Static Load Balancing Applied to Time Dependent Mechanical Problems

Rozměr: px
Začít zobrazení ze stránky:

Download "Static Load Balancing Applied to Time Dependent Mechanical Problems"

Transkript

1 Static Load Balancing Applied to Time Dependent Mechanical Problems O. Medek 1, J. Kruis 2, Z. Bittnar 2, P. Tvrdík 1 1 Katedra počítačů České vysoké učení technické, Praha 2 Katedra stavební mechaniky České vysoké učení technické, Praha Seminář numerické analýzy 2005

2 Obsah Popis problému a motivace 1 Popis problému a motivace Paralelizace řešení systému lineárních rovnic 2 Doménová dekompozice dělením grafu Quality Balancing heuristika 3 4

3 Obsah Popis problému a motivace 1 Popis problému a motivace Paralelizace řešení systému lineárních rovnic 2 Doménová dekompozice dělením grafu Quality Balancing heuristika 3 4

4 Závislost na čase.

5 Závislost na čase. Zanedbatelné inerciální síly.

6 Závislost na čase. Zanedbatelné inerciální síly. Př.: analýza reaktorové tlakové nádoby v jaderných elektrárnách.

7 Řešení časově závislý mechanických problémů Prostorová diskretizace: metoda konečných prvků (MKP).

8 Řešení časově závislý mechanických problémů Prostorová diskretizace: metoda konečných prvků (MKP). Časová diskretizace: metoda konečných diferencí + linearizace (Newtonov-Raphsonovou metodou) iterace.

9 Řešení časově závislý mechanických problémů Prostorová diskretizace: metoda konečných prvků (MKP). Časová diskretizace: metoda konečných diferencí + linearizace (Newtonov-Raphsonovou metodou) iterace. V každé iteraci se řeší systém lineárních rovnic (SLR) Ax = b.

10 Řešení časově závislý mechanických problémů Prostorová diskretizace: metoda konečných prvků (MKP). Časová diskretizace: metoda konečných diferencí + linearizace (Newtonov-Raphsonovou metodou) iterace. V každé iteraci se řeší systém lineárních rovnic (SLR) Ax = b. Tyto SLR mají shodnou strukturu.

11 Řešení časově závislý mechanických problémů Prostorová diskretizace: metoda konečných prvků (MKP). Časová diskretizace: metoda konečných diferencí + linearizace (Newtonov-Raphsonovou metodou) iterace. V každé iteraci se řeší systém lineárních rovnic (SLR) Ax = b. Tyto SLR mají shodnou strukturu. Dále předpokládáme úlohy se symetrickými, pozitivně definitními řídkými a velkými SLR.

12 Obsah Popis problému a motivace 1 Popis problému a motivace Paralelizace řešení systému lineárních rovnic 2 Doménová dekompozice dělením grafu Quality Balancing heuristika 3 4

13 Paralelizace řešení systému lineárních rovnic Metoda Schurových doplňků 1 Doménová dekompozice (DD).

14 Paralelizace řešení systému lineárních rovnic Metoda Schurových doplňků 1 Doménová dekompozice (DD). 2 Přečíslování proměnných.

15 Paralelizace řešení systému lineárních rovnic Metoda Schurových doplňků 1 Doménová dekompozice (DD). 2 Přečíslování proměnných. 3 Sestavení podmatic.

16 Paralelizace řešení systému lineárních rovnic Metoda Schurových doplňků 1 Doménová dekompozice (DD). 2 Přečíslování proměnných. 3 Sestavení podmatic. 4 Částečná faktorizace podmatic (výpočet Schurových doplňků).

17 Paralelizace řešení systému lineárních rovnic Metoda Schurových doplňků 1 Doménová dekompozice (DD). 2 Přečíslování proměnných. 3 Sestavení podmatic. 4 Částečná faktorizace podmatic (výpočet Schurových doplňků). 5 Řešení redukovaného systému.

18 Paralelizace řešení systému lineárních rovnic Metoda Schurových doplňků 1 Doménová dekompozice (DD). 2 Přečíslování proměnných. 3 Sestavení podmatic. 4 Částečná faktorizace podmatic (výpočet Schurových doplňků). 5 Řešení redukovaného systému. 6 Zpětná substituce na podmaticích.

19 Doménová dekompozice (DD) A B 1 C 1 Blokově šípový tvar. B 2 C 2 B 3 C 3 C T 1 C T 2 C T 3 R

20 Doménová dekompozice (DD) A B 1 B 2 C 1 C 2 Blokově šípový tvar. R je matice redukovaného problému. B 3 C 3 C T 1 C T 2 C T 3 R

21 Doménová dekompozice (DD) A B 1 B 2 C 1 C 2 Blokově šípový tvar. R je matice redukovaného problému. Řád vnitřních B k zhruba stejný. B 3 C 3 C T 1 C T 2 C T 3 R

22 Doménová dekompozice (DD) A B 1 B 2 C 1 C 2 Blokově šípový tvar. R je matice redukovaného problému. B 3 C T 1 C T 2 C T 3 C 3 R Řád vnitřních B k zhruba stejný. Šířka hraničních C k a R je minimalizována.

23 Doménová dekompozice (DD) B 1 C 1 A A k je podmatice vytvořená na procesoru k. B 2 C 2 A k B k C k B 3 C 3 C T k R C T 1 C T 2 C T 3 R

24 Zápis blokově šípový tvaru SLR B 1 x 1 + C 1 x R = b 1 B 2 x 2 + C 2 x R = b 3 B 3 x 3 + C 3 x R = b 3 C1 T x 1 + C1 T x 2 + C1 T x 3 + Rx R = b R

25 Zápis blokově šípový tvaru SLR B 1 x 1 + C 1 x R = b 1 B 2 x 2 + C 2 x R = b 3 B 3 x 3 + C 3 x R = b 3 C1 T x 1 + C1 T x 2 + C1 T x 3 + Rx R = b R x k vnitřní proměnné (x 1, x 2, x 3 ).

26 Zápis blokově šípový tvaru SLR B 1 x 1 + C 1 x R = b 1 B 2 x 2 + C 2 x R = b 3 B 3 x 3 + C 3 x R = b 3 C1 T x 1 + C1 T x 2 + C1 T x 3 + Rx R = b R x k vnitřní proměnné (x 1, x 2, x 3 ). x R hraniční proměnné.

27 Částečná faktorizace podmatic A k B k C k Eliminují se pouze vnitřní proměnné x k. C T k R

28 Částečná faktorizace podmatic A k B k C k Eliminují se pouze vnitřní proměnné x k. Podmatice A k jsou řídké. C T k R

29 Částečná faktorizace podmatic A k B k C T k C k R Eliminují se pouze vnitřní proměnné x k. Podmatice A k jsou řídké. Částečná faktorizace se provádí obálkovou (skyline) metodou.

30 Obálková metoda Popis problému a motivace A k Obálka = množina prvků okolo hlavní diagonály. Mimo obálku jsou jen 0. B k C k C T k R

31 Obálková metoda Popis problému a motivace A k B k C k Obálka = množina prvků okolo hlavní diagonály. Mimo obálku jsou jen 0. Částečná faktorizace se provádí pouze uvnitř obálky. C T k R

32 Obálková metoda Popis problému a motivace A k B k C k Obálka = množina prvků okolo hlavní diagonály. Mimo obálku jsou jen 0. Částečná faktorizace se provádí pouze uvnitř obálky. V paměti jsou pouze prvky uvnitř obálky. C T k R

33 Obálková metoda Popis problému a motivace A k B k C T k C k R Obálka = množina prvků okolo hlavní diagonály. Mimo obálku jsou jen 0. Částečná faktorizace se provádí pouze uvnitř obálky. V paměti jsou pouze prvky uvnitř obálky. Přečíslování proměnných minimalizace obálky.

