ÚVOD DO STUDIA BIOLOGIE

Rozměr: px
Začít zobrazení ze stránky:

Download "ÚVOD DO STUDIA BIOLOGIE"

Transkript

1 UNIVERZITA JANA EVANGELISTY PURKYNĚ V ÚSTÍ NAD LABEM FAKULTA PŘÍRODOVĚDECKÁ ÚVOD DO STUDIA BIOLOGIE STUDIJNÍ OPORA PRO POSLUCHAČE KOMBINOVANÉHO BAKALÁŘSKÉHO STUDIA BIOLOGIE JAN IPSER ÚSTÍ NAD LABEM

2 ÚVODNÍ POZNÁMKA Vážené studentky a studenti, dostává se vám do rukou studijní opora k předmětu Úvod do studia biologie. Je určena vám, frekventantům kombinované formy bakalářského stupně studia biologie realizovaného na Přírodovědecké fakultě Univerzity J. E. Purkyně v Ústí nad Labem. Záměrem autora bylo vytvořit relativně ucelený text obsahující základní informace k tématickým celkům, které jednak tvoří stěžejní část předmětu Úvod do studia biologie (biologické systémy a jejich klasifikace, biologie buňky, biologie populací a společenstev, dědičnost a proměnlivost, biologická evoluce) zařazeného ve studijním programu do prvního ročníku, jednak jsou v průběhu dalšího studia rozvíjeny v rámci výuky dílčích biologických disciplin. Obsahuje podstatné informace k tématickým celkům, které jsou blíže probírány na konzultacích, seminářích a cvičeních. Snahou autora zároveň bylo omezit na nezbytné minimum ty partie, které jsou probírány podrobně v jiných předmětech vašeho studijního programu, aby bylo zamezeno nadměrné duplicitě. Úspěšným zvládnutím uvedeného předmětu byste měli být v obecné rovině vybaveni celkovým přehledem o základních biologických jevech a procesech, znalostmi základních biologických termínů, metod a přístupů požívaných k poznávání živých systémů. Od předmětu Úvod do studia biologie očekáváme, že vám napomůže orientovat se v moderní biologii a jejích trendech. Předmět je pojímán jako určitá propedeutika ke studiu dílčích biologických disciplin, zařazených ve studijním plánu a rozvíjejících již nabyté vědomosti, schopnosti a dovednosti. Značně rozsáhlá partie textu opory je věnována biologii buňky a to především proto, že by měla sloužit jako teoretická část pro praktickou výuku řady laboratorních biologických metod. Tato studijní opora tudíž není koncipována jako učebnice pokrývající proporcionálně všechny stěžejní oblasti biologie, ale jako studijní materiál, který je kompatibilní s příbuznými předměty zařazenými do výše uvedeného studijního programu a tvoří s nimi jednotný celek. Dovoluji si upozornit, že elektronická verze studijní opory Úvod do studia biologie je určena výhradně pro vaše osobní studijní účely a nesmí být dále rozšiřována (kopírována). Přeji vám hodně úspěchů ve studiu zvoleného oboru. V případě potřeby se neostýchejte využít všech dalších obvyklých a dostupných forem komunikace s vyučujícími (elektronické, telefonické, osobní) nad rámec uskutečněných konzultací. Autor 2

3 I. OBECNÉ VLASTNOSTI BIOLOGICKÝCH SYSTÉMŮ Život můžeme definovat na nejobecnější úrovni jako zvláštní formu pohybu hmoty. Základním předmětem biologie je poznání života jako zvláštní formy existence hmoty, poznání struktury a funkcí tohoto zvláštního způsobu bytí. Z hlediska dosaženého stupně poznání biologických věd můžeme na onu zvláštní formu existence hmoty nahlížet jako na dialekticky podmíněnou, časoprostorově ohraničenou, s okolím interagující, hierarchicky uspořádanou a evolvující strukturně-funkční jednotu bílkovin a nukleových kyselin vyznačující se vlastními atributy (tj. atributy živých soustav), principy, zákonitostmi a zákony, které se vyvíjejí na základě existujících fyzikálních a chemických procesů, avšak dosahují kvalitativně vyššího, svébytného stupně vývoje hmoty. Proces poznání se vyvíjí od poznávání makrosvěta dvěma směry: k poznávání megasvěta a k poznávání mikrosvěta. Přiblížení se k poznání podstaty života souvisí především s rozvojem poznání života na stále nižších úrovních mikrosvěta celulární, subcelulární, molekulární, submolekulární. Je zřejmé, že při takto orientovaném studiu života nemůže biologie využívat pouze specifických biologických metod, technik a tradičních přístupů, které byly adekvátní pro studium biologických makroobjektů a makroprocesů. K postižení obecných vlastností života musí biologie nutně respektovat a aplikovat zejména poznatky a metody chemických a fyzikálních věd, obecnou teorii systémů, teorii informace, teorii řízení, teorii nerovnovážné termodynamiky a další. Biologie na úrovni mikrosvěta se neobejde bez tvorby modelů (kybernetických, matematických) a odpovídajícího matematického aparátu při řešení některých problémů, nebo vyhodnocování experimentálně získaných dat. Pro rozvoj biologického poznání mají nesporný význam též logika, filozofie a etika, kteréžto vědy na druhé straně mohou být v mnohém metodami aplikovanými v moderní biologii i výsledky biologických věd inspirovány. Základní strukturní a funkční jednotkou živé hmoty je buňka. Hovoříme o tzv. buněčném principu organizace živých systémů. Každá buňka představuje systém: hmotný, konečný, otevřený, hierarchicky uspořádaný, adaptivní, autoregulující se a autoreprodukující se. Těmto charakteristikám buňky jako systému odpovídají základní atributy života: autoreprodukce, autoregulace, metabolizmus, dědičnost, vývoj (ontogenetický a fylogenetický), růst, pohyb a dráždivost. I.1. BIOLOGICKÝ SYSTÉM JAKO OTEVŘENÝ SYSTÉM V obecné teorii systémů se rozlišují tři základní typy systémů: systém izolovaný, který s okolím nevyměňuje hmotu, energii, ani informaci, systém uzavřený, který s okolím vyměňuje energii a systém otevřený, který s okolím vyměňuje hmotu, energii i informaci. (Pozn.: Někdy se tyto jednotlivé typy systémů charakterizují pouze na základě výměny hmoty a energie s okolím, neboť informace je vždy vázána na hmotu). Systémy izolované a uzavřené se nacházejí ve stavu termodynamické rovnováhy, nebo k tomuto stavu spějí, pokud jsou z něho vychýleny v důsledku náhodných fluktuací. Stav termodynamické rovnováhy (rovnovážný stav) je nejpravděpodobnějším stavem systému, tedy stavem, ve kterém systém dosahuje maximální entropie a je proto systémem neuspořádaným. Živé systémy jsou však systémy uspořádané (organizované); to znamená, že se nacházejí ve stavu vzdáleném od termodynamické rovnováhy (rovnovážného stavu) a tudíž jsou to systémy existující s nižší než maximální pravděpodobností 3

4 a s nižším obsahem entropie, než mají systémy v rovnovážném stavu. Proto za míru uspořádanosti živého systému je možné považovat negentropii udávající vzdálenost daného uspořádaného systému od systému neuspořádaného (tj. systému s maximální entropií). Evoluční vznik, existence a vývoj živých systémů není v rozporu s termodynamickými zákony a principy. Fluktuace, které systém vychýlí dostatečně daleko od rovnovážného nebo jemu blízkého stavu, mohou vést k ustavení nové uspořádanosti, ke vzniku disipativních struktur. Záznam informace do vnitřní paměti systému může rezultovat v ustavení stability uspořádanějšího stacionárního stavu. Tím je naznačena uskutečnitelnost vývojových změn v náležitě organizovaných (uspořádaných) systémech; biologické systémy mezi ně patří. Biologická evoluce je spjata se vznikem uspořádaných systémů a s převažující tendencí jejich vývoje k systémům s vyšší uspořádaností. Na každý biologický objekt lze nahlížet jako na otevřený systém s disipativní strukturou; existence takových systémů je možná za předpokladu akumulace negentropie, zprostředkované interakcemi systému s okolím. Znemožnění interakce otevřeného systému s okolím vede nutně k nárůstu entropie systému, snižování jeho uspořádanosti (organizovanosti) a dříve či později k dosažení rovnovážného stavu. Z biologického hlediska lze smrt označit za stav, ve kterém se dosahuje termodynamické rovnováhy; umírání jako proces končící smrtí je z tohoto hlediska procesem entropizačním. Život a smrt jsou dvě stránky téhož: první je spojeno se vznikem a vývojem uspořádaného systému, druhé s jeho destrukcí. Existence každého živého systému je časově omezená a každý živý systém, jakmile jednou vznikl, spěje neodvratně ke svému zániku. To platí jak pro kteroukoli jednotlivou buňku, tak pro všechny vyšší úrovně organizace živé hmoty. Přestože mezi zástupci různých taxonů evolučně méně či více příbuzných existují četné rozdíly, které reflektují rovněž rozdílný stupeň uspořádanosti toho kterého systému, jsou však nepatrné oproti rozdílům ve stupni uspořádanosti jakéhokoli živého (biologického) systému a jakéhokoli systému neživého (nebiologického). A právě tento rozdíl můžeme považovat za podstatu života jako nové kvality v evoluci vesmíru; života jako kvalitativně vyšší formy pohybu hmoty, než je forma fyzikální a chemická a zároveň nižší, než je forma společenská. Životní projevy a procesy nelze pochopit a vysvětlit jejich redukcí na procesy chemické a fyzikální, ani vnášením antropomorfizujících či sociologizujících přístupů. Obojí odporuje respektování života jako svébytné formy pohybu hmoty s vlastními principy, zákonitostmi a zákony; nutně vede k falešnému, nepřesnému, objektivně nepravdivému poznání. Každý systém je rozložitelný (alespoň v abstrakci) na subsystémy. V biologii buňky za základní systém považujeme buňku a jednotlivé buněčné organely (kompartmenty) za jeho subsystémy. Okolím systému (buňky) je vnější prostředí buňky; to nabývá různých podob v závislosti na tom, o jakou buňku se jedná. U samostatně žijícího prvoka to může být například voda v nádrži, u bakterie prostředí uvnitř hostitelského organizmu, u buňky tkáně mnohobuněčného organizmu bezprostřední okolí dané buňky (extracelulární tekutina), ale také v širším slova smyslu okolí tkáně či orgánu, se kterým daná buňka komunikuje například prostřednictvím mezibuněčných spojů. Jednotlivé subsystémy systému (buňky) vytvářejí strukturně a funkčně propojený celek při zachování menšího či většího stupně relativní autonomie. V buňkách se takto uplatňuje princip kompartmentace, který umožňuje diferenciaci (specializaci), kooperaci i integraci buněčných procesů. V souladu s tímto principem jsou jednotlivé subsystémy v rámci systému zpravidla jednak strukturně a funkčně specializovány, jednak vzájemně kooperují a proto jednotlivé funkce subsystémů mohou být v rámci vyššího celku integrovány (princip integrace). Realizace specifických funkcí buněčných subsystémů je možná při intracelulární prostorové separaci funkčních struktur (princip asymetrie). Tato separace není absolutní; struktury jednotlivých kompartmentů jsou propojeny mezi sebou navzájem, nebo se svým okolím a proto mohou dílčí buněčné procesy na sebe navazovat (spřažené reakce, kaskády), mohou se vzájemně podmiňovat nebo ovlivňovat (autoregulace), kooperovat a doplňovat se (princip komplemetarity). 4

