Délka (dny) terénní úpravy (prvotní) příprava staveniště (výstavba přístřešku pro materiál)

Rozměr: px
Začít zobrazení ze stránky:

Download "Délka (dny) 150 - - 2 terénní úpravy (prvotní) 15-20 - příprava staveniště (výstavba přístřešku pro materiál)"

Transkript

1 Skupinová práce. Zadání skupinové práce Síťová analýza metoda CPM Dáno: Výstavba skladu zásob obilí představuje následující činnosti: Tabulka Název činnosti Délka (dny) Optimální projekt. Optimální dělníků Optimální administr. pracovníků projekt objednávka skladových zásob obilí objednávka na vybavení skladu manipulátory obilí terénní úpravy (prvotní) příprava staveniště (výstavba přístřešku pro materiál) zajištění pracovních sil pro provoz skladu přísun materiálu pro výstavbu základů - - přísun materiálu pro výstavbu zdí a příček přísun ostatního materiálu výstavba základů výstavba zdí a příček dostavba skladu (střecha, podlahy, instalace) vnitřní zařízení skladu manipulátory obilí personální obsazení skladu - - zaplnění skladu 0-0 -

2 Úkoly: ) Pro vyřešení kolektivní úlohy sestavte projektové skupiny po třech členech. Po té se dohodněte, kdo bude jakou roli v pracovní skupině zastupovat. Na výběr jsou tyto týmové role: realizátor, myslitel, kompletovač vyhledávač zdrojů. Při vyplnění následujících úkolů spolupracujte v rámci týmu. Realizátor je zodpovědný za úkoly ), ), ), myslitel za úkoly ), ) a vyhledávač zdrojů za úkoly 6), 7). ) Sestrojte síťový graf a stanovte délku kritické cesty. ) Vypočítejte pro všechny činnosti celkovou časovou rezervu a stanovte, které činnosti jsou kritické. ) Sestrojte úsečkový diagram projektu a vyznačte v něm potřebu pracovníků (tj. projektantů, dělníků a administrativních pracovníků) ) Přesuňte činnosti v rámci časových rezerv tak, aby současně pracujících projektantů nepřesáhl pět, dělníků dvacet pět a administrativních pracovníků pět. 6) Úkol ) představoval optimalizaci skladby dílčích předmětů z pohledu minimalizace celkové doby projektu při omezení dostupnými zdroji. Nyní vypracujete sestavení optimalizaci využívání zdrojů podle kritéria minimalizace mzdových nákladů. To znamená: V následující tabulce je stanoven minimální pracovníků potřebných k realizaci dané činnosti, tzn. s menším počtem pracovníků není možné činnost zvládnout. Dále odhadněte (vyhledejte) hodinové mzdové náklady u jednotlivých profesí. Odhadněte změnu produkční funkce v závislosti na počtu pracovníků, kteří budou k dispozici. Navrhněte v rámci intervalu: minimální pracovníků časově optimální pracovníků, kolik by jste v projektu zaměstnali u jednotlivých profesí pracovníků, aby jste minimalizovali celkové mzdové náklady projektu. 7) Všechny úkoly písemně zpracujte a prezentuje před ostatními studenty. Vaše řešení obhajte v diskuzi s ostatní studenty při vaší prezentaci. Tabulka Přehled minimálního počtu lidských zdrojů pro realizaci dané činnosti Délka minimální minimální Název činnosti (dny) projektantů dělníků minimální administr. pracovníků projekt? - - objednávka skladových zásob obilí? - - objednávka na vybavení skladu manipulátory obilí? - -

3 terénní úpravy (prvotní)? - - příprava staveniště (výstavba přístřešku pro materiál)? - - zajištění pracovních sil pro provoz skladu? - - přísun materiálu pro výstavbu základů? - - přísun materiálu pro výstavbu zdí a příček? - - přísun ostatního materiálu? - - výstavba základů? - - výstavba zdí a příček? - - dostavba skladu (střecha, podlahy, instalace)? vnitřní zařízení skladu manipulátory obilí? personální obsazení skladu? - - zaplnění skladu? Teoretický podklad k řešení Metody síťové analýzy se uplatňují při řešení časových vazeb mezi jednotlivými prvky složitých systémů, např. při plánování vývoje a technické přípravy výroby. Deterministické modely se řeší na základě metody kritické cesty (CPM - Critical Path Method). Pro řešení stochastických modelů je určena technika vyhodnocení a kontroly plánu (PERT - Program Evolution and Review Technique). Metody síťové analýzy vycházejí ze síťových grafů. Síťový graf se skládá z uzlů a hran. Na síťovém grafu se požaduje, aby byl konečný, souvislý, orientovaný, acyklický a ohodnocený. Jednotlivé uzly grafu vyjadřují zahájení nebo ukončení činnosti (viz obr. ). Hrana grafu vyjadřuje činnost a její ohodnocení značí dobu trvání činnosti. Pomocí síťového grafu lze vyjádřit vazby mezi jednotlivými činnostmi. uzel 6 hrana ohodnocení hrany 9 oobr. Uzly a hrany síťového grafu Při sestavování síťového grafu je možno postupovat zpět od konečného uzlu, přičemž v každém uzlu se zjišťuje, co se musí udělat bezprostředně před dosažením tohoto uzlu. Může se též postupovat od výchozího uzlu, přičemž v každém uzlu se zjišťuje, která činnost bezprostředně následuje po dosažení tohoto uzlu.

4 Metoda CPM Síťový graf zobrazuje systém návazných činností. Síťový graf je třeba hranově ohodnotit, tj. určit dobu trvání jednotlivých činností. Na základě propočtu síťového grafu se určuje kritická cesta a časové rezervy. Nejprve je třeba každý uzel očíslovat a pro uzel určit dva termíny: nejdříve možný začátek činnosti a nejpozději nutný začátek činnosti. Nejdříve možný začátek je hodnota, která udává, kdy je možno nejdříve začít s činnostmi vystupujícími z daného uzlu, aniž je ohrožena návaznost činnosti do uzlu vstupujících. Nejpozději nutný začátek činnosti je hodnota, která udává, kdy nejpozději se musí začít s činnostmi vystupujícími z uzlu, aby nebyl ohrožen termín celého systému návazných činností. Dále se v grafu vypočítávají časové rezervy pro každý uzel. Tyto časové rezervy jsou dány rozdílem nejpozději nutného začátku činnosti a nejdříve možného začátku činnosti pro daný uzel. Též je třeba stanovit rezervy na činnostech. Tyto rezervy se určí, jestliže od termínu v uzlu, do kterého činnost vstupuje, se odečte doba trvání činnosti a hodnota termínu v uzlu, z kterého daná činnost vystupuje. Vzhledem k tomu, že v každém uzlu jdou dva termíny, dostáváme kombinací těchto termínů čtyři druhy rezerv na činnosti, a to rezervu celkovou, volnou, nezávislou a závislou. Časové rezervy jsou přehledně znázorněny na obr.. Uzel s nulovou rezervou se nazývá kritický a činnost, na které jsou všechny rezervy nulové, se nazývá též kritická. Cesta, která spojuje počáteční uzel a koncový uzel síťového grafu a která obsahuje pouze kritické uzly a kritické činnosti, se nazývá kritická. Kritická cesta je nejdelší, nemá žádné časové rezervy a určuje trvání celého projektu návazných činností. Postup výpočtu kritické cesty Nejprve se pro každý uzel určují nejdříve možné začátky činností. V počátečním uzlu se zvolí hodnota 0. Při výpočtu se postupuje od počátečního uzlu ve směru orientace, přičemž doby trvání jednotlivých činností se sčítají a zapisují do příslušných uzlů. Jestliže však do uzlu vstupuje více činností, zvolí se za nejdříve možný začátek hodnota, která odpovídá činnosti s největším součtem časových hodnot. Tímto způsobem se postupně pokračuje až do koncového uzlu. Hodnota v koncovém uzlu t p (o) udává dobu trvání projektu soustavy návazných činností. R z +y ij i y ij j t i (0) t i () t j (0) t j () R ui R n +y ij R uj R v +y ij R c +y ij Obr. Časové rezervy