34 Obálková metoda Popis problému a motivace A k B k C T k C k R Obálka = množina prvků okolo hlavní diagonály. Mimo obálku jsou jen 0. Částečná faktorizace se provádí pouze uvnitř obálky. V paměti jsou pouze prvky uvnitř obálky. Přečíslování proměnných minimalizace obálky. Přečíslování: hraniční Sloanův algoritmus.

35 Příklad obálky Popis problému a motivace : diagonální prvek. 0: nula mimo obálku. 0 : nuly a nenulové prvky uvnitř obálky. 1 6: vnitřní proměnné. 7 9: hraniční proměnné.

36 Obsah Popis problému a motivace 1 Popis problému a motivace Paralelizace řešení systému lineárních rovnic 2 Doménová dekompozice dělením grafu Quality Balancing heuristika 3 4

37 DD dělí na podmatice A k zhruba stejného řádu.

38 DD dělí na podmatice A k zhruba stejného řádu. Doba částečné faktorizace závisí na velikosti obálky. V praxi se doby částečných faktorizací podmatic mohou lišit (až 2,5 krát).

39 DD dělí na podmatice A k zhruba stejného řádu. Doba částečné faktorizace závisí na velikosti obálky. V praxi se doby částečných faktorizací podmatic mohou lišit (až 2,5 krát). Navíc přečíslování mění (menšuje) velikost obálky až po DD.

40 DD dělí na podmatice A k zhruba stejného řádu. Doba částečné faktorizace závisí na velikosti obálky. V praxi se doby částečných faktorizací podmatic mohou lišit (až 2,5 krát). Navíc přečíslování mění (menšuje) velikost obálky až po DD. JAK UDĚLAT VÝPOČETNĚ VYVÁŽENOU DEKOMPOZICI?

41 Obsah Popis problému a motivace 1 Popis problému a motivace Paralelizace řešení systému lineárních rovnic 2 Doménová dekompozice dělením grafu Quality Balancing heuristika 3 4

42 Spojení DD a přečíslování 1. Doménová dekompozice 2. Přečíslování

43 Spojení DD a přečíslování 1. Doménová dekompozice 2. Přečíslování }

44 Spojení DD a přečíslování 1. Doménová dekompozice 2. Přečíslování } Quality Balancing heuristika Domenova dekompozice Precislovani Odhad slozitosti cast.faktorizace Odhadnuta slozitost

45 Quality Balancing heuristika Quality = míra, která se vyvažuje: pamět ové nároky, výpočetní složitost.

46 Quality Balancing heuristika Quality = míra, která se vyvažuje: pamět ové nároky, výpočetní složitost. Prezentováno na EUROPAR 04 a PDCN 05 na jednoduchých úlohách mechaniky.

47 Quality Balancing heuristika Quality = míra, která se vyvažuje: pamět ové nároky, výpočetní složitost. Prezentováno na EUROPAR 04 a PDCN 05 na jednoduchých úlohách mechaniky. Vyvážený výpočet trvá kratší dobu.

48 Quality Balancing heuristika Quality = míra, která se vyvažuje: pamět ové nároky, výpočetní složitost. Prezentováno na EUROPAR 04 a PDCN 05 na jednoduchých úlohách mechaniky. Vyvážený výpočet trvá kratší dobu. Ale QB je značně pomalejší nežli klasická DD.

49 Quality Balancing heuristika Quality = míra, která se vyvažuje: pamět ové nároky, výpočetní složitost. Prezentováno na EUROPAR 04 a PDCN 05 na jednoduchých úlohách mechaniky. Vyvážený výpočet trvá kratší dobu. Ale QB je značně pomalejší nežli klasická DD. Tento příspěvek je zaměřen na vyvažování výpočetní složitosti řešení časově závislých mechanických problémů, kde se projeví výhody QB.

50 Obsah Popis problému a motivace DD dělením grafu Quality Balancing heuristika 1 Popis problému a motivace Paralelizace řešení systému lineárních rovnic 2 Doménová dekompozice dělením grafu Quality Balancing heuristika 3 4

51 Sít konečných prvků (KP) DD dělením grafu Quality Balancing heuristika a b c d e f 12 g h i Elementy (konečné prvky) a... i. Uzly Každý uzel obsahuje stupně volnosti (SV, proměnné).

52 Duální graf Popis problému a motivace DD dělením grafu Quality Balancing heuristika Sít KP reprezentovaná duálním grafem G D a b a b c d e d e f f c 13 g 14 h 15 i 16 g h i

53 Uzlový graf Popis problému a motivace DD dělením grafu Quality Balancing heuristika 1 Sít KP reprezentovaná uzlovým grafem G N a b c d e g h f i

54 DD dělením grafu Popis problému a motivace DD dělením grafu Quality Balancing heuristika DD se provádí pomocí dělení G D hranovým řezem (víceúrovňový dělič METIS).

55 DD dělením grafu Popis problému a motivace DD dělením grafu Quality Balancing heuristika DD se provádí pomocí dělení G D hranovým řezem (víceúrovňový dělič METIS). Rozdělení sítě KP na podsítě KP.

56 DD dělením grafu Popis problému a motivace DD dělením grafu Quality Balancing heuristika DD se provádí pomocí dělení G D hranovým řezem (víceúrovňový dělič METIS). Rozdělení sítě KP na podsítě KP. Rozdělení G N vrcholovým řezem.

57 DD dělením grafu Popis problému a motivace DD dělením grafu Quality Balancing heuristika DD se provádí pomocí dělení G D hranovým řezem (víceúrovňový dělič METIS). Rozdělení sítě KP na podsítě KP. Rozdělení G N vrcholovým řezem. Dekompozice A na podmatice A k.

58 DD dělením grafu Popis problému a motivace DD dělením grafu Quality Balancing heuristika DD se provádí pomocí dělení G D hranovým řezem (víceúrovňový dělič METIS). Rozdělení sítě KP na podsítě KP. Rozdělení G N vrcholovým řezem. Dekompozice A na podmatice A k. Uzly (proměnné) patřící k více než jedné podsíti (podmatici) jsou hraniční; ostatní jsou vnitřní.

59 DD dělením grafu (obrázek) a d g b e h Rozdeleny c i f G D Podsite KP vnitrni uzly hranicni uzly DD dělením grafu Quality Balancing heuristika a 6 d g b e c f 12 h 14 7 i Rozdeleny G N vnitrni vrcholy hranicni vrcholy

60 Víceúrovňové dělení grafu DD dělením grafu Quality Balancing heuristika D G 0 D G 0 Zhrubovani D G 1 D G 2 D G 3 D G 3 D G 4 D G 1 D G 2 Pocatecni rozdeleni Zjemnovani a vylepsovaci heuristika

61 Vylepšovací heuristika DD dělením grafu Quality Balancing heuristika Přesouvá supervrcholy (množiny vrcholů) mezi podgrafy.

62 Vylepšovací heuristika DD dělením grafu Quality Balancing heuristika Přesouvá supervrcholy (množiny vrcholů) mezi podgrafy. Vyvažuje počet vrcholů v podgrafech a zmenšuje hranový řez.

