CLARKEOVA-WRIGHTOVA METODA ŘEŠENÍ ÚLOHY VRP

Rozměr: px
Začít zobrazení ze stránky:

Download "CLARKEOVA-WRIGHTOVA METODA ŘEŠENÍ ÚLOHY VRP"

Transkript

1 CLARKEOVA-WRIGHTOVA METODA ŘEŠENÍ ÚLOHY VRP 1. Definice úlohy Úloha VRP (Vehicle Routing Problem problém okružních jízd) je definována na obecné dopravní síti S = (V,H), kde V je množina uzlů sítě a H množina hran spojujících tyto uzly. Uzel V 0 je označován jako středisko této sítě a uzly V 1,,V n představují místa odběru (místa vyžadující obsluhu). V místech odběru vzniká požadavek na přepravu určitého množství dopravních elementů - tato přeprava je uskutečňována vozidly, jejichž trasa začíná a končí ve středisku V 0 a jejichž kapacita je shora omezená. Úlohou je pak sestavit sadu tras vozidel tak, aby byl požadavek každého místa odběru uspokojen jedinou obsluhou vozidla, a aby celkové náklady na přepravu byly minimální (z hlediska délky nebo času). Ze zadání úlohy vyplývají dvě podmínky přípustnosti jejího řešení: každý zákazník musí být v rámci některé trasy obsloužen právě jednou (1) musí být respektována nepřekročitelná kapacita obsluhujících vozidel (2) Vedle těchto základních podmínek mohou být na sadu tras obsluhujících vozidel kladeny další podmínky přípustnosti řešení, jejichž zavedením se původní úloha VRP modifikuje jsou to např.: globální podmínky: množství elementů, které je možné rozvést v rámci jedné trasy omezení maximální doby trvání, resp. délky jedné trasy (nepřekročitelná pracovní doba osádek vozidel, nutné doby odpočinků, zákazy jízd v určitých dnech apod.) omezení vyplývající z maximálně možného počtu obsloužených míst jednou trasou vzhledem k jejich požadavkům a kapacitám vozidel omezený disponibilní vozový park, kde v případě, že je park heterogenní, se mohou jednotlivá vozidla lišit svou technologickou a kapacitní způsobilostí lokální podmínky: respektování časové dosažitelnosti obsluhovaných míst, tzn. uspokojení požadavku obsluhovaného místa v zadaném časovém intervalu respektování technologické dosažitelnosti obsluhovaných míst, tzn. požadavek na obsloužení zákazníka pouze vozidlem určitých parametrů limitovaná spotřeba pohonných hmot; přijatelné náklady vynaložené na obsluhu apod. V dalším textu se budeme zabývat úlohou trasování pro nejjednodušší případ, kdy předpokládáme homogenní vozový park, a kde trasa jednoho vozidla bude tvořena jedinou okružní 1

2 jízdou. Je-li doba trvání trasy omezená, může být trasa vytvořena z více okružních jízd. Dále v úloze, kterou budeme řešit neklademe žádné omezující časové podmínky pro obsluhu uzlů. Úloha se v tom případě redukuje na pokrytí požadavků odběratelů soustavou tras a následné přidělení těchto tras jednotlivým vozidlům disponibilního parku může být řešeno v následující fázi nezávisle na úloze trasování. 2. Clarkeova-Wrightova metoda Nejznámější heuristickou metodou řešící uvedenou úlohu VRP je Clarkeova-Wrightova, kterou zveřejnili její autoři G. Clarke a J. W. Wright v roce Postup metody spočívá v tom, že v každé iteraci metody jsou podle jistého kritéria vybrány dvě možné trasy (V 0 V i V 0 ) a (V 0 V j V 0 ) a tyto jsou spojeny do jedné tzv. sdružené trasy (V 0 V i V j V 0 ). Dvě trasy mohou být sdruženy jen tehdy, jestliže vzniklá sdružená trasa bude vyhovovat uvedeným podmínkám přípustnosti řešení (1) a (2), což znamená, že součet zátěže sdružovaných tras nesmí překročit kapacitu vozidla K. Při postupu lze snadno kontrolovat i splnění dalších globálních podmínek jako např. maximální délku trasy, počet navštívených uzlů, dobu trvání jízdy, kde příslušná kontrolovaná veličina nově vzniklé sdružené trasy je závislá pouze na odpovídajících sledovaných veličinách sdružovaných tras, resp. sdružovaných uzlů. Výhodnost nebo nevýhodnost sdružení dvou tras je určena úsporou, která jejich sdružením vznikne. Tuto úsporu měříme tzv. výhodnostním koeficientem z ij podle vztahu z ij = (d 0i + d 0j d ij ), kde d 0i, d 0j a d ij označují délky hran (V 0,V i ), (V 0,V j ) a (V i,v j ). Hodnota z ij tedy vyjadřuje rozdíl mezi součtem délek tras (V 0 V i V j ) a (V 0 V j V 0 ) a délkou sdružené trasy (V 0 V i V j V 0 ). Metoda sdruží v každé iteraci postupu ty dva uzly, které vykazují nejvyšší výhodnostní koeficient z ij, pokud je možné s ohledem na přípustnost toto sdružení provést. Výhodou tohoto postupu je, že koeficient z ij závisí pouze na vzájemných vzdálenostech uzlů V i, V j a V 0 a nemění se pokud je možné tyto dva uzly spojit. Metodu, kterou jsme právě popsali můžeme zformulovat do několika kroků: 1) Pro danou dopravní síť S = (V,H) sestavíme matici vzdáleností D = {d(i,j)}, kde i,j = 0,1,,n; n = V. Obecně nemusí být síť S úplná (tj. v grafové reprezentaci znázorněna grafem, který není úplným grafem), to znamená, že prvky matice D mohou vyjadřovat jak délky úseků, tak i vzdálenosti mezi jednotlivými uzly. Dále mějme zadány následující hodnoty: c.. průměrná rychlost pohybu vozidla na síti t...doba potřebná k vyložení jednotkového množství elementů z obsluhujícího vozidla T..maximální doba pobytu vozidla mimo výchozí uzel V 0 K.kapacita vozidla q i. množství elementů přepravovaných z uzlu V 0 do uzlu V i (i = 1,,n) 2) Vytvoříme počáteční řešení, které představuje soubor elementárních tras (V 0 V i V 0 ) pro všechny uzly sítě i = 1,,n s uvedeným množstvím elementů a dobami přepravy (lze také doplnit doby potřebné k vyložení elementů z vozidla): 2

