Static Load Balancing Applied to Time Dependent Mechanical Problems

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Static Load Balancing Applied to Time Dependent Mechanical Problems"

Transkript

1 Static Load Balancing Applied to Time Dependent Mechanical Problems O. Medek 1, J. Kruis 2, Z. Bittnar 2, P. Tvrdík 1 1 Katedra počítačů České vysoké učení technické, Praha 2 Katedra stavební mechaniky České vysoké učení technické, Praha Seminář numerické analýzy 2005

2 Obsah Popis problému a motivace 1 Popis problému a motivace Paralelizace řešení systému lineárních rovnic 2 Doménová dekompozice dělením grafu Quality Balancing heuristika 3 4

3 Obsah Popis problému a motivace 1 Popis problému a motivace Paralelizace řešení systému lineárních rovnic 2 Doménová dekompozice dělením grafu Quality Balancing heuristika 3 4

4 Závislost na čase.

5 Závislost na čase. Zanedbatelné inerciální síly.

6 Závislost na čase. Zanedbatelné inerciální síly. Př.: analýza reaktorové tlakové nádoby v jaderných elektrárnách.

7 Řešení časově závislý mechanických problémů Prostorová diskretizace: metoda konečných prvků (MKP).

8 Řešení časově závislý mechanických problémů Prostorová diskretizace: metoda konečných prvků (MKP). Časová diskretizace: metoda konečných diferencí + linearizace (Newtonov-Raphsonovou metodou) iterace.

9 Řešení časově závislý mechanických problémů Prostorová diskretizace: metoda konečných prvků (MKP). Časová diskretizace: metoda konečných diferencí + linearizace (Newtonov-Raphsonovou metodou) iterace. V každé iteraci se řeší systém lineárních rovnic (SLR) Ax = b.

10 Řešení časově závislý mechanických problémů Prostorová diskretizace: metoda konečných prvků (MKP). Časová diskretizace: metoda konečných diferencí + linearizace (Newtonov-Raphsonovou metodou) iterace. V každé iteraci se řeší systém lineárních rovnic (SLR) Ax = b. Tyto SLR mají shodnou strukturu.

11 Řešení časově závislý mechanických problémů Prostorová diskretizace: metoda konečných prvků (MKP). Časová diskretizace: metoda konečných diferencí + linearizace (Newtonov-Raphsonovou metodou) iterace. V každé iteraci se řeší systém lineárních rovnic (SLR) Ax = b. Tyto SLR mají shodnou strukturu. Dále předpokládáme úlohy se symetrickými, pozitivně definitními řídkými a velkými SLR.

12 Obsah Popis problému a motivace 1 Popis problému a motivace Paralelizace řešení systému lineárních rovnic 2 Doménová dekompozice dělením grafu Quality Balancing heuristika 3 4

13 Paralelizace řešení systému lineárních rovnic Metoda Schurových doplňků 1 Doménová dekompozice (DD).

14 Paralelizace řešení systému lineárních rovnic Metoda Schurových doplňků 1 Doménová dekompozice (DD). 2 Přečíslování proměnných.

15 Paralelizace řešení systému lineárních rovnic Metoda Schurových doplňků 1 Doménová dekompozice (DD). 2 Přečíslování proměnných. 3 Sestavení podmatic.

16 Paralelizace řešení systému lineárních rovnic Metoda Schurových doplňků 1 Doménová dekompozice (DD). 2 Přečíslování proměnných. 3 Sestavení podmatic. 4 Částečná faktorizace podmatic (výpočet Schurových doplňků).

17 Paralelizace řešení systému lineárních rovnic Metoda Schurových doplňků 1 Doménová dekompozice (DD). 2 Přečíslování proměnných. 3 Sestavení podmatic. 4 Částečná faktorizace podmatic (výpočet Schurových doplňků). 5 Řešení redukovaného systému.

18 Paralelizace řešení systému lineárních rovnic Metoda Schurových doplňků 1 Doménová dekompozice (DD). 2 Přečíslování proměnných. 3 Sestavení podmatic. 4 Částečná faktorizace podmatic (výpočet Schurových doplňků). 5 Řešení redukovaného systému. 6 Zpětná substituce na podmaticích.

19 Doménová dekompozice (DD) A B 1 C 1 Blokově šípový tvar. B 2 C 2 B 3 C 3 C T 1 C T 2 C T 3 R

20 Doménová dekompozice (DD) A B 1 B 2 C 1 C 2 Blokově šípový tvar. R je matice redukovaného problému. B 3 C 3 C T 1 C T 2 C T 3 R

21 Doménová dekompozice (DD) A B 1 B 2 C 1 C 2 Blokově šípový tvar. R je matice redukovaného problému. Řád vnitřních B k zhruba stejný. B 3 C 3 C T 1 C T 2 C T 3 R

22 Doménová dekompozice (DD) A B 1 B 2 C 1 C 2 Blokově šípový tvar. R je matice redukovaného problému. B 3 C T 1 C T 2 C T 3 C 3 R Řád vnitřních B k zhruba stejný. Šířka hraničních C k a R je minimalizována.

23 Doménová dekompozice (DD) B 1 C 1 A A k je podmatice vytvořená na procesoru k. B 2 C 2 A k B k C k B 3 C 3 C T k R C T 1 C T 2 C T 3 R

24 Zápis blokově šípový tvaru SLR B 1 x 1 + C 1 x R = b 1 B 2 x 2 + C 2 x R = b 3 B 3 x 3 + C 3 x R = b 3 C1 T x 1 + C1 T x 2 + C1 T x 3 + Rx R = b R

25 Zápis blokově šípový tvaru SLR B 1 x 1 + C 1 x R = b 1 B 2 x 2 + C 2 x R = b 3 B 3 x 3 + C 3 x R = b 3 C1 T x 1 + C1 T x 2 + C1 T x 3 + Rx R = b R x k vnitřní proměnné (x 1, x 2, x 3 ).

26 Zápis blokově šípový tvaru SLR B 1 x 1 + C 1 x R = b 1 B 2 x 2 + C 2 x R = b 3 B 3 x 3 + C 3 x R = b 3 C1 T x 1 + C1 T x 2 + C1 T x 3 + Rx R = b R x k vnitřní proměnné (x 1, x 2, x 3 ). x R hraniční proměnné.

27 Částečná faktorizace podmatic A k B k C k Eliminují se pouze vnitřní proměnné x k. C T k R

28 Částečná faktorizace podmatic A k B k C k Eliminují se pouze vnitřní proměnné x k. Podmatice A k jsou řídké. C T k R

29 Částečná faktorizace podmatic A k B k C T k C k R Eliminují se pouze vnitřní proměnné x k. Podmatice A k jsou řídké. Částečná faktorizace se provádí obálkovou (skyline) metodou.

30 Obálková metoda Popis problému a motivace A k Obálka = množina prvků okolo hlavní diagonály. Mimo obálku jsou jen 0. B k C k C T k R

31 Obálková metoda Popis problému a motivace A k B k C k Obálka = množina prvků okolo hlavní diagonály. Mimo obálku jsou jen 0. Částečná faktorizace se provádí pouze uvnitř obálky. C T k R

32 Obálková metoda Popis problému a motivace A k B k C k Obálka = množina prvků okolo hlavní diagonály. Mimo obálku jsou jen 0. Částečná faktorizace se provádí pouze uvnitř obálky. V paměti jsou pouze prvky uvnitř obálky. C T k R

33 Obálková metoda Popis problému a motivace A k B k C T k C k R Obálka = množina prvků okolo hlavní diagonály. Mimo obálku jsou jen 0. Částečná faktorizace se provádí pouze uvnitř obálky. V paměti jsou pouze prvky uvnitř obálky. Přečíslování proměnných minimalizace obálky.