5 t (0) i...nejdříve možný začátek v uzlu t () i...nejpozději nutný začátek v uzlu y ij....doba trvání činnosti R ui...rezerva v uzlu i R c...rezerva celková R v...rezerva volná t (0) j...nejdříve možný začátek v uzlu j t () j...nejpozději možný začátek v uzluj R uj... rezerva v uzlu j R n... rezerva nezávislá R z... rezerva závislá Nejpozději nutné začátky se počítají od koncového uzlu. V koncovém uzlu se zvolí nulová rezerva, platí tedy t () p = t (0) p. Při výpočtu se postupuje proti směru orientace, přičemž od hodnoty () t p v koncovém uzlu se doby trvání jednotlivých činností postupně odečítají. Jestliže z uzlu vystupuje více činností, zvolí se za nejpozději nutný začátek hodnota, která odpovídá činnosti s nejmenší hodnotou dosaženou postupným odečítáním od hodnoty t () p. Příklad výpočtu kritické cesty Vý kritické cesty je proveden pro konkrétní plán výstavby administrativní budovy. Návazné činnosti plánu výstavby administrativní budovy včetně vazeb a doby trvání činností jsou uvedeny v tab.. Tab. Návazné činnosti plánu výstavby administrativní budovy Název činnosti Návaznost Doba trvání činností činností Projekt stavby týdny Zajištění převodu nemovitosti týdnů Stavební povolení týdny Projekt interiéru týdny Stavební práce 8 týdnů Objednání zařízení interiéru týdny Na základě stanovených návazností činností se sestaví síťový graf (viz obr. ). Dále se provede ohodnocení hran. 8

6 Obr. Sestavení síťového grafu Vý nejdříve možných začátků je uveden na obr.. V uzlu je zvolen nejdříve možný začátek 0. Činnost trvá týdny, tudíž nejdříve možný začátek v uzlu je hodnota. Do uzlu vstupuje činnost a činnost, a proto nejdříve možný začátek je hodnota větší z obou hodnot vstupujících činností, tj. hodnota 7 (hodnota vstupující činnosti je 0+=, hodnota vstupující činnosti je +=7). Do uzlu vstupuje činnost s hodnotou += a hodnota nejdříve možného začátku v uzlu je Obr. Vý nejdříve možných začátků Do uzlu vstupuje činnost s hodnotou 7+8= a činnost s hodnotou +=8. Větší hodnota udává dobu trvání projektu. Vý nejpozději nutných začátků a určení kritické cesty jsou uvedeny na obr Obr. Vý nejpozději nutných začátků a určení kritické cesty

7 V konečném uzlu je časová rezerva 0 a tudíž oba termíny mají stejnou hodnotu. Při výpočtu nejpozději nutných začátků se postupuje od konečného uzlu proti směru orientace. V uzlu se zapíše hodnota (-=) a v uzlu se zapíše hodnota 7 (-8=7). Z uzlu vycházejí dvě činnosti, proto nejpozději nutný začátek činnosti je určen menší hodnotou z hodnot 7-= a - =0, tj. hodnotou. Z uzlu opět vystupují dvě činnosti a nejpozději nutný začátek činnosti je určen menší hodnotou z hodnot 7-= a -=0, tj. hodnotou 0. Kritická cesta udává dobu trvání projektu týdnů, prochází uzly,,, a neobsahuje žádnou časovou rezervu. Způsoby a možnosti zkrácení celkové doby projektu Kritická cesta je nejdelší, nemá žádné časové rezervy a určuje dobu trvání celého projektu. Jakákoliv změna v trvání nebo posunutí začátku nebo konce libovolné činnosti ležící na kritické cestě má za následek změnu doby trvání celého projektu. Zkracování celkové doby trvání projektu lze provádět těmito způsoby: - vyloučením určité činnosti, ležící na kritické cestě, např. zakoupením licence, - souběžným prováděním činností, které se původně vyskytovaly za sebou, - převedením zdrojů (pracovních sil, zařízení) z činností nekritických na činnosti kritické. Při převádění zdrojů z činností nekritických se musí postupovat opatrně, aby nevzniklo více kritických cest a celý graf se nezměnil v tzv. napjatý systém. Subkritické cesty, tj. cesty s velmi malou časovou rezervou, která může být velmi snadno vyčerpána, a subkritická cesta může přejít v cestu kritickou. Zjištění nekritických cest s určitou časovou rezervou nám umožňuje nalézt potřebné dodatečné zdroje.

M A N A G E M E N T P O D N I K U 2 Tržní postavení produktu, management a síťová analýza. LS, akad.rok 2014/2015 Management podniku - VŽ 1

M A N A G E M E N T P O D N I K U 2 Tržní postavení produktu, management a síťová analýza. LS, akad.rok 2014/2015 Management podniku - VŽ 1 M A N A G E M E N T P O D N I K U 2 Tržní postavení produktu, management a síťová analýza LS, akad.rok 2014/2015 Management podniku - VŽ 1 Tržní postavení produktu LS, akad.rok 2014/2015 Management podniku

Více

24.11.2009 Václav Jirchář, ZTGB

24.11.2009 Václav Jirchář, ZTGB 24.11.2009 Václav Jirchář, ZTGB Síťová analýza 50.let V souvislosti s potřebou urychlit vývoj a výrobu raket POLARIS v USA při závodech ve zbrojení za studené války se SSSR V roce 1958 se díky aplikaci

Více

SÍŤOVÁ ANALÝZA. Kristýna Slabá, kslaba@students.zcu.cz. 1. července 2010

SÍŤOVÁ ANALÝZA. Kristýna Slabá, kslaba@students.zcu.cz. 1. července 2010 SÍŤOVÁ ANALÝZA Kristýna Slabá, kslaba@students.zcu.cz 1. července 2010 Obsah 1 Úvod do síťové analýzy Hlavní metody síťové analýzy a jejich charakteristika Metoda CPM Metoda PERT Nákladová analýza Metoda

Více

Metody analýzy kritické cesty

Metody analýzy kritické cesty UNIVERZITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDECKÁ FAKULTA KATEDRA MATEMATICKÉ ANALÝZY A APLIKACÍ MATEMATIKY SEMINÁRNÍ PRÁCE Metody analýzy kritické cesty Vypracoval: Tomáš Talášek AME, I. ročník Obsah 1 Základní

Více

Teorie síťových modelů a síťové plánování

Teorie síťových modelů a síťové plánování KSI PEF ČZU Teorie síťových modelů a síťové plánování Část přednášky doc. Jaroslava Švasty z předmětu systémové analýzy a modelování. Zápis obsahuje základní vymezení projektu, časového plánování a popis

Více

Řízení projektů. Ing. Michal Dorda, Ph.D.