5 Za subsystémy buňky lze označit například buněčné jádro, endoplazmatické retikulum, Golgiho aparát či mitochondrie. Každý z těchto subsystémů představuje specifickou strukturu, která plní specifické funkce; zároveň jsou tyto struktury a/nebo jejich funkční produkty propojeny a vzájemně se podmiňují nebo ovlivňují. Takové propojení struktur a funkcí je možné pouze při vymezeném rozsahu principu specializace v buňce. To se projevuje existencí některých stejných nebo téměř stejných základních struktur vznikajících v důsledku uplatnění jednotného stavebního principu (např. membránový princip). Integrace kooperujících, specializovaných, časoprostorově strukturně a funkčně oddělených subsystémů vede k hierarchickému uspořádání biologických systémů (princip hierarchie). Biologické systémy, existující na vyšší než buněčné úrovni, jsou organizovány analogickým způsobem. I.2. BIOLOGICKÝ SYSTÉM JAKO HMOTNÝ SYSTÉM Jakákoli buňka představuje hmotný objekt a jakýkoli proces realizovaný uvnitř buňky, mezi interagujícími (komunikujícími) buňkami nebo mezi buňkami a jejich okolím je vždy vázán na hmotný substrát; pro možnost realizace jakéhokoli buněčného procesu mimo odpovídající hmotný substrát neexistuje žádné vědecké opodstatnění. Dílčí procesy v buňce podléhají fyzikálním a chemickým zákonům, lze je na jejich základě vysvětlit a při vědomí abstrakce a simplifikace (a pouze za těchto podmínek) je na procesy chemické a fyzikální redukovat. Jakýkoli buněčný proces je spojen s tokem látek, energie a informace, přičemž tyto jednotlivé komponenty (látky, energie, informace) jsou v reálných buněčných systémech navzájem neoddělitelné; izolovat je od sebe lze rovněž pouze v abstrakci, jestliže např. přistupujeme k buňce jako systému látkovému, energetickému nebo informačnímu. Tok látek představuje jakékoli změny v látkovém složení buňky, výměně látek buňky s okolím, v přeměně látek (metabolizmu) a v časoprostorové organizaci (uspořádání) látek. Jinými slovy, tok látek obecně představuje příjem látek z prostředí, jejich přeměnu živým systémem a výdej již neutilizovatelných (odpadních) látek do prostředí (okolí živého systému). Pro chemické složení buněk je charakteristické majoritní zastoupení organických sloučenin (tedy různých uhlíkatých sloučenin), mezi nimiž mají v živých buňkách (ostatně pro život jako vlastnost vyvíjející se hmoty vůbec) specifické postavení především biopolymery fungující jako informační makromolekuly (nukleové kyseliny, proteiny a polysacharidy). Nukleové kyseliny jsou nezbytné pro procesy autoreprodukční. Proteiny jsou jednak strukturními komponentami buňky, jednak plní řadu většinou velmi specifických funkcí; např. bez enzymů by se nemohla uskutečnit většina biochemických procesů (syntetických nebo regulačních), konec konců život jako takový je za pozemských podmínek bez katalytické aktivity enzymů nepředstavitelný. Oligosacharidy a polysacharidy jsou zapojeny do velmi četných dějů intermediárního metabolizmu a jsou též významnými stavebními složkami buněk. Mimo jiné se významně podílejí na ochraně buněk (buněčné stěny) a na rozpoznávacích a transportních buněčných procesech (receptory, antigeny aj.). Jednotlivé buněčné komponenty vytvářejí velmi složité, hierarchicky uspořádané, dynamické struktury, participující na udržení stacionárního stavu (tj. stavu vzdáleného od stavu termodynamické rovnováhy). 5

6 I.3. BIOLOGIOCKÝ SYSTÉM JAKO ENERGETICKÝ SYSTÉM Životní procesy v buňce jako reálném hmotném systému se nemohou uskutečňovat beze změn energie, tj. bez příjmu a výdeje energie (energetická bilance), jejího přenosu a transformace. Připomeňme si, že energie je vlastně nejobecnější mírou pohybu hmoty, je od hmoty neoddělitelná (E = m c 2 ), je její vlastností a proto nemůže být produkována. Primárním vnějším zdrojem energie pro živé systémy je Slunce. Existence takového zdroje energie je nezbytnou podmínkou pro vznik, udržení a progresívní evoluční vývoj uspořádaných stavů biologických systémů prostřednictvím realizace negentropických dějů. Buňky jsou schopné energii s okolím permanentně vyměňovat, uvnitř ji transformovat ve volnou energii a fixovat volnou energii při chemických reakcích. Bez takové výměny energie by buněčné děje záhy ustaly a systém by spěl do stavu termodynamické rovnováhy, protože část energie, přeměněná při intracelulárních transformacích energie na teplo, by nebyla doplněna z vnějšího energetického zdroje a v důsledku toho by se v buňce snižovalo množství energie schopné konat práci. Energie, uvolněná při (bio)chemických reakcích, může být deponována v makroergních vazbách některých sloučenin (např. nukleotidtrifosfátů - NTP) a v případě potřeby z nich zase, jako z pohotově dostupných donorů, uvolněna a dále transformována. Živým systémem neutilizovatelná energie může být uvolňována ve formě tepla a chemických látek s nižším obsahem energie do okolí systému. I.4. BIOLOGICKÝ SYSTÉM JAKO INFORMAČNÍ SYSTÉM Přenos informace je vždy vázán na přenos hmoty nebo energie. Biologické systémy s okolím permanentně vyměňují informace. Buňky jako otevřené systémy využívají takovéto informace v rozsahu, který nenarušuje jejich vnitřní paměť, při regulaci životních procesů způsoby, které umožňují udržet stacionární stav. Přitom se nutně uplatňují četné zpětnovazebné vztahy (zpětné vazby pozitivní a negativní) a další regulační mechanizmy. Mezi celulárními subsystémy i mezi buňkou a jejím okolím se tedy uskutečňuje tok informací, tzn. procesy zahrnující přenos informací, jejich expresi a transformaci, případně jejich vznik a disipaci. Informační tok ve všech živých soustavách neodporuje žádnému z obecných zákonů kybernetiky a teorie informace. Každá buňka disponuje vnitřní pamětí a četnými rekogničními strukturami a mechanizmy. Ústřední roli mezi nimi sehrává genetická paměť a mechanizmy její reprodukce, přenosu a také dědičné proměnlivosti (mutability). Primárním, nepostradatelným zdrojem informací pro zachování organizace živého systému a jeho bezchybnou autoreprodukci jsou nukleové kyseliny (základní informační biomakromolekuly), v jejichž primární struktuře je obsažena genetická informace. Jak je známo z teorie informace, při přenosu informace dochází k šumu. Za specifickou formu šumu v biologických systémech je možné považovat mutaci, tj. relativně stálou, s určitou pravděpodobností vznikající, reprodukovatelnou dědičnou změnu genetické informace (primární struktury nukleových kyselin DNA, příp. RNA). Na mutaci lze však zároveň nahlížet jako na primární událost a potenciální materiální substrát pro evoluční proces. S jistým zjednodušením můžeme konstatovat, že evoluční proces se v zásadě realizuje na základě pozitivně selektovaného šumu (mutace) v genetické informaci. Mezi další informační biomakromolekuly se řadí především proteiny a polysacharidy 6