34 Obálková metoda Popis problému a motivace A k B k C T k C k R Obálka = množina prvků okolo hlavní diagonály. Mimo obálku jsou jen 0. Částečná faktorizace se provádí pouze uvnitř obálky. V paměti jsou pouze prvky uvnitř obálky. Přečíslování proměnných minimalizace obálky. Přečíslování: hraniční Sloanův algoritmus.

35 Příklad obálky Popis problému a motivace : diagonální prvek. 0: nula mimo obálku. 0 : nuly a nenulové prvky uvnitř obálky. 1 6: vnitřní proměnné. 7 9: hraniční proměnné.

36 Obsah Popis problému a motivace 1 Popis problému a motivace Paralelizace řešení systému lineárních rovnic 2 Doménová dekompozice dělením grafu Quality Balancing heuristika 3 4

37 DD dělí na podmatice A k zhruba stejného řádu.

38 DD dělí na podmatice A k zhruba stejného řádu. Doba částečné faktorizace závisí na velikosti obálky. V praxi se doby částečných faktorizací podmatic mohou lišit (až 2,5 krát).

39 DD dělí na podmatice A k zhruba stejného řádu. Doba částečné faktorizace závisí na velikosti obálky. V praxi se doby částečných faktorizací podmatic mohou lišit (až 2,5 krát). Navíc přečíslování mění (menšuje) velikost obálky až po DD.

40 DD dělí na podmatice A k zhruba stejného řádu. Doba částečné faktorizace závisí na velikosti obálky. V praxi se doby částečných faktorizací podmatic mohou lišit (až 2,5 krát). Navíc přečíslování mění (menšuje) velikost obálky až po DD. JAK UDĚLAT VÝPOČETNĚ VYVÁŽENOU DEKOMPOZICI?

41 Obsah Popis problému a motivace 1 Popis problému a motivace Paralelizace řešení systému lineárních rovnic 2 Doménová dekompozice dělením grafu Quality Balancing heuristika 3 4

42 Spojení DD a přečíslování 1. Doménová dekompozice 2. Přečíslování

43 Spojení DD a přečíslování 1. Doménová dekompozice 2. Přečíslování }

44 Spojení DD a přečíslování 1. Doménová dekompozice 2. Přečíslování } Quality Balancing heuristika Domenova dekompozice Precislovani Odhad slozitosti cast.faktorizace Odhadnuta slozitost

45 Quality Balancing heuristika Quality = míra, která se vyvažuje: pamět ové nároky, výpočetní složitost.

46 Quality Balancing heuristika Quality = míra, která se vyvažuje: pamět ové nároky, výpočetní složitost. Prezentováno na EUROPAR 04 a PDCN 05 na jednoduchých úlohách mechaniky.

47 Quality Balancing heuristika Quality = míra, která se vyvažuje: pamět ové nároky, výpočetní složitost. Prezentováno na EUROPAR 04 a PDCN 05 na jednoduchých úlohách mechaniky. Vyvážený výpočet trvá kratší dobu.

48 Quality Balancing heuristika Quality = míra, která se vyvažuje: pamět ové nároky, výpočetní složitost. Prezentováno na EUROPAR 04 a PDCN 05 na jednoduchých úlohách mechaniky. Vyvážený výpočet trvá kratší dobu. Ale QB je značně pomalejší nežli klasická DD.

49 Quality Balancing heuristika Quality = míra, která se vyvažuje: pamět ové nároky, výpočetní složitost. Prezentováno na EUROPAR 04 a PDCN 05 na jednoduchých úlohách mechaniky. Vyvážený výpočet trvá kratší dobu. Ale QB je značně pomalejší nežli klasická DD. Tento příspěvek je zaměřen na vyvažování výpočetní složitosti řešení časově závislých mechanických problémů, kde se projeví výhody QB.

50 Obsah Popis problému a motivace DD dělením grafu Quality Balancing heuristika 1 Popis problému a motivace Paralelizace řešení systému lineárních rovnic 2 Doménová dekompozice dělením grafu Quality Balancing heuristika 3 4

51 Sít konečných prvků (KP) DD dělením grafu Quality Balancing heuristika a b c d e f 12 g h i Elementy (konečné prvky) a... i. Uzly Každý uzel obsahuje stupně volnosti (SV, proměnné).

52 Duální graf Popis problému a motivace DD dělením grafu Quality Balancing heuristika Sít KP reprezentovaná duálním grafem G D a b a b c d e d e f f c 13 g 14 h 15 i 16 g h i

53 Uzlový graf Popis problému a motivace DD dělením grafu Quality Balancing heuristika 1 Sít KP reprezentovaná uzlovým grafem G N a b c d e g h f i

54 DD dělením grafu Popis problému a motivace DD dělením grafu Quality Balancing heuristika DD se provádí pomocí dělení G D hranovým řezem (víceúrovňový dělič METIS).

55 DD dělením grafu Popis problému a motivace DD dělením grafu Quality Balancing heuristika DD se provádí pomocí dělení G D hranovým řezem (víceúrovňový dělič METIS). Rozdělení sítě KP na podsítě KP.

56 DD dělením grafu Popis problému a motivace DD dělením grafu Quality Balancing heuristika DD se provádí pomocí dělení G D hranovým řezem (víceúrovňový dělič METIS). Rozdělení sítě KP na podsítě KP. Rozdělení G N vrcholovým řezem.

57 DD dělením grafu Popis problému a motivace DD dělením grafu Quality Balancing heuristika DD se provádí pomocí dělení G D hranovým řezem (víceúrovňový dělič METIS). Rozdělení sítě KP na podsítě KP. Rozdělení G N vrcholovým řezem. Dekompozice A na podmatice A k.

58 DD dělením grafu Popis problému a motivace DD dělením grafu Quality Balancing heuristika DD se provádí pomocí dělení G D hranovým řezem (víceúrovňový dělič METIS). Rozdělení sítě KP na podsítě KP. Rozdělení G N vrcholovým řezem. Dekompozice A na podmatice A k. Uzly (proměnné) patřící k více než jedné podsíti (podmatici) jsou hraniční; ostatní jsou vnitřní.

59 DD dělením grafu (obrázek) a d g b e h Rozdeleny c i f G D Podsite KP vnitrni uzly hranicni uzly DD dělením grafu Quality Balancing heuristika a 6 d g b e c f 12 h 14 7 i Rozdeleny G N vnitrni vrcholy hranicni vrcholy

60 Víceúrovňové dělení grafu DD dělením grafu Quality Balancing heuristika D G 0 D G 0 Zhrubovani D G 1 D G 2 D G 3 D G 3 D G 4 D G 1 D G 2 Pocatecni rozdeleni Zjemnovani a vylepsovaci heuristika

61 Vylepšovací heuristika DD dělením grafu Quality Balancing heuristika Přesouvá supervrcholy (množiny vrcholů) mezi podgrafy.

62 Vylepšovací heuristika DD dělením grafu Quality Balancing heuristika Přesouvá supervrcholy (množiny vrcholů) mezi podgrafy. Vyvažuje počet vrcholů v podgrafech a zmenšuje hranový řez.

63 Vylepšovací heuristika DD dělením grafu Quality Balancing heuristika Přesouvá supervrcholy (množiny vrcholů) mezi podgrafy. Vyvažuje počet vrcholů v podgrafech a zmenšuje hranový řez. Nejvíce ze všech fází ovlivňuje výsledné dělení.

64 Obsah Popis problému a motivace DD dělením grafu Quality Balancing heuristika 1 Popis problému a motivace Paralelizace řešení systému lineárních rovnic 2 Doménová dekompozice dělením grafu Quality Balancing heuristika 3 4

65 QB heuristika Popis problému a motivace DD dělením grafu Quality Balancing heuristika Rozšiřuje a modifikuje vylepšovací heuristiku.

66 QB heuristika Popis problému a motivace DD dělením grafu Quality Balancing heuristika Rozšiřuje a modifikuje vylepšovací heuristiku. Pro každý podgraf spočte odhad výpočetní zátěže (#FLOPs) částečné faktorizace příslušné podmatice.

