Hvězdy a černé díry. Zdeněk Kadeřábek

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Hvězdy a černé díry. Zdeněk Kadeřábek"

Transkript

1 Hvězdy a černé díry Zdeněk Kadeřábek

2 Osnova Vznik a vývoj hvězd Protohvězda Hvězda hlavní posloupnosti Červený obr Vývoj Slunce Bílý trpaslík Neutronová hvězda Supernovy Pulzary Černé díry Pád do černé díry Pozorování černých děr

3 Vznik hvězd Mlhoviny (mezihvězdný oblak) - video Převážně vodík, 1-10% prach Hmotnost stovek sluncí Velikost desítky světel. let Teplota: K Zárodky hvězd Prvotní nestability Poč. impuls: výbuch supernovy, prolínání galaxií Gravitační smršťování

4 Vznik hvězd Gravitační stlačování oblaku Samovolné při nadkritické hmotnosti (Jeansovo kritérium M S ) Nižší hmotnosti Tlak horkého plynu (stlačuje oblak za vzniku chobotů ) Exploze blízké supernovy (vzrůst hustoty v oblaku) Rázová vlna video Rázová vlna spirální galaxie při rotaci ramen Ztráta tepelné energie vyzařování prachových částic Snížení rychlosti rotace asi způsobení mag. tokem částic

5

6

7 Planetární mlhovina MZ9 (Dvojčata) v Hadonoši Výtrysky mají nadzvukovou rychlost (v > 300 km/s], jde o typický příklad motýlkovité (bipolární) mlhoviny s dvěma laloky. Odhození obálky cca před lety. V centru těsná dvojhvězda. Kolem jedné hvězdy existuje plynoprachý disk patrný při krátkých expozicích, o průměru 10 AU. Jety vychází kolmo na tento disk. Vzdálenost 2100 l.y.

8 Protohvězda Nitro protohvězdy Vzrůst tlaku, hustoty a teploty Při teplotě kolem 2000 K se vypaří prachové částice Čas: desítky miliónů let Hayashiho linie Stádium, kdy je v rovnováze gravitační a tlaková síla plynu Napravo od linie existence nestabilních útvarů Na linii prudké ohřátí hvězdy a smrštění termonukleární reakce T=10 7 let hl. posl. Hnědý trpaslík ( červený ) nízká teplota, nezapálení TJ

9 Vývoj hvězd HR diagram Hertzprungův-Russelův diagram 1-2 protohvězda, smršťování volným pádem, 2 rovnováha gravitace a tlaku látky 2-3 pomalé smršťování při rovnováze 3 zapálení TJ reakcí hlavní posl. 3-4 dohoření H v jádře 4-5 smršťování jádra 5 zapálení H ve slupce kolem jádra 5-6 hoření H ve slupce, zvyšování hmotnosti He jádra 6 zapáleni He v jádře, červený, žlutý oranžový obr 6-7 rozpínání a chladnutí obalu -> únik hmoty 7 dohoření He v jádře, smršťování jádra, zapálení He v obálce,... atd. až po skupinu železa 8 -> stadia pulsací, gravitační smršťování.

10 Vývoj hvězd

11 Hvězdy na hlavní posloupnosti 85% doby svého života (řádově deset miliard let) Termonukleární fúze: H na He

12 Poloha hvězdy na HP Zářivý výkon: L ~ M 7/2 Rozměry: R ~ M 3/4 Povrchová teplota: T ~ M 1/2 Slunce: L= W/kg L celk = W.

13 Reakce v nitru pp řetězec - nižší teploty Betheův CNO cyklus - vyšší teploty

14 Obři a veleobři Hvězda Typ Souhvězdí Aldebaran červený obr Býk Betelgeuse červený veleobr Orion Rigel modrý obr Orion

15 Rudý veleobr 130 sv. let, povrch 3600 K

16 Červení obři Vysoký zářivý výkon (absolutní hvězdná velikost kolem 0 mag) Povrchová teplota: K (M6) až K (M0) Poloměr poloměrů Slunce

17

18 Slunce

19 Budoucnost Slunce

20 Slunce jako červený obr Animace

21

22

23 Závěrečné stádium hvězdy Dohoření jaderných reakcí v nitru hvězdy Vlivem gravitačních sil je hvězda stlačena Závislost na počáteční hmotnosti Bílý trpaslík Neutronová hvězda Černá díra

24 Bílý trpaslík Stlačení z několika set tisíc km do průměru tisíc km Hustota: řádově tisíce kg/cm 3 Hvězdná látka ionizovaná Gravitační síly vyváženy Fermiho tlakem degenerovaného elektronového plynu (vysoká hustota Pauliho princip: obsazení i nejvyšších energ. hladin vysoká hybnost (růst tlaku)) Po vyzáření zbylého teplo černý trpaslík

25 Planetární mlhovina NGC Po výbuchu hvězdy je v centru mlhoviny patrný bílý trpaslík

26 Neutronová hvězda Hmotnost bílého trpaslíka větší než 1,4 M S Chandrasekharova mez pro nerotující trpaslíky Vysokoenergetické elektrony vtlačovány do jader e - + p + n o + n' e Prudké smrštění vlivem gravitace (imploze) Elektrony přeměněny v neutrony, uvolnění velkého množství energie (elmag. vlny, neutrina) Vznik neutronové hvězdy doprovázen výbuchem supernovy Průměr: desítky km, max. hmotnost asi 2,5 M S Hustota: ~10 14 g/cm 3

27

28 Záblesk neutronové hvězdy- souhvězdí Sagittarius

29 Základní druhy supernov Z hlediska dynamiky vzniku a mechanismu překročení Chandrasekharovy meze Typ I: Postupná akrece hmoty na bílý trpaslík Několikanásobné soustavy hvězd Přetékání látky z obra na bílého trpaslíka výbuch Typ II: Přímý kolaps do neutronové hvězdy Hypernova: Přímý kolaps až do černé díry Hmotnost > 20 M S Záblesk záření gama Rudý veleobr Betelgeuse: 20M v souhvězdí Orionu, asi 1000 světelných let od Země; výbuch supernovy do cca 1 milionu let!

30 M1 - Krabí mlhovina Výbuch: 1054, video v centru milisekundový pulzar

31 Za několik let po explozi vytvořily rozpínající a prolínající se odhozené obálky kolem bývalé supernovy zajímavou soustavu prstenců. Animace

32 Rotující hvězdy Zákon zachování momentu hybnosti Smršťování doprovázeno zvyšující se rotací (až několik set otáček za sekundu) Pulzary Magnetické pole Normální hvězda: B řádově 10-4 T Vlivem smršťování vzrůst na hodnotu asi 10 8 T Magnetary

33 Pulzary ( magnetické majáky ) Rychle rotující kompaktní hvězdy (perioda 0,03 4 s, velké odstředivé síly), video se zvukem

34

35 Velké Magellanovo mračno dva pulzary 60 otáček za sekundu (V době vzniku (cca před 4000 lety) musela být rotace 150 otáček za sekundu.)