7 I.5. PRINCIP HIERARCHIE V ŽIVÝCH SYSTÉMECH Všechny živé systémy jsou hierarchicky uspořádané. Hovoříme o tzv. hierarchickém principu organizace živých systémů, který lze schématicky znázornit následující posloupností jednotlivých organizačních úrovní živých systémů: atomy molekuly a ionty nízkomolekulární látky makromolekulární látky supramolekulární struktury (komplexy) buněčné organely jednotlivé buňky kolonie buněk tkáně orgány soustavy orgánů organizmy populace společenstva ekologické systémy složky biosféry biosféra. Každá z uvedených úrovní je charakteristická množinou (spektrem) pro ni specifických znaků (ve smyslu kvalitativním i kvantitativním) a současně relativní autonomií, v jistém rozsahu limitovanou vlastnostmi (potencialitami) entit nižších úrovní. I.6. AUTOREPRODUKCE Základním předpokladem autoreprodukce je striktní přenos kvantitativně i kvalitativně nezměněné genetické informace z generace na generaci (vertikální přenos) a její adekvátní vyjádření (exprese). Přesný přenos genetické informace je zajištěn mechanizmy buněčného dělení (mitóza, meióza) a souvisí se zmnožením (replikací) DNA před vlastním dělením buněk. Exprese genetické informace se realizuje především prostřednictvím transkripce (přepisu) genetické informace do podoby informační ribonukleové kyseliny (mrna) a tzv. funkčních ribonukleových kyselin ribozomových (rrna) a transferových (trna), a translace (překladu) genetické informace (strukturních genů) do podoby primární struktury polypeptidového řetězce za účasti ribozomů, souboru trna s navázanými aktivovanými molekulami standardních aminokyselin, mrna a souboru translačních faktorů včetně příslušných enzymů. Procesy replikace, transkripce a translace jsou složitě regulované (regulace genové exprese). Regulovány jsou rovněž fáze buněčného cyklu, především v tzv. kontrolních bodech prostřednictvím systému cyklinů a cyklin-dependentních kináz (Cdk) a růstových faktorů. V průběhu biologické evoluce se vyvinulo několik typů a způsobů rozmnožování. Všechny lze v zásadě subsumovat do dvou základních skupin a mechanizmů. Jednu skupinu tvoří rozmnožování nepohlavní a rozmnožování pohlavní. Při studiu většiny biologických procesů na organizmální a vyšší úrovni je třeba přihlížet ke způsobu rozmnožování příslušného druhu. Stručný přehled a charakteristika některých nejčastěji se vyskytujících způsobů rozmnožování je uveden níže. I.6.1. NEPOHLAVNÍ ROZMNOŽOVÁNÍ (AMIXE) Nepohlavní rozmnožování je evolučně původnější, typické pro organizmy nacházející se na nižším stupni fylogenetického vývoje. Mezi jeho charakteristické znaky patří absence gamet a produkce geneticky identických individuí (klonu) prostřednictvím mitotického (nebo jemu analogického amitotického, binárního) dělení, které zajišťuje rovnoměrné rozdělení (v případě amitózy přibližně rovnoměrné) a distribuci zreplikovaných genoforů z mateřské buňky do nově vznikajících ( dceřinných ) buněk. Nepohlavní rozmnožování tedy konzervuje existující genotypy (resp. genomy) a tudíž nepřispívá k rozšíření genetické variability (neuvažujeme-li vliv mutačního procesu). 7

8 BINÁRNÍ DĚLENÍ Jedná se o prosté rozdělení buňky na dvě části (buňky dceřinné), obsahující stejnou genetickou výbavu. Vyskytuje se u bakterií, některých jednobuněčných řas a prvoků. FIZIPARIE Jedná se o způsob rozmnožování na základě dělení (fragmentace) těla mnohobuněčných organizmů, uplatňující se např. u nižších bezobratlých živočichů (láčkovci, ploštěnci, kroužkovci) a souvisí s jejich vysokou regenerační schopností. GEMIPARIE Gemiparií rozumíme vytváření pupenů na výchozích (rodičovkých) organizmech a jejich následné oddělení za vzniku nových, samostatně existujících jedinců (potomků). Vyskytuje se například u láčkovců, mechovek nebo pláštěnců. VEGETATIVNÍ ROZMNOŽOVÁNÍ Tento způsob nepohlavního rozmnožování je typický pro stélkaté rostliny i pro mnohé druhy cévnatých rostlin. U některých taxonů rostlin existují dokonce specifické orgány vegetativního rozmnožování (cibule, hlízy, oddenky, šlahouny apod.). Mezi významné pěstitelské a šlechtitelské metody patří očkování a roubování jako formy vegetativního rozmnožování, uplatňované zejména v ovocnářství. I POHLAVNÍ ROZMNOŽOVÁNÍ (AMFIMIXE) Pohlavní rozmnožování je evolučně odvozenější. Je spojeno s tvorbou gamet prostřednictvím meiózy, která mechanizmem segregace a rekombinace genů zajišťuje vyšší variabilitu genetické informace, přenášené při pohlavním aktu od rodičů na potomky. Při gametogenezi je tedy segregována do jednotlivých gamet sestava chromozomů (resp. genů), odlišná od té, která byla původně obsažena v zárodečných buňkách. Vznikají tak geneticky (genotypově) vysoce heterogenní populace. Pohlavní rozmnožování tudíž vede k rozšíření genetické variability (na rozdíl od rozmnožování nepohlavního). Primární podmínkou zplození nového diploidního (2n) jedince je splynutí dvou haploidních (1n) rodičovských gamet (resp. buněčných jader) za vzniku oplozené samičí gamety (zygoty) s jedním diploidním (2n) buněčným jádrem obsahujícím rovným dílem (tj. vždy jednou polovinou) zastoupený genetický materiál pocházející z obou zúčastněných rodičovských gamet (spermie a vajíčka, pylového zrna a vaječné buňky). Další proliferací a diferenciací zygoty se vyvíjí nový jedinec. Kromě diploidních organizmů existují též organizmy polyploidní, tj. takové, které ve svém genomu obsahují celé násobky (vyšší než dvě) haploidních (základních) sad chromozómů. Je zřejmé, že u polyploidního organizmu, např. tetraploidního, povede meióza k redukci chromozomů na polovinu a proto gamety tetraploida budou diploidní (2n) a po splynutí dvou diploidních gamet (pocházejících od tetraploidních jedinců) se u potomka obnoví tetraploidní (4n) stav. Obecně tedy platí, že při pohlavním způsobu rozmnožování se v průběhu gametogeneze redukuje počet chromozomů (obsah jaderné genetické informace) na polovinu a po oplození se obnovuje (v zygotě) původní počet chromozomů (obsah genetické informace) charakteristický pro somatické buňky příslušného druhu. Princip segregace spolu s principem kombinace (uplatňujícími se při gametogenezi) ve svých důsledcích zaručují konstantní počet chromozomů (karyotypovou stabilitu) jednotlivých druhů organizmů. 8

9 Je třeba upozornit na některé zvláštnosti pohlavního rozmnožování. Například zygota u některých druhů rostlin (řas) a hub bezprostředně po svém vzniku prochází meiotickým dělením za produkce haploidních pohlavních spor, z nichž se vyvinou haploidní jedinci. APOMIXE Jako apomiktické se označuje takové rozmnožování, při kterém se nový jedinec vyvíjí buď z pohlavní buňky (gamety), anebo z jiné buňky pohlavního aparátu, avšak bez vzniku zygoty (azygoticky). Apomixi tedy lze označit za zvláštní případ amfimixe. PARTENOGENEZE Partenogenezí se rozumí vývoj nového jedince z neoplozeného vajíčka nebo vaječné buňky. Například u včel se z neoplozených vajíček partenogeneticky vyvíjejí samci a proto jsou haploidní, kdežto z oplozených vajíček se vyvíjejí samice, které jsou proto diploidní. Partenogeneze se významně uplatňuje též v reprodučním procesu mšic a některých dalších skupin bezobratlých živočichů. GYNOGENEZE Při gynogenezi se nový jedinec vyvíjí ze samičí gamety, avšak po stimulaci (indukci dělení) samčí gametou. Gynogenezi lze navodit u některých druhů rostlin a bezobratlých živočichů stimulací samičí gamety samčí gametou, která byla před tím enukleována, anebo v níž bylo buněčné jádro inaktivováno (například vlivem radioaktivního ozáření). ANDROGENEZE Při androgenezi se nový jedinec vyvíjí z neoplozené samčí gamety. Androgeneze, indukovaná při kultivaci pylových zrn nebo prašníků za specifických podmínek in vitro, je jednou z efektivních a účelně používaných šlechtitelských metod k produkci haploidních rostlin, neboť v relativně krátkém časovém intervalu lze diploidizací apomikticky vzniklých haploidů získat dokonale homozygotní (dihaploidní) čisté linie. APOGAMETIE Tento způsob rozmnožování se může vyskytnout u cévnatých rostlin. Nový haploidní jedinec (resp. semeno) vzniká z některé synergidy nebo antipody, nikoli z (neoplozené) vaječné buňky. ADVENTIVNÍ EMBRYONIE Vyskytuje se u cévnatých rostlin. V tomto případě se vyvíjí nový jedinec z některé buňky nucellu. I.7. AUTOREGULACE Procesy, uskutečňující se uvnitř živých systémů, jsou regulovány v interakcích s vnějším prostředím (okolím) vzájemně propojenou soustavou zpětných vazeb (pozitivních a negativních) a dalších autoregulačních mechanizmů. V tomto smyslu hovoříme též o biokybernetickém principu organizace živých systémů. Funkce genů, resp. jimi determinované děje v organizmech (buňkách) jsou nejednou modifikovány působením environmentálních faktorů. Příkladem může být vztah mezi endogenně podmíněnou složkou biorytmů a modifikujícím vlivem určitých složek prostředí. Pravděpodobně u všech eukaryotních organizmů se vyskytují vrozené, geneticky determinované regulované cirkadiánní rytmy, které zahrnují cyklicky se uskutečňující biologické aktivity s délkou periody 9