67 QB heuristika Popis problému a motivace DD dělením grafu Quality Balancing heuristika Rozšiřuje a modifikuje vylepšovací heuristiku. Pro každý podgraf spočte odhad výpočetní zátěže (#FLOPs) částečné faktorizace příslušné podmatice. Vyvažuje odhady výpočetních zátěží a zmenšuje hranový řez.

68 QB heuristika (obrázek) DD dělením grafu Quality Balancing heuristika Tok dat Zavislost Dualni graf Zlepsovaci heuristika Podgraf zhrubleho Projekce na G D G D Sit KP Projekce na Podgraf N G G D Ohodnoceny uzlovy graf Precislovani Odhad slozitosti Odhadnuta slozitost

69 Obsah Popis problému a motivace 1 Popis problému a motivace Paralelizace řešení systému lineárních rovnic 2 Doménová dekompozice dělením grafu Quality Balancing heuristika 3 4

70 Testování Popis problému a motivace Testováno na výpočtech stárnutí reaktorové nádoby.

71 Testování Popis problému a motivace Testováno na výpočtech stárnutí reaktorové nádoby. Pouze pro 130 časových kroků. (V praxi je jich potřeba 13000).

72 Testování Popis problému a motivace Testováno na výpočtech stárnutí reaktorové nádoby. Pouze pro 130 časových kroků. (V praxi je jich potřeba 13000). Dekompozice na 4, 6, 8 a 10 domén, nejprve METISem, pak QB.

73 Testování Popis problému a motivace Testováno na výpočtech stárnutí reaktorové nádoby. Pouze pro 130 časových kroků. (V praxi je jich potřeba 13000). Dekompozice na 4, 6, 8 a 10 domén, nejprve METISem, pak QB. Testováno na Linuxovém clusteru. Každý stroj: Pentium 4, 3,2 GHz, 3GB paměti.

74 Testování Popis problému a motivace Testováno na výpočtech stárnutí reaktorové nádoby. Pouze pro 130 časových kroků. (V praxi je jich potřeba 13000). Dekompozice na 4, 6, 8 a 10 domén, nejprve METISem, pak QB. Testováno na Linuxovém clusteru. Každý stroj: Pentium 4, 3,2 GHz, 3GB paměti. Řešič SIFEL zkompilován gcc s optimalizací -O3.

75 Popis testovacích problémů Diskretizace reaktorové nádoby pomocí čtyřstěnů. 2 Sítě KP různé jemnosti: creep15 a creep10. creep15 creep10 #elementů #uzlů #SV 3 3

76 Vyvážení výpočtu [%] Vyvazeni vypoctu vyvazeni METIS QB creep creep

77 Výsledné zrychlení T M (T QB ) doba 130 časových kroků [sec] po dělení METISem (QB). úspora času výpočtu po dělení QB [%]. t QB doba běhu QB [sec]. creep15 creep10 #domén T M T QB t QB T M T QB t QB

78 Obsah Popis problému a motivace 1 Popis problému a motivace Paralelizace řešení systému lineárních rovnic 2 Doménová dekompozice dělením grafu Quality Balancing heuristika 3 4

79 Popis problému a motivace QB heuristika: a) vyvažuje paralelní výpočet,

80 Popis problému a motivace QB heuristika: a) vyvažuje paralelní výpočet, b) zkracuje dobu řešení,

81 Popis problému a motivace QB heuristika: a) vyvažuje paralelní výpočet, b) zkracuje dobu řešení, c) prodlužuje dobu dekompozice,

82 Popis problému a motivace QB heuristika: a) vyvažuje paralelní výpočet, b) zkracuje dobu řešení, c) prodlužuje dobu dekompozice, je vhodná pro dekompozici časově závislých mechanických problémů.

83 Popis problému a motivace QB heuristika: a) vyvažuje paralelní výpočet, b) zkracuje dobu řešení, c) prodlužuje dobu dekompozice, je vhodná pro dekompozici časově závislých mechanických problémů. Další výzkum testování na dalších úlohách.

84 Popis problému a motivace QB heuristika: a) vyvažuje paralelní výpočet, b) zkracuje dobu řešení, c) prodlužuje dobu dekompozice, je vhodná pro dekompozici časově závislých mechanických problémů. Další výzkum testování na dalších úlohách. testování na větším počtu procesorů.

Katedra geotechniky a podzemního stavitelství

Katedra geotechniky a podzemního stavitelství Katedra geotechniky a podzemního stavitelství Modelování v geotechnice Metoda okrajových prvků (prezentace pro výuku předmětu Modelování v geotechnice) doc. RNDr. Eva Hrubešová, Ph.D. Inovace studijního

Více

Multirobotická kooperativní inspekce

Multirobotická kooperativní inspekce Multirobotická kooperativní inspekce prostředí Diplomová práce Multirobotická kooperativní inspekce prostředí Diplomová práce Intelligent and Mobile Robotics Group Laboratory for Intelligent Decision Making

Více

NUMERICKÝ MODEL NESTACIONÁRNÍHO PŘENOSU TEPLA V PALIVOVÉ TYČI JADERNÉHO REAKTORU VVER 1000 SVOČ FST 2014

NUMERICKÝ MODEL NESTACIONÁRNÍHO PŘENOSU TEPLA V PALIVOVÉ TYČI JADERNÉHO REAKTORU VVER 1000 SVOČ FST 2014 NUMERICKÝ MODEL NESTACIONÁRNÍHO PŘENOSU TEPLA V PALIVOVÉ TYČI JADERNÉHO REAKTORU VVER 1000 SVOČ FST 2014 Miroslav Kabát, Západočeská univerzita v Plzni, Univerzitní 8, 306 14 Plzeň Česká republika ABSTRAKT

Více

Katedra geotechniky a podzemního stavitelství

Katedra geotechniky a podzemního stavitelství Katedra geotechniky a podzemního stavitelství Modelování v geotechnice Metoda oddělených elementů (prezentace pro výuku předmětu Modelování v geotechnice) doc. RNDr. Eva Hrubešová, Ph.D. Inovace studijního

Více

Numerické metody a programování

Numerické metody a programování Projekt: Inovace výuky optiky se zaměřením na získání experimentálních dovedností Registrační číslo: CZ.1.7/2.2./28.157 Numerické metody a programování Lekce 4 Tento projekt je spolufinancován Evropským

Více

INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ

INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ CZ.1.07/1.1.00/08.0010 NUMERICKÉ SIMULACE ING. KATEŘINA

Více

3. úloha - problém batohu metodami branch & bound, dynamické programování, heuristika s testem

3. úloha - problém batohu metodami branch & bound, dynamické programování, heuristika s testem ČVUT FEL X36PAA - Problémy a algoritmy 3. úloha - problém batohu metodami branch & bound, dynamické programování, heuristika s testem Jméno: Marek Handl Datum: 1. 1. 2009 Cvičení: Pondělí 9:00 Zadání Naprogramujte

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ OBOR GEODÉZIE A KARTOGRAFIE KATEDRA VYŠŠÍ GEODÉZIE název předmětu úloha/zadání název úlohy Vyšší geodézie 1 3/3 GPS - výpočet polohy stanice pomocí

Více

2.6. VLASTNÍ ČÍSLA A VEKTORY MATIC

2.6. VLASTNÍ ČÍSLA A VEKTORY MATIC .6. VLASTNÍ ČÍSLA A VEKTORY MATIC V této kapitole se dozvíte: jak jsou definována vlastní (charakteristická) čísla a vektory čtvercové matice; co je to charakteristická matice a charakteristický polynom

Více

LOKALIZACE ZDROJŮ AE NEURONOVÝMI SÍTĚMI NEZÁVISLE NA ZMĚNÁCH MATERIÁLU A MĚŘÍTKA

LOKALIZACE ZDROJŮ AE NEURONOVÝMI SÍTĚMI NEZÁVISLE NA ZMĚNÁCH MATERIÁLU A MĚŘÍTKA LOKALIZACE ZDROJŮ AE EUROOVÝMI SÍTĚMI EZÁVISLE A ZMĚÁCH MATERIÁLU A MĚŘÍTKA AE SOURCE LOCATIO BY EURAL ETWORKS IDEPEDET O MATERIAL AD SCALE CHAGES Milan CHLADA, Zdeněk PŘEVOROVSKÝ Ústav termomechaniky