3 Trasa Množství elementů Doba přepravy 2 d V 0 V i V 0 q 1 c q t 1 V 0 V n V 0 q n 2 d 0n + q c n t 3) Z matice D odvodíme matici výhodnostních koeficientů Z = {z ij }, kde i,j = 1,,n podle vztahu z ij = d 0i + d 0j d ij, kde z ij, jak bylo zavedeno, vyjadřuje rozdíl mezi součtem délek tras (V 0 V i V 0 ) a (V 0 V j V 0 ) a délkou sdružené trasy (V 0 V i V j V 0 ). 4) V matici Z najdeme největší kladný prvek z ij a sdružíme, je-li to možné, trasy (V 0 V i V 0 ) a (V 0 V j V 0 ) do sdružené trasy (V 0 V i V j V 0 ). Pokud takový prvek neexistuje, skončíme. Aktuální množina okružních tras je výsledkem algoritmu. V opačném případě přejdeme na krok 5). 5) Zkontrolujeme, zda sdružením tras (V 0 V i V 0 ) a (V 0 V j V 0 ) vznikne přípustná trasa. Pokud přípustná trasa nevznikne, tak položíme z ij = 0 a přejdeme na krok 4). V opačném případě pokračujeme krokem 6). 6) Aktualizujeme množinu uzlů V vyjmutím uzlů i a j, pokud sdružením tras přestaly být krajními uzly trasy. Položíme z ij = 0. Aktualizujeme množinu tras vyjmutím sdružených tras a vložením nové trasy. Současně také aktualizujeme ostatní sledované parametry (dobu přepravy, množství elementů, délku trasy aj.). Není-li krok 4) a 5) možný, najdeme nejblíže menší nebo stejně velký prvek z st a sdružíme trasy obsahující uzly V s a V t ; mohou to být elementární trasy nebo trasy, vzniklé předchozím sdružováním. Pro krajní uzly V s a V t nově vzniklé trasy položíme z st = 0 a přejdeme na krok 4). Postup opakujeme, pokud není matice Z vyčerpána nebo pokud není zřejmé, že kapacity vozidel jsou vyčerpány a další řešení nemá smysl. Výsledné řešení nemusí být optimální, ale často bude jen suboptimální. 3. Příklad Máme dánu neorientovanou, souvislou a hranově ohodnocenou dopravní síť S = (V,H). Požadujeme přepravit dané množství dopravních elementů z výchozího uzlu V 0 do ostatních uzlů sítě V i, kde i = 1,,n. Dále známe průměrné rychlosti a kapacity všech vozidel a budeme předpokládat, že jsou stejné. Množství elementů, přepravované do kteréhokoliv uzlu, nepřekračuje kapacitu jednoho vozidla. Dále je známa doba potřebná pro vyložení elementu z vozidla, která je stejná pro všechny komplety a všechny uzly. Doba mezi výjezdem a návratem každého vozidla do výchozího uzlu V 0 je shora omezená. 3

4 Úkolem je určit počet vozidel a jejich trasy tak, aby při splnění všech uvedených požadavků byl součet délek tras všech vozidel, začínajících a končících v uzlu V 0, minimální. Pro nalezení suboptimálního řešení této úlohy použijeme popsanou C-W metodu. Dopravní síť úlohy je definována pomocí matice vzdáleností D této sítě, která je úplnou sítí (tzn., že prvky matice vzdáleností jsou zároveň délkami příslušných úseků hran). Jsou dány počty elementů q i a další výchozí údaje: c = 30 km/h; t = 0,1 h; T = 8h; K = 15 elementů. Matice vzdáleností D je v tomto případě neorientované sítě symetrická, můžeme tedy prvky pod hlavní diagonálou vynechat matice vypadá takto: i/j Z matice vzdáleností D je odvozena matice výhodnostních koeficientů Z = {z ij }: i/j Údaje v následující tabulce zachycují počáteční řešení: Elementární q trasy i Délky , , , , ,9 1. iterace: Podle kroku 4) hledáme první zlepšující řešení: max z ij = z 23 = 99; sdružíme proto trasy (0 2 0) a (0 3 0). Podle kroku 5) kontrolujeme přípustnost sdružené trasy na základě provedení kroku 6) takto: vyjmutím právě sdružené trasy aktualizujeme množinu tras počátečního řešení; pro právě sdruženou trasu aktualizujeme množství elementů q a dále aktualizujeme délku trasy a dobu T strávenou kompletem mimo uzel V 0. Po provedení kroku 6) zjišťujeme, že součet zátěží q 2 + q 3 = 11, což je hodnota nižší než přípustná 4

5 kapacita vozidla K = 15. Dále zjišťujeme, že nová doba pobytu vozidla mimo uzel V 0 je rovna 5,4 a tedy nepřekračuje zadanou přípustnou hodnotu T = 8. Nepřekročení hodnot K a T znamená, že nová sdružená trasa ( ) je přípustnou trasou. Uvedené skutečnosti jsou zřejmé z následující tabulky. Nakonec kroku 6) položíme z 23 = 0 a dále pokračujeme krokem 4) v hledání další přípustné trasy. Trasa q 2 + q 3 Délka Doba Po 1. iteraci dostáváme tuto aktualizovanou množinu tras a odpovídající zátěže: Elementární q trasy i Délky , , ,9 2. iterace: Pokračujeme hledáním dalšího přípustného řešení: max z ij = z 45 = 74, sdružená trasa ( ) je přípustná, viz tabulka: Trasa q 4 + q 5 Délka Doba ,2 Po 2. iteraci dostáváme tuto aktualizovanou množinu tras a odpovídající zátěže: Elementární q trasy i Délky , ,2 3. iterace: Pokračujeme hledáním dalšího přípustného řešení: max z ij = z 34 = 56, vytvořit sdruženou trasu by znamenalo sdružit trasy obsahující uzly V 3 a V 4, tzn. trasy ( ) a ( ); z tabulky je zřejmé, že taková trasa je nepřípustná, protože bychom překročili přípustnou kapacitu K obsluhujícího vozidla: q( ) = 11, q( ) = 9; 11+9=20 > K=15. Proto po 3. iteraci zůstávají množina tras a odpovídající zátěže nezměněné. 4. iterace: Pokračujeme hledáním dalšího přípustného řešení: max z ij = z 12 = 55, trasa vzniklá sdružením tras, které obsahují uzly V 1 a V 2, tj. (0 1 0) a ( ) je opět nepřípustná, protože 6+11=17 > K=15, což nelze. Tedy i po 4. iteraci zůstávají množina tras a odpovídající zátěže nezměněné. 5

6 5. iterace: Pokračujeme hledáním dalšího přípustného řešení: max z ij = z 13 = 52; nastává stejná situace jako po 4. iteraci; trasa vzniklá sdružením tras, které obsahují uzly V 1 a V 3, tj. (0 1 0) a ( ) je opět nepřípustná, protože 6+11=17 > K=15, což nelze. I po 5. iteraci zůstávají množina tras a odpovídající zátěže nezměněné. 6. iterace: Pokračujeme hledáním dalšího přípustného řešení: max z ij = z 14 = 49; trasa vzniklá sdružením tras, které obsahují uzly V 1 a V 4, tj. (0 1 0) a ( ) je přípustná, protože 6+9=15, což není hodnota větší než K=15 Trasa q 1 + q 4 + q 5 Délka Doba ,4 Po 6. iteraci již nelze kroky 4) a 5) opakovat, tzn. že další sdružování tras není možné, a proto poslední aktualizovaná množina tras, zátěže, délek tras a dob pobytu mimo výchozí uzel obsahuje nalezené řešení viz tabulku: Elementární trasy q i Délky ,4 Optimální množina tras vozidel je tedy dvouprvková, výsledné řešení má součet délek tras 276 km oproti výchozímu součtu délek elementárních tras 498 km; součet dob provozu vozidel je 11,8 h. Protože T = 8 < 11,8 < 2x8 = 16, jsou pro splnění úkolu nutná dvě vozidla. 4. Zdroje CLARKE, G; WRIGHT, J. W.: Scheduling of Vehicles from a Central Depot to a Number of Delivery Points, Operations research 12, 1964, strana TUZAR, A.; MAXA, P.; SVOBODA, V.: Teorie dopravy, ČVUT v Praze, Praha