10 blízkou 24 hodinám. I když konkrétní formy této rytmicity biologických aktivit jsou výsledkem interakce genotypu a proměnlivých faktorů vnějšího prostředí, rytmicita přetrvává i při konstantních vnějších podmínkách. U živočichů se na regulačních procesech podílejí celé funkčně k tomu specializované systémy imunitní, endokrinní a nervový. Významným druhem biocyklů u rostlin je tzv. fotoperiodizmus. Termínem fotoperiodizmus se označuje schopnost většiny druhů rostlin kvést pouze při určitém průběhu dynamicky se měnícího poměru délky dne a noci během jednotlivých ročních období. Z tohoto hlediska se rozlišují rostliny krátkého dne (např. rýže, tabák, chryzantéma) a rostliny dlouhého dne (např. špenát, huseníček, ředkev, řepa). Kromě těchto dvou skupin rostlin existují druhy, jejichž schopnost vykvést není závislá na poměru délky dne a noci a ve vztahu k fotoperiodě se tudíž chovají neutrálně (např. rajče). Fotoperiodizmus je jedním z ekologických faktorů, participující na geografickém rozšíření rostlin krátkého a dlouhého dne. Fotoperiodizmus je vysvětlován především na základě dvou modelů: 1. Model fotoperiodizmu u rostlin krátkého dne Podle tohoto modelu rostlina vykvete pouze tehdy, pokud je udržována po určitou minimální dobu ve tmě (tzv. kritická perioda). Přerušení kritické periody světlem o určité vlnové délce (v červené oblasti spektra, např. 660 nm) znemožní vykvetení, naopak osvícení světlem o určité jiné vlnové délce (např. 730 nm) může vést ke zkrácení kritické periody. V těchto procesech sehrávají významnou roli fytochromy (PhyA, PhyB, PhyC, PhyD, PhyE). Fytochromy jsou proteinové homodimery, jejichž řetězce jsou konjugovány s molekulami typu rodopsinu schopnými absorbovat světelnou energii. Jednotlivé typy fytochromů se liší rozsahem absorpčního spektra, resp. absorpčním maximem. Fytochromy se vyskytují ve dvou navzájem přecházejících formách: forma P R (red) absorbuje světlo v červené oblasti spektra, forma P FR (far red) v oblasti delších vlnových délek (> 700 nm). Absorpce červeného světla formou fytochromu P R vede k jeho konverzi na formu P FR a naopak, absorpce světla o vlnové délce větší než 700 nm formou fytochromu P FR vede k jeho konverzi na formu P R. Ve tmě (v noci), tedy v průběhu kritické periody, dochází ke spontánní konverzi formy P FR na formu P R, která je nutná ke spuštění signálu kvetení (florigenu), a k dalším doprovodným reakcím. Ozáření rostliny červeným světlem vede k okamžité konverzi fytochromů formy P R na formu P FR a tím k narušení opačně probíhající konverze v kritické periodě (P FR P R ), což může mít za následek až inhibici kvetení. Naproti tomu iluminace rostliny na počátku kritické periody světlem o vlnové délce větší než 700 nm může vést k poměrnému zkrácení kritické periody, protože je posílena tvorba fytochromu formy P R. 2. Model fotoperiodizmu u rostlin dlouhého dne (model Arabidopsis) U Arabidopsis jako modelového zástupce rostlin dlouhého dne je znám transkripční faktor typu zinkového prstu označovaný jako CONSTANS (CO). Tento faktor se podílí na spuštění celé řady genů, včetně genu FT (flowering locus T), jehož exprese je nezbytná pro navození procesů přeměny apikálních pupenů v pupeny květní. Produkce mrna pro CO-faktor vykazuje cirkadiánní rytmicitu: v ranních a pozdně odpoledních hodinách je vysoká, v průběhu dne je nízká. Faktor CONSTANS je v buňce přes den (zejména kolem poledne) a v noci velmi účinně degradován v proteazomech. Degradace CO-faktoru je spouštěna ranním (dopopledním) světlem, ve kterém je vyšší podíl červené části spektra (kolem 660 nm) a zprostředkována fytochromem B. V pozdně odpoledních hodinách dochází k absorpci světla modré části spektra tzv. kryptochromy a světla o vlnových délkách větších než 700 nm fytochromem A, což vede k inhibici degradace CO-faktoru. Tím se CO-faktor akumuluje a může se projevit jeho regulační funkce, jejímž prostřednictvím se spouští transkripce genů, nutných pro indukci kvetení (gen FT). Existuje představa, že mechanizmus, popsaný pro Arabidopsis, by se mohl uplatňovat i u rostlin krátkého dne. Výsledky studia fotoperiodizmu u některých rostlin krátkého dne (např. rýže) naznačují, že CO-faktor (nebo faktor jemu podobný) působí jako supresor genu FT a tím jako inhibitor kvetení za dlouhého dne. 10

ÚVOD DO STUDIA BIOLOGIE

ÚVOD DO STUDIA BIOLOGIE UNIVERZITA JANA EVANGELISTY PURKYNĚ PŘÍRODOVĚDECKÁ FAKULTA KATEDRA BIOLOGIE ÚVOD DO STUDIA BIOLOGIE STUDIJNÍ OPORA JAN IPSER ÚSTÍ NAD LABEM 2013 ÚVODNÍ POZNÁMKA Vážené studentky, vážení studenti, dostává

Více

"Učení nás bude více bavit aneb moderní výuka oboru lesnictví prostřednictvím ICT ". Základy genetiky, základní pojmy

Učení nás bude více bavit aneb moderní výuka oboru lesnictví prostřednictvím ICT . Základy genetiky, základní pojmy "Učení nás bude více bavit aneb moderní výuka oboru lesnictví prostřednictvím ICT ". Základy genetiky, základní pojmy 1/75 Genetika = věda o dědičnosti Studuje biologickou informaci. Organizmy uchovávají,

Více

Obecná charakteristika živých soustav

Obecná charakteristika živých soustav Obecná charakteristika živých soustav Vypracoval: RNDr. Milan Zimpl, Ph.D. TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Kategorie živých soustav Existují

Více

Energetický metabolizmus buňky

Energetický metabolizmus buňky Energetický metabolizmus buňky Buňky vyžadují neustálý přísun energie pro tvorbu a udržování biologického pořádku (život). Tato energie pochází z energie chemických vazeb v molekulách potravy (energie

Více

Projekt realizovaný na SPŠ Nové Město nad Metují

Projekt realizovaný na SPŠ Nové Město nad Metují Projekt realizovaný na SPŠ Nové Město nad Metují s finanční podporou v Operačním programu Vzdělávání pro konkurenceschopnost Královéhradeckého kraje Modul 02 Přírodovědné předměty Hana Gajdušková 1 Viry

Více

Eva Benešová. Dýchací řetězec

Eva Benešová. Dýchací řetězec Eva Benešová Dýchací řetězec Dýchací řetězec Během oxidace látek vstupujících do různých metabolických cyklů (glykolýza, CC, beta-oxidace MK) vznikají NADH a FADH 2, které následně vstupují do DŘ. V DŘ

Více

METABOLISMUS SACHARIDŮ

METABOLISMUS SACHARIDŮ METABOLISMUS SAHARIDŮ A. Odbourávání sacharidů - nejdůležitější zdroj energie pro heterotrofy - oxidací sacharidů až na. získávají aerobní organismy energii ve formě. - úplná oxidace glukosy: složitý proces

Více

Číslo a název projektu Číslo a název šablony

Číslo a název projektu Číslo a název šablony Číslo a název projektu Číslo a název šablony DUM číslo a název CZ.1.07/1.5.00/34.0378 Zefektivnění výuky prostřednictvím ICT technologií III/2 - Inovace a zkvalitnění výuky prostřednictvím ICT SSOS_ZE_1.05

Více

Inovace profesní přípravy budoucích učitelů chemie

Inovace profesní přípravy budoucích učitelů chemie Inovace profesní přípravy budoucích učitelů chemie I n v e s t i c e d o r o z v o j e v z d ě l á v á n í CZ.1.07/2.2.00/15.0324 Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem

Více

Úvod do studia biologie vyučující: RNDr. Zdeňka Lososová, Ph.D. Mgr. Robert Vlk, Ph.D. Mgr. Martina Jančová, Ph.D. Doc. RNDr. Boris Rychnovský, CSc.