36 Diagram závěrečných stádií

37 Vznik černé díry Gravitační kolaps velmi hmotných hvězd (možnost bez výbuchu supernovy - zmizení hvězdy) Supermasivní černé díry střed galaxie Úniková rychlost převyšuje rychlost světla Schwarzschildův poloměr: Slunce: úniková rychlost 619,7 km/s r g = 2,95. M/M, tj. zhruba 3 km Země: r g = 0,9 cm

38 Schwarzschildova sféra Úniková rychlost rovna c (OTR) Horizont událostí (odděluje oblast uvnitř a vně) S.Hawkinga, R.Penrose, B.Carter, J.A.Wheeler (black hole), I. Novikov,

39

40 Černá díra díra v prostoročase Prostoročas silně zakřiven uzavřen sám do sebe Přerušení příčinnosti spojení s vnějším světem Absorbující absolutně černé těleso Proti světlému pozadí se jeví jako tmavý kotouč, nic ale nezastiňuje - gravitační čočka (světelné efekty) Video, Pohlcování hvězdy černou dírou

41 Gravitační čočka

42 Charakteristiky černých děr - nerotující Horizont událostí Světlo nemůže opustit gravitační pole, ale není ani černou dírou vtaženo oběh po kružnici Singularita Hmotnost soustředěna v jednom bodě o nulovém objemu Nekonečné zakřivení časoprostoru, nekonečná hustota

43 Rotující černé díry Akreční disk Disková struktura z rozptýleného materiálu obíhající kolem černé díry Statická mez Rotující černá díra strhává časoprostor v okolí a nutí ho rotovat s ní Mez, na níž je časoprostor strháván rychlostí světla Ergosféra Prostor mezi poloměrem horizontu událostí a statickou mezí

44 Rotující černé díry Částice vlétající do ergosféry mohou zónu opustit s vyšší energií Práce černé díry na úkor momentu hybnosti Kerrova singularita Singularita tvaru prstence (nulová tloušťka, nenulový poloměr)

45 Dva pohledy na gravitační kolaps Vnější pozorovatel Signály z rakety se zpožďují, červený posuv Padající pozorovatel na hranici horizontu událostí vnější pozorovatel nikdy neuvidí tento průchod Padající pozorovatel Projde Schwarzildovým poloměrem za konečnou dobu velký gradient gravitační síly - roztrhání

46 Pád do černé díry

47 Pád do černé díry

48 Pád do černé díry Při pádu částice dochází k postupnému naklánění světelného kužele Pod horizontem událostí světelný kužel míří pod horizont nelze ovlivnit budoucnost mimo horizont událostí Vnější pozorovatel neuvidí pád pod horizont, ani neuvidí vznik černé díry Kolaps zamrzne na hranici horizontu událostí

49 Pád do černé díry světelný kužel

50 Černá díra nemá vlasy B. Carter, W. Israel, I. Robinson, S. Hawking, J. Wheeler Černé díry při svém vzniku ponechají informaci pouze o své hmotnosti, momentu hybnosti a elektrickém náboji

51

52 Entropie černých děr Entropie Míra neuspořádanosti systému, šipka času Ztráta entropie porušení 2. T.Z. S. Hawking - dokázal, že plocha horizontu událostí nikdy nezmenší Plocha reprezentuje entropii černé díry

53 Hawkingovo záření (vypařování černých děr) Fluktuace vakua Neustálé vytváření a zanikání virtuálních částic (pár částice antičástice) Heisenbergova relace neurčitosti x. p h Jen jedna částice z páru pod horizontem nelze anihilovat s antičásticí Vznik reálné částice z virtuální Černá díra září a uhradí energie potřebnou ke vzniku reálné částice

54 Hawkingovo záření Spektrum Hawkingova záření shodné se spektrem absolutně černého tělesa Maximální vlnová délka = hodnotě Schwarzildova poloměru Čím větší je hmotnost černé díry, tím je vyšší její teplota Černá díra o hmotnosti 6 M S se bude vypařovat let, což je doba, která činí Hawkingovo záření absolutně neměřitelným.

55 Pozorování černých děr Akreční disky a relativistické výtrysky Disky i u bílých trpaslíků nebo neutronových hvězd Výtrysky plazmatu (délka až stovky sv. let)

56 Pozorování černých děr Silné elektromagnetické emise Nepravidelnosti v podobě záblesků neutronová hvězda, bílý trpaslík Pravidelné bez záblesků černá díra Emise rentgenového a gama záření v důsledku zahřáté látky akrečního disku ztráta gravitační potenciální energie látky Gravitační a dopplerův červený posuv Míra gravitačního posuvu vypovídá o poloze atomu, který emitoval fotonu Míra dopplerova posuvu vypovídá o směru a velikosti rychlosti

57

58 Pozorování černých děr Gravitační čočka Světlo prochází silným gravitačním polem Nemá ohnisko, největší ohyb poblíž středu čočky

59 Gravitační čočka

60 Gravitační čočka

61 Pozorování černých děr Pozorování těles obíhajících možnou černou díru Aplikace Keplerových zákonů (hmotnost těles) Cygnus X= 1 Kandidát na černou díru (v systému s modrým veleobrem), souhvězdí Labutě, objeven v r Nejbližší černá díra (6 000 sv. let)

62 Galaktická černá díra Pegas, 3000 sv. let Aktivní spirální galaxie, v prstenci se rodí nové hvězdy

63 Pozvolné vyhasínání rentgenového zdroje Snímky pořídila širokoúhlou kamerou sonda BeppoSAX 6,5, 12,5 a 54 hodin po gama záblesku.

64 Zdroje %20Zivot%20hvezd.pdf

České vysoké učení technické v Praze. Ústav technické a experimentální fyziky. Život hvězd. Karel Smolek

České vysoké učení technické v Praze. Ústav technické a experimentální fyziky. Život hvězd. Karel Smolek České vysoké učení technické v Praze Ústav technické a experimentální fyziky Život hvězd Karel Smolek Slunce Vzniklo před 4.6 miliardami let Bude svítit ještě 7 miliard let Leží asi 28 000 sv.l. od středu

Více

Černé díry: brány k poznávání našeho Vesmíru

Černé díry: brány k poznávání našeho Vesmíru Jihlavská astronomická společnost, 9. února 2017, Muzeum Vysočina. Černé díry: brány k poznávání našeho Vesmíru Ing. Petr Dvořák petr.dvorak@ceitec.vutbr.cz Ústav fyzikálního inženýrství, FSI VUT v Brně

Více

B. Hvězdy s větší hmotností spalují termojaderné palivo pomaleji,

B. Hvězdy s větší hmotností spalují termojaderné palivo pomaleji, HVĚZDY 1. Většina hvězd se při pozorování v průběhu noci pohybuje od A. Západu k východu, B. Východu k západu, C. Severu k jihu, D. Jihu k severu. 2. Ve většině hvězd se energie uvolňuje A. Prudkou rotací

Více

Život hvězd. Karel Smolek. Ústav technické a experimentální fyziky, ČVUT

Život hvězd. Karel Smolek. Ústav technické a experimentální fyziky, ČVUT Život hvězd Karel Smolek Ústav technické a experimentální fyziky, ČVUT Slunce a jeho poloha v Galaxii Vzniklo před 4.6 miliardami let Bude svítit ještě 7 miliard let Leží asi 28 000 sv.l. od středu Galaxie