Metody síťové analýzy

Metody síťové analýzy Metody síťové analýzy Řeší problematiku složitých systémů, zejména pak vazby mezi jejich jednotlivými prvky. Vychází z teorie grafů. Základní metody síťové analýzy: CPM (Critical Path Method) deterministický

Více

OPTIMALIZACE DISTRIBUČNÍHO SYTÉMU NÁHRADNÍCH DÍLŮ AUTOMOBILŮ OPTIMIZATION OF DISTRIBUTING SYSTEM OF CAR SPARE PARTS

OPTIMALIZACE DISTRIBUČNÍHO SYTÉMU NÁHRADNÍCH DÍLŮ AUTOMOBILŮ OPTIMIZATION OF DISTRIBUTING SYSTEM OF CAR SPARE PARTS OPTIMALIZACE DISTRIBUČNÍHO SYTÉMU NÁHRADNÍCH DÍLŮ AUTOMOBILŮ OPTIMIZATION OF DISTRIBUTING SYSTEM OF CAR SPARE PARTS Denisa Mocková 1, Alena Rybičková 2 Anotace: Článek se zabývá problematikou optimalizace

Více

4EK311 Operační výzkum. 5. Teorie grafů

4EK311 Operační výzkum. 5. Teorie grafů 4EK311 Operační výzkum 5. Teorie grafů 5. Teorie grafů definice grafu Graf G = uspořádaná dvojice (V, E), kde V označuje množinu n uzlů u 1, u 2,, u n (u i, i = 1, 2,, n) a E označuje množinu hran h ij,

Více

HEURISTICKÉ ALGORITMY PRO ŘEŠENÍ ÚLOH OBCHODNÍHO CESTUJÍCÍHO

HEURISTICKÉ ALGORITMY PRO ŘEŠENÍ ÚLOH OBCHODNÍHO CESTUJÍCÍHO HEURISTICKÉ ALGORITMY PRO ŘEŠENÍ ÚLOH OBCHODNÍHO CESTUJÍCÍHO Heuristické algoritmy jsou speciálními algoritmy, které byly vyvinuty pro obtížné úlohy, jejichž řešení je obtížné získat v rozumném čase. Mezi

Více

Hledání optimální cesty v dopravní síti

Hledání optimální cesty v dopravní síti Hledání optimální cesty v dopravní síti prezentace k diplomové práci autor DP: Bc. Rudolf Koraba vedoucí DP: doc. Ing. Rudolf Kampf, Ph.D. oponent DP: Ing. Juraj Čamaj, Ph.D. Vysoká škola technická a ekonomická

Více

MEDZINÁRODNÝ VEDECKÝ ČASOPIS MLADÁ VEDA / YOUNG SCIENCE

MEDZINÁRODNÝ VEDECKÝ ČASOPIS MLADÁ VEDA / YOUNG SCIENCE MEDZINÁRODNÝ VEDECKÝ ČASOPIS MLADÁ VEDA / YOUNG SCIENCE September 2017 (číslo 4) Ročník piaty ISSN 1339-3189 Kontakt: info@mladaveda.sk, tel.: +421 908 546 716, www.mladaveda.sk Fotografia na obálke: Altenberger

Více

Use of ant colony optimization for vehicle routing problem. Použití metody mravenčích kolonií pro úlohy okružních jízd

Use of ant colony optimization for vehicle routing problem. Použití metody mravenčích kolonií pro úlohy okružních jízd Use of ant colony optimization for vehicle routing problem Použití metody mravenčích kolonií pro úlohy okružních jízd Adéla Burketová i Abstract: Ant colony optimization is a metaheuristic method used

Více

5 Orientované grafy, Toky v sítích

5 Orientované grafy, Toky v sítích Petr Hliněný, FI MU Brno, 205 / 9 FI: IB000: Toky v sítích 5 Orientované grafy, Toky v sítích Nyní se budeme zabývat typem sít ových úloh, ve kterých není podstatná délka hran a spojení, nýbž jejich propustnost

Více

Obsah prezentace. Základní pojmy v teorii o grafech Úlohy a prohledávání grafů Hledání nejkratších cest

Obsah prezentace. Základní pojmy v teorii o grafech Úlohy a prohledávání grafů Hledání nejkratších cest Obsah prezentace Základní pojmy v teorii o grafech Úlohy a prohledávání grafů Hledání nejkratších cest 1 Základní pojmy Vrchol grafu: {množina V} Je to styčná vazba v grafu, nazývá se též uzlem, prvkem

Více

Optimalizace. Obsah přednášky. DÚ LP - Okružní problém. Lineární optimalizace. DÚ LP - Okružní problém. DÚ LP - Okružní problém

Optimalizace. Obsah přednášky. DÚ LP - Okružní problém. Lineární optimalizace. DÚ LP - Okružní problém. DÚ LP - Okružní problém Obsah přednášky Mgr. Květuše Sýkorová Optimalizace Lineární programování Distribuční úlohy Okružní problém KI Př UJEP Ústí nad Labem Nederivační metody Metody 1D optimalizace Derivační metody Optimalizace

Více

VYUŽITÍ NĚKTERÝCH METOD TEORIE GRAFŮ PŘI ŘEŠENÍ DOPRAVNÍCH PROBLÉMŮ

VYUŽITÍ NĚKTERÝCH METOD TEORIE GRAFŮ PŘI ŘEŠENÍ DOPRAVNÍCH PROBLÉMŮ VYUŽITÍ NĚKTERÝCH METOD TEORIE GRAFŮ PŘI ŘEŠENÍ DOPRAVNÍCH PROBLÉMŮ Markéta Brázdová 1 Anotace: Metody operačního výzkumu mají při řešení praktických problémů široké využití. Článek se zabývá problematikou

Více

B a k a l ářská práce

B a k a l ářská práce Vysoká škola ekonomická v Praze Fakulta managementu v Jindřichově Hradci B a k a l ářská práce Josef Hodonský 2007 Vysoká škola ekonomická v Praze Fakulta managementu Jindřichův Hradec B a k a l ářská

Více

Základy informatiky. Teorie grafů. Zpracoval: Pavel Děrgel Úprava: Daniela Szturcová

