce biomakromolekul KBC/BPOL Struktura a funkce biomakromolekul KBC/BPOL 2. Posttranslační modifikace a skládání proteinů Ivo Frébort Biosyntéza proteinů Kovalentní modifikace proteinů Modifikace proteinu může nastat předtím než je

Více

DUM č. 3 v sadě. 37. Bi-2 Cytologie, molekulární biologie a genetika

DUM č. 3 v sadě. 37. Bi-2 Cytologie, molekulární biologie a genetika projekt GML Brno Docens DUM č. 3 v sadě 37. Bi-2 Cytologie, molekulární biologie a genetika Autor: Martin Krejčí Datum: 02.06.2014 Ročník: 6AF, 6BF Anotace DUMu: chromatin - stavba, organizace a struktura

Více

AMINOKYSELINY REAKCE

AMINOKYSELINY REAKCE CHEMIE POTRAVIN - cvičení AMINOKYSELINY REAKCE Milena Zachariášová (milena.zachariasova@vscht.cz) Ústav chemie a analýzy potravin, VŠCHT Praha REAKCE AMINOKYSELIN část 1 ELIMINAČNÍ REAKCE DEKARBOXYLACE

Více

Obecný metabolismus.

Obecný metabolismus. mezioborová integrace výuky zaměřená na rostlinnou biochemii a fytopatologii CZ.1.07/2.2.00/28.0171 Obecný metabolismus. Regulace glykolýzy a glukoneogeneze (5). Prof. RNDr. Pavel Peč, CSc. Katedra biochemie,

Více

Výukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.5.00/34.0996

Výukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.5.00/34.0996 Výukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.5.00/34.0996 Šablona: III/2 č. materiálu: VY_32_INOVACE_CHE_419 Jméno autora: Třída/ročník: Mgr. Alena

Více

BÍLKOVINY. V organismu se nedají nahradit jinými sloučeninami, jen jako zdroj energie je mohou nahradit sacharidy a lipidy.

BÍLKOVINY. V organismu se nedají nahradit jinými sloučeninami, jen jako zdroj energie je mohou nahradit sacharidy a lipidy. BÍLKOVINY o makromolekulární látky, z velkého počtu AMK zbytků o základ všech organismů o rostliny je vytvářejí z anorganických sloučenin (dusičnanů) o živočichové je musejí přijímat v potravě, v trávicím

Více

Číslo projektu: CZ.1.07/1.5.00/34.0290. Ročník: 1.

Číslo projektu: CZ.1.07/1.5.00/34.0290. Ročník: 1. Zlepšení podmínek pro vzdělávání na středních školách Operačního programu Vzdělávání pro konkurenceschopnost Název a adresa školy: Integrovaná střední škola Cheb, Obrněné brigády 6, 350 11 Cheb Číslo projektu:

Více

VY_32_INOVACE_002. VÝUKOVÝ MATERIÁL zpracovaný v rámci projektu EU peníze školám

VY_32_INOVACE_002. VÝUKOVÝ MATERIÁL zpracovaný v rámci projektu EU peníze školám VY_32_INOVACE_002 VÝUKOVÝ MATERIÁL zpracovaný v rámci projektu EU peníze školám Registrační číslo projektu: CZ. 1.07. /1. 5. 00 / 34. 0696 Šablona: III/2 Název: Buňka Vyučovací předmět: Základy ekologie

Více

Biologie a chemie. dvouletý volitelný předmět

Biologie a chemie. dvouletý volitelný předmět Název předmětu: Zařazení v učebním plánu: Biologie a chemie O7A, C3A, O8A, C4A dvouletý volitelný předmět Cíle předmětu Cílem předmětu je prohloubit učivo, předepsané RVP G pro biologii a chemii. Má rozvíjet

Více

Rozdíly mezi prokaryotní a eukaryotní buňkou. methanobacterium, halococcus,...