Více

1. Převeďte dané číslo do dvojkové, osmičkové a šestnáctkové soustavy: a) 759 10 b) 2578 10

1. Převeďte dané číslo do dvojkové, osmičkové a šestnáctkové soustavy: a) 759 10 b) 2578 10 Úlohy- 2.cvičení 1. Převeďte dané číslo do dvojkové, osmičkové a šestnáctkové soustavy: a) 759 10 b) 2578 10 2. Převeďte dané desetinné číslo do dvojkové soustavy (DEC -> BIN): a) 0,8125 10 b) 0,35 10

Více

SUPERPOČÍTAČE DANIEL LANGR ČVUT FIT / VZLÚ

SUPERPOČÍTAČE DANIEL LANGR ČVUT FIT / VZLÚ SUPERPOČÍTAČE DANIEL LANGR ČVUT FIT / VZLÚ TITAN / HOPPER / NOTEBOOK TITAN HOPPER NOTEBOOK Počet CPU jader 299 008 153 216 2 Operační paměť [GB] 598 016 217 000 8 Počet GPU (CUDA) jader 50 233 344 0 8

Více

Martin Lísal. Úvod do MPI

Martin Lísal. Úvod do MPI Martin Lísal září 2003 PARALELNÍ POČÍTÁNÍ Úvod do MPI 1 1 Co je to paralelní počítání? Paralelní počítání je počítání na paralelních počítačích či jinak řečeno využití více než jednoho procesoru při výpočtu

Více

Mezi jednotlivými rozhraními resp. na nosníkových prvcích lze definovat kontakty

Mezi jednotlivými rozhraními resp. na nosníkových prvcích lze definovat kontakty Kontaktní prvky Mezi jednotlivými rozhraními resp. na nosníkových prvcích lze definovat kontakty Základní myšlenka Modelování posunu po smykové ploše, diskontinuitě či na rozhraní konstrukce a okolního

Více

T E O R I E C H Y B A V Y R O V N Á V A C Í P O

T E O R I E C H Y B A V Y R O V N Á V A C Í P O ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ, OBOR GEODÉZIE A KARTOGRAFIE KATEDRA VYŠŠÍ GEODÉZIE název předmětu T E O R I E C H Y B A V Y R O V N Á V A C Í P O Č E T 2 č. úlohy 6 název úlohy T

Více

Vlastní číslo, vektor

Vlastní číslo, vektor [1] Vlastní číslo, vektor motivace: směr přímky, kterou lin. transformace nezmění invariantní podprostory charakteristický polynom báze, vzhledem ke které je matice transformace nejjednodušší podobnost

Více

24.11.2009 Václav Jirchář, ZTGB

24.11.2009 Václav Jirchář, ZTGB 24.11.2009 Václav Jirchář, ZTGB Síťová analýza 50.let V souvislosti s potřebou urychlit vývoj a výrobu raket POLARIS v USA při závodech ve zbrojení za studené války se SSSR V roce 1958 se díky aplikaci

Více

Úloha 1. Napište matici pro případ lineárního regresního spline vyjádřeného přes useknuté

Úloha 1. Napište matici pro případ lineárního regresního spline vyjádřeného přes useknuté Úloha 1. Napište matici pro případ lineárního regresního spline vyjádřeného přes useknuté polynomy pro případ dvou uzlových bodů ξ 1 = 1 a ξ 2 = 4. Experimentální body jsou x = [0.2 0.4 0.6 1.5 2.0 3.0

Více

Neuronové časové řady (ANN-TS)

Neuronové časové řady (ANN-TS) Neuronové časové řady (ANN-TS) Menu: QCExpert Prediktivní metody Neuronové časové řady Tento modul (Artificial Neural Network Time Series ANN-TS) využívá modelovacího potenciálu neuronové sítě k predikci

Více

Přijímací zkouška - matematika

Přijímací zkouška - matematika Přijímací zkouška - matematika Jméno a příjmení pište do okénka Číslo přihlášky Číslo zadání 1 Grafy 1 Pro který z následujících problémů není znám žádný algoritmus s polynomiální časovou složitostí? Problém,

Více

Nejistota měření. Thomas Hesse HBM Darmstadt

Nejistota měření. Thomas Hesse HBM Darmstadt Nejistota měření Thomas Hesse HBM Darmstadt Prof. Werner Richter: Výsledek měření bez určení nejistoty měření je nejistý, takový výsledek je lépe ignorovat" V podstatě je výsledek měření aproximací nebo

Více

2. úkol MI-PAA. Jan Jůna (junajan) 3.11.2013

2. úkol MI-PAA. Jan Jůna (junajan) 3.11.2013 2. úkol MI-PAA Jan Jůna (junajan) 3.11.2013 Specifikaci úlohy Problém batohu je jedním z nejjednodušších NP-těžkých problémů. V literatuře najdeme množství jeho variant, které mají obecně různé nároky

Více

KIV/ZI Základy informatiky MS EXCEL MATICOVÉ FUNKCE A SOUHRNY

KIV/ZI Základy informatiky MS EXCEL MATICOVÉ FUNKCE A SOUHRNY KIV/ZI Základy informatiky MS EXCEL MATICOVÉ FUNKCE A SOUHRNY cvičící: Tomáš Ptáček zimní semestr 2012 MS EXCEL MATICE (ÚVOD) Vektor: (1D) v = [1, 2, 3, 5, 8, 13] Např.: matice sousednosti Matice: (2D)

Více

Numerické metody lineární algebry

Numerické metody lineární algebry Numerické metody lineární algebry 1 Úvod 11 Úlohy lineární algebry 1 Řešení soustav lineárních rovnic A x = b Řešení soustavy s regulární čtvercovou maticí A řádu n n pro jednu nebo více pravých stran

Více

Paralelní LU rozklad

Paralelní LU rozklad Paralelní LU rozklad Lukáš Michalec Katedra fyziky, Přírodovědecká fakulta Univerzity J.E. Purkyně v ročník, specializace Ústí n.l. Abstract Seminární práce se zabývá řešení soustavy lineárních rovnic

Více

Povídání na téma. SUPERPOČÍTAČE DNES A ZÍTRA (aneb krátký náhled na SC) 3. 12. 2009 Filip Staněk

Povídání na téma. SUPERPOČÍTAČE DNES A ZÍTRA (aneb krátký náhled na SC) 3. 12. 2009 Filip Staněk Povídání na téma SUPERPOČÍTAČE DNES A ZÍTRA (aneb krátký náhled na SC) 3. 12. 2009 Filip Staněk Co je to vlastně SC? Výpočetní systém, který určuje hranici maximálního možného výpočetního výkonu......v

Více

[1] Motivace. p = {t u ; t R}, A(p) = {A(t u ); t R} = {t A( u ); t R}

[1] Motivace. p = {t u ; t R}, A(p) = {A(t u ); t R} = {t A( u ); t R} Vlastní číslo, vektor motivace: směr přímky, kterou lin. transformace nezmění invariantní podprostory charakteristický polynom báze, vzhledem ke které je matice transformace nejjednodušší podobnost s diagonální

Více

Šifrová ochrana informací věk počítačů PS5-2

Šifrová ochrana informací věk počítačů PS5-2 Bezpečnost informací BI Ing. Jindřich Kodl, CSc. Šifrová ochrana informací věk počítačů PS5-2 1 Osnova šifrová ochrana využívající výpočetní techniku např. Feistelova šifra; symetrické a asymetrické šifry;