Úvod do studia biologie vyučující: RNDr. Zdeňka Lososová, Ph.D. Mgr. Robert Vlk, Ph.D. Mgr. Martina Jančová, Ph.D. Doc. RNDr. Boris Rychnovský, CSc. Úvod do studia biologie vyučující: RNDr. Zdeňka Lososová, Ph.D. Mgr. Robert Vlk, Ph.D. Mgr. Martina Jančová, Ph.D. Doc. RNDr. Boris Rychnovský, CSc. studijní literatura: Nečas O. et al.: Obecná biologie

Více

DÝCHÁNÍ. uložená v nich fotosyntézou, je z nich uvolňována) Rostliny tedy mohou po určitou dobu žít bez fotosyntézy

DÝCHÁNÍ. uložená v nich fotosyntézou, je z nich uvolňována) Rostliny tedy mohou po určitou dobu žít bez fotosyntézy Dýchání 2/38 DÝCHÁNÍ Asimiláty vzniklé v rostlinných buňkách fotosyntézou mají různé funkce: stavební, zásobní, enzymatické aj. Zásobní látky jsou v případě potřeby využívány (energie, uložená v nich fotosyntézou,

Více

Metabolismus. Source:

Metabolismus. Source: Source: http://www.roche.com/ http://www.expasy.org/ Metabolismus Source: http://www.roche.com/sustainability/for_communities_and_environment/philanthropy/science_education/pathways.htm Metabolismus -

Více

METABOLISMUS SACHARIDŮ

METABOLISMUS SACHARIDŮ METABOLISMUS SACHARIDŮ PRINCIP Rozštěpené sacharidy vstřebávání střevní sliznicí do krevního oběhu dopraveny vrátnicovou žílou do jater. V játrech enzymaticky hexózy štěpeny na GLUKÓZU vyplavována do krve

Více

Oxidace proteinů, tuků a cukrů jako zdroj energie v živých organismech

Oxidace proteinů, tuků a cukrů jako zdroj energie v živých organismech Citrátový cyklus Oxidace proteinů, tuků a cukrů jako zdroj energie v živých organismech 1. stupeň: OXIDACE cukrů, tuků a některých aminokyselin tvorba Acetyl-CoA a akumulace elektronů v NADH a FADH 2 2.

Více

BUNĚČ ORGANISMŮ KLÍČOVÁ SLOVA:

BUNĚČ ORGANISMŮ KLÍČOVÁ SLOVA: BUNĚČ ĚČNÁ STAVBA ŽIVÝCH ORGANISMŮ KLÍČOVÁ SLOVA: Prokaryota, eukaryota, viry, bakterie, živočišná buňka, rostlinná buňka, organely buněčné jádro, cytoplazma, plazmatická membrána, buněčná stěna, ribozom,

Více

METABOLISMUS SLOUČENINY S MAKROERGNÍMI VAZBAMI

METABOLISMUS SLOUČENINY S MAKROERGNÍMI VAZBAMI METABOLISMUS SLOUČENINY S MAKROERGNÍMI VAZBAMI Obsah Formy organismů Energetika reakcí Metabolické reakce Makroergické sloučeniny Formy organismů Autotrofní x heterotrofní organismy Práce a energie Energie

Více

FYZIOLOGIE ROSTLIN VÝŽIVA ROSTLIN 1) AUTOTROFNÍ VÝŽIVA ROSTLIN 2) HETEROTROFNÍ VÝŽIVA ROSTLIN

FYZIOLOGIE ROSTLIN VÝŽIVA ROSTLIN 1) AUTOTROFNÍ VÝŽIVA ROSTLIN 2) HETEROTROFNÍ VÝŽIVA ROSTLIN FYZIOLOGIE ROSTLIN Fyziologie rostlin, Biologie, 2.ročník 25 Podobor botaniky, který studuje životní funkce a individuální vývoj rostlin. Využívá poznatků z dalších odvětví biologie jako je morfologie,

Více

Buněčné dýchání Ch_056_Přírodní látky_buněčné dýchání Autor: Ing. Mariana Mrázková

Buněčné dýchání Ch_056_Přírodní látky_buněčné dýchání Autor: Ing. Mariana Mrázková Registrační číslo projektu: CZ.1.07/1.1.38/02.0025 Název projektu: Modernizace výuky na ZŠ Slušovice, Fryšták, Kašava a Velehrad Tento projekt je spolufinancován z Evropského sociálního fondu a státního

Více

Název školy: Střední odborná škola stavební Karlovy Vary Sabinovo náměstí 16, 360 09 Karlovy Vary Autor: Hana Turoňová Název materiálu:

Název školy: Střední odborná škola stavební Karlovy Vary Sabinovo náměstí 16, 360 09 Karlovy Vary Autor: Hana Turoňová Název materiálu: Název školy: Střední odborná škola stavební Karlovy Vary Sabinovo náměstí 16, 360 09 Karlovy Vary Autor: Hana Turoňová Název materiálu: VY_32_INOVACE_04_BUŇKA 1_P1-2 Číslo projektu: CZ 1.07/1.5.00/34.1077

Více

VY_32_INOVACE_003. VÝUKOVÝ MATERIÁL zpracovaný v rámci projektu EU peníze školám

VY_32_INOVACE_003. VÝUKOVÝ MATERIÁL zpracovaný v rámci projektu EU peníze školám VY_32_INOVACE_003 VÝUKOVÝ MATERIÁL zpracovaný v rámci projektu EU peníze školám Registrační číslo projektu: CZ. 1.07. /1. 5. 00 / 34. 0696 Šablona: III/2 Název: Základní znaky života Vyučovací předmět:

Více

Energetika a metabolismus buňky

Energetika a metabolismus buňky Předmět: KBB/BB1P Energetika a metabolismus buňky Cíl přednášky: seznámit posluchače s tím, jak buňky získávají energii k životu a jak s ní hospodaří Klíčová slova: energetika buňky, volná energie, enzymy,

Více

9. Citrátový cyklus, oxidační dekarboxylace pyruvátu a anaplerotické dráhy

9. Citrátový cyklus, oxidační dekarboxylace pyruvátu a anaplerotické dráhy 9. Citrátový cyklus, oxidační dekarboxylace pyruvátu a anaplerotické dráhy Obtížnost A Vyjmenujte kofaktory, které využívá multienzymový komplex pyruvátdehydrogenasy; které z nich řadíme mezi koenzymy

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Projekt CZ.1.07/1.5.00/34.0415 Inovujeme, inovujeme Šablona III/2 Inovace a zkvalitnění výuky prostřednictvím ICT (DUM) Tematická oblast Odborná biologie, část biologie organismus

Více

44 somatických chromozomů pohlavní hormony (X,Y) 46 chromozomů

44 somatických chromozomů pohlavní hormony (X,Y) 46 chromozomů Buněčný cyklus MUDr.Kateřina Kapounková Inovace studijního oboru Regenerace a výţiva ve sportu (CZ.107/2.2.00/15.0209) 1 DNA,geny genom = soubor všech genů a všechna DNA buňky; kompletní genetický materiál

Více

BUŇKA ZÁKLADNÍ JEDNOTKA ORGANISMŮ

BUŇKA ZÁKLADNÍ JEDNOTKA ORGANISMŮ BUŇKA ZÁKLADNÍ JEDNOTKA ORGANISMŮ SPOLEČNÉ ZNAKY ŽIVÉHO - schopnost získávat energii z živin pro své životní potřeby - síla aktivně odpovídat na změny prostředí - možnost růstu, diferenciace a reprodukce

Více

Fotosyntéza (2/34) = fotosyntetická asimilace

Fotosyntéza (2/34) = fotosyntetická asimilace Fotosyntéza (2/34) = fotosyntetická asimilace FOTO - protože k fotosyntéze je třeba fotonů Jedná se tedy o zachycování sluneční energie a přeměnu jednoduchých anorganických látek (CO 2 a H 2 O) na složitější

Více

Buňka. Kristýna Obhlídalová 7.A

Buňka. Kristýna Obhlídalová 7.A Buňka Kristýna Obhlídalová 7.A Buňka Buňky jsou nejmenší a nejjednodušší útvary schopné samostatného života. Buňka je základní stavební a funkční jednotkou živých organismů. Zatímco některé organismy jsou

Více

FOTOSYNTÉZA Správná odpověď:

FOTOSYNTÉZA Správná odpověď: FOTOSYNTÉZA Správná odpověď: 1. Mezi asimilační barviva patří 1. chlorofyly, a) 1, 2, 4 2. antokyany b) 1, 3, 4 3. karoteny c) pouze 1 4. xantofyly d) 1, 2, 3, 4 2. V temnostní fázi fotosyntézy dochází

Více

Metabolismus krok za krokem - volitelný předmět -

Metabolismus krok za krokem - volitelný předmět - Metabolismus krok za krokem - volitelný předmět - Vladimíra Kvasnicová pracovna: 411, tel. 267 102 411, vladimira.kvasnicova@lf3.cuni.cz informace, studijní materiály: http://vyuka.lf3.cuni.cz Sylabus

Více

Zkušební okruhy k přijímací zkoušce do magisterského studijního oboru:

Zkušební okruhy k přijímací zkoušce do magisterského studijního oboru: Biotechnologie interakce, polarita molekul. Hydrofilní, hydrofobní a amfifilní molekuly. Stavba a struktura prokaryotní a eukaryotní buňky. Viry a reprodukce virů. Biologické membrány. Mikrobiologie -

Více

Sylabus pro předmět Biochemie pro jakost

Sylabus pro předmět Biochemie pro jakost Sylabus pro předmět Biochemie pro jakost Kód předmětu: BCHJ Název v jazyce výuky: Biochemie pro Jakost Název česky: Biochemie pro Jakost Název anglicky: Biochemistry Počet přidělených ECTS kreditů: 6 Forma

Více

PROBLÉMY ŽIVOTNÍHO PROSTŘEDÍ ORGANISMY

PROBLÉMY ŽIVOTNÍHO PROSTŘEDÍ ORGANISMY PROBLÉMY ŽIVOTNÍHO PROSTŘEDÍ ORGANISMY 2010 Ing. Andrea Sikorová, Ph.D. 1 Problémy životního prostředí - organismy V této kapitole se dozvíte: Co je to organismus. Z čeho se organismus skládá. Jak se dělí

Více

5. Příjem, asimilace a fyziologické dopady anorganického dusíku. 5. Příjem, asimilace a fyziologické dopady anorganického dusíku