Základy informatiky. Teorie grafů. Zpracoval: Pavel Děrgel Úprava: Daniela Szturcová Základy informatiky Teorie grafů Zpracoval: Pavel Děrgel Úprava: Daniela Szturcová Obsah přednášky Barvení mapy Teorie grafů Definice Uzly a hrany Typy grafů Cesty, cykly, souvislost grafů Barvení mapy

Více

Algoritmizace prostorových úloh

Algoritmizace prostorových úloh INOVACE BAKALÁŘSKÝCH A MAGISTERSKÝCH STUDIJNÍCH OBORŮ NA HORNICKO-GEOLOGICKÉ FAKULTĚ VYSOKÉ ŠKOLY BÁŇSKÉ - TECHNICKÉ UNIVERZITY OSTRAVA Algoritmizace prostorových úloh Grafové úlohy Daniela Szturcová Tento

Více

= je prostý orientovaný graf., formálně c ( u, v) 0. dva speciální uzly: zdrojový uzel s a cílový uzel t. Dále budeme bez

= je prostý orientovaný graf., formálně c ( u, v) 0. dva speciální uzly: zdrojový uzel s a cílový uzel t. Dále budeme bez Síť Síť je čtveřice N = ( G, s, t, c) kde G ( V, A) = je prostý orientovaný graf a každé orientované hraně ( u, v) je přiřazeno nezáporné číslo, které se nazývá kapacita hrany ( u, v), formálně c ( u,

Více

Vzdálenost uzlů v neorientovaném grafu

Vzdálenost uzlů v neorientovaném grafu Vzdálenosti a grafy Vzdálenost uzlů v neorientovaném grafu Je dán neorientovaný neohodnocený graf G = (V,E,I) vzdálenost uzlů u a v v neorientovaném souvislém grafu G je délka nejkratší cesty spojující

Více

Operační výzkum. Síťová analýza. Metoda CPM.

Operační výzkum. Síťová analýza. Metoda CPM. Operační výzkum Síťová analýza. Metoda CPM. Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty ekonomiky a managementu Registrační číslo

Více

FAKULTA EKONOMICKÁ. Bakalářská práce. Posouzení efektivnosti podnikové dopravy při rozvozu zboží zákazníkům

FAKULTA EKONOMICKÁ. Bakalářská práce. Posouzení efektivnosti podnikové dopravy při rozvozu zboží zákazníkům ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA EKONOMICKÁ Bakalářská práce Posouzení efektivnosti podnikové dopravy při rozvozu zboží zákazníkům Assessment of the effectiveness of corporate services for delivery

Více

UNIVERZITA PARDUBICE DOPRAVNÍ FAKULTA JANA PERNERA BAKALÁŘSKÁ PRÁCE Lukáš Macoun

UNIVERZITA PARDUBICE DOPRAVNÍ FAKULTA JANA PERNERA BAKALÁŘSKÁ PRÁCE Lukáš Macoun UNIVERZITA PARDUBICE DOPRAVNÍ FAKULTA JANA PERNERA BAKALÁŘSKÁ PRÁCE 2013 Lukáš Macoun Univerzita Pardubice Dopravní fakulta Jana Pernera Racionalizace rozvozního systému pro vybranou společnost Lukáš Macoun

Více

Aplikovaná matematika I

Aplikovaná matematika I Metoda nejmenších čtverců Aplikovaná matematika I Dana Říhová Mendelu Brno c Dana Říhová (Mendelu Brno) Metoda nejmenších čtverců 1 / 8 Obsah 1 Formulace problému 2 Princip metody nejmenších čtverců 3

Více

Modely teorie grafů, min.kostra, max.tok, CPM, MPM, PERT

Modely teorie grafů, min.kostra, max.tok, CPM, MPM, PERT PEF ČZU Modely teorie grafů, min.kostra, max.tok, CPM, MPM, PERT Okruhy SZB č. 5 Zdroje: Demel, J., Operační výzkum Jablonský J., Operační výzkum Šubrt, T., Langrová, P., Projektové řízení I. a různá internetová

Více

10. Soustavy lineárních rovnic, determinanty, Cramerovo pravidlo

10. Soustavy lineárních rovnic, determinanty, Cramerovo pravidlo 0. Soustavy lineárních rovnic, determinanty, Cramerovo pravidlo (PEF PaA) Petr Gurka aktualizováno 9. prosince 202 Obsah Základní pojmy. Motivace.................................2 Aritmetický vektorový

Více

Technologie dopravy a logistika

Technologie dopravy a logistika Cvičení č. 2 Optimalizace linkového vedení Četnost obsluhy, takt Ing. Zdeněk Michl Ing. Michal Drábek, Ph.D. Ing. Jiří Pospíšil, Ph.D. ČVUT v Praze Fakulta dopravní Ústav logistiky a managementu dopravy

Více

Vektory a matice. Obsah. Aplikovaná matematika I. Carl Friedrich Gauss. Základní pojmy a operace

Vektory a matice. Obsah. Aplikovaná matematika I. Carl Friedrich Gauss. Základní pojmy a operace Vektory a matice Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah 1 Vektory Základní pojmy a operace Lineární závislost a nezávislost vektorů 2 Matice Základní pojmy, druhy matic Operace s maticemi

Více

Operační výzkum. Přiřazovací problém.

Operační výzkum. Přiřazovací problém. Operační výzkum Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty ekonomiky a managementu Registrační číslo projektu: CZ..7/2.2./28.326

Více

4EK213 Lineární modely. 12. Dopravní problém výchozí řešení

4EK213 Lineární modely. 12. Dopravní problém výchozí řešení 4EK213 Lineární modely 12. Dopravní problém výchozí řešení 12. Distribuční úlohy LP Úlohy výrobního plánování (alokace zdrojů) Úlohy finančního plánování (optimalizace portfolia) Úlohy reklamního plánování

Více

5. Lokální, vázané a globální extrémy

5. Lokální, vázané a globální extrémy 5 Lokální, vázané a globální extrémy Studijní text Lokální extrémy 5 Lokální, vázané a globální extrémy Definice 51 Řekneme, že f : R n R má v bodě a Df: 1 lokální maximum, když Ka, δ Df tak, že x Ka,

Více

OPTIMALIZACE LINKOVÉHO VEDENÍ ČETNOST OBSLUHY, TAKT

OPTIMALIZACE LINKOVÉHO VEDENÍ ČETNOST OBSLUHY, TAKT OPTIMALIZACE LINKOVÉHO VEDENÍ ČETNOST OBSLUHY, TAKT 17TEDL TECHNOLOGIE DOPRAVY A LOGISTIKA CVIČENÍ Č. 1 ING. MICHAL DRÁBEK, PH.D. ÚSTAV LOGISTIKY A MANAGEMENTU DOPRAVY FAKULTA DOPRAVNÍ ČVUT V PRAZE TÉMATA