Více

16 - Pozorovatel a výstupní ZV

16 - Pozorovatel a výstupní ZV 16 - Pozorovatel a výstupní ZV Automatické řízení 2015 14-4-15 Hlavní problém stavové ZV Stavová zpětná vazba se zdá být nejúčinnějším nástrojem řízení, důvodem je síla pojmu stav, který v sobě obsahuje

Více

a vlastních vektorů Příklad: Stanovte taková čísla λ, pro která má homogenní soustava Av = λv nenulové (A λ i I) v = 0.

a vlastních vektorů Příklad: Stanovte taková čísla λ, pro která má homogenní soustava Av = λv nenulové (A λ i I) v = 0. Výpočet vlastních čísel a vlastních vektorů S pojmem vlastního čísla jsme se již setkali například u iteračních metod pro řešení soustavy lineárních algebraických rovnic. Velikosti vlastních čísel iterační

Více

ň ť Č Á ť ň ň Ú Ú Á Ň ď Ú Ů Ý É Ů Ď Č ň ď ň ň ň ň Č ň ň Ď Č ň Š ň Š Š Č ň Ú Š Š Š Ě Ú ť ď ď Á Ď ť É Č ť Ó ň ť Ď Ď Ď Ý Ď Ž Ď Ď Ý Ď Ú ň ň Ď Ď Ý Ď Ď Ď ň ť Ť Ů Ú ň ď ň Ř Ů ň Á Š ť Č ň Š Š ň ň ň ť ť ť ť ť ť

Více

11 Analýza hlavních komponet

11 Analýza hlavních komponet 11 Analýza hlavních komponet Tato úloha provádí transformaci měřených dat na menší počet tzv. fiktivních dat tak, aby většina informace obsažená v původních datech zůstala zachována. Jedná se tedy o úlohu

Více

2. RBF neuronové sítě

2. RBF neuronové sítě 2. RBF neuronové sítě Kapitola pojednává o neuronových sítích typu RBF. V kapitole je popsána základní struktura tohoto typu neuronové sítě. Poté následuje definice a charakteristika jednotlivých radiálně

Více

Přiřazovací problém. Přednáška č. 7

Přiřazovací problém. Přednáška č. 7 Přiřazovací problém Přednáška č. 7 Přiřazovací problém je jednou podtřídou logistických úloh. Typickým problémem může být nejkratší převoz materiálu od dodavatelů ke spotřebitelům. spotřebitelé a i dodavatelé

Více

MI-PAA. úkol č.3. Řešení problému batohu dynamickým programováním, metodou větví a hranic a aproximativním algoritmem

MI-PAA. úkol č.3. Řešení problému batohu dynamickým programováním, metodou větví a hranic a aproximativním algoritmem Jakub Holý holyjak1@fit.cvut.cz MI-PAA úkol č.3 Řešení problému batohu dynamickým programováním, metodou větví a hranic a aproximativním algoritmem Zadání Naprogramujte řešení problému batohu: 1. metodou

Více

Dagmar Adamová, Jiří Chudoba 7.1.2007. Jednalo se o Monte Carlo simulace případů srážek p+p a Pb+Pb. Fungování

Dagmar Adamová, Jiří Chudoba 7.1.2007. Jednalo se o Monte Carlo simulace případů srážek p+p a Pb+Pb. Fungování Produkční úlohy ALICE na farmě Goliáš Dagmar Adamová, Jiří Chudoba 7.1.2007 1 Produkce ALICE V rámci Physics Data Challenge 2006 (PDC 06), masívního testu výpočetního modelu projektu ALICE v distribuovaném

Více

OPS Paralelní systémy, seznam pojmů, klasifikace

OPS Paralelní systémy, seznam pojmů, klasifikace Moorův zákon (polovina 60. let) : Výpočetní výkon a počet tranzistorů na jeden CPU chip integrovaného obvodu mikroprocesoru se každý jeden až dva roky zdvojnásobí; cena se zmenší na polovinu. Paralelismus

Více

Základní pojmy teorie grafů [Graph theory]

Základní pojmy teorie grafů [Graph theory] Část I Základní pojmy teorie grafů [Graph theory] V matematice grafem obvykle rozumíme grafické znázornění funkční závislosti. Pro tento předmět je však podstatnější pohled jiný. V teorii grafů rozumíme

Více

Otázky ke státní závěrečné zkoušce

Otázky ke státní závěrečné zkoušce Otázky ke státní závěrečné zkoušce obor Ekonometrie a operační výzkum a) Diskrétní modely, Simulace, Nelineární programování. b) Teorie rozhodování, Teorie her. c) Ekonometrie. Otázka č. 1 a) Úlohy konvexního

Více

Šifrová ochrana informací věk počítačů PS5-2

Šifrová ochrana informací věk počítačů PS5-2 VŠFS; Aplikovaná informatika; SW systémy 2005/2006 1 Bezpečnost informací BI Ing. Jindřich Kodl, CSc. Šifrová ochrana informací věk počítačů PS5-2 VŠFS; Aplikovaná informatika; SW systémy 2005/2006 2 Osnova

Více

Numerické řešení variačních úloh v Excelu

Numerické řešení variačních úloh v Excelu Numerické řešení variačních úloh v Excelu Miroslav Hanzelka, Lenka Stará, Dominik Tělupil Gymnázium Česká Lípa, Gymnázium Jírovcova 8, Gymnázium Brno MirdaHanzelka@seznam.cz, lenka.stara1@seznam.cz, dtelupil@gmail.com

Více

Struktura e-learningových výukových programù a možnosti jejího využití

Struktura e-learningových výukových programù a možnosti jejího využití Struktura e-learningových výukových programù a možnosti jejího využití Jana Šarmanová Klíčová slova: e-learning, programovaná výuka, režimy učení Abstrakt: Autorská tvorba výukových studijních opor je

Více

Propojení matematiky, fyziky a počítačů

Propojení matematiky, fyziky a počítačů Propojení matematiky, fyziky a počítačů Název projektu: Věda pro život, život pro vědu Registrační číslo: CZ..7/.3./45.9 V Ústí n. L., únor 5 Ing. Radek Honzátko, Ph.D. Propojení matematiky, fyziky a počítačů

Více

VYUŽITÍ MATLABU PRO VÝUKU NUMERICKÉ MATEMATIKY Josef Daněk Centrum aplikované matematiky, Západočeská univerzita v Plzni. Abstrakt

VYUŽITÍ MATLABU PRO VÝUKU NUMERICKÉ MATEMATIKY Josef Daněk Centrum aplikované matematiky, Západočeská univerzita v Plzni. Abstrakt VYUŽITÍ MATLABU PRO VÝUKU NUMERICKÉ MATEMATIKY Josef Daněk Centrum aplikované matematiky, Západočeská univerzita v Plzni Abstrakt Současný trend snižování počtu kontaktních hodin ve výuce nutí vyučující

Více

Pohled do nitra mikroprocesoru Josef Horálek

Pohled do nitra mikroprocesoru Josef Horálek Pohled do nitra mikroprocesoru Josef Horálek Z čeho vycházíme = Vycházíme z Von Neumannovy architektury = Celý počítač se tak skládá z pěti koncepčních bloků: = Operační paměť = Programový řadič = Aritmeticko-logická

Více

CFD výpočtový model bazénu pro skladování použitého paliva na JE Temelín a jeho validace

CFD výpočtový model bazénu pro skladování použitého paliva na JE Temelín a jeho validace CFD výpočtový model bazénu pro skladování použitého paliva na JE Temelín a jeho validace Ondřej Burian Pavel Zácha Václav Železný ČVUT v Praze, Fakulta strojní, Ústav energetiky NUSIM 2013 Co je to CFD?