5. Příjem, asimilace a fyziologické dopady anorganického dusíku. 5. Příjem, asimilace a fyziologické dopady anorganického dusíku 5. Příjem, asimilace a fyziologické dopady anorganického dusíku Zdroje dusíku dostupné v půdě: Amonné ionty + Dusičnany = největší zdroj dusíku v půdě Organický dusík (aminokyseliny, aminy, ureidy) zpracování

Více

Základy buněčné biologie

Základy buněčné biologie Maturitní otázka č. 8 Základy buněčné biologie vypracovalo přírodozpytné sympózium LP, AM & DK na konferenci v Praze, 1. Máje 2014 Buňka (cellula) je nejmenší známý útvar, který je schopný všech životních

Více

Intermediární metabolismus. Vladimíra Kvasnicová

Intermediární metabolismus. Vladimíra Kvasnicová Intermediární metabolismus Vladimíra Kvasnicová Vztahy v intermediárním metabolismu (sacharidy, lipidy, proteiny) 1. po jídle (přísun energie z vnějšku) oxidace CO 2, H 2 O, urea + ATP tvorba zásob glykogen,

Více

Aplikované vědy. Hraniční obory o ţivotě

Aplikované vědy. Hraniční obory o ţivotě BIOLOGICKÉ VĚDY Podle zkoumaného organismu Mikrobiologie (viry, bakterie) Mykologie (houby) Botanika (rostliny) Zoologie (zvířata) Antropologie (člověk) Hydrobiologie (vodní organismy) Pedologie (půda)

Více

http://www.accessexcellence.org/ab/gg/chromosome.html

http://www.accessexcellence.org/ab/gg/chromosome.html 3. cvičení Buněčný cyklus Mitóza Modifikace mitózy 1 DNA, chromosom genetická informace organismu chromosom = strukturní podoba DNA během dělení (mitózy) řetězec DNA (chromonema) histony další enzymatické

Více

Metabolismus. - soubor všech chemických reakcí a příslušných fyzikálních procesů, které souvisejí s aktivními projevy života daného organismu

Metabolismus. - soubor všech chemických reakcí a příslušných fyzikálních procesů, které souvisejí s aktivními projevy života daného organismu Metabolismus Obecné znaky metabolismu Získání a využití energie - bioenergetika Buněčné dýchání (glykolysa + CKC + oxidativní fosforylace) Biosynthesa sacharidů + fotosynthesa Metabolismus lipidů Metabolismus

Více

FYZIOLOGIE ROSTLIN. Přednášející: Doc. Ing. Václav Hejnák, Ph.D. Tel.: 224382514 E-mail: hejnak @af.czu.cz

FYZIOLOGIE ROSTLIN. Přednášející: Doc. Ing. Václav Hejnák, Ph.D. Tel.: 224382514 E-mail: hejnak @af.czu.cz FYZIOLOGIE ROSTLIN Přednášející: Doc. Ing. Václav Hejnák, Ph.D. Tel.: 224382514 E-mail: hejnak @af.czu.cz Studijní literatura: Hejnák,V., Zámečníková,B., Zámečník, J., Hnilička, F.: Fyziologie rostlin.

Více

Bunka a bunecné interakce v patogeneze tkánového poškození

Bunka a bunecné interakce v patogeneze tkánového poškození Bunka a bunecné interakce v patogeneze tkánového poškození bunka - stejná genetická výbava - funkce (proliferace, produkce látek atd.) závisí na diferenciaci diferenciace tkán - specializovaná produkce

Více

Buňky, tkáně, orgány, soustavy

Buňky, tkáně, orgány, soustavy Lidská buňka buněčné organely a struktury: Jádro Endoplazmatické retikulum Goldiho aparát Mitochondrie Lysozomy Centrioly Cytoskelet Cytoplazma Cytoplazmatická membrána Buněčné jádro Jadérko Karyoplazma

Více

1. Napište strukturní vzorce aminokyselin D a Y a vzorce adenosinu a thyminu

1. Napište strukturní vzorce aminokyselin D a Y a vzorce adenosinu a thyminu Test pro přijímací řízení magisterské studium Biochemie 2019 1. Napište strukturní vzorce aminokyselin D a Y a vzorce adenosinu a thyminu U dalších otázek zakroužkujte správné tvrzení (pouze jedna správná

Více

Metabolismus, taxonomie a identifikace bakterií. Karel Holada khola@lf1.cuni.cz

Metabolismus, taxonomie a identifikace bakterií. Karel Holada khola@lf1.cuni.cz Metabolismus, taxonomie a identifikace bakterií Karel Holada khola@lf1.cuni.cz Klíčová slova Obligátní aeroby Obligátní anaeroby Aerotolerantní b. Fakultativní anaeroby Mikroaerofilní b. Kapnofilní bakterie

Více

umožňují enzymatické systémy živé protoplazmy, nezbytný je kyslík,

umožňují enzymatické systémy živé protoplazmy, nezbytný je kyslík, DÝCHÁNÍ ROSTLIN systém postupných oxidoredukčních reakcí v živých buňkách, při kterých se z organických látek uvolňuje energie, která je zachycena jako krátkodobá energetická zásoba v ATP, umožňují enzymatické

Více

Biologie 30 Metabolismus, fotosyntéza, dýchání, glykolýza, kvašení

Biologie 30 Metabolismus, fotosyntéza, dýchání, glykolýza, kvašení Číslo projektu CZ.1.07/1.5.00/34.0743 Název školy Autor Tematická oblast Moravské gymnázium Brno s.r.o. RNDr. Monika Jörková Biologie 30 Metabolismus, fotosyntéza, dýchání, glykolýza, kvašení Ročník 1.

Více

Buňka. Autor: Mgr. Jitka Mašková Datum: Gymnázium, Třeboň, Na Sadech 308

Buňka. Autor: Mgr. Jitka Mašková Datum: Gymnázium, Třeboň, Na Sadech 308 Buňka Autor: Mgr. Jitka Mašková Datum: 27. 10. 2012 Gymnázium, Třeboň, Na Sadech 308 Číslo projektu Číslo materiálu CZ.1.07/1.5.00/34.0702 VY_32_INOVACE_BIO.prima.02_buňka Škola Gymnázium, Třeboň, Na Sadech

Více

Látky jako uhlík, dusík, kyslík a. z vnějšku a opět z něj vystupuje.

Látky jako uhlík, dusík, kyslík a. z vnějšku a opět z něj vystupuje. KOLOBĚH LÁTEK A TOK ENERGIE Látky jako uhlík, dusík, kyslík a voda v ekosystémech kolují. Energii se do ekosystémů dostává z vnějšku a opět z něj vystupuje. Základní podmínky pro život na Zemi. Světlo

Více

Regulace metabolických drah na úrovni buňky

Regulace metabolických drah na úrovni buňky Regulace metabolických drah na úrovni buňky EB Obsah přednášky Obecné principy regulace metabolických drah na úrovni buňky regulace zajištěná kompartmentací metabolických dějů změna absolutní koncentrace

Více

Metabolismus příručka pro učitele

Metabolismus příručka pro učitele Metabolismus příručka pro učitele Obecné informace Téma Metabolismus je určeno na čtyři až pět vyučovacích hodin. Toto téma je zpracováno jako jeden celek a záleží na vyučujícím, jak jej rozdělí. Celek

Více

Katabolismus - jak budeme postupovat

Katabolismus - jak budeme postupovat Katabolismus - jak budeme postupovat I. fáze aminokyseliny proteiny polysacharidy glukosa lipidy Glycerol + mastné kyseliny II. fáze III. fáze ETS itrátový cyklus yklus trikarboxylových kyselin, Krebsův

Více

- význam: ochranná funkce, dodává buňce tvar. jádro = karyon, je vyplněné karyoplazmou ( polotekutá tekutina )

- význam: ochranná funkce, dodává buňce tvar. jádro = karyon, je vyplněné karyoplazmou ( polotekutá tekutina ) Otázka: Buňka a dělení buněk Předmět: Biologie Přidal(a): Štěpán Buňka - cytologie = nauka o buňce - rostlinná a živočišná buňka jsou eukaryotické buňky Stavba rostlinné (eukaryotické) buňky: buněčná stěna

Více

BIOLOGICKÁ MEMBRÁNA Prokaryontní Eukaryontní KOMPARTMENTŮ

BIOLOGICKÁ MEMBRÁNA Prokaryontní Eukaryontní KOMPARTMENTŮ BIOMEMRÁNA BIOLOGICKÁ MEMBRÁNA - všechny buňky na povrchu plazmatickou membránu - Prokaryontní buňky (viry, bakterie, sinice) - Eukaryontní buňky vnitřní členění do soustavy membrán KOMPARTMENTŮ - za

Více

Centrální dogma molekulární biologie

Centrální dogma molekulární biologie řípravný kurz LF MU 2011/12 Centrální dogma molekulární biologie Nukleové kyseliny 1865 zákony dědičnosti (Johann Gregor Mendel) 1869 objev nukleových kyselin (Miescher) 1944 genetická informace v nukleových

Více

Nejmenší jednotka živého organismu schopná samostatné existence. Výměnu látek Růst Pohyb Rozmnožování Dědičnost

Nejmenší jednotka živého organismu schopná samostatné existence. Výměnu látek Růst Pohyb Rozmnožování Dědičnost BUŇKA Nejmenší jednotka živého organismu schopná samostatné existence Buňka je schopna uskutečňovat základní funkce organismu: obrázky použity z Nečas: BIOLOGIE LIDSKÉ TĚLO Alberts: ZÁKLADY BUNĚČNÉ BIOLOGIE