Více

Proč studovat hvězdy? 9. 1 Úvod 11 1.1 Energetické úvahy 11 1.2 Zjednodušení použitá při konstrukci sférických modelů... 13 1.3 Model našeho Slunce 15

Proč studovat hvězdy? 9. 1 Úvod 11 1.1 Energetické úvahy 11 1.2 Zjednodušení použitá při konstrukci sférických modelů... 13 1.3 Model našeho Slunce 15 Proč studovat hvězdy? 9 1 Úvod 11 1.1 Energetické úvahy 11 1.2 Zjednodušení použitá při konstrukci sférických modelů.... 13 1.3 Model našeho Slunce 15 2 Záření a spektrum 21 2.1 Elektromagnetické záření

Více

Vývoj hvězd na hlavní posloupnosti

Vývoj hvězd na hlavní posloupnosti Vývoj hvězd na hlavní posloupnosti Hydrostatická rovnováha rostoucí teplota jádra => jaderné fúze vodíku rychleji => roste teplota a tlak v jádru => prvotní kolaps zpomaluje až se zcela zastaví (působení

Více

1/38 Bouřlivý život hvězdných vysloužilců

1/38 Bouřlivý život hvězdných vysloužilců 1/38 Bouřlivý život hvězdných vysloužilců Bouřlivý život hvězdných vysloužilců Stanislav Hledík U3V FPF SUO, Krnov 15. dubna 2008 Navzdory zdánlivé neměnnosti noční oblohy není život hvězd věčný. Hvězdné

Více

Obecná teorie relativity pokračování. Petr Beneš ÚTEF

Obecná teorie relativity pokračování. Petr Beneš ÚTEF Obecná teorie relativity pokračování Petr Beneš ÚTEF Dilatace času v gravitačním poli Díky principu ekvivalence je gravitační působení zaměnitelné mechanickým zrychlením. Dochází ke stejným jevům jako

Více

VESMÍR Hvězdy. Životní cyklus hvězdy

VESMÍR Hvězdy. Životní cyklus hvězdy VESMÍR Hvězdy Pracovní list HEUREKA! aneb podpora badatelských aktivit žáků ZŠ v přírodovědných předmětech ASTRONOMIE Úloha 1. Ze života hvězdy. Úloha 1a. Očísluj jednotlivé fáze vývoje hvězdy. Následně

Více

Gymnázium Dr. J. Pekaře Mladá Boleslav

Gymnázium Dr. J. Pekaře Mladá Boleslav Gymnázium Dr. J. Pekaře Mladá Boleslav Zeměpis I. ročník ČERNÉ DÍRY referát Jméno a příjmení: Oskar Šumovský Josef Šváb Třída: 5.0 Datum: 28. 9. 2015 Černé díry 1. Obecné informace a) Základní popis Černé

Více

Identifikace vzdělávacího materiálu VY_52_INOVACE_F.9.A.34 EU OP VK

Identifikace vzdělávacího materiálu VY_52_INOVACE_F.9.A.34 EU OP VK Identifikace vzdělávacího materiálu VY_52_INOVACE_F.9.A.34 EU OP VK Škola, adresa Autor ZŠ Smetanova 1509, Přelouč Mgr. Ladislav Hejný Období tvorby VM Červen 2012 Ročník 9. Předmět Fyzika Hvězdy Název,

Více

Jak se vyvíjejí hvězdy?

Jak se vyvíjejí hvězdy? Jak se vyvíjejí hvězdy? tlak a teplota normální plyny degenerované plyny osud Slunce fáze červeného obra oblast horizontálního ramena oblast asymptotického ramena obrů planetární mlhovina bílý trpaslík

Více

Černé díry ve vesmíru očima Alberta Einsteina

Černé díry ve vesmíru očima Alberta Einsteina Černé díry ve vesmíru očima Alberta Einsteina Martin Blaschke otevření Světa techniky ve dnech 14. - 20. 3. 2014 Ústav fyziky, Slezská univerzita v Opavě 1 / 21 Černá díra, kde jsme to jen slyšeli? Město

Více

Jak se pozorují černé díry?

Jak se pozorují černé díry? Vybrané kapitoly z astrofyziky díl 30. Jak se pozorují černé díry? Jiří Svoboda Astronomický ústav Akademie věd ČR Vybrané kapitoly z astrofyziky, Astronomický ústav UK, prosinec 2013 Osnova přednáškového

Více

ABSOLVENTSKÁ PRÁCE ZÁKLADNÍ ŠKOLA, ŠKOLNÍ 24, BYSTRÉ ROČNÍK. Astronomie - hvězdy. Michal Doležal

ABSOLVENTSKÁ PRÁCE ZÁKLADNÍ ŠKOLA, ŠKOLNÍ 24, BYSTRÉ ROČNÍK. Astronomie - hvězdy. Michal Doležal ABSOLVENTSKÁ PRÁCE ZÁKLADNÍ ŠKOLA, ŠKOLNÍ 24, BYSTRÉ 569 92 9.ROČNÍK Astronomie - hvězdy Michal Doležal Školní rok 2011/2012 Prohlašuji, že jsem absolventskou práci vypracoval samostatně a všechny použité

Více

Chemické složení vesmíru

Chemické složení vesmíru Společně pro výzkum, rozvoj a inovace - CZ/FMP.17A/0436 Chemické složení vesmíru Jak sledujeme chemické složení ve vesmíru? Libor Lenža, Hvězdárna Valašské Meziříčí, p. o. Mendelova univerzita v Brně,

Více

VY_32_INOVACE_06_III./19._HVĚZDY

VY_32_INOVACE_06_III./19._HVĚZDY VY_32_INOVACE_06_III./19._HVĚZDY Hvězdy Vývoj hvězd Konec hvězd- 1. možnost Konec hvězd- 2. možnost Konec hvězd- 3. možnost Supernova závěr Hvězdy Vznik hvězd Vše začalo už strašně dávno, kdy byl vesmír

Více

Vesmír. Studijní text k výukové pomůcce. Helena Šimoníková D07462 9.6.2009

Vesmír. Studijní text k výukové pomůcce. Helena Šimoníková D07462 9.6.2009 2009 Vesmír Studijní text k výukové pomůcce Helena Šimoníková D07462 9.6.2009 Obsah Vznik a stáří vesmíru... 3 Rozměry vesmíru... 3 Počet galaxií, hvězd a planet v pozorovatelném vesmíru... 3 Objekty ve

Více

- mezihvězdná látka - složení: plyny a prach - dělení: 1) Jasné září vlastním nebo rozptýleným světlem emisní reflexní planetární 2) Temné pohlcují

- mezihvězdná látka - složení: plyny a prach - dělení: 1) Jasné září vlastním nebo rozptýleným světlem emisní reflexní planetární 2) Temné pohlcují Mgr. Veronika Kuncová, 2013 - mezihvězdná látka - složení: plyny a prach - dělení: 1) Jasné září vlastním nebo rozptýleným světlem emisní reflexní planetární 2) Temné pohlcují světlo z blízkých zdrojů