Řízení projektů. Ing. Michal Dorda, Ph.D. Řízení projektů Ing. Michal Dorda, Ph.D. Ing. Michal Dorda, Ph.D. 1 Použitá literatura Tato prezentace byla vytvořena především s využitím následujících zdrojů: ŠIROKÝ, J. Aplikace počítačů v provozu vozidel.

Více

Projektový management

Projektový management Projektový management 2009 Ludmila Fridrichová Použité zdroje 1. Svozilová, A.: Projektový management. Praha: Grada Publishing, a.s., 2006. ISBN-80-247-1501-5 2. Němec, V.: Projektový management. Praha:

Více

Seminární práce. Téma: Síťové diagramy, Ganttovy diagramy

Seminární práce. Téma: Síťové diagramy, Ganttovy diagramy MASARYKOVA UNIVERZITA V BRNĚ EKONOMICKO-SPRÁVNÍ FAKULTA Seminární práce Téma: Síťové diagramy, Ganttovy diagramy Vypracovali: Šilhánek Jiří Homolka Tomáš BRNO 2005 OBSAH: 1. Hamronogramy... 1 2. Cyklogramy...

Více

MODELY ŘÍZENÍ ZÁSOB nákladově orientované modely poptávka pořizovací lhůta dodávky předstih objednávky deterministické stochastické

MODELY ŘÍZENÍ ZÁSOB nákladově orientované modely poptávka pořizovací lhůta dodávky předstih objednávky deterministické stochastické MODELY ŘÍZENÍ ZÁSOB Význam zásob spočívá především v tom, že - vyrovnávají časový nebo prostorový nesoulad mezi výrobou a spotřebou - zajišťují plynulou výrobu nebo plynulé dodávky zboží i při nepředvídaných

Více

Vysoká škola technická a ekonomická v Českých Budějovicích. Institute of Technology And Business In České Budějovice

Vysoká škola technická a ekonomická v Českých Budějovicích. Institute of Technology And Business In České Budějovice 11. REALIZACE PROJEKTU, SLEDOVÁNÍ STAVU, PŘÍPRAVA PROVOZU, ZKUŠEBNÍ PROVOZ Vysoká škola technická a ekonomická v Českých Budějovicích Institute of Technology And Business In České Budějovice Tento učební

Více

ISKŘ MS Project případová studie, řešení kritická cesta (CPM) PLUSKAL Dalibor

ISKŘ MS Project případová studie, řešení kritická cesta (CPM) PLUSKAL Dalibor 1 ISKŘ MS Project případová studie, řešení kritická cesta (CPM) PLUSKAL Dalibor Operační program Vzdělávání pro konkurenceschopnost Projekt: Vzdělávání pro bezpečnostní systém státu (reg. č.: CZ.1.01/2.2.00/15.0070)

Více

Školení v rámci zemědělské a lesnické činnosti 2014

Školení v rámci zemědělské a lesnické činnosti 2014 Vindex JIH, s.r.o. Platnéřská 191 110 00 Praha IČO: 25173278 Název projektu: Školení v rámci zemědělské a lesnické činnosti 2014 Číslo projektu: 13/0181310b/131/000199 Financováno z Programu Rozvoje Venkova

Více

5.2.6 Tabulkové řešení metod CPM a PERT

5.2.6 Tabulkové řešení metod CPM a PERT 5.2.6 Tabulkové řešení metod CPM a PERT Tabulkové řešení umožňuje algoritmizovat postupy jednotlivých metod, algoritmy realizovat programově s použitím běžného tabulkového procesoru nebo databázového prostředí.

Více

Plánování projektu z hlediska času, zdrojů a nákladů

Plánování projektu z hlediska času, zdrojů a nákladů Plánování projektu z hlediska času, zdrojů a nákladů Ing. Jaroslava Tománková, Ph.D. tomankov@fsv.cvut.cz rozhodnutí o inv. (územní řízení) smlouva o dílo (stav. povolení) předání a převzetí st. (uvedení

Více

Obecné metody systémové analýzy

Obecné metody systémové analýzy Obecné metody systémové analýzy Graf jako pojem matematické teorie grafů (nikoliv např. grafické znázornění průběhu funkce): určitý útvar (rovinný, prostorový), znázorňující vztahy (vazby, relace) mezi

Více

Oběžný majetek. Peníze Materiál Nedokončená výroba Hotové výrobky Pohledávky Peníze. Plánování a normování materiálových zásob.

Oběžný majetek. Peníze Materiál Nedokončená výroba Hotové výrobky Pohledávky Peníze. Plánování a normování materiálových zásob. Součástí oběžného majetku jsou: zásoby oběžný finanční majetek pohledávky Oběžný majetek Charakteristickým rysem oběžného majetku je jednorázová spotřeba, v procesu výroby mění svoji formu. Tato změna

Více

UČEBNÍ OSNOVA PŘEDMĚTU

UČEBNÍ OSNOVA PŘEDMĚTU UČEBNÍ OSNOVA PŘEDMĚTU ROZPOČTY STAVEB Název školního vzdělávacího programu: Kód a název oboru vzdělání: Management ve stavebnictví 63-41-M/001 Celkový počet hodin za studium: 3. ročník = 66 hodin/ročník

Více

4.9.59. Seminář z chemie

4.9.59. Seminář z chemie 4.9.59. Seminář z chemie Seminář z chemie si mohou žáci zvolit ve třetím ročníku je koncipován jako dvouletý. Umožňuje žákům, kteří si jej zvolili, prohloubit základní pojmy z chemie, systematizovat poznatky

Více

Plánovací a odhadovací nástroje. J. Sochor, J. Ráček 1

Plánovací a odhadovací nástroje. J. Sochor, J. Ráček 1 Plánovací a odhadovací nástroje J. Sochor, J. Ráček 1 Work Breakdown Structure - WBS Typy: Proces, produkt, hybridní. Formáty: Osnova nebo grafický organizační diagram. Vysokoúrovňové WBS neukazuje závislosti