Více

Analýza Petriho sítí. Analýza Petriho sítí p.1/28

Analýza Petriho sítí. Analýza Petriho sítí p.1/28 Analýza Petriho sítí Analýza Petriho sítí p.1/28 1. Základní pojmy Základní problémy analýzy bezpečnost (safeness) omezenost (boundness) konzervativnost (conservation) živost (liveness) Definice 1: Místo

Více

TOKY V SÍTÍCH II. Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze

TOKY V SÍTÍCH II. Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze TOKY V SÍTÍCH II Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze BI-GRA, LS 010/011, Lekce 10 Evropský sociální fond Praha & EU: Investujeme do vaší

Více

Grafové algoritmy. Programovací techniky

Grafové algoritmy. Programovací techniky Grafové algoritmy Programovací techniky Grafy Úvod - Terminologie Graf je datová struktura, skládá se z množiny vrcholů V a množiny hran mezi vrcholy E Počet vrcholů a hran musí být konečný a nesmí být

Více

Obecná úloha lineárního programování

Obecná úloha lineárního programování Obecná úloha lineárního programování Úloha Maximalizovat hodnotu c T x (tzv. účelová funkce) za podmínek Ax b (tzv. omezující podmínky) kde A je daná reálná matice typu m n a c R n, b R m jsou dané reálné

Více

VLASTNOSTI GRAFŮ. Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze. BI-GRA, LS 2010/2011, Lekce 5

VLASTNOSTI GRAFŮ. Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze. BI-GRA, LS 2010/2011, Lekce 5 VLASTNOSTI GRAFŮ Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze BI-GRA, LS 2010/2011, Lekce 5 Evropský sociální fond Praha & EU: Investujeme do vaší

Více

Parametrické programování

Parametrické programování Parametrické programování Příklad 1 Parametrické pravé strany Firma vyrábí tři výrobky. K jejich výrobě potřebuje jednak surovinu a jednak stroje, na kterých dochází ke zpracování. Na první výrobek jsou

Více

Základy informatiky. 07 Teorie grafů. Kačmařík/Szturcová/Děrgel/Rapant

Základy informatiky. 07 Teorie grafů. Kačmařík/Szturcová/Děrgel/Rapant Základy informatiky 07 Teorie grafů Kačmařík/Szturcová/Děrgel/Rapant Obsah přednášky barvení mapy teorie grafů definice uzly a hrany typy grafů cesty, cykly, souvislost grafů Barvení mapy Kolik barev je

Více

Návrh svozových a rozvozových tras s heterogenním vozovým parkem

Návrh svozových a rozvozových tras s heterogenním vozovým parkem ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA DOPRAVNÍ ÚSTAV ŘÍZENÍ DOPRAVNÍCH PROCESŮ A LOGISTIKY Návrh svozových a rozvozových tras s heterogenním vozovým parkem Diplomová práce Bc. Tomáš Jančovič Vedoucí

Více

TGH05 - aplikace DFS, průchod do šířky

TGH05 - aplikace DFS, průchod do šířky TGH05 - aplikace DFS, průchod do šířky Jan Březina Technical University of Liberec 31. března 2015 Grafová formulace CPM (critical path method) Orientovaný acyklický graf (DAG) je orientovaný graf neobsahující

Více

Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 2015

Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 2015 Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 05 Zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia

Více

Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague

Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague 1 / 40 regula Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague regula 1 2 3 4 5 regula 6 7 8 2 / 40 2 / 40 regula Iterační pro nelineární e Bud f reálná funkce

Více

VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE. Optimalizace trasy při revizích elektrospotřebičů

VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE. Optimalizace trasy při revizích elektrospotřebičů VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE FAKULTA INFORMATIKY A STATISTIKY Hlavní specializace: Ekonometrie a operační výzkum Název diplomové práce Optimalizace trasy při revizích elektrospotřebičů Diplomant: Vedoucí

Více

Vektorový prostor. Př.1. R 2 ; R 3 ; R n Dvě operace v R n : u + v = (u 1 + v 1,...u n + v n ), V (E 3 )...množina vektorů v E 3,

Vektorový prostor. Př.1. R 2 ; R 3 ; R n Dvě operace v R n : u + v = (u 1 + v 1,...u n + v n ), V (E 3 )...množina vektorů v E 3, Vektorový prostor Příklady: Př.1. R 2 ; R 3 ; R n...aritmetický n-rozměrný prostor Dvě operace v R n : součet vektorů u = (u 1,...u n ) a v = (v 1,...v n ) je vektor u + v = (u 1 + v 1,...u n + v n ),

Více

Kostry. 9. týden. Grafy. Marie Demlová (úpravy Matěj Dostál) 16. dubna 2019

Kostry. 9. týden. Grafy. Marie Demlová (úpravy Matěj Dostál) 16. dubna 2019 Grafy 16. dubna 2019 Tvrzení. Je dán graf G, pak následující je ekvivalentní. 1 G je strom. 2 Graf G nemá kružnice a přidáme-li ke grafu libovolnou hranu, uzavřeme přesně jednu kružnici. 3 Graf G je souvislý

Více

Systematická tvorba jízdního řádu 2. cvičení

Systematická tvorba jízdního řádu 2. cvičení Projektování dopravní obslužnosti Systematická tvorba jízdního řádu 2. cvičení Ing. Zdeněk Michl Ústav logistiky a managementu dopravy ČVUT v Praze Fakulta dopravní Rekapitulace zadání Je dána následující

Více

SÍŤOVÁ ANALÝZA. Kristýna Slabá, kslaba@students.zcu.cz. 1. července 2010

SÍŤOVÁ ANALÝZA. Kristýna Slabá, kslaba@students.zcu.cz. 1. července 2010 SÍŤOVÁ ANALÝZA Kristýna Slabá, kslaba@students.zcu.cz 1. července 2010 Obsah 1 Úvod do síťové analýzy Hlavní metody síťové analýzy a jejich charakteristika Metoda CPM Metoda PERT Nákladová analýza Metoda

Více

Grafové algoritmy. Programovací techniky

Grafové algoritmy. Programovací techniky Grafové algoritmy Programovací techniky Grafy Úvod - Terminologie Graf je datová struktura, skládá se z množiny vrcholů V a množiny hran mezi vrcholy E Počet vrcholů a hran musí být konečný a nesmí být

Více

Globální matice konstrukce

Globální matice konstrukce Globální matice konstrukce Z matic tuhosti a hmotnosti jednotlivých prvků lze sestavit globální matici tuhosti a globální matici hmotnosti konstrukce, které se využijí v řešení základní rovnice MKP: [m]{

Více

4EK213 Lineární modely. 4. Simplexová metoda - závěr

4EK213 Lineární modely. 4. Simplexová metoda - závěr 4EK213 Lineární modely 4. Simplexová metoda - závěr 4. Simplexová metoda - závěr Konečnost simplexové metody Degenerace Modifikace pravidla pro volbu vstupující proměnné Blandovo pravidlo Kontrola výpočtu

Více

Grafy. RNDr. Petra Surynková, Ph.D. Univerzita Karlova v Praze Matematicko-fyzikální fakulta.