Více

ZÁŘENÍ V ASTROFYZICE

ZÁŘENÍ V ASTROFYZICE ZÁŘENÍ V ASTROFYZICE Plazmový vesmír Uvádí se, že 99 % veškeré hmoty ve vesmíru je v plazmovém skupenství (hvězdy, mlhoviny, ) I na Zemi se vyskytuje plazma, např. v podobě blesků, polárních září Ve sluneční

Více

Astrofyzika. 1. Sluneční soustava. Slunce. Sluneční atmosféra. Slunce 17.6.2013. Slunce planety planetky komety, meteoroidy prach, plyny

Astrofyzika. 1. Sluneční soustava. Slunce. Sluneční atmosféra. Slunce 17.6.2013. Slunce planety planetky komety, meteoroidy prach, plyny 1. Sluneční soustava Astrofyzika aneb fyzika hvězd a vesmíru planety planetky komety, meteoroidy prach, plyny je dominantním tělesem ve Sluneční soustavě koule o poloměru 1392000 km, s průměrnou hustotou

Více

9. Astrofyzika. 9.4 Pod jakým úhlem vidí průměr Země pozorovatel na Měsíci? Vzdálenost Měsíce od Země je 384 000 km.

9. Astrofyzika. 9.4 Pod jakým úhlem vidí průměr Země pozorovatel na Měsíci? Vzdálenost Měsíce od Země je 384 000 km. 9. Astrofyzika 9.1 Uvažujme hvězdu, která je ve vzdálenosti 4 parseky od sluneční soustavy. Určete: a) jaká je vzdálenost této hvězdy vyjádřená v kilometrech, b) dobu, za kterou dospěje světlo z této hvězdy

Více

Vývoj Slunce v minulosti a budoucnosti

Vývoj Slunce v minulosti a budoucnosti Vývoj Slunce v minulosti a budoucnosti Vjačeslav Sochora Astronomický ústva UK 9.5.2008 Obsah Úvod. Standartní model. Standartní model se započtením ztráty hmoty. Minulost a budoucnost Slunce. Reference.

Více

Batse rozložení gama záblesků gama záblesků detekovaných družicí BATSE v letech Rozložení je isotropní.

Batse rozložení gama záblesků gama záblesků detekovaných družicí BATSE v letech Rozložení je isotropní. GRB Gama Ray Burst Úvod Objevení a pozorování Lokalizace a hledání optických protějšků Vzdálenosti a rozložení Typy gama záblesků Možné vysvětlení Satelit Fermi Objev gama záblesků Gama záření je zcela

Více

Všechny galaxie vysílají určité množství elektromagnetického záření. Některé vyzařují velké množství záření a nazývají se aktivní.

Všechny galaxie vysílají určité množství elektromagnetického záření. Některé vyzařují velké množství záření a nazývají se aktivní. VESMÍR Model velkého třesku předpovídá, že vesmír vznikl explozí před asi 15 miliardami let. To, co dnes pozorujeme, bylo na začátku koncentrováno ve velmi malém objemu, naplněném hmotou o vysoké hustotě

Více

Za hranice současné fyziky

Za hranice současné fyziky Za hranice současné fyziky Zásadní změny na počátku 20. století Kvantová teorie (Max Planck, 1900) teorie malého a lehkého Teorie relativity (Albert Einstein) teorie rychlého (speciální relativita) Teorie

Více

Astronomie. Astronomie má nejužší vztah s fyzikou.

Astronomie. Astronomie má nejužší vztah s fyzikou. Astronomie Je věda, která se zabývá jevy za hranicemi zemské atmosféry. Zvláště tedy výzkumem vesmírných těles, jejich soustav, různých dějů ve vesmíru i vesmírem jako celkem. Astronom, česky hvězdář,

Více

Astronomie Sluneční soustavy I. PřF UP, Olomouc, 6.4.2012

Astronomie Sluneční soustavy I. PřF UP, Olomouc, 6.4.2012 Astronomie Sluneční soustavy I. PřF UP, Olomouc, 6.4.2012 Osnova přednášek: 1.) Tělesa Sluneční soustavy. Slunce, planety, trpasličí planety, malá tělesa Sluneční soustavy, pohled ze Země. Struktura Sluneční

Více

Mezihvězdná hmota I. Mezihvězdný prostor není prázdný a je vyplněn mezihvězdnou látkou v různých podobách

Mezihvězdná hmota I. Mezihvězdný prostor není prázdný a je vyplněn mezihvězdnou látkou v různých podobách MEZIHVĚZDNÁ HMOTA Mezihvězdná hmota I. Mezihvězdný prostor není prázdný a je vyplněn mezihvězdnou látkou v různých podobách Myšlenka existence mezihvězdné hmoty je velice stará již v 5. stol. př. n. l.

Více

Složení hvězdy. Hvězda - gravitačně vázaný objekt, složený z vysokoteplotního plazmatu; hmotnost 0,08 M ʘ cca 150 M ʘ, ale R136a1 (LMC) má 265 M ʘ

Složení hvězdy. Hvězda - gravitačně vázaný objekt, složený z vysokoteplotního plazmatu; hmotnost 0,08 M ʘ cca 150 M ʘ, ale R136a1 (LMC) má 265 M ʘ Hvězdy zblízka Složení hvězdy Hvězda - gravitačně vázaný objekt, složený z vysokoteplotního plazmatu; hmotnost 0,08 M ʘ cca 150 M ʘ, ale R136a1 (LMC) má 265 M ʘ Plazma zcela nebo částečně ionizovaný plyn,

Více

ČLOVĚK A ROZMANITOST PŘÍRODY VESMÍR A ZEMĚ. GRAVITACE

ČLOVĚK A ROZMANITOST PŘÍRODY VESMÍR A ZEMĚ. GRAVITACE ČLOVĚK A ROZMANITOST PŘÍRODY VESMÍR A ZEMĚ. GRAVITACE Sluneční soustava Vzdálenosti ve vesmíru Imaginární let fotonovou raketou Planety, planetky Planeta (oběžnice) ve sluneční soustavě je takové těleso,

Více

DUM č. 20 v sadě. 12. Fy-3 Průvodce učitele fyziky pro 4. ročník

DUM č. 20 v sadě. 12. Fy-3 Průvodce učitele fyziky pro 4. ročník projekt GML Brno Docens DUM č. 20 v sadě 12. Fy-3 Průvodce učitele fyziky pro 4. ročník Autor: Miroslav Kubera Datum: 21.06.2014 Ročník: 4B Anotace DUMu: Prezentace je zaměřena na základní popis a charakteristiky

Více

Úvod do moderní fyziky. lekce 7 vznik a vývoj vesmíru

Úvod do moderní fyziky. lekce 7 vznik a vývoj vesmíru Úvod do moderní fyziky lekce 7 vznik a vývoj vesmíru proč nemůže být vesmír statický? Planckova délka, Planckův čas l p =sqrt(hg/c^3)=1.6x10-35 m nejkratší dosažitelná vzdálenost, za kterou teoreticky

Více

Typy galaxií. spirály a obláčky

Typy galaxií. spirály a obláčky Typy galaxií spirály a obláčky Zhruba tři čtvrtiny viditelných galaxií jsou, stejně jako ta naše, spirálami, zploštělými disky s vypouklou středovou oblastí. V disku se prohánějí mladé hvězdy, plyn a prach.