Rozdíly mezi prokaryotní a eukaryotní buňkou. methanobacterium, halococcus,... Dělení buňky Biologie člení živé organizmy do dvou hlavních kategorií: prokaryotní a eukaryotní organizmy. Na základě srovnání 16S rrna se zjistilo, že na naší planetě jsou 3 hlavní nadříše buněčných forem:

Více

Název školy: Střední odborná škola stavební Karlovy Vary Sabinovo náměstí 16, 360 09 Karlovy Vary Autor: Hana Turoňová Název materiálu:

Název školy: Střední odborná škola stavební Karlovy Vary Sabinovo náměstí 16, 360 09 Karlovy Vary Autor: Hana Turoňová Název materiálu: Název školy: Střední odborná škola stavební Karlovy Vary Sabinovo náměstí 16, 360 09 Karlovy Vary Autor: Hana Turoňová Název materiálu: VY_32_INOVACE_05_BUŇKA 2_P1-2 Číslo projektu: CZ 1.07/1.5.00/34.1077

Více

MIKROORGANISMY EDÍ. Ústav inženýrstv. enýrství ochrany ŽP FT UTB ve Zlíně

MIKROORGANISMY EDÍ. Ústav inženýrstv. enýrství ochrany ŽP FT UTB ve Zlíně MIKROORGANISMY A OCHRANA ŽIVOTNÍHO PROSTŘED EDÍ Ústav inženýrstv enýrství ochrany ŽP FT UTB ve Zlíně Důvody využívání mikroorganismů v procesech ochrany životního prostřed edí jsou prakticky všudypřítomné

Více

Metabolismus bílkovin. Václav Pelouch

Metabolismus bílkovin. Václav Pelouch ZÁKLADY OBECNÉ A KLINICKÉ BIOCHEMIE 2004 Metabolismus bílkovin Václav Pelouch kapitola ve skriptech - 3.2 Výživa Vyvážená strava člověka musí obsahovat: cukry (50 55 %) tuky (30 %) bílkoviny (15 20 %)

Více

Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti. Transport elektronů a oxidativní fosforylace

Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti. Transport elektronů a oxidativní fosforylace Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Transport elektronů a oxidativní fosforylace Oxidativní fosforylace vs. fotofosforylace vyvrcholení katabolismu Všechny oxidační degradace

Více

Těsně před infarktem. Jak předpovědět infarkt pomocí informatických metod. Jan Kalina, Marie Tomečková

Těsně před infarktem. Jak předpovědět infarkt pomocí informatických metod. Jan Kalina, Marie Tomečková Těsně před infarktem Jak předpovědět infarkt pomocí informatických metod Jan Kalina, Marie Tomečková Program, osnova sdělení 13,30 Úvod 13,35 Stručně o ateroskleróze 14,15 Měření genových expresí 14,00

Více

Energie v chemických reakcích

Energie v chemických reakcích Energie v chemických reakcích Energetická bilance reakce CH 4 + Cl 2 = CH 3 Cl + HCl rozštěpení vazeb vznik nových vazeb V chemických reakcích dochází ke změně vazeb mezi atomy. Vazebná energie uvolnění

Více

Inovace studia molekulární a buněčné biologie

Inovace studia molekulární a buněčné biologie Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. MBIO1/Molekulární biologie 1 Tento projekt je spolufinancován

Více

Chemické složení buňky

Chemické složení buňky Chemické složení buňky Chemie života: založena především na sloučeninách uhlíku téměř výlučně chemické reakce probíhají v roztoku nesmírně složitá ovládána a řízena obrovskými polymerními molekulami -chemickými

Více

Cvičení z biologie a chemie dvouletý volitelný předmět

Cvičení z biologie a chemie dvouletý volitelný předmět Název předmětu: Zařazení v učebním plánu: Cvičení z biologie a chemie O7A, C3A, O8A, C4A dvouletý volitelný předmět Cíle předmětu Cílem předmětu je upevnit a prohloubit učivo, které předepisují osnovy

Více

Řízení metabolismu. Bazální metabolismus minimální látková přeměna potřebná pro udržení života při tělesném i duševním klidu

Řízení metabolismu. Bazální metabolismus minimální látková přeměna potřebná pro udržení života při tělesném i duševním klidu PŘEMĚNA LÁTEK A VÝŽIVA ČLOVĚKA METABOLISMUS (vzájemná přeměna látek a energie) tvoří děje: Katabolismus štěpení složitých organických látek na jednoduché, energie se uvolňuje, využíváno při rozkladu přijaté

Více