Více

NP-úplnost problému SAT

NP-úplnost problému SAT Problém SAT je definován následovně: SAT(splnitelnost booleovských formulí) Vstup: Booleovská formule ϕ. Otázka: Je ϕ splnitelná? Příklad: Formule ϕ 1 =x 1 ( x 2 x 3 )jesplnitelná: např.přiohodnocení ν,kde[x

Více

Státní závěrečná zkouška z oboru Matematika a její použití v přírodních vědách

Státní závěrečná zkouška z oboru Matematika a její použití v přírodních vědách Státní závěrečná zkouška z oboru Matematika a její použití v přírodních vědách Ústní zkouška z oboru Náročnost zkoušky je podtržena její ústní formou a komisionálním charakterem. Předmětem bakalářské zkoušky

Více

Základní datové struktury

Základní datové struktury Základní datové struktury Martin Trnečka Katedra informatiky, Přírodovědecká fakulta Univerzita Palackého v Olomouci 4. listopadu 2013 Martin Trnečka (UPOL) Algoritmická matematika 1 4. listopadu 2013

Více

Stromy, haldy, prioritní fronty

Stromy, haldy, prioritní fronty Stromy, haldy, prioritní fronty prof. Ing. Pavel Tvrdík CSc. Katedra počítačů FEL České vysoké učení technické DSA, ZS 2008/9, Přednáška 6 http://service.felk.cvut.cz/courses/x36dsa/ prof. Pavel Tvrdík

Více

Náhradní ohybová tuhost nosníku

Náhradní ohybová tuhost nosníku Náhradní ohybová tuhost nosníku Autoři: Doc. Ing. Jiří PODEŠVA, Ph.D., Katedra mechaniky, Fakulta strojní, VŠB - Technická univerzita Ostrava, e-mail: jiri.podesva@vsb.cz Anotace: Výpočty ocelových výztuží

Více

Netradiční výklad tradičních témat

Netradiční výklad tradičních témat Netradiční výklad tradičních témat J. Musilová, P. Musilová: Matematika pro porozumění i praxi I. VUTIUM, Brno 2006 (291 s.), 2009 (349 s.). J. Musilová, P. Musilová: Matematika pro porozumění i praxi

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ OBOR GEODÉZIE A KARTOGRAFIE KATEDRA VYŠŠÍ GEODÉZIE název předmětu úloha/zadání název úlohy Geodetická astronomie 3/6 Aplikace keplerovského pohybu

Více

Simulace (nejen) fyzikálních jevů na počítači

Simulace (nejen) fyzikálních jevů na počítači Simulace (nejen) fyzikálních jevů na počítači V. Kučera Katedra numerické matematiky, MFFUK Praha 7.2.2013 Aerodynamický flutter Tacoma bridge, 1940 Fyzikální model Realita je komplikovaná Navier-Stokesovy

Více

PB002 Základy informačních technologií

PB002 Základy informačních technologií Operační systémy 25. září 2012 Struktura přednašky 1 Číselné soustavy 2 Reprezentace čísel 3 Operační systémy historie 4 OS - základní složky 5 Procesy Číselné soustavy 1 Dle základu: dvojková, osmičková,

Více

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A1. Cvičení, zimní semestr. Samostatné výstupy. Jan Šafařík

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A1. Cvičení, zimní semestr. Samostatné výstupy. Jan Šafařík Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika 0A1 Cvičení, zimní semestr Samostatné výstupy Jan Šafařík Brno c 2003 Obsah 1. Výstup č.1 2 2. Výstup

Více

APLIKACE METOD BARVENÍ GRAFŮ PRO URČENÍ MINIMÁLNÍHO POČTU FÁZÍ SVĚTELNĚ ŘÍZENÝCH KŘIŽOVATEK

APLIKACE METOD BARVENÍ GRAFŮ PRO URČENÍ MINIMÁLNÍHO POČTU FÁZÍ SVĚTELNĚ ŘÍZENÝCH KŘIŽOVATEK APLIKACE METOD BARVENÍ GRAFŮ PRO URČENÍ MINIMÁLNÍHO POČTU FÁZÍ SVĚTELNĚ ŘÍZENÝCH KŘIŽOVATEK APPLICATIONS OF GRAPH COLORING METODS FOR DETERMINING THE MINIMUM NUMBER OF STAGES LIGHT CONTROLLED INTERSECTIONS

Více

Vliv realizace, vliv přesnosti centrace a určení výšky přístroje a cíle na přesnost určovaných veličin

Vliv realizace, vliv přesnosti centrace a určení výšky přístroje a cíle na přesnost určovaných veličin Vliv realizace, vliv přesnosti centrace a určení výšky přístroje a cíle na přesnost určovaných veličin doc. Ing. Martin Štroner, Ph.D. Fakulta stavební ČVUT v Praze 1 Úvod Při přesných inženýrsko geodetických

Více

Úvod do mobilní robotiky AIL028

Úvod do mobilní robotiky AIL028 zbynek.winkler at mff.cuni.cz, md at robotika.cz http://robotika.cz/guide/umor05/cs 5. prosince 2005 1 Mapa světa Exaktní plánování 2 3 Plánování s otáčením (náznak řešení) Mapa světa - příklad Obsah Mapa

Více

Složitost a moderní kryptografie

Složitost a moderní kryptografie Složitost a moderní kryptografie Radek Pelánek Modulární systém dalšího vzdělávání pedagogických pracovníků JmK v přírodních vědách a informatice CZ.1.07/1.3.10/02.0024 Složitost a moderní kryptografie

Více

Matematika. Kamila Hasilová. Matematika 1/34

Matematika. Kamila Hasilová. Matematika 1/34 Matematika Kamila Hasilová Matematika 1/34 Obsah 1 Úvod 2 GEM 3 Lineární algebra 4 Vektory Matematika 2/34 Úvod Zkouška písemná, termíny budou včas vypsány na Intranetu UO obsah: teoretická a praktická

Více

Paralelní programování

Paralelní programování Paralelní programování přednášky Jan Outrata únor duben 2011 Jan Outrata (KI UP) Paralelní programování únor duben 2011 1 / 14 Atomické akce dále nedělitelná = neproložitelná jiným procesem izolovaná =

Více

Vzdělávací oblast: Matematika a její aplikace Vzdělávací obor: Matematický kroužek pro nadané žáky ročník 9.

Vzdělávací oblast: Matematika a její aplikace Vzdělávací obor: Matematický kroužek pro nadané žáky ročník 9. Vzdělávací oblast: Matematika a její aplikace Vzdělávací obor: Matematický kroužek pro nadané žáky ročník 9. Školní rok 2013/2014 Mgr. Lenka Mateová Kapitola Téma (Učivo) Znalosti a dovednosti (výstup)

Více

Software pro modelování chování systému tlakové kanalizační sítě Popis metodiky a ukázka aplikace

Software pro modelování chování systému tlakové kanalizační sítě Popis metodiky a ukázka aplikace Optimalizace systémů tlakových kanalizací pomocí matematického modelování jejich provozních stavů Software pro modelování chování systému tlakové kanalizační sítě Popis metodiky a ukázka aplikace Ing.

Více

Výhody a nevýhody jednotlivých reprezentací jsou shrnuty na konci kapitoly.

Výhody a nevýhody jednotlivých reprezentací jsou shrnuty na konci kapitoly. Kapitola Reprezentace grafu V kapitole?? jsme se dozvěděli, co to jsou grafy a k čemu jsou dobré. rzo budeme chtít napsat nějaký program, který s grafy pracuje. le jak si takový graf uložit do počítače?