Více

Jak najdeme a poznáme planetu, kde by mohl být život?

Jak najdeme a poznáme planetu, kde by mohl být život? Společně pro výzkum, rozvoj a inovace - CZ/FMP.17A/0436 Jak najdeme a poznáme planetu, kde by mohl být život? Libor Lenža, Hvězdárna Valašské Meziříčí, p. o. Mendelova univerzita v Brně, Laboratoř metalomiky

Více

Geochemie endogenních procesů 2. část

Geochemie endogenních procesů 2. část Geochemie endogenních procesů 2. část proč má Země složení takové jaké má? studium distribuce a zastoupení prvků ve Sluneční soustavě = kosmochemie přes svou jedinečnost má Země podobné složení jako Mars,

Více

Stručný úvod do spektroskopie

Stručný úvod do spektroskopie Vzdělávací soustředění studentů projekt KOSOAP Slunce, projevy sluneční aktivity a využití spektroskopie v astrofyzikálním výzkumu Stručný úvod do spektroskopie Ing. Libor Lenža, Hvězdárna Valašské Meziříčí,

Více

Základy spektroskopie a její využití v astronomii

Základy spektroskopie a její využití v astronomii Ing. Libor Lenža, Hvězdárna Valašské Meziříčí, p. o. Základy spektroskopie a její využití v astronomii Hvězdárna Valašské Meziříčí, p. o. Krajská hvezdáreň v Žiline Světlo x záření Jak vypadá spektrum?

Více

Mechanizmy hvězdné proměnnosti

Mechanizmy hvězdné proměnnosti Mechanizmy hvězdné proměnnosti Bc. Luboš Brát, podle skripta Z. Mikulášek a M. Zejda, Proměnné hvězdy, AÚ PřF MÚ Brno Proměnné hvězdy a mechanizmy jak k jejich změnám jasnosti dochází si popíšeme postupně

Více

Urychlování částic ve vesmíru aneb záhadné extrémně energetické kosmické záření

Urychlování částic ve vesmíru aneb záhadné extrémně energetické kosmické záření Urychlování částic ve vesmíru aneb záhadné extrémně energetické kosmické záření Pozorování kosmického záření Kosmické záření je proud převážně nabitých částic, které dopadá na zeměkouli z kosmického prostoru.

Více

VZNIK FYZIKY, CHEMIE A BIOLOGIE, ANEB VELKÝ TŘESK ZA VŠECHNO MŮŽE

VZNIK FYZIKY, CHEMIE A BIOLOGIE, ANEB VELKÝ TŘESK ZA VŠECHNO MŮŽE VZNIK FYZIKY, CHEMIE A BIOLOGIE, ANEB VELKÝ TŘESK ZA VŠECHNO MŮŽE Jiří GRYGAR Fyzikální ústav Akademie věd ČR, Praha 17.4.2012 VELKÝ TŘESK 1 Na počátku bylo slovo: VELKÝ TŘESK opravdu za všechno může 10-43

Více

Když vybuchne supernova

Když vybuchne supernova Když vybuchne supernova Pozůstatek po explozi supernovy SN 1987A ve Velkém Magellanově oblaku. Jde o typickou supernovu typu II, která explodovala ve vzdálenosti 167 000 ly. Signál k nám doletěl v roce

Více

Galaxie Vesmír velkých měřítek GALAXIE. Základy astronomie Galaxie 1/47

Galaxie Vesmír velkých měřítek GALAXIE. Základy astronomie Galaxie 1/47 GALAXIE Základy astronomie 2 16.4.2014 Galaxie 1/47 Galaxie 2/47 Galaxie 3/47 Hubbleův systém klasifikace 1936 1924 Hubble rozlišil okraje blízkých galaxií, identifikoval v nich hvězdy klasifikace zároveň

Více

Hvězdný diagram. statistika nuda je, má však cenné údaje. náhodný vzorek skupina osob. obdobně i ve světě hvězd!

Hvězdný diagram. statistika nuda je, má však cenné údaje. náhodný vzorek skupina osob. obdobně i ve světě hvězd! Hvězdný diagram statistika nuda je, má však cenné údaje náhodný vzorek skupina osob obdobně i ve světě hvězd! Trocha historie 1889 Carl Vilhelm Ludvig Charlier první tabulka Plejády 1910 Hans Oswald Rosenberg

Více

Přírodopis 9. Naše Země ve vesmíru. Mgr. Jan Souček. 2. hodina

Přírodopis 9. Naše Země ve vesmíru. Mgr. Jan Souček. 2. hodina Přírodopis 9 2. hodina Naše Země ve vesmíru Mgr. Jan Souček VESMÍR je soubor všech fyzikálně na sebe působících objektů, který je současná astronomie a kosmologie schopna obsáhnout experimentálně observační

Více

Astronomie, sluneční soustava

Astronomie, sluneční soustava Základní škola Nový Bor, náměstí Míru 128, okres Česká Lípa, příspěvková organizace e mail: info@zsnamesti.cz; www.zsnamesti.cz; telefon: 487 722 010; fax: 487 722 378 Registrační číslo: CZ.1.07/1.4.00/21.3267

Více

VY_32_INOVACE_FY.19 VESMÍR

VY_32_INOVACE_FY.19 VESMÍR VY_32_INOVACE_FY.19 VESMÍR Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Jiří Kalous Základní a mateřská škola Bělá nad Radbuzou, 2011 Vesmír je souhrnné označení veškeré hmoty, energie

Více

VY_32_INOVACE_FY.20 VESMÍR II.

VY_32_INOVACE_FY.20 VESMÍR II. VY_32_INOVACE_FY.20 VESMÍR II. Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Jiří Kalous Základní a mateřská škola Bělá nad Radbuzou, 2011 Galaxie Mléčná dráha je galaxie, v níž se nachází

Více

Registrační číslo projektu: CZ.1.07/1.4.00/21.3075

Registrační číslo projektu: CZ.1.07/1.4.00/21.3075 Registrační číslo projektu: CZ.1.07/1.4.00/21.3075 Šablona: III/2 Sada: VY_32_INOVACE_5IS Ověření ve výuce Třída 9. B Datum: 4. 3. 2013 Pořadové číslo 20 1 Černé díry Předmět: Ročník: Jméno autora: Fyzika

Více

Naše Galaxie dávná historie poznávání

Naše Galaxie dávná historie poznávání Mléčná dráha Naše Galaxie dávná historie poznávání galaxie = gravitačně vázaný strukturovaný a organizovaný systém z řeckého γαλαξίας Galaxie x Mléčná dráha Mléčná dráha antika: Anaxagoras (cca 500 428

Více

Eta Carinae. Eta Carinae. Mlhovina koňské hlavy. Vypracoval student Petr Hofmann 8.3.2004 z GChD jako seminární práci z astron. semináře.