63 Vylepšovací heuristika DD dělením grafu Quality Balancing heuristika Přesouvá supervrcholy (množiny vrcholů) mezi podgrafy. Vyvažuje počet vrcholů v podgrafech a zmenšuje hranový řez. Nejvíce ze všech fází ovlivňuje výsledné dělení.

64 Obsah Popis problému a motivace DD dělením grafu Quality Balancing heuristika 1 Popis problému a motivace Paralelizace řešení systému lineárních rovnic 2 Doménová dekompozice dělením grafu Quality Balancing heuristika 3 4

65 QB heuristika Popis problému a motivace DD dělením grafu Quality Balancing heuristika Rozšiřuje a modifikuje vylepšovací heuristiku.

66 QB heuristika Popis problému a motivace DD dělením grafu Quality Balancing heuristika Rozšiřuje a modifikuje vylepšovací heuristiku. Pro každý podgraf spočte odhad výpočetní zátěže (#FLOPs) částečné faktorizace příslušné podmatice.

67 QB heuristika Popis problému a motivace DD dělením grafu Quality Balancing heuristika Rozšiřuje a modifikuje vylepšovací heuristiku. Pro každý podgraf spočte odhad výpočetní zátěže (#FLOPs) částečné faktorizace příslušné podmatice. Vyvažuje odhady výpočetních zátěží a zmenšuje hranový řez.

68 QB heuristika (obrázek) DD dělením grafu Quality Balancing heuristika Tok dat Zavislost Dualni graf Zlepsovaci heuristika Podgraf zhrubleho Projekce na G D G D Sit KP Projekce na Podgraf N G G D Ohodnoceny uzlovy graf Precislovani Odhad slozitosti Odhadnuta slozitost

69 Obsah Popis problému a motivace 1 Popis problému a motivace Paralelizace řešení systému lineárních rovnic 2 Doménová dekompozice dělením grafu Quality Balancing heuristika 3 4

70 Testování Popis problému a motivace Testováno na výpočtech stárnutí reaktorové nádoby.

71 Testování Popis problému a motivace Testováno na výpočtech stárnutí reaktorové nádoby. Pouze pro 130 časových kroků. (V praxi je jich potřeba 13000).

72 Testování Popis problému a motivace Testováno na výpočtech stárnutí reaktorové nádoby. Pouze pro 130 časových kroků. (V praxi je jich potřeba 13000). Dekompozice na 4, 6, 8 a 10 domén, nejprve METISem, pak QB.

73 Testování Popis problému a motivace Testováno na výpočtech stárnutí reaktorové nádoby. Pouze pro 130 časových kroků. (V praxi je jich potřeba 13000). Dekompozice na 4, 6, 8 a 10 domén, nejprve METISem, pak QB. Testováno na Linuxovém clusteru. Každý stroj: Pentium 4, 3,2 GHz, 3GB paměti.

74 Testování Popis problému a motivace Testováno na výpočtech stárnutí reaktorové nádoby. Pouze pro 130 časových kroků. (V praxi je jich potřeba 13000). Dekompozice na 4, 6, 8 a 10 domén, nejprve METISem, pak QB. Testováno na Linuxovém clusteru. Každý stroj: Pentium 4, 3,2 GHz, 3GB paměti. Řešič SIFEL zkompilován gcc s optimalizací -O3.

75 Popis testovacích problémů Diskretizace reaktorové nádoby pomocí čtyřstěnů. 2 Sítě KP různé jemnosti: creep15 a creep10. creep15 creep10 #elementů #uzlů #SV 3 3

76 Vyvážení výpočtu [%] Vyvazeni vypoctu vyvazeni METIS QB creep creep

77 Výsledné zrychlení T M (T QB ) doba 130 časových kroků [sec] po dělení METISem (QB). úspora času výpočtu po dělení QB [%]. t QB doba běhu QB [sec]. creep15 creep10 #domén T M T QB t QB T M T QB t QB

78 Obsah Popis problému a motivace 1 Popis problému a motivace Paralelizace řešení systému lineárních rovnic 2 Doménová dekompozice dělením grafu Quality Balancing heuristika 3 4

79 Popis problému a motivace QB heuristika: a) vyvažuje paralelní výpočet,

80 Popis problému a motivace QB heuristika: a) vyvažuje paralelní výpočet, b) zkracuje dobu řešení,

81 Popis problému a motivace QB heuristika: a) vyvažuje paralelní výpočet, b) zkracuje dobu řešení, c) prodlužuje dobu dekompozice,

82 Popis problému a motivace QB heuristika: a) vyvažuje paralelní výpočet, b) zkracuje dobu řešení, c) prodlužuje dobu dekompozice, je vhodná pro dekompozici časově závislých mechanických problémů.

83 Popis problému a motivace QB heuristika: a) vyvažuje paralelní výpočet, b) zkracuje dobu řešení, c) prodlužuje dobu dekompozice, je vhodná pro dekompozici časově závislých mechanických problémů. Další výzkum testování na dalších úlohách.

84 Popis problému a motivace QB heuristika: a) vyvažuje paralelní výpočet, b) zkracuje dobu řešení, c) prodlužuje dobu dekompozice, je vhodná pro dekompozici časově závislých mechanických problémů. Další výzkum testování na dalších úlohách. testování na větším počtu procesorů.

Katedra geotechniky a podzemního stavitelství

Katedra geotechniky a podzemního stavitelství Katedra geotechniky a podzemního stavitelství Modelování v geotechnice Metoda okrajových prvků (prezentace pro výuku předmětu Modelování v geotechnice) doc. RNDr. Eva Hrubešová, Ph.D. Inovace studijního

Více

Úvod do přesnosti MKP, generace sítí a metod řešení soustav lineárních rovnic

Úvod do přesnosti MKP, generace sítí a metod řešení soustav lineárních rovnic ENumerická analýza transportních procesů - NTP2 Přednáška č. 8 Úvod do přesnosti MKP, generace sítí a metod řešení soustav lineárních rovnic Úvod do přesnosti metody konečných prvků Úvod do přesnosti metody

Více

4. Úvod do paralelismu, metody paralelizace

4. Úvod do paralelismu, metody paralelizace 4. Úvod do paralelismu, metody paralelizace algoritmů Ing. Michal Bližňák, Ph.D. Ústav informatiky a umělé inteligence Fakulta aplikované informatiky UTB Zĺın Paralelní procesy a programování, Zĺın, 26.

Více

Multirobotická kooperativní inspekce

Multirobotická kooperativní inspekce Multirobotická kooperativní inspekce prostředí Diplomová práce Multirobotická kooperativní inspekce prostředí Diplomová práce Intelligent and Mobile Robotics Group Laboratory for Intelligent Decision Making

Více

Katedra informatiky a výpočetní techniky. 10. prosince Ing. Tomáš Zahradnický doc. Ing. Róbert Lórencz, CSc.

Katedra informatiky a výpočetní techniky. 10. prosince Ing. Tomáš Zahradnický doc. Ing. Róbert Lórencz, CSc. Katedra informatiky a výpočetní techniky České vysoké učení technické, fakulta elektrotechnická Ing. Tomáš Zahradnický doc. Ing. Róbert Lórencz, CSc. 10. prosince 2007 Pamět ové banky S výhodou používáme

Více

Co je obsahem numerických metod?