Více

Matematické modelování 4EK201

Matematické modelování 4EK201 Matematické modelování 4EK0 Ukázkový test Maimum 00 bodů. Pokud má úloha lineárního programování více optimálních řešení, pak (a) jich může být nekonečně mnoho, (b) jich musí být nekonečně mnoho.. Doplňte

Více

Projektové řízení (Projektový cyklus)

Projektové řízení (Projektový cyklus) Projektové řízení (Projektový cyklus) Vzdělávací program v rámci projektu Rekonstrukce učitelů - posílení profesní a kompetenční připravenosti učitelů (CZ.1.07/1.3.10/02.0052) 1 Projektový cyklus Metodické

Více

D8 Plánování projektu

D8 Plánování projektu Projektový manažer 250+ Kariéra projektového manažera začíná u nás! D Útvarové a procesní řízení D8 Plánování projektu Toto téma obsahuje informace o správném postupu plánování projektu tak, aby byl respektován

Více

Základní pojmy teorie grafů [Graph theory]

Základní pojmy teorie grafů [Graph theory] Část I Základní pojmy teorie grafů [Graph theory] V matematice grafem obvykle rozumíme grafické znázornění funkční závislosti. Pro tento předmět je však podstatnější pohled jiný. V teorii grafů rozumíme

Více

Marta Rajmonová. Závěrečná práce kurzu DVPP

Marta Rajmonová. Závěrečná práce kurzu DVPP Marta Rajmonová Závěrečná práce kurzu DVPP v rámci projektu ESF Příprava učitelů pro tvorbu a realizaci školních vzdělávacích programů z přírodovědných předmětů v Ústeckém kraji Ústí nad Labem Květen 2007

Více

Funkce. Úkol: Uveďte příklady závislosti dvou veličin.

Funkce. Úkol: Uveďte příklady závislosti dvou veličin. Funkce Pojem funkce Dostupné z Metodického portálu www.rvp.cz, ISSN: 1802-4785, financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Funkce vyjadřuje závislost

Více

Seminární práce do OPV

Seminární práce do OPV VŠB Technická Univerzita Ostrava Ekonomická fakulta Seminární práce do OPV Stavba rodinného domku KLASIK 125 24 Jiří Sitta AI 2 Téma projektu: Stavba rodinného domku Popis situace: Předpokládá se, že jsme

Více

Ohodnocené orientované grafy

Ohodnocené orientované grafy Ohodnocené orientované grafy Definice Buď G graf Funkce w : H( G) (, ) se nazývá (hranové) ohodnocení grafu G; graf se zadaným ohodnocením se nazývá ohodnocený graf Definice Nechť G je orientovaný graf

Více

Algoritmizace prostorových úloh

Algoritmizace prostorových úloh Algoritmizace prostorových úloh Vektorová data Daniela Szturcová Prostorová data Geoobjekt entita definovaná v prostoru. Znalost jeho identifikace, lokalizace umístění v prostoru, vlastností vlastních

Více

5 Metody a nástroje řízení projektů

5 Metody a nástroje řízení projektů Aplikace počítačů v provozu vozidel 55 5 Metody a nástroje řízení projektů 5.1 Vývoj nástrojů řízení Projektové řízení se zaměřovalo zejména na unikátní díla a inovace. Nástroje projektového řízení se

Více

Postup pro stanovení reálného návrhu MPSV 2014:

Postup pro stanovení reálného návrhu MPSV 2014: Postup pro stanovení reálného návrhu MPSV 2014: Jako základ byly výše dotace MPSV 2013 první kolo. Oproti roku 2013 ale přibyly některé služby (cca asi 10 mil Kč dotace navíc). Návrh reálné výše dotace

Více

Komisionální přezkoušení 1T (druhé pololetí) 2 x. 1) Z dané rovnice vypočtěte neznámou x:. 2) Určete, pro která x R není daný výraz definován:

Komisionální přezkoušení 1T (druhé pololetí) 2 x. 1) Z dané rovnice vypočtěte neznámou x:. 2) Určete, pro která x R není daný výraz definován: 1) Z dané rovnice vypočtěte neznámou :. ) Určete, pro která R není daný výraz definován: 3) Určete obor hodnot funkce Komisionální přezkoušení 1T (druhé pololetí) f : y 4 3. 4 8 5 1 4) Vyšetřete vzájemnou

Více

Postup prací při sestavování nároků vlastníků

Postup prací při sestavování nároků vlastníků Postup prací při sestavování nároků vlastníků Obsah 1. Porovnání výměr... 1 2. Výpočet opravného koeficientu... 2 3. Výpočet výměr podle BPEJ... 2 4. Výpočet vzdálenosti... 2 5. Sestavení nárokového listu...

Více

Funkce - pro třídu 1EB

Funkce - pro třídu 1EB Variace 1 Funkce - pro třídu 1EB Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv využití výukového materiálu je povoleno pouze s odkazem na www.jarjurek.cz. 1. Funkce Funkce je přiřazení, které každému

Více

VÝROBA. Helios Orange + něco navíc. Adresa: SAPERTA s.r.o. Presy 371 53701 Telefon: 777 071 626 E-mail: saperta@saperta.cz WWW: saperta.

VÝROBA. Helios Orange + něco navíc. Adresa: SAPERTA s.r.o. Presy 371 53701 Telefon: 777 071 626 E-mail: saperta@saperta.cz WWW: saperta. VÝROBA Helios Orange + něco navíc Adresa: SAPERTA s.r.o. Presy 371 53701 Telefon: 777 071 626 E-mail: saperta@saperta.cz WWW: saperta.cz MODUL VÝROBY Modul Řízení výroby vychází z osvědčeného základního

Více

fakulty MENDELU v Brně (LDF) s ohledem na disciplíny společného základu http://akademie.ldf.mendelu.cz/cz (reg. č. CZ.1.07/2.2.00/28.

fakulty MENDELU v Brně (LDF) s ohledem na disciplíny společného základu http://akademie.ldf.mendelu.cz/cz (reg. č. CZ.1.07/2.2.00/28. Základy lineárního programování Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem

Více

EKONOMICKO-MATEMATICKÉ METODY

EKONOMICKO-MATEMATICKÉ METODY . přednáška EKONOMICKO-MATEMATICKÉ METODY Ekonomcko matematcké metody (též se užívá název operační analýza) sou metody s matematckým základem, využívané především v ekonomcké oblast, v oblast řízení a

Více

Systémy plánování a řízení výroby AROP III

Systémy plánování a řízení výroby AROP III Tento materiál vznikl jako součást projektu, který je spolufinancován Evropským sociálním fondem a státním rozpočtem ČR. Systémy plánování a řízení výroby AROP III Technická univerzita v Liberci Výrobní

Více

Kapitola 2. o a paprsek sil lze ztotožnit s osou x (obr.2.1). sil a velikost rovnou algebraickému součtu sil podle vztahu R = F i, (2.