Eta Carinae. Eta Carinae. Mlhovina koňské hlavy. Vypracoval student Petr Hofmann 8.3.2004 z GChD jako seminární práci z astron. semináře. Eta Carinae Vzdálenost od Země: 9000 ly V centru je stejnojmenná hvězda 150-krát větší a 4-milionkrát jasnější než Slunce. Do poloviny 19. století byla druhou nejjasnější hvězdou na obloze. Roku 1841 uvolnila

Více

NAŠE ZEMĚ VE VESMÍRU Zamysli se nad těmito otázkami

NAŠE ZEMĚ VE VESMÍRU Zamysli se nad těmito otázkami NAŠE ZEMĚ VE VESMÍRU Zamysli se nad těmito otázkami Jak se nazývá soustava, ve které se nachází planeta Země? Sluneční soustava Která kosmická tělesa tvoří sluneční soustavu? Slunce, planety, družice,

Více

O PLEŠATOSTI ČERNÝCH DĚR

O PLEŠATOSTI ČERNÝCH DĚR O PLEŠATOSTI ČERNÝCH DĚR . Obsah 1 Předpovědi temné hvězdy 2 Obecná teorie relativity 3 Ověřování OTR 4 Život hvězd 5 Finální stadia 6 Černá díra nemá vlasy 7 Pátrání ve vesmíru 8 Symfonie černých děr

Více

Extragalaktická astrofyzika. Aktivní galaktická jádra, Jety

Extragalaktická astrofyzika. Aktivní galaktická jádra, Jety Extragalaktická astrofyzika Aktivní galaktická jádra, Jety Aktivní Galaktická Jádra Úvod Pro AGN je charakteristické, že emitují velké množství energie z velmi malé oblasti. Obecně se má za to, že centrálním

Více

RNDr. Aleš Ruda, Ph.D.

RNDr. Aleš Ruda, Ph.D. RNDr. Aleš Ruda, Ph.D. přednáška: 1 h zakončení: písemná a navazující ústní zkouška požadavky: témata přednášená na přednáškách a cvičeních + studijní materiály + studium zadané literatury, zápočet ze

Více

Astronomie a astrofyzika

Astronomie a astrofyzika Variace 1 Astronomie a astrofyzika Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www. jarjurek.cz. 1. Astronomie Sluneční soustava

Více

Vlastnosti atomových jader Radioaktivita. Jaderné reakce. Jaderná energetika

Vlastnosti atomových jader Radioaktivita. Jaderné reakce. Jaderná energetika Jaderná fyzika Vlastnosti atomových jader Radioaktivita Jaderné reakce Jaderná energetika Vlastnosti atomových jader tomové jádro rozměry jsou řádově 1-15 m - složeno z protonů a neutronů Platí: X - soustředí

Více

Úvod do moderní fyziky. lekce 1 speciální a obecná teorie relativity

Úvod do moderní fyziky. lekce 1 speciální a obecná teorie relativity Úvod do moderní fyziky lekce 1 speciální a obecná teorie relativity Relativita zabývá se měřením událostí kdy a kde se staly a jak jsou libovolné dvě události vzdáleny v prostoru a v čase speciální teorie

Více

Relativistická dynamika

Relativistická dynamika Relativistická dynamika 1. Jaké napětí urychlí elektron na rychlost světla podle klasické fyziky? Jakou rychlost získá při tomto napětí elektron ve skutečnosti? [256 kv, 2,236.10 8 m.s -1 ] 2. Vypočtěte

Více

Einsteinových. podle množství. dá snadno určit osud vesmíru tři možné varianty

Einsteinových. podle množství. dá snadno určit osud vesmíru tři možné varianty Známe už definitivní iti model vesmíru? Michael Prouza Klasický pohled na vývoj vesmíru Fid Fridmanovo řešení š í Einsteinových rovnic podle množství hmoty (a energie) se dá snadno určit osud vesmíru tři

Více

Seriál: Hvězdný zvěřinec

Seriál: Hvězdný zvěřinec FYKOS Seriál: Hvězdný zvěřinec V minulých dílech jsme se dozvěděli, jak popsat polohu objektů na nebeské sféře, jejich jasnost a vzdálenost. Je načase se podívat na pozorovatelné objekty samotné. Pokud

Více

Mechanizmy hvězdné proměnnosti

Mechanizmy hvězdné proměnnosti Vzdělávací soustředění studentů projekt KOSOAP Proměnné hvězdy a možnosti jejich pozorování a výzkumu Mechanizmy hvězdné proměnnosti Luboš Brát, Sekce proměnných hvězd a exoplanet ČAS Mechanizmy hvězdné

Více

Fyzikální vzdělávání. 1. ročník. Učební obor: Kuchař číšník Kadeřník. Implementace ICT do výuky č. CZ.1.07/1.1.02/ GG OP VK

Fyzikální vzdělávání. 1. ročník. Učební obor: Kuchař číšník Kadeřník. Implementace ICT do výuky č. CZ.1.07/1.1.02/ GG OP VK Fyzikální vzdělávání 1. ročník Učební obor: Kuchař číšník Kadeřník 1 6.1Slunce, planety a jejich pohyb, komety Vesmír - Slunce - planety a jejich pohyb, - komety, hvězdy a galaxie 2 Vesmír či kosmos (z

Více

VY_52_INOVACE_137.notebook. April 12, V rozlehlých prostorách vesmíru je naše planeta jen maličkou tečkou.

VY_52_INOVACE_137.notebook. April 12, V rozlehlých prostorách vesmíru je naše planeta jen maličkou tečkou. Předmět: Přírodověda Základní škola Nový Bor, náměstí Míru 128, okres Česká Lípa, příspěvková organizace e mail: info@zsnamesti.cz; www.zsnamesti.cz; telefon: 487 722 010; fax: 487 722 378 Registrační

Více

Registrační číslo projektu: CZ.1.07/1.5.00/34.0553 Elektronická podpora zkvalitnění výuky CZ.1.07 Vzděláním pro konkurenceschopnost

Registrační číslo projektu: CZ.1.07/1.5.00/34.0553 Elektronická podpora zkvalitnění výuky CZ.1.07 Vzděláním pro konkurenceschopnost Registrační číslo projektu: CZ.1.07/1.5.00/34.0553 Elektronická podpora zkvalitnění výuky CZ.1.07 Vzděláním pro konkurenceschopnost Projekt je realizován v rámci Operačního programu Vzdělávání pro konkurence

Více

Základní jednotky v astronomii

Základní jednotky v astronomii v01.00 Základní jednotky v astronomii Ing. Neliba Vlastimil AK Kladno 2005 Délka - l Slouží pro určení vzdáleností ve vesmíru Základní jednotkou je metr metr je definován jako délka, jež urazí světlo ve

Více

Jaká je hmota uvnitř neutronových hvězd aneb jak studujeme velmi hustou jadernou hmotu

Jaká je hmota uvnitř neutronových hvězd aneb jak studujeme velmi hustou jadernou hmotu Jaká je hmota uvnitř neutronových hvězd aneb jak studujeme velmi hustou jadernou hmotu Je velmi jednoduché počítat vlastnosti neutronových nebo podivných hvězd. Vše co potřebujete je stavová rovnice jaderné

Více

Gravitační síla v blízkosti hmotných objektů. závěrečná stádia hvězd

Gravitační síla v blízkosti hmotných objektů. závěrečná stádia hvězd Gravitační síla v blízkosti hmotných objektů závěrečná stádia hvězd O čem to bude Popíšeme si závěrečná stádia hvězd a podmínky, při nichž se hvězda dostane do hoto stádia. 2/62 O čem to bude Popíšeme