Co je obsahem numerických metod? Numerické metody Úvod Úvod Co je obsahem numerických metod? Numerické metody slouží k přibližnému výpočtu věcí, které se přesně vypočítat bud nedají vůbec, nebo by byl výpočet neúměrně pracný. Obsahem

Více

NUMERICKÝ MODEL NESTACIONÁRNÍHO PŘENOSU TEPLA V PALIVOVÉ TYČI JADERNÉHO REAKTORU VVER 1000 SVOČ FST 2014

NUMERICKÝ MODEL NESTACIONÁRNÍHO PŘENOSU TEPLA V PALIVOVÉ TYČI JADERNÉHO REAKTORU VVER 1000 SVOČ FST 2014 NUMERICKÝ MODEL NESTACIONÁRNÍHO PŘENOSU TEPLA V PALIVOVÉ TYČI JADERNÉHO REAKTORU VVER 1000 SVOČ FST 2014 Miroslav Kabát, Západočeská univerzita v Plzni, Univerzitní 8, 306 14 Plzeň Česká republika ABSTRAKT

Více

Ing. Tomáš MAUDER prof. Ing. František KAVIČKA, CSc. doc. Ing. Josef ŠTĚTINA, Ph.D.

Ing. Tomáš MAUDER prof. Ing. František KAVIČKA, CSc. doc. Ing. Josef ŠTĚTINA, Ph.D. OPTIMALIZACE BRAMOVÉHO PLYNULÉHO ODLÉVÁNÍ OCELI ZA POMOCI NUMERICKÉHO MODELU TEPLOTNÍHO POLE Ing. Tomáš MAUDER prof. Ing. František KAVIČKA, CSc. doc. Ing. Josef ŠTĚTINA, Ph.D. Fakulta strojního inženýrství

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ OBOR GEODÉZIE A KARTOGRAFIE KATEDRA VYŠŠÍ GEODÉZIE název předmětu úloha/zadání název úlohy Základy fyzikální geodézie 3/19 Legendreovy přidružené funkce

Více

13. Lineární programování

13. Lineární programování Jan Schmidt 2011 Katedra číslicového návrhu Fakulta informačních technologií České vysoké učení technické v Praze Zimní semestr 2011/12 MI-PAA EVROPSKÝ SOCIÁLNÍ FOND PRAHA & EU: INVESTUJENE DO VAŠÍ BUDOUCNOSTI

Více

Připomenutí co je to soustava lineárních rovnic

Připomenutí co je to soustava lineárních rovnic Připomenutí co je to soustava lineárních rovnic Příklad 2x 3y + z = 5 3x + 5y + 2z = 4 x + 2y z = 1 Soustava lineárních rovnic obecně Maticový tvar: a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a

Více

Numerické integrace některých nediferencovatelných funkcí

Numerické integrace některých nediferencovatelných funkcí Numerické integrace některých nediferencovatelných funkcí Ústav matematiky a biomatematiky Přírodovědecká fakulta Jihočeské univerzity v Českých Budějovicích 2. prosince 2014 Školitel: doc. Dr. rer. nat.

Více

Katedra geotechniky a podzemního stavitelství

Katedra geotechniky a podzemního stavitelství Katedra geotechniky a podzemního stavitelství Modelování v geotechnice Metoda oddělených elementů (prezentace pro výuku předmětu Modelování v geotechnice) doc. RNDr. Eva Hrubešová, Ph.D. Inovace studijního

Více

Četba: Texty o lineární algebře (odkazy na webových stránkách přednášejícího).

Četba: Texty o lineární algebře (odkazy na webových stránkách přednášejícího). Předmět: MA 4 Dnešní látka Lineární (vektorový) prostor Normovaný lineární prostor Normy matic a vektorů Symetrické matice, pozitivně definitní matice Gaussova eliminační metoda, podmíněnost matic Četba:

Více

stránkách přednášejícího.

stránkách přednášejícího. Předmět: MA 4 Dnešní látka Iterační metoda Jacobiova iterační metoda Gaussova-Seidelova iterační metoda Superrelaxační metoda (metoda SOR) Metoda sdružených gradientů Četba: Text o lineární algebře v Příručce

Více

Matematické modely a způsoby jejich řešení. Kateřina Růžičková

Matematické modely a způsoby jejich řešení. Kateřina Růžičková Matematické modely a způsoby jejich řešení Kateřina Růžičková Rovnice matematické fyziky Přednáška převzata od Doc. Rapanta Parciální diferencíální rovnice Diferencialní rovnice obsahujcí parcialní derivace

Více

FLUENT přednášky. Metoda konečných objemů (MKO)

FLUENT přednášky. Metoda konečných objemů (MKO) FLUENT přednášky Metoda konečných objemů (MKO) Pavel Zácha zdroj: [Bakker, 2008], [Vodička, 2011], [Runchal, 2008], [Kozubková, 2008] Historie - zřejmě nestarší způsob řešení parciálních diferenciálních

Více

VYBRANÉ PARTIE Z NUMERICKÉ MATEMATIKY

VYBRANÉ PARTIE Z NUMERICKÉ MATEMATIKY VYBRANÉ PARTIE Z NUMERICKÉ MATEMATIKY Jan Krejčí 31. srpna 2006 jkrejci@physics.ujep.cz http://physics.ujep.cz/~jkrejci Obsah 1 Přímé metody řešení soustav lineárních rovnic 3 1.1 Gaussova eliminace...............................

Více

Architektury počítačů

Architektury počítačů Architektury počítačů skupina Identifyingvýzkumná the Interesting Points in Geometrical Figures of Certain Class Vysoké učení technické v Brně, Fakulta informačních technologií, Božetěchova 2, 612 66 Brno

Více

2. Schurova věta. Petr Tichý. 3. října 2012

2. Schurova věta. Petr Tichý. 3. října 2012 2. Schurova věta Petr Tichý 3. října 2012 1 Podobnostní transformace a výpočet vlastních čísel Obecný princip: Úloha: Řešíme-li matematickou úlohu, je často velmi vhodné hledat její ekvivalentní formulaci

Více

Počítačová dynamika tekutin (CFD) Řešení rovnic. - metoda konečných objemů -

Počítačová dynamika tekutin (CFD) Řešení rovnic. - metoda konečných objemů - Počítačová dynamika tekutin (CFD) Řešení rovnic - metoda konečných objemů - Rozdělení parciálních diferenciálních rovnic 2 Obecná parciální diferenciální rovnice se dvěma nezávislými proměnnými x a y:

Více

INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ

INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ CZ.1.07/1.1.00/08.0010 NUMERICKÉ SIMULACE ING. KATEŘINA

Více

Katedra geotechniky a podzemního stavitelství

Katedra geotechniky a podzemního stavitelství Katedra geotechniky a podzemního stavitelství Modelování v geotechnice Obecný postup při numerickém modelování (prezentace pro výuku předmětu Modelování v geotechnice) doc RNDr Eva Hrubešová, PhD Inovace

Více

Numerické metody a programování

Numerické metody a programování Projekt: Inovace výuky optiky se zaměřením na získání experimentálních dovedností Registrační číslo: CZ.1.7/2.2./28.157 Numerické metody a programování Lekce 4 Tento projekt je spolufinancován Evropským

Více

3. úloha - problém batohu metodami branch & bound, dynamické programování, heuristika s testem

3. úloha - problém batohu metodami branch & bound, dynamické programování, heuristika s testem ČVUT FEL X36PAA - Problémy a algoritmy 3. úloha - problém batohu metodami branch & bound, dynamické programování, heuristika s testem Jméno: Marek Handl Datum: 1. 1. 2009 Cvičení: Pondělí 9:00 Zadání Naprogramujte