Kapitola 2. o a paprsek sil lze ztotožnit s osou x (obr.2.1). sil a velikost rovnou algebraickému součtu sil podle vztahu R = F i, (2. Kapitola 2 Přímková a rovinná soustava sil 2.1 Přímková soustava sil Soustava sil ležící ve společném paprsku se nazývá přímková soustava sil [2]. Působiště všech sil m i lze posunout do společného bodu

Více

1. Převeďte dané číslo do dvojkové, osmičkové a šestnáctkové soustavy: a) 759 10 b) 2578 10

1. Převeďte dané číslo do dvojkové, osmičkové a šestnáctkové soustavy: a) 759 10 b) 2578 10 Úlohy- 2.cvičení 1. Převeďte dané číslo do dvojkové, osmičkové a šestnáctkové soustavy: a) 759 10 b) 2578 10 2. Převeďte dané desetinné číslo do dvojkové soustavy (DEC -> BIN): a) 0,8125 10 b) 0,35 10

Více

LDF MENDELU. Simona Fišnarová (MENDELU) Základy lineárního programování VMAT, IMT 1 / 25

LDF MENDELU. Simona Fišnarová (MENDELU) Základy lineárního programování VMAT, IMT 1 / 25 Základy lineárního programování Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem

Více

Vektorový prostor. Př.1. R 2 ; R 3 ; R n Dvě operace v R n : u + v = (u 1 + v 1,...u n + v n ), V (E 3 )...množina vektorů v E 3,

Vektorový prostor. Př.1. R 2 ; R 3 ; R n Dvě operace v R n : u + v = (u 1 + v 1,...u n + v n ), V (E 3 )...množina vektorů v E 3, Vektorový prostor Příklady: Př.1. R 2 ; R 3 ; R n...aritmetický n-rozměrný prostor Dvě operace v R n : součet vektorů u = (u 1,...u n ) a v = (v 1,...v n ) je vektor u + v = (u 1 + v 1,...u n + v n ),

Více

FAKULTA EKONOMICKÁ. Using Algorithms of Graphs Theory for Project Management in Company ŠKODA POWER

FAKULTA EKONOMICKÁ. Using Algorithms of Graphs Theory for Project Management in Company ŠKODA POWER ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA EKONOMICKÁ Diplomová práce Použití algoritmů teorie grafů pro řízení projektů ve firmě ŠKODA POWER Using Algorithms of Graphs Theory for Project Management in Company

Více

pouze u některých typů rovnic a v tomto textu se jím nebudeme až na

pouze u některých typů rovnic a v tomto textu se jím nebudeme až na Matematika II 7.1. Zavedení diferenciálních rovnic Definice 7.1.1. Rovnice tvaru F(y (n), y (n 1),, y, y, x) = 0 se nazývá diferenciální rovnice n-tého řádu pro funkci y = y(x). Speciálně je F(y, y, x)

Více

Reálná čísla. Sjednocením množiny racionálních a iracionálních čísel vzniká množina

Reálná čísla. Sjednocením množiny racionálních a iracionálních čísel vzniká množina Reálná čísla Iracionální číslo je číslo vyjádřené ve tvaru nekonečného desetinného rozvoje, ve kterém se nevyskytuje žádná perioda. Při počítání je potřeba iracionální číslo vyjádřit zaokrouhlené na určitý

Více

Poznámky pro žáky s poruchami učení z matematiky 2. ročník 2005/2006 str. 1. Funkce pro UO 1

Poznámky pro žáky s poruchami učení z matematiky 2. ročník 2005/2006 str. 1. Funkce pro UO 1 Poznámky pro žáky s poruchami učení z matematiky 2. ročník 2005/2006 str. 1 Funkce pro UO 1 Co je to matematická funkce? Mějme dvě množiny čísel. Množinu A a množinu B, které jsou neprázdné. Jestliže přiřadíme

Více

Informační systémy plánování výroby - pokročilé rozvrhování

Informační systémy plánování výroby - pokročilé rozvrhování Tento materiál vznikl jako součást projektu EduCom, který je spolufinancován Evropským sociálním fondem a státním rozpočtem ČR. Informační systémy plánování výroby - pokročilé rozvrhování Technická univerzita

Více

ŠKOLNÍ ŘÁD. FARMEKO Vyšší odborná škola zdravotnická a Střední odborná škola, s. r. o. Znojemská 76, Jihlava VYŠŠÍ ODBORNÁ ŠKOLA

ŠKOLNÍ ŘÁD. FARMEKO Vyšší odborná škola zdravotnická a Střední odborná škola, s. r. o. Znojemská 76, Jihlava VYŠŠÍ ODBORNÁ ŠKOLA ŠKOLNÍ ŘÁD FARMEKO Vyšší odborná škola zdravotnická a Střední odborná škola, s. r. o. (dále jen FARMEKO VOŠZ a SOŠ) Znojemská 76, Jihlava VYŠŠÍ ODBORNÁ ŠKOLA denní forma vzdělávání Obsah: Školní řád...

Více

Cykly a pole 103. 104. 105. 106. 107. 108. 109. 110. 111. 112. 113. 114. 115. 116.

Cykly a pole 103. 104. 105. 106. 107. 108. 109. 110. 111. 112. 113. 114. 115. 116. Cykly a pole Tato část sbírky je tvořena dalšími úlohami na práci s cykly. Na rozdíl od předchozího oddílu se zde již v řešeních úloh objevuje více cyklů, ať už prováděných po sobě nebo vnořených do sebe.

Více

2. RBF neuronové sítě

2. RBF neuronové sítě 2. RBF neuronové sítě Kapitola pojednává o neuronových sítích typu RBF. V kapitole je popsána základní struktura tohoto typu neuronové sítě. Poté následuje definice a charakteristika jednotlivých radiálně

Více

FAKULTA INFORMATIKY A MANAGEMENTU UNIVERZITA HRADEC KRÁLOVÉ MOV 1 SEMESTRÁLNÍ PRÁCE

FAKULTA INFORMATIKY A MANAGEMENTU UNIVERZITA HRADEC KRÁLOVÉ MOV 1 SEMESTRÁLNÍ PRÁCE FAKULTA INFORMATIKY A MANAGEMENTU UNIVERZITA HRADEC KRÁLOVÉ MOV 1 SEMESTRÁLNÍ PRÁCE Vypracoval: Lenka Novotná Studijní obor: K-Informační management Emailová adresa: lenka.novotna.1@uhk.cz Datum vypracování:

Více

Přiřazovací problém. Přednáška č. 7

Přiřazovací problém. Přednáška č. 7 Přiřazovací problém Přednáška č. 7 Přiřazovací problém je jednou podtřídou logistických úloh. Typickým problémem může být nejkratší převoz materiálu od dodavatelů ke spotřebitelům. spotřebitelé a i dodavatelé

Více

17.3 - Motivace - inovace - zkušenost a vzdělávání

17.3 - Motivace - inovace - zkušenost a vzdělávání EVROPSKÝ SOCIÁLNÍ FOND 17.3 - Motivace - inovace - zkušenost a vzdělávání PRAHA & EU INVESTUJEME DO VAŠÍ BUDOUCNOSTI Klíčová aktivita č. 5 - Kurz a podpora a zkvalitnění výuky 3D počítačového modelování,

Více

Jednoduché cykly 35. 36. 37. 38. 39. 40. 41. 42. 43. 44. 45.