Více

Fyzika, maturitní okruhy (profilová část), školní rok 2014/2015 Gymnázium INTEGRA BRNO

Fyzika, maturitní okruhy (profilová část), školní rok 2014/2015 Gymnázium INTEGRA BRNO 1. Jednotky a veličiny soustava SI odvozené jednotky násobky a díly jednotek skalární a vektorové fyzikální veličiny rozměrová analýza 2. Kinematika hmotného bodu základní pojmy kinematiky hmotného bodu

Více

Sluneční soustava OTEVŘÍT. Konec

Sluneční soustava OTEVŘÍT. Konec Sluneční soustava OTEVŘÍT Konec Sluneční soustava Slunce Merkur Venuše Země Mars Jupiter Saturn Uran Neptun Pluto Zpět Slunce Slunce vzniklo asi před 4,6 miliardami let a bude svítit ještě přibližně 7

Více

VZNIK FYZIKY, CHEMIE A BIOLOGIE, ANEB MŮŽE

VZNIK FYZIKY, CHEMIE A BIOLOGIE, ANEB MŮŽE VZNIK FYZIKY, CHEMIE A BIOLOGIE, ANEB VELKÝ TŘESK ZA VŠECHNO V MŮŽE Fyzikáln Jiří GRYGAR lní ústav AkademieA věd ČR, Praha 27.2.2012 VELKÝ TŘESK 1 Na počátku bylo slovo: VELKÝ TŘESKT opravdu za všechno

Více

Vznik vesmíru (SINGULARITA) CZ.1.07/1.1.00/14.0143. Zpracovala: RNDr. Libuše Bartková

Vznik vesmíru (SINGULARITA) CZ.1.07/1.1.00/14.0143. Zpracovala: RNDr. Libuše Bartková Vznik vesmíru (SINGULARITA) CZ.1.07/1.1.00/14.0143 Zpracovala: RNDr. Libuše Bartková Teorie Kosmologie - věda zabývající se vznikem a vývojem vesmírem. Vznik vesmírů je vysvětlován v bájích každé starobylé

Více

Astronomie jednoduchými prostředky. Miroslav Jagelka

Astronomie jednoduchými prostředky. Miroslav Jagelka Astronomie jednoduchými prostředky Miroslav Jagelka 20.10.2016 Když si vystačíte s kameny... Stonehenge (1600-3100 BC) Pyramidy v Gize (2550 BC) El Castilllo (1000 BC) ... nebo s hůlkou Gnomón (5000 BC)

Více

Otázka: Stavba atomu. Předmět: Chemie. Přidal(a): Kuba Kubikula

Otázka: Stavba atomu. Předmět: Chemie. Přidal(a): Kuba Kubikula Otázka: Stavba atomu Předmět: Chemie Přidal(a): Kuba Kubikula Atom = základní stavební částice všech látek Atomisté: Leukippos zakladatelem atomismu 5 st. př. n. l. Demokritos charakterizoval, že hmota

Více

VESMÍR. za počátek vesmíru považujeme velký třesk před 13,7 miliardami let. dochází k obrovskému uvolnění energie, která se rozpíná

VESMÍR. za počátek vesmíru považujeme velký třesk před 13,7 miliardami let. dochází k obrovskému uvolnění energie, která se rozpíná VESMÍR za počátek vesmíru považujeme velký třesk před 13,7 miliardami let dochází k obrovskému uvolnění energie, která se rozpíná vznikají první atomy, jako první se tvoří atomy vodíku HVĚZDY první hvězdy

Více

Látkové množství. 6,022 10 23 atomů C. Přípravný kurz Chemie 07. n = N. Doporučená literatura. Látkové množství n. Avogadrova konstanta N A

Látkové množství. 6,022 10 23 atomů C. Přípravný kurz Chemie 07. n = N. Doporučená literatura. Látkové množství n. Avogadrova konstanta N A Doporučená literatura Přípravný kurz Chemie 2006/07 07 RNDr. Josef Tomandl, Ph.D. Mailto: tomandl@med.muni.cz Předmět: Přípravný kurz chemie J. Vacík a kol.: Přehled středoškolské chemie. SPN, Praha 1990,

Více

13. Spektroskopie základní pojmy

13. Spektroskopie základní pojmy základní pojmy Spektroskopicky významné OPTICKÉ JEVY absorpce absorpční spektrometrie emise emisní spektrometrie rozptyl rozptylové metody Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti

Více

STEPHEN HAWKING Černé díry: Reithův cyklus přednášek pro BBC

STEPHEN HAWKING Černé díry: Reithův cyklus přednášek pro BBC STEPHEN HAWKING Černé díry: Reithův cyklus přednášek pro BBC ARGO DOKOŘÁN STEPHEN HAWKING Černé díry: Reithův cyklus přednášek pro BBC Z anglického originálu Black Holes: The BBC Reith Lectures, vydaného

Více

Vznik této prezentace byl podpořen projektem CZ.1.07/2.3.00/ Tato prezentace slouží jako vzdělávací materiál.

Vznik této prezentace byl podpořen projektem CZ.1.07/2.3.00/ Tato prezentace slouží jako vzdělávací materiál. Vznik této prezentace byl podpořen projektem CZ.1.07/2.3.00/09.0138 Tato prezentace slouží jako vzdělávací materiál. Co uvidíte v černé díře? extrémní gravitační lensing Pavel Bakala Ústav fyziky Filozoficko-přírodovědecká

Více

6.3. HVĚZDY A HVĚZDNÁ OBLOHA

6.3. HVĚZDY A HVĚZDNÁ OBLOHA 6.3. HVĚZDY A HVĚZDNÁ OBLOHA Vznik hvězd - vesmír byl původně vyplněn prachem a plynem ještě nenarozených hvězd - nejprve se začal prach a plyn pozvolna slučovat, houstnout, kumulovat se do větších oblastí,

Více

VY_12_INOVACE_115 HVĚZDY

VY_12_INOVACE_115 HVĚZDY VY_12_INOVACE_115 HVĚZDY Pro žáky 6. ročníku Člověk a příroda Zeměpis - Vesmír Září 2012 Mgr. Regina Kokešová Slouží k probírání nového učiva formou - prezentace - práce s textem - doplnění úkolů. Rozvíjí

Více

Cesta do nitra Slunce

Cesta do nitra Slunce Cesta do nitra Slunce Jeden den s fyzikou MFF UK, 7. 2. 2013 Michal Švanda Astronomický ústav MFF UK Chytří lidé řekli Už na první pohled se zdá, že vnitřek Slunce a hvězd je méně dostupný vědeckému zkoumání

Více

Rychlost světla Ve vakuu je definována přesnou hodnotou c = m/s ( ,8 km/h). Označuje se písmenem c

Rychlost světla Ve vakuu je definována přesnou hodnotou c = m/s ( ,8 km/h). Označuje se písmenem c Rychlost světla Ve vakuu je definována přesnou hodnotou c = 299 792 458 m/s (1 079 252 848,8 km/h). Označuje se písmenem c Astronomická jednotka Je definovaná jako vzdálenost Země od Slunce. 1 AU = 149