Více

CLARKEOVA-WRIGHTOVA METODA ŘEŠENÍ ÚLOHY VRP

CLARKEOVA-WRIGHTOVA METODA ŘEŠENÍ ÚLOHY VRP CLARKEOVA-WRIGHTOVA METODA ŘEŠENÍ ÚLOHY VRP 1. Definice úlohy Úloha VRP (Vehicle Routing Problem problém okružních jízd) je definována na obecné dopravní síti S = (V,H), kde V je množina uzlů sítě a H

Více

Mechanika s Inventorem

Mechanika s Inventorem Mechanika s Inventorem 2. Základní pojmy CAD data FEM výpočty Petr SCHILLING, autor přednášky Ing. Kateřina VLČKOVÁ, obsahová korekce Optimalizace Tomáš MATOVIČ, publikace 1 Obsah přednášky: Lagrangeův

Více

NESTABILITY VYBRANÝCH SYSTÉMŮ. Úvod. Vzpěr prutu. Petr Frantík 1

NESTABILITY VYBRANÝCH SYSTÉMŮ. Úvod. Vzpěr prutu. Petr Frantík 1 NESTABILITY VYBRANÝCH SYSTÉMŮ Petr Frantík 1 Úvod Úloha pokritického vzpěru přímého prutu je řešena dynamickou metodou. Prut se statickým zatížením je modelován jako nelineární disipativní dynamický systém.

Více

Soustavy lineárních rovnic-numerické řešení. October 2, 2008

Soustavy lineárních rovnic-numerické řešení. October 2, 2008 Soustavy lineárních rovnic-numerické řešení October 2, 2008 (Systém lin. rovnic) Systém rovnic a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2... a n1 x 1 + a n2 x 2 + + a

Více

Datové struktury. Zuzana Majdišová

Datové struktury. Zuzana Majdišová Datové struktury Zuzana Majdišová 19.5.2015 Datové struktury Numerické datové struktury Efektivní reprezentace velkých řídkých matic Lze využít při výpočtu na GPU Dělení prostoru a binární masky Voxelová

Více

SOUSTAVY LINEÁRNÍCH ALGEBRAICKÝCH ROVNIC

SOUSTAVY LINEÁRNÍCH ALGEBRAICKÝCH ROVNIC SOUSTAVY LINEÁRNÍCH ALGEBRAICKÝCH ROVNIC Pojmy: Algebraická rovnice... rovnice obsahující pouze celé nezáporné mocniny neznámé x, tj. a n x n + a n 1 x n 1 +... + a x + a 1 x + a 0 = 0, kde n je přirozené

Více

2.6. VLASTNÍ ČÍSLA A VEKTORY MATIC

2.6. VLASTNÍ ČÍSLA A VEKTORY MATIC .6. VLASTNÍ ČÍSLA A VEKTORY MATIC V této kapitole se dozvíte: jak jsou definována vlastní (charakteristická) čísla a vektory čtvercové matice; co je to charakteristická matice a charakteristický polynom

Více

Numerické řešení soustav lineárních rovnic

Numerické řešení soustav lineárních rovnic Numerické řešení soustav lineárních rovnic irko Navara Centrum strojového vnímání, katedra kybernetiky elektrotechnická fakulta ČVUT, Praha http://cmpfelkcvutcz/~navara 30 11 2016 Úloha: Hledáme řešení

Více

Rovinná úloha v MKP. (mohou být i jejich derivace!): rovinná napjatost a r. deformace (stěny,... ): u, v. prostorové úlohy: u, v, w

Rovinná úloha v MKP. (mohou být i jejich derivace!): rovinná napjatost a r. deformace (stěny,... ): u, v. prostorové úlohy: u, v, w Rovinná úloha v MKP Hledané deformační veličiny viz klasická teorie pružnosti (mohou být i jejich derivace!): rovinná napjatost a r. deformace (stěny,... ): u, v desky: w, ϕ x, ϕ y prostorové úlohy: u,

Více

Soustavy lineárních rovnic-numerické řešení

Soustavy lineárních rovnic-numerické řešení Soustavy lineárních rovnic-numerické řešení November 9, 2008 Soustavy lineárních rovnic-numerické řešení 1 / 52 (Systém lin. rovnic) Systém rovnic a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Číslo projektu: CZ.1.07/1.5.00/34.0548 Název školy: Gymnázium, Trutnov, Jiráskovo náměstí 325 Název materiálu: VY_32_INOVACE_148_IVT Autor: Ing. Pavel Bezděk Tematický okruh:

Více

Odhad stavu matematického modelu křižovatek

Odhad stavu matematického modelu křižovatek Odhad stavu matematického modelu křižovatek Miroslav Šimandl, Miroslav Flídr a Jindřich Duník Katedra kybernetiky & Výzkumné centrum Data-Algoritmy-Rozhodování Fakulta aplikovaných věd Západočeská univerzita

Více

Regresní a korelační analýza

Regresní a korelační analýza Regresní a korelační analýza Mějme dvojici proměnných, které spolu nějak souvisí. x je nezávisle (vysvětlující) proměnná y je závisle (vysvětlovaná) proměnná Chceme zjistit funkční závislost y = f(x).

Více

Metody síťové analýzy

Metody síťové analýzy Metody síťové analýzy Řeší problematiku složitých systémů, zejména pak vazby mezi jejich jednotlivými prvky. Vychází z teorie grafů. Základní metody síťové analýzy: CPM (Critical Path Method) deterministický

Více

Obyčejné diferenciální rovnice počáteční úloha. KMA / NGM F. Ježek

Obyčejné diferenciální rovnice počáteční úloha. KMA / NGM F. Ježek Občejné diferenciální rovnice počáteční úloha KMA / NGM F. Ježek (JEZEK@KMA.ZCU.CZ) Základní pojm Tp rovnic a podmínek, řád rovnice Počáteční úloha pro občejné diferenciální rovnice Řád metod a počet kroků

Více

Mechanika s Inventorem

Mechanika s Inventorem CAD data Mechanika s Inventorem Optimalizace FEM výpočty 4. Prostředí aplikace Petr SCHILLING, autor přednášky Ing. Kateřina VLČKOVÁ, obsahová korekce Tomáš MATOVIČ, publikace 1 Obsah cvičení: Prostředí

Více

Analýza Petriho sítí. Analýza Petriho sítí p.1/28

Analýza Petriho sítí. Analýza Petriho sítí p.1/28 Analýza Petriho sítí Analýza Petriho sítí p.1/28 1. Základní pojmy Základní problémy analýzy bezpečnost (safeness) omezenost (boundness) konzervativnost (conservation) živost (liveness) Definice 1: Místo

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ OBOR GEODÉZIE A KARTOGRAFIE KATEDRA VYŠŠÍ GEODÉZIE název předmětu úloha/zadání název úlohy Vyšší geodézie 1 3/3 GPS - výpočet polohy stanice pomocí

Více

LOKALIZACE ZDROJŮ AE NEURONOVÝMI SÍTĚMI NEZÁVISLE NA ZMĚNÁCH MATERIÁLU A MĚŘÍTKA

LOKALIZACE ZDROJŮ AE NEURONOVÝMI SÍTĚMI NEZÁVISLE NA ZMĚNÁCH MATERIÁLU A MĚŘÍTKA LOKALIZACE ZDROJŮ AE EUROOVÝMI SÍTĚMI EZÁVISLE A ZMĚÁCH MATERIÁLU A MĚŘÍTKA AE SOURCE LOCATIO BY EURAL ETWORKS IDEPEDET O MATERIAL AD SCALE CHAGES Milan CHLADA, Zdeněk PŘEVOROVSKÝ Ústav termomechaniky