Grafy. RNDr. Petra Surynková, Ph.D. Univerzita Karlova v Praze Matematicko-fyzikální fakulta. 6 RNDr., Ph.D. Katedra didaktiky matematiky Univerzita Karlova v Praze Matematicko-fyzikální fakulta petra.surynkova@mff.cuni.cz http://surynkova.info množina vrcholů a množina hran hrana vždy spojuje

Více

Fakt. Každou soustavu n lineárních ODR řádů n i lze eliminací převést ekvivalentně na jednu lineární ODR

Fakt. Každou soustavu n lineárních ODR řádů n i lze eliminací převést ekvivalentně na jednu lineární ODR DEN: ODR teoreticky: soustavy rovnic Soustava lineárních ODR 1 řádu s konstantními koeficienty je soustava ve tvaru y 1 = a 11 y 1 + a 12 y 2 + + a 1n y n + b 1 (x) y 2 = a 21 y 1 + a 22 y 2 + + a 2n y

Více

Algoritmus pro hledání nejkratší cesty orientovaným grafem

Algoritmus pro hledání nejkratší cesty orientovaným grafem 1.1 Úvod Algoritmus pro hledání nejkratší cesty orientovaným grafem Naprogramoval jsem v Matlabu funkci, která dokáže určit nejkratší cestu v orientovaném grafu mezi libovolnými dvěma vrcholy. Nastudoval

Více

Layout pracoviště a řízení Rozvrhování pracovníků

Layout pracoviště a řízení Rozvrhování pracovníků Tento materiál vznikl jako součást projektu, který je spolufinancován Evropským sociálním fondem a státním rozpočtem ČR. Layout pracoviště a řízení Rozvrhování pracovníků Jan Vavruška Technická univerzita

Více

Jiří Neubauer. Katedra ekonometrie FEM UO Brno

Jiří Neubauer. Katedra ekonometrie FEM UO Brno Přednáška č. 11 Katedra ekonometrie FEM UO Brno Jedná se o speciální případ dopravních úloh, řeší např. problematiku optimálního přiřazení strojů na pracoviště. Příklad Podnik má k dispozici 3 jeřáby,

Více

Přiřazovací problém. Přednáška č. 7

Přiřazovací problém. Přednáška č. 7 Přiřazovací problém Přednáška č. 7 Přiřazovací problém je jednou podtřídou logistických úloh. Typickým problémem může být nejkratší převoz materiálu od dodavatelů ke spotřebitelům. spotřebitelé a i dodavatelé

Více

0.1 Úvod do lineární algebry

0.1 Úvod do lineární algebry Matematika KMI/PMATE 1 01 Úvod do lineární algebry 011 Lineární rovnice o 2 neznámých Definice 011 Lineární rovnice o dvou neznámých x, y je rovnice, která může být vyjádřena ve tvaru ax + by = c, kde

Více

4EK213 Lineární modely. 10. Celočíselné programování

4EK213 Lineární modely. 10. Celočíselné programování 4EK213 Lineární modely 10. Celočíselné programování 10.1 Matematický model úlohy ILP Nalézt extrém účelové funkce z = c 1 x 1 + c 2 x 2 + + c n x n na soustavě vlastních omezení a 11 x 1 + a 12 x 2 + a

Více

Exponenciální modely hromadné obsluhy

Exponenciální modely hromadné obsluhy Exponenciální modely hromadné obsluhy Systém s čekáním a neohraničeným zdrojem požadavků Na základě předchozích informací je potřeba probrat, jaké informace jsou dostupné v počtu pravděpodobnosti řešícím

Více

CVIČNÝ TEST 36. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17

CVIČNÝ TEST 36. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 CVIČNÝ TEST 36 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST 1 Určete iracionální číslo, které je vyjádřeno číselným výrazem (6 2 π 4

Více

Static Load Balancing Applied to Time Dependent Mechanical Problems

Static Load Balancing Applied to Time Dependent Mechanical Problems Static Load Balancing Applied to Time Dependent Mechanical Problems O. Medek 1, J. Kruis 2, Z. Bittnar 2, P. Tvrdík 1 1 Katedra počítačů České vysoké učení technické, Praha 2 Katedra stavební mechaniky

Více

Úvod do úloh plánování rozvozu (Vehicle Routing Problems)

Úvod do úloh plánování rozvozu (Vehicle Routing Problems) Úvod do úloh plánování rozvozu (Vehicle Routing Problems) RNDr. Martin Branda, Ph.D. Univerzita Karlova v Praze Matematicko-fyzikální fakulta Katedra pravděpodobnosti a matematické statistiky Výpočetní

Více

Základní pojmy teorie grafů [Graph theory]

Základní pojmy teorie grafů [Graph theory] Část I Základní pojmy teorie grafů [Graph theory] V matematice grafem obvykle rozumíme grafické znázornění funkční závislosti. Pro tento předmět je však podstatnější pohled jiný. V teorii grafů rozumíme

Více

Metody lineární optimalizace Simplexová metoda. Distribuční úlohy

Metody lineární optimalizace Simplexová metoda. Distribuční úlohy Metody lineární optimalizace Simplexová metoda Dvoufázová M-úloha Duální úloha jednofázová Post-optimalizační analýza Celočíselné řešení Metoda větví a mezí Distribuční úlohy 1 OÚLP = obecná úloha lineárního

Více

6 Simplexová metoda: Principy

6 Simplexová metoda: Principy 6 Simplexová metoda: Principy V této přednášce si osvětlíme základy tzv. simplexové metody pro řešení úloh lineární optimalizace. Tyto základy zahrnují přípravu kanonického tvaru úlohy, definici a vysvětlení

Více

2.6. Vlastní čísla a vlastní vektory matice

2.6. Vlastní čísla a vlastní vektory matice 26 Cíle V této části se budeme zabývat hledáním čísla λ které je řešením rovnice A x = λ x (1) kde A je matice řádu n Znalost řešení takové rovnice má řadu aplikací nejen v matematice Definice 261 Nechť

Více

4EK213 LINEÁRNÍ MODELY

4EK213 LINEÁRNÍ MODELY 4EK213 LINEÁRNÍ MODELY Úterý 11:00 12:30 hod. učebna SB 324 3. přednáška SIMPLEXOVÁ METODA I. OSNOVA PŘEDNÁŠKY Standardní tvar MM Základní věta LP Princip simplexové metody Výchozí řešení SM Zlepšení řešení

Více

Obecná úloha lineárního programování. Úloha LP a konvexní množiny Grafická metoda. Jiří Neubauer. Katedra ekonometrie FEM UO Brno

Obecná úloha lineárního programování. Úloha LP a konvexní množiny Grafická metoda. Jiří Neubauer. Katedra ekonometrie FEM UO Brno Přednáška č. 3 Katedra ekonometrie FEM UO Brno Optimalizace portfolia Investor se s pomocí makléře rozhoduje mezi následujícími investicemi: akcie A, akcie B, státní pokladniční poukázky, dluhopis A, dluhopis

Více

Průvodce studiem. do bodu B se snažíme najít nejkratší cestu. Ve firmách je snaha minimalizovat