Více

Co je vesmír? SVĚTELNÉ ROKY

Co je vesmír? SVĚTELNÉ ROKY Co je vesmír? Vesmír je všechno, co existuje planety, hvězdy, galaxie a prostor mezi nimi. Součástí vesmíru je dokonce i čas. Nikdo neví, jak je vesmír velký nebo kde začíná a končí. Všechno je tak daleko

Více

4.4.6 Jádro atomu. Předpoklady: Pomůcky:

4.4.6 Jádro atomu. Předpoklady: Pomůcky: 4.4.6 Jádro atomu Předpoklady: 040404 Pomůcky: Jádro je stotisíckrát menší než vlastní atom (víme z Rutherfordova experimentu), soustřeďuje téměř celou hmotnost atomu). Skládá se z: protonů: kladné částice,

Více

Projekt Společně pod tmavou oblohou

Projekt Společně pod tmavou oblohou Projekt Společně pod tmavou oblohou Kometa ISON a populace Oortova oblaku Jakub Černý Společnost pro MeziPlanetární Hmotu Dynamicky nové komety Objev komety snů? Vitali Nevski (Bělorusko) a Artyom Novichonok

Více

Jak se pozorují černé díry? - část 3. Astrofyzikální modely pro rentgenová spektra

Jak se pozorují černé díry? - část 3. Astrofyzikální modely pro rentgenová spektra Jak se pozorují černé díry? - část 3. Astrofyzikální modely pro rentgenová spektra Jiří Svoboda Astronomický ústav Akademie věd ČR Vybrané kapitoly z astrofyziky, Astronomický ústav UK, prosinec 2013 Osnova

Více

Identifikace vzdělávacího materiálu VY_52_INOVACE_F.9.A.35 EU OP VK. Fyzika Orientace na obloze

Identifikace vzdělávacího materiálu VY_52_INOVACE_F.9.A.35 EU OP VK. Fyzika Orientace na obloze Identifikace vzdělávacího materiálu VY_52_INOVACE_F.9.A.35 EU OP VK Škola, adresa Autor ZŠ Smetanova 1509, Přelouč Mgr. Ladislav Hejný Období tvorby VM Červen 2012 Ročník 9. Předmět Fyzika Orientace na

Více

Reliktní záření a jeho polarizace. Ústav teoretické fyziky a astrofyziky

Reliktní záření a jeho polarizace. Ústav teoretické fyziky a astrofyziky Reliktní záření a jeho polarizace Jiří Krtička Ústav teoretické fyziky a astrofyziky Proč je obloha temná? v hlubohém lese bychom v každém směru měli vidět kmen stromu. Proč je obloha temná? pokud jsou

Více

VY_32_INOVACE_08.Fy.9. Slunce

VY_32_INOVACE_08.Fy.9. Slunce VY_32_INOVACE_08.Fy.9. Slunce SLUNCE Slunce je sice obyčejná hvězda, podobná těm, které vidíme na noční obloze, ale pro nás je velmi důležitá. Bez ní by naše Země byla tmavá a studená a žádný život by

Více

Vzdálenosti ve vesmíru

Vzdálenosti ve vesmíru Vzdálenosti ve vesmíru Proč je dobré, abychom je znali? Protože nám udávají : Výchozí bod pro astrofyziku: Vzdálenosti jakéhokoli objektu ve vesmíru je rozhodující parametr k pochopení mechanizmu tvorby

Více

Úvod do moderní fyziky

Úvod do moderní fyziky Úvod do moderní fyziky letní semestr 2015/2016 Vyučující: Ing. Jan Pšikal, Ph.D Tématický obsah přednášek speciální a obecná teorie relativity kvantování energie záření, vlnové vlastnosti částic struktura

Více

Struktura elektronového obalu

Struktura elektronového obalu Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 Struktura elektronového obalu Představy o modelu atomu se vyvíjely tak, jak se zdokonalovaly možnosti vědy

Více

Objev gama záření z galaxie NGC 253

Objev gama záření z galaxie NGC 253 Objev gama záření z galaxie NGC 253 Dalibor Nedbal ÚČJF, Kosmické záření (KZ) Otázky Jak vzniká? Kde vzniká? Jak se šíří? Vysvětlení spektra? Paradigma KZ ze supernov (SN) Pokud platí, lze očekávat velké

Více

Seminární práce z fyziky na téma Černé díry

Seminární práce z fyziky na téma Černé díry Seminární práce z fyziky na téma Černé díry > student - Jan Pavlíček > třída - septima B > škola - Gymnázium, Fr. Hajdy 34, 700 30 Ostrava-Hrabůvka > rok - 2003/2004 Seminární práce z fyziky na téma Černé

Více

11 milionů světelných let od domova...

11 milionů světelných let od domova... 11 milionů světelných let od domova...... aneb tady je Kentaurovo Michal Vlasák (FJFI ČVUT) 11 milionů světelných let od domova... EJČF Workshop 2013 1 / 21 původ kosmického záření stále nejasný z interakce

Více

Petr Kulhánek České vysoké učení technické v Praze, Fakulta elektrotechnická, katedra fyziky

Petr Kulhánek České vysoké učení technické v Praze, Fakulta elektrotechnická, katedra fyziky PLAZMA ČTVRTÉ SKUPENSTVÍ HMOTY Petr Kulhánek České vysoké učení technické v Praze, Fakulta elektrotechnická, katedra fyziky Abstrakt: Příspěvek pojednává o vlastnostech laboratorního i vesmírného plazmatu,

Více

Korekce souřadnic. 2s [ rad] R. malé změny souřadnic, které je nutno uvažovat při stanovení polohy astronomických objektů. výška pozorovatele

Korekce souřadnic. 2s [ rad] R. malé změny souřadnic, které je nutno uvažovat při stanovení polohy astronomických objektů. výška pozorovatele OPT/AST L07 Korekce souřadnic malé změny souřadnic, které je nutno uvažovat při stanovení polohy astronomických objektů výška pozorovatele konečný poloměr země R výška h objektu závisí na výšce s stanoviště

Více

Koróna, sluneční vítr. Michal Švanda Sluneční fyzika LS 2014/2015

Koróna, sluneční vítr. Michal Švanda Sluneční fyzika LS 2014/2015 Koróna, sluneční vítr Michal Švanda Sluneční fyzika LS 2014/2015 Přechodová oblast Změna teplotní režimu mezi chromosférou (10 4 K) a korónou (10 6 K) Nehomogenní, pohyby (doppler-shift), vývoj S výškou

Více

LER 2891-ALBI. 1 8 15 min vĕk 7+ Mysli a spojuj! Karetní hra. Zábavná vzdĕlávací hra o vesmíru

LER 2891-ALBI. 1 8 15 min vĕk 7+ Mysli a spojuj! Karetní hra. Zábavná vzdĕlávací hra o vesmíru LER 2891-ALBI Mysli a spojuj! 1 8 15 min vĕk 7+ Karetní hra Zábavná vzdĕlávací hra o vesmíru Hra obsahuje: 45 obrázkových karet 45 slovních karet 8 karet Nový start 2 karty Super start Příprava hry Zamíchejte

Více