Více

4. Trojúhelníkový rozklad p. 1/20

4. Trojúhelníkový rozklad p. 1/20 4. Trojúhelníkový rozklad 4. Trojúhelníkový rozklad p. 1/20 4. Trojúhelníkový rozklad p. 2/20 Trojúhelníkový rozklad 1. Permutační matice 2. Trojúhelníkové matice 3. Trojúhelníkový (LU) rozklad 4. Výpočet

Více

Martin Lísal. Úvod do MPI

Martin Lísal. Úvod do MPI Martin Lísal září 2003 PARALELNÍ POČÍTÁNÍ Úvod do MPI 1 1 Co je to paralelní počítání? Paralelní počítání je počítání na paralelních počítačích či jinak řečeno využití více než jednoho procesoru při výpočtu

Více

Algoritmus pro hledání nejkratší cesty orientovaným grafem

Algoritmus pro hledání nejkratší cesty orientovaným grafem 1.1 Úvod Algoritmus pro hledání nejkratší cesty orientovaným grafem Naprogramoval jsem v Matlabu funkci, která dokáže určit nejkratší cestu v orientovaném grafu mezi libovolnými dvěma vrcholy. Nastudoval

Více

Postup při výpočtu prutové konstrukce obecnou deformační metodou

Postup při výpočtu prutové konstrukce obecnou deformační metodou Vysoké učení technické v Brně Fakulta stavební Ústav stavební mechaniky Postup při výpočtu prutové konstrukce obecnou deformační metodou Petr Frantík Obsah 1 Vytvoření modelu 2 2 Styčníkové vektory modelu

Více

Obsah. Kapitola 1 Hardware, procesory a vlákna Prohlídka útrob počítače...20 Motivace pro vícejádrové procesory...21

Obsah. Kapitola 1 Hardware, procesory a vlákna Prohlídka útrob počítače...20 Motivace pro vícejádrové procesory...21 Stručný obsah 1. Hardware, procesory a vlákna... 19 2. Programování s ohledemna výkon... 45 3. Identifikování příležitostí pro paralelizmus... 93 4. Synchronizace a sdílení dat... 123 5. Vlákna v rozhraní

Více

OPTIMÁLNÍ SEGMENTACE DAT

OPTIMÁLNÍ SEGMENTACE DAT ROBUST 2004 c JČMF 2004 OPTIMÁLNÍ SEGMENTACE DAT Petr Novotný Klíčová slova: Výpočetní statistika, po částech spojitá regrese. Abstrakt: Snížení paměťové náročnosti při výpočtu po částech spojitého regresního

Více

Pružnost a plasticita II CD03

Pružnost a plasticita II CD03 Pružnost a plasticita II CD3 uděk Brdečko VUT v Brně, Fakulta stavební, Ústav stavební mechanik tel: 5447368 email: brdecko.l @ fce.vutbr.cz http://www.fce.vutbr.cz/stm/brdecko.l/html/distcz.htm Obsah

Více

ALGORITMY A DATOVÉ STRUKTURY

ALGORITMY A DATOVÉ STRUKTURY Název tématického celku: Cíl: ALGORITMY A DATOVÉ STRUKTURY Metodický list č. 1 Časová složitost algoritmů Základním cílem tohoto tematického celku je vysvětlení potřebných pojmů a definic nutných k popisu

Více

AVDAT Nelineární regresní model

AVDAT Nelineární regresní model AVDAT Nelineární regresní model Josef Tvrdík Katedra informatiky Přírodovědecká fakulta Ostravská univerzita Nelineární regresní model Ey i = f (x i, β) kde x i je k-členný vektor vysvětlujících proměnných

Více

1. Převeďte dané číslo do dvojkové, osmičkové a šestnáctkové soustavy: a) 759 10 b) 2578 10

1. Převeďte dané číslo do dvojkové, osmičkové a šestnáctkové soustavy: a) 759 10 b) 2578 10 Úlohy- 2.cvičení 1. Převeďte dané číslo do dvojkové, osmičkové a šestnáctkové soustavy: a) 759 10 b) 2578 10 2. Převeďte dané desetinné číslo do dvojkové soustavy (DEC -> BIN): a) 0,8125 10 b) 0,35 10

Více

Výpočtové nadstavby pro CAD

Výpočtové nadstavby pro CAD Výpočtové nadstavby pro CAD 4. přednáška eplotní úlohy v MKP Michal Vaverka, Martin Vrbka Přenos tepla Př: Uvažujme pro jednoduchost spalovací motor chlazený vzduchem. Spalováním vzniká teplo, které se

Více

Zadání semestrální práce z předmětu Mechanika 2

Zadání semestrální práce z předmětu Mechanika 2 Zadání semestrální práce z předmětu Mechanika 2 Jméno: VITALI DZIAMIDAU Číslo zadání: 7 U zobrazeného mechanismu definujte rozměry, hmotnosti a silové účinky a postupně proveďte: 1. kinematickou analýzu

Více

Základy algoritmizace, návrh algoritmu

Základy algoritmizace, návrh algoritmu Základy algoritmizace, návrh algoritmu Algoritmus Předpoklady automatického výpočtu: předem stanovit (rozmyslet) přesný postup během opakovaného provádění postupu již nepřemýšlet a postupovat mechanicky

Více

Nejistota měření. Thomas Hesse HBM Darmstadt

Nejistota měření. Thomas Hesse HBM Darmstadt Nejistota měření Thomas Hesse HBM Darmstadt Prof. Werner Richter: Výsledek měření bez určení nejistoty měření je nejistý, takový výsledek je lépe ignorovat" V podstatě je výsledek měření aproximací nebo

Více

Povídání na téma SUPERPOČÍTAČE DNES A ZÍTRA

Povídání na téma SUPERPOČÍTAČE DNES A ZÍTRA Povídání na téma SUPERPOČÍTAČE DNES A ZÍTRA (aneb krátký náhled na SC) 29. 10. 2015 Filip Staněk Osnova Co jsou to Superpočítače? Výkon SC Architektura Software Algoritmy IT4Innovations Odkazy na další

Více

Úlohy nejmenších čtverců

Úlohy nejmenších čtverců Úlohy nejmenších čtverců Petr Tichý 7. listopadu 2012 1 Problémy nejmenších čtverců Ax b Řešení Ax = b nemusí existovat, a pokud existuje, nemusí být jednoznačné. Často má smysl hledat x tak, že Ax b.

Více

T E O R I E C H Y B A V Y R O V N Á V A C Í P O

T E O R I E C H Y B A V Y R O V N Á V A C Í P O ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ, OBOR GEODÉZIE A KARTOGRAFIE KATEDRA VYŠŠÍ GEODÉZIE název předmětu T E O R I E C H Y B A V Y R O V N Á V A C Í P O Č E T 2 č. úlohy 6 název úlohy T

Více

D - Přehled předmětů studijního plánu

D - Přehled předmětů studijního plánu D - Přehled předmětů studijního plánu Vysoká škola: Součást vysoké školy: Název studijního programu: Název studijního oboru: Slezská univerzita v Opavě Matematický ústav v Opavě Matematika Obecná matematika

Více

Mezi jednotlivými rozhraními resp. na nosníkových prvcích lze definovat kontakty

Mezi jednotlivými rozhraními resp. na nosníkových prvcích lze definovat kontakty Kontaktní prvky Mezi jednotlivými rozhraními resp. na nosníkových prvcích lze definovat kontakty Základní myšlenka Modelování posunu po smykové ploše, diskontinuitě či na rozhraní konstrukce a okolního

Více

Kolik existuje různých stromů na pevně dané n-prvkové množině vrcholů?