Průvodce studiem. do bodu B se snažíme najít nejkratší cestu. Ve firmách je snaha minimalizovat 6. Extrémy funkcí více proměnných Průvodce studiem Hledání extrémů je v praxi často řešená úloha. Např. při cestě z bodu A do bodu B se snažíme najít nejkratší cestu. Ve firmách je snaha minimalizovat

Více

fakulty MENDELU v Brně (LDF) s ohledem na disciplíny společného základu http://akademie.ldf.mendelu.cz/cz (reg. č. CZ.1.07/2.2.00/28.

fakulty MENDELU v Brně (LDF) s ohledem na disciplíny společného základu http://akademie.ldf.mendelu.cz/cz (reg. č. CZ.1.07/2.2.00/28. Základy lineárního programování Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem

Více

TGH05 - aplikace DFS, průchod do šířky

TGH05 - aplikace DFS, průchod do šířky TGH05 - aplikace DFS, průchod do šířky Jan Březina Technical University of Liberec 28. března 2017 Grafová formulace CPM (critical path method) Orientovaný acyklický graf (DAG) je orientovaný graf neobsahující

Více

ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA EKONOMICKÁ. Distribution network optimization in a chosen company

ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA EKONOMICKÁ. Distribution network optimization in a chosen company ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA EKONOMICKÁ Diplomová práce Optimalizace distribuční sítě ve vybraném podniku Distribution network optimization in a chosen company Petra Gebouská Plzeň 2012 Čestné

Více

Necht tedy máme přirozená čísla n, k pod pojmem systém lineárních rovnic rozumíme rovnice ve tvaru

Necht tedy máme přirozená čísla n, k pod pojmem systém lineárních rovnic rozumíme rovnice ve tvaru 2. Systémy lineárních rovnic V této kapitole se budeme zabývat soustavami lineárních rovnic s koeficienty z pole reálných případně komplexních čísel. Uvádíme podmínku pro existenci řešení systému lineárních

Více

metoda Regula Falsi 23. října 2012

metoda Regula Falsi 23. října 2012 Hledání kořenů rovnic jedné reálné proměnné metoda Regula Falsi Michal Čihák 23. října 2012 Metoda Regula Falsi hybridní metoda je kombinací metody sečen a metody půlení intervalů předpokladem je (podobně

Více

7. přednáška Systémová analýza a modelování. Přiřazovací problém

7. přednáška Systémová analýza a modelování. Přiřazovací problém Přiřazovací problém Přiřazovací problémy jsou podtřídou logistických úloh, kde lze obecně říci, že m dodavatelů zásobuje m spotřebitelů. Dalším specifikem je, že kapacity dodavatelů (ai) i požadavky spotřebitelů

Více

VYUŽITÍ FLOYDOVA ALGORITMU NA SITÍCH USE OF FLOYD ALGORITHM IN NETWORKS

VYUŽITÍ FLOYDOVA ALGORITMU NA SITÍCH USE OF FLOYD ALGORITHM IN NETWORKS Ročník., Číslo IV., listopad VYUŽITÍ FLOYDOVA ALGORITMU NA SITÍCH USE OF FLOYD ALGORITHM IN NETWORKS Denisa Moková Anotae: Článek se zabývá využitím Floydova algoritmu pro výpočet vzdáleností na síti,

Více

Grafy. doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava. Prezentace ke dni 13.

Grafy. doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava. Prezentace ke dni 13. Grafy doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava Prezentace ke dni 13. března 2017 Jiří Dvorský (VŠB TUO) Grafy 104 / 309 Osnova přednášky Grafy

Více

METODY HODNOCENÍ MĚSTSKÉ HROMADNÉ DOPRAVY

METODY HODNOCENÍ MĚSTSKÉ HROMADNÉ DOPRAVY METODY HODNOCENÍ MĚSTSKÉ HROMADNÉ DOPRAVY Ivana Olivková 1 Anotace:Článek se zabývá provozním hodnocením městské hromadné dopravy. Provozní hodnocení zahrnuje kriteria související s provozem MHD tj. charakteristiky

Více

4EK311 Operační výzkum. 4. Distribuční úlohy LP část 1

4EK311 Operační výzkum. 4. Distribuční úlohy LP část 1 4EK311 Operační výzkum 4. Distribuční úlohy LP část 1 4. Distribuční úlohy LP Úlohy výrobního plánování (alokace zdrojů) Úlohy finančního plánování (optimalizace portfolia) Úlohy reklamního plánování (plánování

Více

63. ročník Matematické olympiády 2013/2014

63. ročník Matematické olympiády 2013/2014 63. ročník Matematické olympiády 2013/2014 Úlohy ústředního kola kategorie P 2. soutěžní den Na řešení úloh máte 4,5 hodiny čistého času. Při soutěži je zakázáno používat jakékoliv pomůcky kromě psacích

Více

Soustavy se spínanými kapacitory - SC. 1. Základní princip:

Soustavy se spínanými kapacitory - SC. 1. Základní princip: Obvody S - popis 1 Soustavy se spínanými kapacitory - S 1. Základní princip: Simulace rezistoru přepínaným kapacitorem viz známý obrázek! (a rovnice) Modifikace základního spínaného obvodu: Obr. 2.1: Zapojení

Více

4EK213 LINEÁRNÍ MODELY

4EK213 LINEÁRNÍ MODELY 4EK213 LINEÁRNÍ MODELY Úterý 11:00 12:30 hod. učebna SB 324 Mgr. Sekničková Jana, Ph.D. 2. PŘEDNÁŠKA MATEMATICKÝ MODEL ÚLOHY LP Mgr. Sekničková Jana, Ph.D. 2 OSNOVA PŘEDNÁŠKY Obecná formulace MM Množina

Více

LDF MENDELU. Simona Fišnarová (MENDELU) Základy lineárního programování VMAT, IMT 1 / 25

LDF MENDELU. Simona Fišnarová (MENDELU) Základy lineárního programování VMAT, IMT 1 / 25 Základy lineárního programování Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem

Více

Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 2014

Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 2014 Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 204 Zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia

Více

CVIČNÝ TEST 35. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17

CVIČNÝ TEST 35. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 CVIČNÝ TEST 35 Mgr. Tomáš Kotler OBSAH I. Cvičný test II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST 1 Vypočtěte [( 3 3 ) ( 1 4 5 3 0,5 ) ] : 1 6 1. 1 bod VÝCHOZÍ TEXT K ÚLOZE

Více

PROBLEMATIKA VEDENÍ TRAS LINEK LINE ROUTING PROBLEMATIC

PROBLEMATIKA VEDENÍ TRAS LINEK LINE ROUTING PROBLEMATIC PROBLEMATIKA VEDENÍ TRAS LINEK LINE ROUTING PROBLEMATIC Jaroslav Kleprlík 1 Anotace:Příspěvek se zabývá problematikou návrhu tras linek veřejné linkové dopravy. Prezentuje hlediska, která ovlivňují vedení