Jednoduché cykly 35. 36. 37. 38. 39. 40. 41. 42. 43. 44. 45. Jednoduché cykly Tento oddíl obsahuje úlohy na první procvičení práce s cykly. Při řešení každé ze zde uvedených úloh stačí použít vedle podmíněných příkazů jen jediný cyklus. Nepotřebujeme používat ani

Více

5.2. Funkce, definiční obor funkce a množina hodnot funkce

5.2. Funkce, definiční obor funkce a množina hodnot funkce 5. Funkce 8. ročník 5. Funkce 5.. Opakování - Zobrazení a zápis intervalů a) uzavřený interval d) otevřený interval čísla a,b krajní body intervalu číslo a patří do intervalu (plné kolečko) číslo b patří

Více

analytické geometrie v prostoru s počátkem 18. stol.

analytické geometrie v prostoru s počátkem 18. stol. 4.. Funkce více proměnných, definice, vlastnosti Funkce více proměnných Funkce více proměnných se v matematice začal používat v rámci rozvoje analtické geometrie v prostoru s počátkem 8. stol. I v sami

Více

6.PRAVOÚHLÁ SOUSTAVA SOUŘADNIC, PŘÍMÁ A NEPŘÍMÁ ÚMĚRNOST

6.PRAVOÚHLÁ SOUSTAVA SOUŘADNIC, PŘÍMÁ A NEPŘÍMÁ ÚMĚRNOST 6.PRAVOÚHLÁ SOUSTAVA SOUŘADNIC, PŘÍMÁ A NEPŘÍMÁ ÚMĚRNOST Zde je třeba pečlivě nastudovat teorii, ohledně obou funkci, jejich znázorňování a Důležitou roli přirozeně hraje metoda trojčlenky, kterou je třeba

Více

Účetnictví a daně neziskového sektoru pro neúčetní, neekonomy

Účetnictví a daně neziskového sektoru pro neúčetní, neekonomy Účetnictví a daně neziskového sektoru pro neúčetní, neekonomy Dagmar Štěpánová Obsah 1. Povinnost vést účetnictví.................... 4 2. Volba typu účetnictví...................... 4 3. Zjednodušený

Více

Euklidovský prostor. Funkce dvou proměnných: základní pojmy, limita a spojitost.

Euklidovský prostor. Funkce dvou proměnných: základní pojmy, limita a spojitost. Euklidovský prostor. Funkce dvou proměnných: základní pojmy, limita a spojitost. Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a

Více

Pracovní list č. 3 Charakteristiky variability

Pracovní list č. 3 Charakteristiky variability 1. Při zjišťování počtu nezletilých dětí ve třiceti vybraných rodinách byly získány tyto výsledky: 1, 1, 0, 2, 3, 4, 2, 2, 3, 0, 1, 2, 2, 4, 3, 3, 0, 1, 1, 1, 2, 2, 0, 2, 1, 1, 2, 3, 3, 2. Uspořádejte

Více

Zahrnuje manažerské funkce výběr, rozmístění a vedení pracovníků.

Zahrnuje manažerské funkce výběr, rozmístění a vedení pracovníků. Úloha personální práce v podniku Organizování procesu změn ve struktuře a kvalitě lidských zdrojů organizace v souladu s potřebami, které jsou dány požadavky ekonomického a sociálního okolí podniku i požadavky

Více

Návrh signálního plánu pro světelně řízenou křižovatku. Ing. Michal Dorda, Ph.D.

Návrh signálního plánu pro světelně řízenou křižovatku. Ing. Michal Dorda, Ph.D. Návrh signálního plánu pro světelně řízenou křižovatku Ing. Michal Dorda, Ph.D. Použitá literatura TP 81 Zásady pro navrhování světelných signalizačních zařízení na pozemních komunikacích. TP 235 Posuzování

Více

Časové plánování staveb staveb

Časové plánování staveb staveb Fakulta stavební Vysoké školy báňské Technické univerzity Ostrava 17. listopadu 15, 708 33 Ostrava Poruba Časové plánování staveb staveb Úrovně časového plánování Tvorba časových plánů Strukturování projektu

Více

Neuronové časové řady (ANN-TS)

Neuronové časové řady (ANN-TS) Neuronové časové řady (ANN-TS) Menu: QCExpert Prediktivní metody Neuronové časové řady Tento modul (Artificial Neural Network Time Series ANN-TS) využívá modelovacího potenciálu neuronové sítě k predikci

Více

3. úloha - problém batohu metodami branch & bound, dynamické programování, heuristika s testem

3. úloha - problém batohu metodami branch & bound, dynamické programování, heuristika s testem ČVUT FEL X36PAA - Problémy a algoritmy 3. úloha - problém batohu metodami branch & bound, dynamické programování, heuristika s testem Jméno: Marek Handl Datum: 1. 1. 2009 Cvičení: Pondělí 9:00 Zadání Naprogramujte

Více

Určování hustoty látky

Určování hustoty látky Určování hustoty látky Očekávané výstupy dle RVP ZV: využívá s porozuměním vztah mezi hustotou, hmotností a objemem při řešení praktických problémů Předmět: Fyzika Učivo: měření fyzikální veličiny hustota

Více

Vzdělávací obsah vyučovacího předmětu

Vzdělávací obsah vyučovacího předmětu Vzdělávací obsah vyučovacího předmětu Matematika 6. ročník Zpracovala: Mgr. Michaela Krůtová Číslo a početní operace zaokrouhluje, provádí odhady s danou přesností, účelně využívá kalkulátor porovnává

Více

Základní vlastnosti křivek

Základní vlastnosti křivek křivka množina bodů v rovině nebo v prostoru lze chápat jako trajektorii pohybu v rovině či v prostoru nalezneme je také jako množiny bodů na ploše křivky jako řezy plochy rovinou, křivky jako průniky

Více

Seminární práce Modely produkčních systémů

Seminární práce Modely produkčních systémů Seminární práce Modely produkčních systémů Předmět: 4EK425 Název projektu: Výroba hokejových dresů Jméno: Období: ZS 2007/2008 Číslo cvičení (kurzu): 001 (ST 12.45) OBSAH 1. ZADÁNÍ ÚLOHY... 3 2. URČENÍ

Více

Předmět: Matematika. Pojem rovina Rovinné útvary a jejich konstrukce Délka úsečky, jednotky délky a jejich převody. Rovnoběžky, různoběžky, kolmice

Předmět: Matematika. Pojem rovina Rovinné útvary a jejich konstrukce Délka úsečky, jednotky délky a jejich převody. Rovnoběžky, různoběžky, kolmice a její aplikace čte, zapisuje a porovnává přirozená čísla do 1 000, užívá a zapisuje vztah rovnosti a nerovnosti 3. užívá lineární uspořádání, zobrazí čísla na číselné ose 8. zaokrouhluje přirozená čísla,