Kolik existuje různých stromů na pevně dané n-prvkové množině vrcholů? Kapitola 9 Matice a počet koster Graf (orientovaný i neorientovaný) lze popsat maticí, a to hned několika různými způsoby. Tématem této kapitoly jsou incidenční matice orientovaných grafů a souvislosti

Více

[1] LU rozklad A = L U

[1] LU rozklad A = L U [1] LU rozklad A = L U někdy je třeba prohodit sloupce/řádky a) lurozklad, 8, b) P. Olšák, FEL ČVUT, c) P. Olšák 2010, d) BI-LIN, e) L, f) 2009/2010, g)l. Viz p. d. 4/2010 Terminologie BI-LIN, lurozklad,

Více

CVIČNÝ TEST 13. OBSAH I. Cvičný test 2. Mgr. Zdeňka Strnadová. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17

CVIČNÝ TEST 13. OBSAH I. Cvičný test 2. Mgr. Zdeňka Strnadová. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 CVIČNÝ TEST 13 Mgr. Zdeňka Strnadová OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 1 V trojúhelníku ABC na obrázku dělí úsečka

Více

GPGPU Aplikace GPGPU. Obecné výpočty na grafických procesorech. Jan Vacata

GPGPU Aplikace GPGPU. Obecné výpočty na grafických procesorech. Jan Vacata Obecné výpočty na grafických procesorech Motivace Úvod Motivace Technologie 3 GHz Intel Core 2 Extreme QX9650 Výkon: 96 GFLOPS Propustnost paměti: 21 GB/s Orientační cena: 1300 USD NVIDIA GeForce 9800

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ OBOR GEODÉZIE A KARTOGRAFIE KATEDRA VYŠŠÍ GEODÉZIE název předmětu úloha/zadání název úlohy Vyšší geodézie 1 4/3 GPS - oskulační elementy dráhy družice

Více

Základy algoritmizace a programování

Základy algoritmizace a programování Základy algoritmizace a programování Příklady v MATLABu Přednáška 10 30. listopadu 2009 Řídící instrukce if else C Matlab if ( podmínka ) { } else { } Podmíněný příkaz if podmínka elseif podmínka2... else

Více

Regresní analýza 1. Regresní analýza

Regresní analýza 1. Regresní analýza Regresní analýza 1 1 Regresní funkce Regresní analýza Důležitou statistickou úlohou je hledání a zkoumání závislostí proměnných, jejichž hodnoty získáme při realizaci experimentů Vzhledem k jejich náhodnému

Více

Tvarová optimalizace v prostředí ANSYS Workbench

Tvarová optimalizace v prostředí ANSYS Workbench Tvarová optimalizace v prostředí ANSYS Workbench Jan Szweda, Zdenek Poruba VŠB-Technická univerzita Ostrava, Fakulta strojní, katedra mechaniky Ostrava, Czech Republic Anotace Prezentace je soustředěna

Více

Soustavy se spínanými kapacitory - SC. 1. Základní princip:

Soustavy se spínanými kapacitory - SC. 1. Základní princip: Obvody S - popis 1 Soustavy se spínanými kapacitory - S 1. Základní princip: Simulace rezistoru přepínaným kapacitorem viz známý obrázek! (a rovnice) Modifikace základního spínaného obvodu: Obr. 2.1: Zapojení

Více

Numerické metody lineární algebry

Numerické metody lineární algebry Numerické metody lineární algebry 1 Úvod 11 Úlohy lineární algebry 1 Řešení soustav lineárních rovnic A x = b Řešení soustavy s regulární čtvercovou maticí A řádu n n pro 1 nebo více pravých stran Výpočet

Více

Definice 7.2. Nejmenší přirozené číslo k, pro které je graf G k-obarvitelný, se nazývá chromatické číslo (barevnost) grafu G a značí se χ(g).

Definice 7.2. Nejmenší přirozené číslo k, pro které je graf G k-obarvitelný, se nazývá chromatické číslo (barevnost) grafu G a značí se χ(g). 7 Barevnost grafu Definice 71 Graf G se nazývá k-obarvitelný, jestliže každému jeho uzlu lze přiřadit jednu z barev 1 k tak, že žádné dva sousední uzly nemají stejnou barvu Definice 72 Nejmenší přirozené

Více

11 Analýza hlavních komponet

11 Analýza hlavních komponet 11 Analýza hlavních komponet Tato úloha provádí transformaci měřených dat na menší počet tzv. fiktivních dat tak, aby většina informace obsažená v původních datech zůstala zachována. Jedná se tedy o úlohu

Více

Vlastní číslo, vektor

Vlastní číslo, vektor [1] Vlastní číslo, vektor motivace: směr přímky, kterou lin. transformace nezmění invariantní podprostory charakteristický polynom báze, vzhledem ke které je matice transformace nejjednodušší podobnost

Více

Numerická matematika. Zadání 25. Řešení diferenciální rovnice Rungovou Kuttovou metodou

Numerická matematika. Zadání 25. Řešení diferenciální rovnice Rungovou Kuttovou metodou Numerická matematika Zadání 25. Řešení diferenciální rovnice Rungovou Kuttovou metodou Václav Bubník, xbubni01, sk. 60 FIT VUT v Brně, 2004 Obsah Numerická matematika...1 1. Teorie... 3 1.1 Diferenciální

Více

10. Složitost a výkon

10. Složitost a výkon Jiří Vokřínek, 2016 B6B36ZAL - Přednáška 10 1 Základy algoritmizace 10. Složitost a výkon doc. Ing. Jiří Vokřínek, Ph.D. Katedra počítačů Fakulta elektrotechnická České vysoké učení technické v Praze Jiří

Více

Počítačová simulace tepelných procesů s využitím výpočetních MKP systémů

Počítačová simulace tepelných procesů s využitím výpočetních MKP systémů Počítačová simulace tepelných procesů s využitím výpočetních MKP systémů Obsah cvičení Přednáška Výpočetní metody identifikace termomechanických procesů - stručný přehled Příklady použití výpočetních metod

Více

Úloha 1. Napište matici pro případ lineárního regresního spline vyjádřeného přes useknuté

Úloha 1. Napište matici pro případ lineárního regresního spline vyjádřeného přes useknuté Úloha 1. Napište matici pro případ lineárního regresního spline vyjádřeného přes useknuté polynomy pro případ dvou uzlových bodů ξ 1 = 1 a ξ 2 = 4. Experimentální body jsou x = [0.2 0.4 0.6 1.5 2.0 3.0

Více

SUPERPOČÍTAČE DANIEL LANGR ČVUT FIT / VZLÚ

SUPERPOČÍTAČE DANIEL LANGR ČVUT FIT / VZLÚ SUPERPOČÍTAČE DANIEL LANGR ČVUT FIT / VZLÚ TITAN / HOPPER / NOTEBOOK TITAN HOPPER NOTEBOOK Počet CPU jader 299 008 153 216 2 Operační paměť [GB] 598 016 217 000 8 Počet GPU (CUDA) jader 50 233 344 0 8

Více

Učební texty k státní bakalářské zkoušce Matematika Základy lineárního programování. študenti MFF 15. augusta 2008