Více

LDF MENDELU. Simona Fišnarová (MENDELU) LDR druhého řádu VMAT, IMT 1 / 22

LDF MENDELU. Simona Fišnarová (MENDELU) LDR druhého řádu VMAT, IMT 1 / 22 Lineární diferenciální rovnice druhého řádu Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF)

Více

ČESKÁ ZEMĚDĚLSKÁ UNIVERZITA V PRAZE. Teze diplomové práce

ČESKÁ ZEMĚDĚLSKÁ UNIVERZITA V PRAZE. Teze diplomové práce ČESKÁ ZEMĚDĚLSKÁ UNIVERZITA V PRAZE FAKULTA PROVOZNĚ EKONOMICKÁ KATEDRA SYSTÉMOVÉ A OPERAČNÍ ANALÝZY Obor: Veřejná správa a regionální rozvoj Teze diplomové práce Optimalizace tras pro cestovní kanceláře

Více

Algoritmus pro generování normálních magických čtverců

Algoritmus pro generování normálních magických čtverců 1.1 Úvod Algoritmus pro generování normálních magických čtverců Naprogramoval jsem v Matlabu funkci, která dokáže vypočítat magický čtverec libovolného přípustného rozměru. Za pomocí tří algoritmů, které

Více

2. část: Základy matematického programování, dopravní úloha. Ing. Michal Dorda, Ph.D.

2. část: Základy matematického programování, dopravní úloha. Ing. Michal Dorda, Ph.D. 2. část: Základy matematického programování, dopravní úloha. 1 Úvodní pojmy Metody na podporu rozhodování lze obecně dělit na: Eaktní metody metody zaručující nalezení optimální řešení, např. Littlův algortimus,

Více

Hledání kořenů rovnic jedné reálné proměnné metoda půlení intervalů Michal Čihák 23. října 2012

Hledání kořenů rovnic jedné reálné proměnné metoda půlení intervalů Michal Čihák 23. října 2012 Hledání kořenů rovnic jedné reálné proměnné metoda půlení intervalů Michal Čihák 23. října 2012 Problém hledání kořenů rovnice f(x) = 0 jeden ze základních problémů numerické matematiky zároveň i jeden

Více

Matematika (CŽV Kadaň) aneb Úvod do lineární algebry Matice a soustavy rovnic

Matematika (CŽV Kadaň) aneb Úvod do lineární algebry Matice a soustavy rovnic Přednáška třetí (a pravděpodobně i čtvrtá) aneb Úvod do lineární algebry Matice a soustavy rovnic Lineární rovnice o 2 neznámých Lineární rovnice o 2 neznámých Lineární rovnice o dvou neznámých x, y je

Více

Úvod do teorie grafů

Úvod do teorie grafů Úvod do teorie grafů Neorientovaný graf G = (V,E,I) V množina uzlů (vrcholů) - vertices E množina hran - edges I incidence incidence je zobrazení, buď: funkce: I: E V x V relace: I E V V incidence přiřadí

Více

Teorie grafů. Kostra grafu. Obsah. Radim Farana Podklady pro výuku pro akademický rok 2013/2014

Teorie grafů. Kostra grafu. Obsah. Radim Farana Podklady pro výuku pro akademický rok 2013/2014 Teorie grafů Radim Farana Podklady pro výuku pro akademický rok 013/014 Obsah Kostra grafu. Tahy,. Úloha čínského pošťáka. Zdroj: Vítečková, M., Přidal, P. & Koudela, T. Výukový modul k předmětu Systémová

Více

Matematické modelování 4EK201

Matematické modelování 4EK201 Matematické modelování 4EK0 Ukázkový test Maimum 00 bodů. Pokud má úloha lineárního programování více optimálních řešení, pak (a) jich může být nekonečně mnoho, (b) jich musí být nekonečně mnoho.. Doplňte

Více

9.5. Soustavy diferenciálních rovnic

9.5. Soustavy diferenciálních rovnic Cíle Budeme se nyní zabývat úlohami, v nichž je cílem najít dvojici funkcí y(x), z(x), pro které jsou zadány dvě lineární rovnice prvního řádu, obsahující tyto funkce a jejich derivace. Výklad Omezíme-li

Více

Kolik existuje různých stromů na pevně dané n-prvkové množině vrcholů?

Kolik existuje různých stromů na pevně dané n-prvkové množině vrcholů? Kapitola 9 Matice a počet koster Graf (orientovaný i neorientovaný) lze popsat maticí, a to hned několika různými způsoby. Tématem této kapitoly jsou incidenční matice orientovaných grafů a souvislosti

Více

4. Napjatost v bodě tělesa

4. Napjatost v bodě tělesa p04 1 4. Napjatost v bodě tělesa Předpokládejme, že bod C je nebezpečným bodem tělesa a pro zabránění vzniku mezních stavů je m.j. třeba zaručit, že napětí v tomto bodě nepřesáhne definované mezní hodnoty.

Více

12. Lineární programování

12. Lineární programování . Lineární programování. Lineární programování Úloha lineárního programování (lineární optimalizace) je jedním ze základních problémů teorie optimalizace. Našim cílem je nalézt maximum (resp. minimum)

Více

STROMY. v 7 v 8. v 5. v 2. v 3. Základní pojmy. Řešené příklady 1. příklad. Stromy

STROMY. v 7 v 8. v 5. v 2. v 3. Základní pojmy. Řešené příklady 1. příklad. Stromy STROMY Základní pojmy Strom T je souvislý graf, který neobsahuje jako podgraf kružnici. Strom dále budeme značit T = (V, X). Pro graf, který je stromem platí q = n -, kde q = X a n = V. Pro T mezi každou

Více

0.1 Úvod do lineární algebry

0.1 Úvod do lineární algebry Matematika KMI/PMATE 1 01 Úvod do lineární algebry 011 Vektory Definice 011 Vektorem aritmetického prostorur n budeme rozumět uspořádanou n-tici reálných čísel x 1, x 2,, x n Definice 012 Definice sčítání

Více

zejména Dijkstrův algoritmus pro hledání minimální cesty a hladový algoritmus pro hledání minimální kostry.

zejména Dijkstrův algoritmus pro hledání minimální cesty a hladový algoritmus pro hledání minimální kostry. Kapitola Ohodnocené grafy V praktických aplikacích teorie grafů zpravidla graf slouží jako nástroj k popisu nějaké struktury. Jednotlivé prvky této struktury mají často přiřazeny nějaké hodnoty (může jít

Více

Délka (dny) 150 - - 2 terénní úpravy (prvotní) 15-20 - příprava staveniště (výstavba přístřešku pro materiál)

Délka (dny) 150 - - 2 terénní úpravy (prvotní) 15-20 - příprava staveniště (výstavba přístřešku pro materiál) Skupinová práce. Zadání skupinové práce Síťová analýza metoda CPM Dáno: Výstavba skladu zásob obilí představuje následující činnosti: Tabulka Název činnosti Délka (dny) Optimální projekt. Optimální dělníků

Více