Více

Sacharidy a polysacharidy (struktura a metabolismus)

Sacharidy a polysacharidy (struktura a metabolismus) Sacharidy a polysacharidy (struktura a metabolismus) Sacharidy Živočišné tkáně kolem 2 %, rostlinné 85-90 % V buňkách rozličné fce: Zdroj a zásobárna energie (glukóza, škrob, glykogen) Výztuž a ochrana

Více

M A T U R I T N Í T É M A T A

M A T U R I T N Í T É M A T A M A T U R I T N Í T É M A T A BIOLOGIE ŠKOLNÍ ROK 2017 2018 1. BUŇKA Buňka základní strukturální a funkční jednotka. Chemické složení buňky. Srovnání prokaryotické a eukaryotické buňky. Funkční struktury

Více

DUM VY_52_INOVACE_12CH33

DUM VY_52_INOVACE_12CH33 Základní škola Kaplice, Školní 226 DUM VY_52_INOVACE_12CH33 autor: Kristýna Anna Rolníková období vytvoření: říjen 2011 duben 2012 ročník, pro který je vytvořen: 9. vzdělávací oblast: vzdělávací obor:

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Projekt CZ.1.07/1.5.00/34.0415 Inovujeme, inovujeme Šablona III/2 Inovace a zkvalitnění výuky prostřednictvím ICT (DUM) Tematická oblast Odborná biologie, část biologie organismus

Více

ÚVOD DO STUDIA BUŇKY příručka pro učitele

ÚVOD DO STUDIA BUŇKY příručka pro učitele Obecné informace ÚVOD DO STUDIA BUŇKY příručka pro učitele Téma úvod do studia buňky je rozvržen na jednu vyučovací hodinu. V tomto tématu jsou probrány a zopakovány základní charakteristiky živých soustav

Více

B4, 2007/2008, I. Literák

B4, 2007/2008, I. Literák B4, 2007/2008, I. Literák ENERGIE, KATALÝZA, BIOSYNTÉZA Živé organismy vytvářejí a udržují pořádek ve světě, který spěje k čím dál většímu chaosu Druhá věta termodynamiky: Ve vesmíru nebo jakékoliv izolované

Více

03a-Chemické reakce v živých organizmech FRVŠ 1647/2012

03a-Chemické reakce v živých organizmech FRVŠ 1647/2012 C3181 Biochemie I 03a-Chemické reakce v živých organizmech FRVŠ 1647/2012 Petr Zbořil 9/23/2014 1 Obsah Obecné rysy metabolismu Chemické reakce a jejich energetika Makroergické sloučeniny Petr Zbořil 9/23/2014

Více

Buňka. Buňka (cellula) základní stavební a funkční jednotka organismů, schopná samostatné existence. Cytologie nauka o buňkách

Buňka. Buňka (cellula) základní stavební a funkční jednotka organismů, schopná samostatné existence. Cytologie nauka o buňkách Buňka Historie 1655 - Robert Hooke (1635 1703) - použil jednoduchý mikroskop k popisu pórů v řezu korku. Nazval je, podle podoby k buňkám včelích plástů, buňky. 18. - 19. St. - vznik buněčné biologie jako

Více

Zkoumání přírody. Myšlení a způsob života lidí vyšší nervová činnost odlišnosti člověka od ostatních organismů

Zkoumání přírody. Myšlení a způsob života lidí vyšší nervová činnost odlišnosti člověka od ostatních organismů Předmět: PŘÍRODOPIS Ročník: 9. Časová dotace: 1 hodina týdně Výstup předmětu Rozpracované očekávané výstupy Učivo předmětu Přesahy, poznámky Konkretizované tématické okruhy realizovaného průřezového tématu

Více

Obecná biologie a genetika B53 volitelný předmět pro 4. ročník

Obecná biologie a genetika B53 volitelný předmět pro 4. ročník Obecná biologie a genetika B53 volitelný předmět pro 4. ročník Charakteristika vyučovacího předmětu Vyučovací předmět vychází ze vzdělávací oblasti Člověk a příroda, vzdělávacího oboru Biologie. Mezipředmětové

Více

SSOS_ZE_1.10 Příroda projevy živé hmoty

SSOS_ZE_1.10 Příroda projevy živé hmoty Číslo a název projektu Číslo a název šablony CZ.1.07/1.5.00/34.0378 Zefektivnění výuky prostřednictvím ICT technologií III/2 - Inovace a zkvalitnění výuky prostřednictvím ICT DUM číslo a název SSOS_ZE_1.10

Více

Biochemie. ochrana životního prostředí analytická chemie chemická technologie Forma vzdělávání: Platnost: od 1. 9. 2009 do 31. 8.

Biochemie. ochrana životního prostředí analytická chemie chemická technologie Forma vzdělávání: Platnost: od 1. 9. 2009 do 31. 8. Studijní obor: Aplikovaná chemie Učební osnova předmětu Biochemie Zaměření: ochrana životního prostředí analytická chemie chemická technologie Forma vzdělávání: denní Celkový počet vyučovacích hodin za

Více

Praktické cvičení č. 11 a 12 - doplněno

Praktické cvičení č. 11 a 12 - doplněno Praktické cvičení č. 11 a 12 - doplněno Téma: Metabolismus eukaryotické buňky Pomůcky: pracovní list, učebnice botaniky Otázky k opakování: Co je anabolismus a co je katabolisimus? Co jsou enzymy a jak

Více

- metabolismus soubor chemických reakcí probíhajících v živých organismech a mezi organismy a jejich životním prostředím

- metabolismus soubor chemických reakcí probíhajících v živých organismech a mezi organismy a jejich životním prostředím Otázka: Obecné rysy metabolismu Předmět: Chemie Přidal(a): Bára V. ZÁKLADY LÁTKOVÉHO A ENERGETICKÉHO METABOLISMU - metabolismus soubor chemických reakcí probíhajících v živých organismech a mezi organismy

Více

Ukázky z pracovních listů z biochemie pro SŠ A ÚVOD

Ukázky z pracovních listů z biochemie pro SŠ A ÚVOD Ukázky z pracovních listů z biochemie pro SŠ A ÚVD 1) Doplň chybějící údaje. Jak se značí makroergní vazba? Kolik je v ATP makroergních vazeb? Co je to ADP Kolik je v ADP makroergních vazeb 1) Pojmenuj

Více

Mendělejevova tabulka prvků

Mendělejevova tabulka prvků Mendělejevova tabulka prvků V sušině rostlin je obsaženo přibližně 45% uhlíku, 42% kyslíku, 6,5% vodíku, 1,5% dusíku a 5% minerálních prvků. Tzv. organogenní prvky (C, O, H, N) představují tedy 95% veškerých

Více

Fyziologie buňky. RNDr. Zdeňka Chocholoušková, Ph.D.

Fyziologie buňky. RNDr. Zdeňka Chocholoušková, Ph.D. Fyziologie buňky RNDr. Zdeňka Chocholoušková, Ph.D. Přeměna látek v buňce = metabolismus Výměna látek mezi buňkou a prostředím Buňka = otevřený systém probíhá výměna látek i energií s prostředím Některé

Více

Otázka: Metabolismus. Předmět: Biologie. Přidal(a): Furrow. - přeměna látek a energie

Otázka: Metabolismus. Předmět: Biologie. Přidal(a): Furrow. - přeměna látek a energie Otázka: Metabolismus Předmět: Biologie Přidal(a): Furrow - přeměna látek a energie Dělení podle typu reakcí: 1.) Katabolismus reakce, při nichž z látek složitějších vznikají látky jednodušší (uvolňuje

Více

Stavba dřeva. Základy cytologie. přednáška

Stavba dřeva. Základy cytologie. přednáška Základy cytologie přednáška Buňka definice, charakteristika strana 2 2 Buňky základní strukturální a funkční jednotky živých organismů Základní charakteristiky buněk rozmanitost (diverzita) - např. rostlinná

Více

Přírodopis. 6. ročník. Obecná biologie a genetika

Přírodopis. 6. ročník. Obecná biologie a genetika list 1 / 7 Př časová dotace: 2 hod / týden Přírodopis 6. ročník (P 9 1 01) (P 9 1 01.1) (P 9 1 01.4) (P 9 1 01.5) (P 9 1 01.6) (P 9 1 01.7) (P 9 1 02) P 9 1 02.1 rozliší základní projevy a podmínky života,

Více

Biologie - Kvinta, 1. ročník

Biologie - Kvinta, 1. ročník - Kvinta, 1. ročník Biologie Výchovné a vzdělávací strategie Kompetence k řešení problémů Kompetence komunikativní Kompetence sociální a personální Kompetence občanská Kompetence k podnikavosti Kompetence

Více

Střední průmyslová škola strojnická Olomouc, tř. 17. listopadu 49

Střední průmyslová škola strojnická Olomouc, tř. 17. listopadu 49 Střední průmyslová škola strojnická Olomouc, tř. 17. listopadu 49 Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205 Šablona: III/2 Přírodovědné

Více

Tabulace učebního plánu. Obecná chemie. Vzdělávací obsah pro vyučovací předmět : Ročník: 1.ročník a kvinta

Tabulace učebního plánu. Obecná chemie. Vzdělávací obsah pro vyučovací předmět : Ročník: 1.ročník a kvinta Tabulace učebního plánu Vzdělávací obsah pro vyučovací předmět : CHEMIE Ročník: 1.ročník a kvinta Obecná Bezpečnost práce Názvosloví anorganických sloučenin Zná pravidla bezpečnosti práce a dodržuje je.