Učební texty k státní bakalářské zkoušce Matematika Základy lineárního programování. študenti MFF 15. augusta 2008 Učební texty k státní bakalářské zkoušce Matematika Základy lineárního programování študenti MFF 15. augusta 2008 1 15 Základy lineárního programování Požadavky Simplexová metoda Věty o dualitě (bez důkazu)

Více

Přijímací zkouška - matematika

Přijímací zkouška - matematika Přijímací zkouška - matematika Jméno a příjmení pište do okénka Číslo přihlášky Číslo zadání 1 Grafy 1 Pro který z následujících problémů není znám žádný algoritmus s polynomiální časovou složitostí? Problém,

Více

Neuronové časové řady (ANN-TS)

Neuronové časové řady (ANN-TS) Neuronové časové řady (ANN-TS) Menu: QCExpert Prediktivní metody Neuronové časové řady Tento modul (Artificial Neural Network Time Series ANN-TS) využívá modelovacího potenciálu neuronové sítě k predikci

Více

Testování hypotéz o parametrech regresního modelu

Testování hypotéz o parametrech regresního modelu Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Lineární regresní model kde Y = Xβ + e, y 1 e 1 β y 2 Y =., e = e 2 x 11 x 1 1k., X =....... β 2,

Více

OPS Paralelní systémy, seznam pojmů, klasifikace

OPS Paralelní systémy, seznam pojmů, klasifikace Moorův zákon (polovina 60. let) : Výpočetní výkon a počet tranzistorů na jeden CPU chip integrovaného obvodu mikroprocesoru se každý jeden až dva roky zdvojnásobí; cena se zmenší na polovinu. Paralelismus

Více

Soustavy. Terminologie. Dva pohledy na soustavu lin. rovnic. Definice: Necht A = (a i,j ) R m,n je matice, b R m,1 je jednosloupcová.

Soustavy. Terminologie. Dva pohledy na soustavu lin. rovnic. Definice: Necht A = (a i,j ) R m,n je matice, b R m,1 je jednosloupcová. [1] Terminologie [2] Soustavy lineárních rovnic vlastnosti množin řešení metody hledání řešení nejednoznačnost zápisu řešení Definice: Necht A = (a i,j ) R m,n je matice, b R m,1 je jednosloupcová matice.

Více

České vysoké učení technické v Praze Fakulta biomedicínského inženýrství

České vysoké učení technické v Praze Fakulta biomedicínského inženýrství České vysoké učení technické v Praze Fakulta biomedicínského inženýrství Úloha KA03/č. 5: Měření kinematiky a dynamiky pohybu osoby v prostoru pomocí ultrazvukového radaru Ing. Patrik Kutílek, Ph.., Ing.

Více

24.11.2009 Václav Jirchář, ZTGB

24.11.2009 Václav Jirchář, ZTGB 24.11.2009 Václav Jirchář, ZTGB Síťová analýza 50.let V souvislosti s potřebou urychlit vývoj a výrobu raket POLARIS v USA při závodech ve zbrojení za studené války se SSSR V roce 1958 se díky aplikaci

Více

Cvičení z Lineární algebry 1

Cvičení z Lineární algebry 1 Cvičení z Lineární algebry Michael Krbek podzim 2003 2392003 Hodina Jsou dána komplexní čísla z = +2 i a w = 2 i Vyjádřete c algebraickém tvaru (z + w) 3,, (zw), z w 2 Řešte v komplexním oboru rovnice

Více

Cvičení z Numerických metod I - 12.týden

Cvičení z Numerických metod I - 12.týden Máme systém lineárních rovnic Cvičení z Numerických metod I - týden Přímé metody řešení systému lineárních rovnic Ax = b, A = a a n a n a nn Budeme hledat přesné řešení soustavy x = x x n, b = b b n, x

Více

Obecné výpočty na GPU v jazyce CUDA. Jiří Filipovič

Obecné výpočty na GPU v jazyce CUDA. Jiří Filipovič Obecné výpočty na GPU v jazyce CUDA Jiří Filipovič Obsah přednášky motivace architektura GPU CUDA programovací model jaké algoritmy urychlovat na GPU? optimalizace Motivace Moorův zákon stále platí pro

Více

2. úkol MI-PAA. Jan Jůna (junajan) 3.11.2013

2. úkol MI-PAA. Jan Jůna (junajan) 3.11.2013 2. úkol MI-PAA Jan Jůna (junajan) 3.11.2013 Specifikaci úlohy Problém batohu je jedním z nejjednodušších NP-těžkých problémů. V literatuře najdeme množství jeho variant, které mají obecně různé nároky

Více

16 - Pozorovatel a výstupní ZV

16 - Pozorovatel a výstupní ZV 16 - Pozorovatel a výstupní ZV Automatické řízení 2015 14-4-15 Hlavní problém stavové ZV Stavová zpětná vazba se zdá být nejúčinnějším nástrojem řízení, důvodem je síla pojmu stav, který v sobě obsahuje

Více

Pohled do nitra mikroprocesoru Josef Horálek

Pohled do nitra mikroprocesoru Josef Horálek Pohled do nitra mikroprocesoru Josef Horálek Z čeho vycházíme = Vycházíme z Von Neumannovy architektury = Celý počítač se tak skládá z pěti koncepčních bloků: = Operační paměť = Programový řadič = Aritmeticko-logická

Více

Povídání na téma. SUPERPOČÍTAČE DNES A ZÍTRA (aneb krátký náhled na SC) 3. 12. 2009 Filip Staněk

Povídání na téma. SUPERPOČÍTAČE DNES A ZÍTRA (aneb krátký náhled na SC) 3. 12. 2009 Filip Staněk Povídání na téma SUPERPOČÍTAČE DNES A ZÍTRA (aneb krátký náhled na SC) 3. 12. 2009 Filip Staněk Co je to vlastně SC? Výpočetní systém, který určuje hranici maximálního možného výpočetního výkonu......v

Více

Šifrová ochrana informací věk počítačů PS5-2

Šifrová ochrana informací věk počítačů PS5-2 Bezpečnost informací BI Ing. Jindřich Kodl, CSc. Šifrová ochrana informací věk počítačů PS5-2 1 Osnova šifrová ochrana využívající výpočetní techniku např. Feistelova šifra; symetrické a asymetrické šifry;

Více

[1] Motivace. p = {t u ; t R}, A(p) = {A(t u ); t R} = {t A( u ); t R}

[1] Motivace. p = {t u ; t R}, A(p) = {A(t u ); t R} = {t A( u ); t R} Vlastní číslo, vektor motivace: směr přímky, kterou lin. transformace nezmění invariantní podprostory charakteristický polynom báze, vzhledem ke které je matice transformace nejjednodušší podobnost s diagonální

Více

11. Tabu prohledávání

11. Tabu prohledávání Jan Schmidt 2011 Katedra číslicového návrhu Fakulta informačních technologií České vysoké učení technické v Praze Zimní semestr 2011/12 MI-PAA EVROPSKÝ SOCIÁLNÍ FOND PRAHA & EU: INVESTUJENE DO VAŠÍ BUDOUCNOSTI

Více

KIV/ZI Základy informatiky MS EXCEL MATICOVÉ FUNKCE A SOUHRNY

KIV/ZI Základy informatiky MS EXCEL MATICOVÉ FUNKCE A SOUHRNY KIV/ZI Základy informatiky MS EXCEL MATICOVÉ FUNKCE A SOUHRNY cvičící: Tomáš Ptáček zimní semestr 2012 MS EXCEL MATICE (ÚVOD) Vektor: (1D) v = [1, 2, 3, 5, 8, 13] Např.: matice sousednosti Matice: (2D)

Více