Více

Vybrané partie z obrácených úloh. obrácených úloh (MG452P73)

Vybrané partie z obrácených úloh. obrácených úloh (MG452P73) Vybrané partie z obrácených úloh obrácených úloh (MG452P73) Obsah přednášky Klasifikace obrácených úloh a základní pojmy Lineární inverzní problém, prostor parametrů a dat Gaussovy transformace, normální

Více

Disková pole (RAID) 1

Disková pole (RAID) 1 Disková pole (RAID) 1 Architektury RAID Základní myšlenka: snaha o zpracování dat paralelně. Pozice diskové paměti v klasickém personálním počítači vyhovuje pro aplikace s jedním uživatelem. Řešení: data

Více

1. Změřte teplotní závislost povrchového napětí destilované vody σ v rozsahu teplot od 295 do 345 K metodou bublin.

1. Změřte teplotní závislost povrchového napětí destilované vody σ v rozsahu teplot od 295 do 345 K metodou bublin. 1 Pracovní úkoly 1. Změřte teplotní závislost povrchového napětí destilované vody σ v rozsahu teplot od 295 do 35 K metodou bublin. 2. Měřenou závislost znázorněte graficky. Závislost aproximujte kvadratickou

Více

ČVUT FEL X36PAA - Problémy a algoritmy. 4. úloha - Experimentální hodnocení algoritmů pro řešení problému batohu

ČVUT FEL X36PAA - Problémy a algoritmy. 4. úloha - Experimentální hodnocení algoritmů pro řešení problému batohu ČVUT FEL X36PAA - Problémy a algoritmy 4. úloha - Experimentální hodnocení algoritmů pro řešení problému batohu Jméno: Marek Handl Datum: 3. 2. 29 Cvičení: Pondělí 9: Zadání Prozkoumejte citlivost metod

Více

České vysoké učení technické v Praze Fakulta jaderná a fyzikálně inženýrská OKRUHY. ke státním závěrečným zkouškám BAKALÁŘSKÉ STUDIUM

České vysoké učení technické v Praze Fakulta jaderná a fyzikálně inženýrská OKRUHY. ke státním závěrečným zkouškám BAKALÁŘSKÉ STUDIUM OKRUHY ke státním závěrečným zkouškám BAKALÁŘSKÉ STUDIUM Obor: Studijní program: Aplikace přírodních věd 1. Vektorový prostor R n 2. Podprostory 3. Lineární zobrazení 4. Matice 5. Soustavy lineárních rovnic

Více

E K O G Y M N Á Z I U M B R N O o.p.s. přidružená škola UNESCO

E K O G Y M N Á Z I U M B R N O o.p.s. přidružená škola UNESCO Seznam výukových materiálů III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Tematická oblast: Předmět: Vytvořil: MECHANIKA FYZIKA JANA SUCHOMELOVÁ 01 - Soustava SI notebook VY_32_INOVACE_01.pdf Datum

Více

Automatická detekce anomálií při geofyzikálním průzkumu. Lenka Kosková Třísková NTI TUL Doktorandský seminář, 8. 6. 2011

Automatická detekce anomálií při geofyzikálním průzkumu. Lenka Kosková Třísková NTI TUL Doktorandský seminář, 8. 6. 2011 Automatická detekce anomálií při geofyzikálním průzkumu Lenka Kosková Třísková NTI TUL Doktorandský seminář, 8. 6. 2011 Cíle doktorandské práce Seminář 10. 11. 2010 Najít, implementovat, ověřit a do praxe

Více

Dolování asociačních pravidel

Dolování asociačních pravidel Dolování asociačních pravidel Miloš Trávníček UIFS FIT VUT v Brně Obsah přednášky 1. Proces získávání znalostí 2. Asociační pravidla 3. Dolování asociačních pravidel 4. Algoritmy pro dolování asociačních

Více

Vektorový prostor. Př.1. R 2 ; R 3 ; R n Dvě operace v R n : u + v = (u 1 + v 1,...u n + v n ), V (E 3 )...množina vektorů v E 3,

Vektorový prostor. Př.1. R 2 ; R 3 ; R n Dvě operace v R n : u + v = (u 1 + v 1,...u n + v n ), V (E 3 )...množina vektorů v E 3, Vektorový prostor Příklady: Př.1. R 2 ; R 3 ; R n...aritmetický n-rozměrný prostor Dvě operace v R n : součet vektorů u = (u 1,...u n ) a v = (v 1,...v n ) je vektor u + v = (u 1 + v 1,...u n + v n ),

Více

UČENÍ BEZ UČITELE. Václav Hlaváč

UČENÍ BEZ UČITELE. Václav Hlaváč UČENÍ BEZ UČITELE Václav Hlaváč Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání hlavac@fel.cvut.cz, http://cmp.felk.cvut.cz/~hlavac 1/22 OBSAH PŘEDNÁŠKY ÚVOD Učení

Více

Hierarchický model. 1995-2013 Josef Pelikán CGG MFF UK Praha. pepca@cgg.mff.cuni.cz http://cgg.mff.cuni.cz/~pepca/ 1 / 16

Hierarchický model. 1995-2013 Josef Pelikán CGG MFF UK Praha. pepca@cgg.mff.cuni.cz http://cgg.mff.cuni.cz/~pepca/ 1 / 16 Hierarchický model 1995-2013 Josef Pelikán CGG MFF UK Praha pepca@cgg.mff.cuni.cz http://cgg.mff.cuni.cz/~pepca/ 1 / 16 Hierarchie v 3D modelování kompozice zdola-nahoru složitější objekty se sestavují

Více

SIMULACE V KONFEKČNÍ VÝROBĚ S VYUŽITÍM METODY KONEČNÝCH PRVKŮ (MKP, FEM)

SIMULACE V KONFEKČNÍ VÝROBĚ S VYUŽITÍM METODY KONEČNÝCH PRVKŮ (MKP, FEM) SIMULACE V KONFEKČNÍ VÝROBĚ S VYUŽITÍM METODY KONEČNÝCH PRVKŮ (MKP, FEM) D POČÍTAČOVÁ SIMULACE KONFEKČNÍ DÍLNY VIRTUÁLNÍ REALITA - WITNESS VR COMPUTER INTEGRATED MANUFACTURING CIM výroba integrovaná pomocí

Více

ALGORITMIZACE PROGRAMOVÁNÍ VT3/VT4

ALGORITMIZACE PROGRAMOVÁNÍ VT3/VT4 1 ALGORITMIZACE PROGRAMOVÁNÍ VT3/VT4 Mgr. Martin ŠTOREK LITERATURA ALGORITMIZACE Ing. Jana Pšenčíková ComputerMedia http://www.computermedia.cz/ 2 1 ALGORITMUS Algoritmus je přesný postup, který je potřeba

Více

Popis metod CLIDATA-GIS. Martin Stříž

Popis metod CLIDATA-GIS. Martin Stříž Popis metod CLIDATA-GIS Martin Stříž Říjen 2008 Obsah 1CLIDATA-SIMPLE...3 2CLIDATA-DEM...3 2.1Metodika výpočtu...3 2.1.1Výpočet regresních koeficientů...3 2.1.2 nalezených koeficientu...5 2.1.3Výpočet

Více

OBECNÉ METODY VYROVNÁNÍ

OBECNÉ METODY VYROVNÁNÍ OBECNÉ METODY VYROVNÁNÍ HYNČICOVÁ TEREZA, H2IGE1 2014 ÚVOD Z DŮVODU VYLOUČENÍ HRUBÝCH CHYB A ZVÝŠENÍ PŘESNOSTI NIKDY NEMĚŘÍME DANOU VELIČINU POUZE JEDNOU VÝSLEDKEM OPAKOVANÉHO MĚŘENÍ NĚKTERÉ VELIČINY JE

Více

Úvod Příklad Výpočty a grafické znázornění. Filip Habr. České vysoké učení technické v Praze Fakulta jaderná a fyzikálně inženýrská

Úvod Příklad Výpočty a grafické znázornění. Filip Habr. České vysoké učení technické v Praze Fakulta jaderná a fyzikálně inženýrská Neuronové sítě-delta učení Filip Habr České vysoké učení technické v Praze Fakulta jaderná a fyzikálně inženýrská 30. března 2009 Obsah prezentace Obsah prezentace Delta učení 1 Teorie k delta učení 2

Více

Algoritmus. Přesné znění definice algoritmu zní: Algoritmus je procedura proveditelná Turingovým strojem.