Více

Biologie - Oktáva, 4. ročník (humanitní větev)

Biologie - Oktáva, 4. ročník (humanitní větev) - Oktáva, 4. ročník (humanitní větev) Biologie Výchovné a vzdělávací strategie Kompetence k řešení problémů Kompetence komunikativní Kompetence sociální a personální Kompetence občanská Kompetence k podnikavosti

Více

Regulace růstu a vývoje

Regulace růstu a vývoje Regulace růstu a vývoje REGULACE RŮSTU A VÝVOJE ROSTLINNÉHO ORGANISMU a) Regulace na vnitrobuněčné úrovni závislost na rychlosti a kvalitě metabolických drah, resp. enzymů a genů = regulace aktivity enzymů

Více

1.Biologie buňky. 1.1.Chemické složení buňky

1.Biologie buňky. 1.1.Chemické složení buňky 1.Biologie buňky 1.1.Chemické složení buňky 1. Stavbu molekuly DNA objasnil: a) J. B. Lamarck b) W. Harwey c) J.Watson a F.Crick d) A. van Leeuwenhoeck 2. Voda obsažená v buňkách je: a) vázaná na lipidy

Více

Buněčný cyklus. Replikace DNA a dělení buňky

Buněčný cyklus. Replikace DNA a dělení buňky Buněčný cyklus Replikace DNA a dělení buňky 2 Regulace buněčného dělení buněčný cyklus: buněčné dělení buněčný růst kontrola kvality potomstva (dceřinných buněk) bránípřenosu nekompletně zreplikovaných

Více

19.b - Metabolismus nukleových kyselin a proteosyntéza

19.b - Metabolismus nukleových kyselin a proteosyntéza 19.b - Metabolismus nukleových kyselin a proteosyntéza Proteosyntéza vyžaduje především zajištění primární struktury. Informace je uložena v DNA (ev. RNA u některých virů) trvalá forma. Forma uskladnění

Více

DYNAMICKÁ BIOCHEMIE. Daniel Nechvátal :: www.gymzn.cz/nechvatal

DYNAMICKÁ BIOCHEMIE. Daniel Nechvátal :: www.gymzn.cz/nechvatal DYNAMICKÁ BIOCHEMIE Daniel Nechvátal :: www.gymzn.cz/nechvatal Energetický metabolismus děje potřebné pro zabezpečení života organismu ANABOLISMUS skladné reakce, spotřeba E KATABOLISMUS rozkladné reakce,

Více

Chemie - Septima, 3. ročník

Chemie - Septima, 3. ročník - Septima, 3. ročník Chemie Výchovné a vzdělávací strategie Kompetence k řešení problémů Kompetence komunikativní Kompetence sociální a personální Kompetence občanská Kompetence k podnikavosti Kompetence

Více

Biologie buňky. systém schopný udržovat se a rozmnožovat

Biologie buňky. systém schopný udržovat se a rozmnožovat Biologie buňky 1665 - Robert Hook (korek, cellulae = buňka) Cytologie - věda zabývající se studiem buňek Buňka ozákladní funkční a stavební jednotka živých organismů onejmenší známý uspořádaný dynamický

Více

Sylabus témat ke zkoušce z lékařské biologie a genetiky. Struktura, reprodukce a rekombinace virů (DNA viry, RNA viry), význam v medicíně

Sylabus témat ke zkoušce z lékařské biologie a genetiky. Struktura, reprodukce a rekombinace virů (DNA viry, RNA viry), význam v medicíně Sylabus témat ke zkoušce z lékařské biologie a genetiky Buněčná podstata reprodukce a dědičnosti Struktura a funkce prokaryot Struktura, reprodukce a rekombinace virů (DNA viry, RNA viry), význam v medicíně

Více

UNIVERZITA KARLOVA V PRAZE 3. LÉKAŘSKÁ FAKULTA (tématické okruhy požadavků pro přijímací zkoušku)

UNIVERZITA KARLOVA V PRAZE 3. LÉKAŘSKÁ FAKULTA (tématické okruhy požadavků pro přijímací zkoušku) UNIVERZITA KARLOVA V PRAZE 3. LÉKAŘSKÁ FAKULTA (tématické okruhy požadavků pro přijímací zkoušku) B I O L O G I E 1. Definice a obory biologie. Obecné vlastnosti organismů. Základní klasifikace organismů.

Více

Didaktické testy z biochemie 2

Didaktické testy z biochemie 2 Didaktické testy z biochemie 2 Metabolismus Milada Roštejnská Helena Klímová br. 1. Schéma metabolismu Zažívací trubice Sacharidy Bílkoviny Lipidy Ukládány jako glykogen v játrech Ukládány Ukládány jako

Více

Vzdělávací materiál. vytvořený v projektu OP VK CZ.1.07/1.5.00/ Anotace. Fotosyntéza světelná fáze. VY_32_INOVACE_Ch0214.

Vzdělávací materiál. vytvořený v projektu OP VK CZ.1.07/1.5.00/ Anotace. Fotosyntéza světelná fáze. VY_32_INOVACE_Ch0214. Vzdělávací materiál vytvořený v projektu OP VK Název školy: Gymnázium, Zábřeh, náměstí Osvobození 20 Číslo projektu: Název projektu: Číslo a název klíčové aktivity: CZ.1.07/1.5.00/34.0211 Zlepšení podmínek

Více

Pohlavní rozmnožování. Gametogeneze u rostlin a živočichů.

Pohlavní rozmnožování. Gametogeneze u rostlin a živočichů. "Učení nás bude více bavit aneb moderní výuka oboru lesnictví prostřednictvím ICT ". Pohlavní rozmnožování Gametogeneze u rostlin a živočichů. 2/65 Pohlavní rozmnožování obecně zajišťuje variabilitu druhu

Více

Buňka buňka je základní stavební a funkční jednotka živých organismů

Buňka buňka je základní stavební a funkční jednotka živých organismů Buňka - buňka je základní stavební a funkční jednotka živých organismů - je pozorovatelná pouze pod mikroskopem - na Zemi existuje několik typů buněk: 1. buňky bez jádra (prokaryotní buňky)- bakterie a

Více

Biologie - Oktáva, 4. ročník (přírodovědná větev)

Biologie - Oktáva, 4. ročník (přírodovědná větev) - Oktáva, 4. ročník (přírodovědná větev) Biologie Výchovné a vzdělávací strategie Kompetence k řešení problémů Kompetence komunikativní Kompetence sociální a personální Kompetence občanská Kompetence k

Více

Biochemie Ch52 volitelný předmět pro 4. ročník

Biochemie Ch52 volitelný předmět pro 4. ročník Biochemie Ch52 volitelný předmět pro 4. ročník Charakteristika vyučovacího předmětu Vyučovací předmět vychází ze vzdělávací oblasti Člověk a příroda, vzdělávacího oboru Chemie. Mezipředmětové přesahy a

Více

A. chromozómy jsou rozděleny na 2 chromatidy spojené jen v místě centromery. B. vlákna dělícího vřeténka jsou připojena k chromozómům

A. chromozómy jsou rozděleny na 2 chromatidy spojené jen v místě centromery. B. vlákna dělícího vřeténka jsou připojena k chromozómům Karlova univerzita, Lékařská fakulta Hradec Králové Obor: všeobecné lékařství - test z biologie Vyberte tu z nabídnutých odpovědí (1-5), která je nejúplnější. Otázka Odpověď 1. Mezi organely membránového

Více

Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/

Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/ Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/07.0354 Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky Populační genetika (KBB/PG)

Více

Molekulární základy dědičnosti. Ústřední dogma molekulární biologie Struktura DNA a RNA

Molekulární základy dědičnosti. Ústřední dogma molekulární biologie Struktura DNA a RNA Molekulární základy dědičnosti Ústřední dogma molekulární biologie Struktura DNA a RNA Ústřední dogma molekulární genetiky - vztah mezi nukleovými kyselinami a proteiny proteosyntéza replikace DNA RNA

Více

Inovace profesní přípravy budoucích učitelů chemie

Inovace profesní přípravy budoucích učitelů chemie Inovace profesní přípravy budoucích učitelů chemie I n v e s t i c e d o r o z v o j e v z d ě l á v á n í CZ.1.07/2.2.00/15.0324 Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem

Více

Chemie Ch3 volitelný předmět pro 4. ročník

Chemie Ch3 volitelný předmět pro 4. ročník Chemie Ch3 volitelný předmět pro 4. ročník Charakteristika vyučovacího předmětu Vyučovací předmět vychází ze vzdělávací oblasti Člověk a příroda, vzdělávacího oboru Chemie. Mezipředmětové přesahy a vazby

Více

12-Fotosyntéza FRVŠ 1647/2012

12-Fotosyntéza FRVŠ 1647/2012 C3181 Biochemie I 12-Fotosyntéza FRVŠ 1647/2012 Petr Zbořil 10/6/2014 1 Obsah Fotosyntéza, světelná fáze. Chlorofyly, struktura fotosyntetického centra. Komponenty přenosu elektronů (cytochromy, chinony,

Více

Nukleové kyseliny. Nukleové kyseliny. Genetická informace. Gen a genom. Složení nukleových kyselin. Centrální dogma molekulární biologie

Nukleové kyseliny. Nukleové kyseliny. Genetická informace. Gen a genom. Složení nukleových kyselin. Centrální dogma molekulární biologie Centrální dogma molekulární biologie ukleové kyseliny 1865 zákony dědičnosti (Johann Gregor Transkripce D R Translace rotein Mendel) Replikace 1869 objev nukleových kyselin (Miescher) 1944 nukleové kyseliny

Více