Více

STAVÍME MOSTY REG. Č.: CZ 1.07/1.1.36/02.0019

STAVÍME MOSTY REG. Č.: CZ 1.07/1.1.36/02.0019 Statistika na Vysočině Realizační tým Metodik Ing. Jana Kahounová Anotace Učitel / Předmět Ing. Jana Kahounová/Statistika/ITE Mgr. Pavel Rafaj / Zeměpis Ing. Jaroslava Hánová/ITE PhDr. Zdeňka Machačová/ANJ

Více

Řízení prací na vodovodních sítích

Řízení prací na vodovodních sítích Řízení prací na vodovodních sítích Ing. Josef Fojtů 1) Ing. Jiří Tajdus 1), Ing. Milan Koníř 2) 1) QLine a.s., 2) Severomoravské vodovody a kanalizace Ostrava a.s. Cílem příspěvku je představení základních

Více

Učivo obsah. Druhá mocnina a odmocnina Druhá mocnina a odmocnina Třetí mocnina a odmocnina Kružnice a kruh

Učivo obsah. Druhá mocnina a odmocnina Druhá mocnina a odmocnina Třetí mocnina a odmocnina Kružnice a kruh Výstupy žáka ZŠ Chrudim, U Stadionu Je schopen vypočítat druhou mocninu a odmocninu nebo odhadnout přibližný výsledek Určí druhou mocninu a odmocninu pomocí tabulek a kalkulačky Umí řešit úlohy z praxe

Více

Daniela Bošová-DANCON IČ: 68856849, Na Dlouhém lánu 430/26, 160 00 Praha 6

Daniela Bošová-DANCON IČ: 68856849, Na Dlouhém lánu 430/26, 160 00 Praha 6 Daniela Bošová-DANCON IČ: 68856849, Na Dlouhém lánu 430/26, 160 00 Praha 6 Rezidence AURUM Na pláni, Praha 5 - Smíchov STUDIE PROSLUNĚNÍ A DENNÍHO OSVĚTLENÍ Vypracovala: Ing. Daniela Bošová, Ph.D. Spolupráce:

Více

Semestrální projekt Téma : Renovace historické budovy

Semestrální projekt Téma : Renovace historické budovy ČESKÁ ZEMĚDĚLSKÁ UNIVERSITA V PRAZE PROVOZNĚ EKONOMICKÁ FAKULTA KATEDRA OPERAČNÍ A SYSTÉMOVÉ ANALÝZY SWA MOV Semestrální projekt Téma : Renovace historické budovy Datum zpracování: 6.5.2007 Autor: Petr

Více

Energetická efektivita budov ČNOPK 5-2014 Zateplení budov, tepelné izolace, stavební koncepce

Energetická efektivita budov ČNOPK 5-2014 Zateplení budov, tepelné izolace, stavební koncepce Energetická efektivita budov ČNOPK 5-2014 Zateplení budov, tepelné izolace, stavební koncepce Ing. Jiří Šála, CSc. tel. +420 224 257 066 mobil +420 602 657 212 e-mail: salamodi@volny.cz Přehled budov podle

Více

Základní škola a Mateřská škola Brno, Bosonožské nám. 44, příspěvková organizace Číslo projektu: VY_42_INOVACE_02_G

Základní škola a Mateřská škola Brno, Bosonožské nám. 44, příspěvková organizace Číslo projektu: VY_42_INOVACE_02_G Záznamový arch Název školy: Základní škola a Mateřská škola Brno, Bosonožské nám. 44, příspěvková organizace Číslo projektu: CZ.1.07/1.4.00/21.2499 Číslo a název šablony klíčové aktivity: IV/2 Inovace

Více

7. přednáška Systémová analýza a modelování. Přiřazovací problém

7. přednáška Systémová analýza a modelování. Přiřazovací problém Přiřazovací problém Přiřazovací problémy jsou podtřídou logistických úloh, kde lze obecně říci, že m dodavatelů zásobuje m spotřebitelů. Dalším specifikem je, že kapacity dodavatelů (ai) i požadavky spotřebitelů

Více

Programy na PODMÍNĚNÝ příkaz IF a CASE

Programy na PODMÍNĚNÝ příkaz IF a CASE Vstupy a výstupy budou vždy upraveny tak, aby bylo zřejmé, co zadáváme a co se zobrazuje. Není-li určeno, zadáváme přirozená čísla. Je-li to možné, používej generátor náhodných čísel vysvětli, co a jak

Více

Kněžskodvorská 33/A, České Budějovice, 370 04 UČEBNÍ PLÁN A PROFIL ABSOLVENTA FOTOGRAF ZPRACOVÁNO PODLE RVP 34-56-L/01 FOTOGRAF

Kněžskodvorská 33/A, České Budějovice, 370 04 UČEBNÍ PLÁN A PROFIL ABSOLVENTA FOTOGRAF ZPRACOVÁNO PODLE RVP 34-56-L/01 FOTOGRAF Kněžskodvorská 33/A, České Budějovice, 370 04 UČEBNÍ PLÁN A PROFIL ABSOLVENTA FOTOGRAF ZPRACOVÁNO PODLE RVP 34-56-L/01 FOTOGRAF PLATNOST OD 1. 9. 2015 UČEBNÍ PLÁN KURIKULUM OBORU Kód a název RVP 34-56-L/01

Více

Rizikové procesy. 1. Spuštění modulu Rizikové procesy. 2. Popis prostředí a ovládacích prvků modulu Rizikové procesy

Rizikové procesy. 1. Spuštění modulu Rizikové procesy. 2. Popis prostředí a ovládacích prvků modulu Rizikové procesy Rizikové procesy Modul slouží k evidenci rizik a zpracovávání mapy rizik za jednotlivé součásti a VUT. Přístupová práva k tomuto modulu mohou získat manažeři rizik a výbor pro řízení rizik. 1. Spuštění

Více

Využití programu MS Excel při výuce vlastností kvadratické funkce

Využití programu MS Excel při výuce vlastností kvadratické funkce Využití programu MS Excel při výuce vlastností kvadratické funkce Martin Mikuláš Tabulkové kalkulátory lze ve škole velmi dobře využít při výuce matematiky. Lze v nich totiž snadno naprogramovat aplikace,

Více

Operační výzkum. Vícekriteriální programování. Lexikografická metoda. Metoda agregace účelových funkcí. Cílové programování.