Algoritmus. Přesné znění definice algoritmu zní: Algoritmus je procedura proveditelná Turingovým strojem. Algoritmus Algoritmus je schematický postup pro řešení určitého druhu problémů, který je prováděn pomocí konečného množství přesně definovaných kroků. nebo Algoritmus lze definovat jako jednoznačně určenou

Více

Zadání druhého zápočtového projektu Základy algoritmizace, 2005

Zadání druhého zápočtového projektu Základy algoritmizace, 2005 Zadání druhého zápočtového projektu Základy algoritmizace, 2005 Jiří Dvorský 2 května 2006 Obecné pokyny Celkem je k dispozici 8 zadání příkladů Každý student obdrží jedno zadání Vzhledem k tomu, že odpadly

Více

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK211 Základy ekonometrie LS 2014/15 Cvičení 4: Statistické vlastnosti MNČ LENKA FIŘTOVÁ KATEDRA EKONOMETRIE, FAKULTA INFORMATIKY A STATISTIKY VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE Upřesnění k pojmům a značení

Více

ČESKÁ ZEMĚDĚLSKÁ UNIVERZITA V PRAZE. Teze diplomové práce

ČESKÁ ZEMĚDĚLSKÁ UNIVERZITA V PRAZE. Teze diplomové práce ČESKÁ ZEMĚDĚLSKÁ UNIVERZITA V PRAZE FAKULTA PROVOZNĚ EKONOMICKÁ KATEDRA SYSTÉMOVÉ A OPERAČNÍ ANALÝZY Obor: Veřejná správa a regionální rozvoj Teze diplomové práce Optimalizace tras pro cestovní kanceláře

Více

Tlumené a vynucené kmity

Tlumené a vynucené kmity Tlumené a vynucené kmity Katedra fyziky FEL ČVUT Evropský sociální fond Praha & U: Е Investujeme do vaší budoucnosti Problémová úloha 1: Laplaceova transformace Pomocí Laplaceovy transformace vlastností

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ OBOR GEODÉZIE A KARTOGRAFIE KATEDRA VYŠŠÍ GEODÉZIE název předmětu úloha/zadání název úlohy Vyšší geodézie 1 2/3 GPS - Výpočet drah družic školní rok

Více

1 Mnohočleny a algebraické rovnice

1 Mnohočleny a algebraické rovnice 1 Mnohočleny a algebraické rovnice 1.1 Pojem mnohočlenu (polynomu) Připomeňme, že výrazům typu a 2 x 2 + a 1 x + a 0 říkáme kvadratický trojčlen, když a 2 0. Číslům a 0, a 1, a 2 říkáme koeficienty a písmenem

Více

Teorie grafů. zadání úloh. letní semestr 2008/2009. Poslední aktualizace: 19. května 2009. First Prev Next Last Go Back Full Screen Close Quit

Teorie grafů. zadání úloh. letní semestr 2008/2009. Poslední aktualizace: 19. května 2009. First Prev Next Last Go Back Full Screen Close Quit Teorie grafů zadání úloh letní semestr 2008/2009 Poslední aktualizace: 19. května 2009 Obsah Úloha číslo 1 5 Úloha číslo 2 6 Úloha číslo 3 7 Úloha číslo 4 8 Úloha číslo 5 9 Úloha číslo 6 10 Úloha číslo

Více

ZADÁNÍ ZKOUŠKOVÉ PÍSEMNÉ PRÁCE Z PŘEDMĚTU LINEÁRNÍ ALGEBRA PRO IT. Verze 1.1A

ZADÁNÍ ZKOUŠKOVÉ PÍSEMNÉ PRÁCE Z PŘEDMĚTU LINEÁRNÍ ALGEBRA PRO IT. Verze 1.1A Verze 1.1A Čas na práci: 1 minut Za každý úkol můžete získat maximálně 1 bodů. Řešení každého příkladu zapisujte čitelně a srozumitelně, 2x 1 +4x 3 +3x 4 = 4 x 1 +2x 2 +4x 3 3x 4 = 1 2x 1 +x 2 x 3 3x 4

Více

Úvodem Dříve les než stromy 3 Operace s maticemi

Úvodem Dříve les než stromy 3 Operace s maticemi Obsah 1 Úvodem 13 2 Dříve les než stromy 17 2.1 Nejednoznačnost terminologie 17 2.2 Volba metody analýzy dat 23 2.3 Přehled vybraných vícerozměrných metod 25 2.3.1 Metoda hlavních komponent 26 2.3.2 Faktorová

Více

Dílčí projekt: Systém projektování textilních struktur 1.etapa: tvorba systému projektování vlákno - příze - tkanina

Dílčí projekt: Systém projektování textilních struktur 1.etapa: tvorba systému projektování vlákno - příze - tkanina Program LibTex Uživatelská příručka 1 Obsah Program Textilní Design... 1 Uživatelská příručka... 1 1 Obsah... 2 2 Rejstřík obrázků... 2 3 Technické požadavky... 3 3.1 Hardware... 3 3.1.1 Procesor... 3

Více

Délka (dny) 150 - - 2 terénní úpravy (prvotní) 15-20 - příprava staveniště (výstavba přístřešku pro materiál)

Délka (dny) 150 - - 2 terénní úpravy (prvotní) 15-20 - příprava staveniště (výstavba přístřešku pro materiál) Skupinová práce. Zadání skupinové práce Síťová analýza metoda CPM Dáno: Výstavba skladu zásob obilí představuje následující činnosti: Tabulka Název činnosti Délka (dny) Optimální projekt. Optimální dělníků

Více

Emergence chování robotických agentů: neuroevoluce

Emergence chování robotických agentů: neuroevoluce Emergence chování robotických agentů: neuroevoluce Petra Vidnerová, Stanislav Slušný, Roman Neruda Ústav Informatiky, AV ČR Kognice a umělý život VIII Praha 28. 5. 2008 Evoluční robotika: EA & neuronové

Více

Efektivní hledání nejkratších cest v sítích hromadné přepravy osob

Efektivní hledání nejkratších cest v sítích hromadné přepravy osob DIPLOMOVÁ PRÁCE Efektivní hledání nejkratších cest v sítích hromadné přepravy osob Autor: Vladislav Martínek Vedoucí: RNDr. Michal Žemlička, Ph.D. Motivace Jak se co nejrychleji dostat z bodu A do bodu

Více

14 14.1a 14.1b 14.4 14.5 14.2 14.3 N 14.1a... 2 1 0 14.1b 14.2 14.4 4,5 14.3 14.5 Gb 6,3x16 39 19 19.1.2 19.1.2 19.1 19.1.7 19.1.8 19.1.9 19.1.1 19.1.4 19.1.5 19.1.6 19.1.9 19.1.1 19.1.4 19.1.5 19.1.6

Více

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika I/1 BA06. Cvičení, zimní semestr

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika I/1 BA06. Cvičení, zimní semestr Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika I/1 BA06 Cvičení, zimní semestr DOMÁCÍ ÚLOHY Jan Šafařík Brno c 2014 1 (1) Určete rovnici kručnice o

Více

Automatizované řešení úloh s omezeními

Automatizované řešení úloh s omezeními Automatizované řešení úloh s omezeními Martin Kot Katedra informatiky, FEI, Vysoká škola báňská Technická universita Ostrava 17. listopadu 15, Ostrava-Poruba 708 33 Česká republika 25. října 2012 M. Kot

Více

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1 Logistická regrese Menu: QCExpert Regrese Logistická Modul Logistická regrese umožňuje analýzu dat, kdy odezva je binární, nebo frekvenční veličina vyjádřená hodnotami 0 nebo 1, případně poměry v intervalu

Více

Úloha ve stavovém prostoru SP je , kde s 0 je počáteční stav C je množina požadovaných cílových stavů

Úloha ve stavovém prostoru SP je <s 0, C>, kde s 0 je počáteční stav C je množina požadovaných cílových stavů Stavový prostor a jeho prohledávání SP = formalismus k obecnějšímu uchopení a vymezení problému, který spočívá v nalezení posloupnosti akcí vedoucích od počátečního stavu úlohy (zadání) k požadovanému

Více