Operační výzkum. Vícekriteriální programování. Lexikografická metoda. Metoda agregace účelových funkcí. Cílové programování. Operační výzkum Lexikografická metoda. Metoda agregace účelových funkcí. Cílové programování. Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu

Více

Hodnoticí standard. Personalista (kód: 62-007-N) Odborná způsobilost. Platnost standardu Standard je platný od: 29.6.2012

Hodnoticí standard. Personalista (kód: 62-007-N) Odborná způsobilost. Platnost standardu Standard je platný od: 29.6.2012 Personalista (kód: 62-007-N) Autorizující orgán: Ministerstvo práce a sociálních věcí Skupina oborů: Ekonomie (kód: 62) Povolání: Personalista Doklady potvrzující úplnou profesní kv.: Osvědčení o profesní

Více

Aplikovaná informatika

Aplikovaná informatika Aplikovaná informatika Základy tvorby projektových plánů metodou CPM - projektové řízení. ZEMÁNEK, Z. PLUSKAL, D. SMETANA, B. Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace

Více

Ekonomická formulace. Matematický model

Ekonomická formulace. Matematický model Ekonomická formulace Firma balící bonboniéry má k dispozici 60 čokoládových, 60 oříškových a 85 karamelových bonbónů. Může vyrábět dva druhy bonboniér. Do první bonboniéry se dávají dva čokoládové, šest

Více

PRAKTIKUM III. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK

PRAKTIKUM III. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM III Úloha č. IV Název: Měření fotometrického diagramu. Fotometrické veličiny a jejich jednotky Pracoval: Jan Polášek stud.

Více

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 20. 8. 2012 Číslo DUM: VY_32_INOVACE_16_FY_A

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 20. 8. 2012 Číslo DUM: VY_32_INOVACE_16_FY_A Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 20. 8. 2012 Číslo DUM: VY_32_INOVACE_16_FY_A Ročník: I. Fyzika Vzdělávací oblast: Přírodovědné vzdělávání Vzdělávací obor: Fyzika Tematický okruh: Mechanika

Více

Korelační a regresní analýza

Korelační a regresní analýza Korelační a regresní analýza Analýza závislosti v normálním rozdělení Pearsonův (výběrový) korelační koeficient: r = s XY s X s Y, kde s XY = 1 n (x n 1 i=0 i x )(y i y ), s X (s Y ) je výběrová směrodatná

Více

BM Software, Němčičky 84, 69107 Němčičky u Břeclavi. Převody přesčasů / nedočasů v systému Docházka 3000

BM Software, Němčičky 84, 69107 Němčičky u Břeclavi. Převody přesčasů / nedočasů v systému Docházka 3000 BM Software, Němčičky 84, 69107 Němčičky u Břeclavi Vývoj, výroba, prodej a montáž docházkových a identifikačních systémů Tel: 519 430 765, Mobil: 608 447 546 e-mail: bmsoft@seznam.cz web: http://www.dochazka.eu

Více

Teorie grafů. zadání úloh. letní semestr 2008/2009. Poslední aktualizace: 19. května 2009. First Prev Next Last Go Back Full Screen Close Quit

Teorie grafů. zadání úloh. letní semestr 2008/2009. Poslední aktualizace: 19. května 2009. First Prev Next Last Go Back Full Screen Close Quit Teorie grafů zadání úloh letní semestr 2008/2009 Poslední aktualizace: 19. května 2009 Obsah Úloha číslo 1 5 Úloha číslo 2 6 Úloha číslo 3 7 Úloha číslo 4 8 Úloha číslo 5 9 Úloha číslo 6 10 Úloha číslo

Více

Aritmetické operace a obvody pro jejich realizaci

Aritmetické operace a obvody pro jejich realizaci Kapitola 4 Aritmetické operace a obvody pro jejich realizaci 4.1 Polyadické číselné soustavy a jejich vlastnosti Polyadické soustavy jsou určeny přirozeným číslem z, kterému se říká základ nebo báze dané

Více

Úlohy pro samostatnou práci k Úvodu do fyziky pro kombinované studium

Úlohy pro samostatnou práci k Úvodu do fyziky pro kombinované studium Úlohy pro samostatnou práci k Úvodu do fyziky pro kombinované studium V řešení číslujte úlohy tak, jak jsou číslovány v zadání. U všech úloh uveďte stručné zdůvodnění. Vyřešené úlohy zašlete elektronicky

Více

MATEMATIKA vyšší úroveň obtížnosti

MATEMATIKA vyšší úroveň obtížnosti MATEMATIKA vyšší úroveň obtížnosti DIDAKTICKÝ TEST MAMVD11C0T04 Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % 1 Základní informace k zadání zkoušky Didaktický test obsahuje 23 úloh. Časový

Více

Jiří Neubauer. Katedra ekonometrie FEM UO Brno

Jiří Neubauer. Katedra ekonometrie FEM UO Brno Přednáška č. 11 Katedra ekonometrie FEM UO Brno Jedná se o speciální případ dopravních úloh, řeší např. problematiku optimálního přiřazení strojů na pracoviště. Příklad Podnik má k dispozici 3 jeřáby,

Více

Příklady modelů lineárního programování

Příklady modelů lineárního programování Příklady modelů lineárního programování Příklad 1 Optimalizace výroby konzerv. Podnik vyrábí nějaký výrobek, který prodává v 1 kg a 2 kg konzervách, přičemž se řídí podle následujících velmi zjednodušených

Více

MATEMATIKA+ MAIPD14C0T01 DIDAKTICKÝ TEST. 2.1 Pokyny k otevřeným úlohám. 1 Základní informace k zadání zkoušky. 2.2 Pokyny k uzavřeným úlohám

MATEMATIKA+ MAIPD14C0T01 DIDAKTICKÝ TEST. 2.1 Pokyny k otevřeným úlohám. 1 Základní informace k zadání zkoušky. 2.2 Pokyny k uzavřeným úlohám MATEMATIKA+ DIDAKTICKÝ TEST MAIPD14C0T01 Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % 1 Základní informace k zadání zkoušky Didaktický test obsahuje 23 úloh. Časový limit pro řešení didaktického

Více

MATEMATIKA. Statistika

MATEMATIKA. Statistika MATEMATIKA Statistika Během těchto vyučovacích hodin změří žáci pomocí senzorů Pasco svoji klidovou tepovou frekvenci a tepovou frekvenci po námaze. Získané výsledky budou v další hodině zpracovávat do

Více

(ne)závislost. α 1 x 1 + α 2 x 2 + + α n x n. x + ( 1) x Vektoru y = ( 1) y říkáme opačný vektor k vektoru y. x x = 1. x = x = 0.

(ne)závislost. α 1 x 1 + α 2 x 2 + + α n x n. x + ( 1) x Vektoru y = ( 1) y říkáme opačný vektor k vektoru y. x x = 1. x = x = 0. Lineární (ne)závislost [1] Odečítání vektorů, asociativita BI-LIN, zavislost, 3, P. Olšák [2] Místo, abychom psali zdlouhavě: x + ( 1) y, píšeme stručněji x y. Vektoru y = ( 1) y říkáme opačný vektor k

Více

POSLOUPNOSTI A ŘADY INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

POSLOUPNOSTI A ŘADY INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ POSLOUPNOSTI A ŘADY Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu

Více

Metody operačního výzkumu cvičení

Metody operačního výzkumu cvičení Opakování vektorové algebry domácí úkol ) Pojem vektorového prostoru praktická aplikace - je tvořen všemi vektory dané dimenze - operace s vektory (součin, sčítání, násobení vektoru skalární hodnotou)

Více