Korelační a regresní analýza
|
|
- Jarmila Moravcová
- před 9 lety
- Počet zobrazení:
Transkript
1 Korelační a regresní analýza Analýza závislosti v normálním rozdělení Pearsonův (výběrový) korelační koeficient: r = s XY s X s Y, kde s XY = 1 n (x n 1 i=0 i x )(y i y ), s X (s Y ) je výběrová směrodatná odchylka proměnné X (Y). Název testu Test nulovosti korelačního koeficientu Testované parametry Předpoklady testu Testová statistika T(X, Y) ρ normalita T = r n 2 1 r 2 Nulové rozdělení t n 2 Analýza závislosti ordinálních veličin Spearmanův korelační koeficient: r S = 1 6 n (R n(n 2 1) X 1 R Y1 ) 2 i=1 Název testu Test nulovosti korelačního koeficientu Testované parametry Předpoklady testu Testová statistika T(X, Y) Kritický obor ρ --- T = r S W = {T: T r S (α)} (T15) Doporučený postup při korelační a regresní analýze 1. Explorační analýza korelačního pole (případný odhad typu regresní funkce, identifikace vlivných bodů) 2. Odhad koeficientů regresní funkce (aplikace vyrovnávacího kritéria např. metody nejmenších čtverců) 3. Verifikace modelu, tj. ověření předpokladů lineárního modelu a) Celkový F-test testujeme, zda hodnota vysvětlované proměnné závisí na lineární kombinaci vysvětlujících proměnných, tj. testujeme nulovou hypotézu H 0: β 1 = = β k vůči alternativě H A: H 0. Pokud bychom nulovou hypotézu nezamítli, znamenalo by to, že model je chybně specifikován. b) Dílčí t-testy - umožňují testovat oprávněnost setrvání vysvětlující proměnné v regresním modelu. Testujeme (postupně pro jednotlivá i) nulovou hypotézu ve tvaru H 0: β i = 0 vůči alternativě H A: β i 0 pro i = 0,1,, k. Pokud pro konkrétní i nelze zamítnout nulovou hypotézu, je třeba zvážit setrvání příslušné vysvětlující proměnné v modelu. c) Analýza reziduí ověřujeme předpoklady pro použití lineárního regresního modelu. ověření normality reziduí - testy dobré shody, ověření nulovosti střední hodnoty - vizuálně na základě grafu reziduí a odhadovaných hodnot závisle proměnné (rezidua musí kolísat kolem nuly) + dvouvýběrový t test, ověření homoskedasticity vizuálně na základě grafu reziduí a odhadovaných hodnot závisle proměnné (rezidua se systematicky nezvyšují ani se systematicky nesnižují spolu s rostoucími odhadovanými hodnotami),
2 ověření autokorelace reziduí - vizuálně na základě grafu reziduí a odhadovaných hodnot závisle proměnné (autokorelace projeví tak, že se rezidua systematicky snižují nebo zvyšují, resp. můžeme mezi reziduí a předpovídanými hodnotami pozorovat nelineární závislost) + Durbinova-Watsonova statistika. d) Multikolinearita v případě vícenásobné regrese musíme ověřit, zda neexistuje multikolinearita mezi regresory. e) Ověření kvality modelu index determinace R 2 (udává kolik procent vysvětlované proměnné bylo vysvětleno modelem), koeficient korelace r (míra korelace mezi závisle proměnnou a regresorem v případě přímkové regrese), koeficient vícenásobné korelace r Y x1,x 2,,x k (míra korelace mezi závisle proměnnou na lineární kombinaci regresorů x 1, x 2,, x k ), koeficienty parciální korelace, např. r Y,x1 x 2,,x k (míra korelace mezi závisle proměnnou a jedním z regresorů při vyloučení vlivu ostatních regresorů). 4. Využití verifikovaného modelu k predikci odhad střední hodnoty závisle proměnné při daných hodnotách regresorů (pás spolehlivosti), odhad individuální hodnoty závisle proměnné při daných hodnotách regresorů (pás predikce). Pozor na extrapolaci! TEST Z TEORIE 12. Kvalita 50 různých výukových materiálů byla dvěma odborníky hodnocena na stupnici od 1 do 5. Vhodnou mírou závislosti mezi hodnocením jednotlivých odborníků je a) Spearmanův korelační koeficient, b) Pearsonův korelační koeficient, c) korigovaný koeficient kontingence, d) Cramerovo V. 2. Hodnoty Pearsonova korelačního koeficientu blízké nule vypovídají o tom, že a) sledované veličiny X resp. Y nenesou prakticky žádnou informaci o Y resp. X, b) mezi sledovanými veličinami X a Y existuje silná lineární závislost, c) mezi sledovanými veličinami X a Y neexistuje silná lineární závislost, d) sledované veličiny X a Y jsou nezávislé. 3. Hodnoty Pearsonova korelačního koeficientu blízké -1 vypovídají o tom, že a) sledované veličiny X resp. Y nenesou prakticky žádnou informaci o Y resp. X, b) na měřených objektech jsou nízké hodnoty veličiny X doprovázeny spíše vysokými hodnotami veličiny Y, c) na měřených objektech jsou nízké hodnoty veličiny X doprovázeny spíše nízkými hodnotami veličiny Y. 4. Regresní a korelační analýza umožňuje získat informace o a) tvaru a síle závislosti mezi kvalitativními proměnnými, b) tvaru a síle závislosti mezi kvantitativními proměnnými, c) tvaru a síle závislosti mezi kvantitativními proměnnými, mezi nimiž je lineární vztah. 5. V případě, že jsou splněny předpoklady lineárního regresního modelu, pak metoda nejmenších čtverců umožňuje nalézt a) přesný funkční předpis hledané regresní funkce, b) index determinace, c) nejlepší odhad koeficientů hledané regresní funkce.
3 6. Lze metodami lineární regrese nalézt regresní funkci ve tvaru mocninné funkce f: y = ax b, kde a, b R\{0}? a) Ano, tato funkce je lineární vzhledem k parametrům. b) Ano, tuto funkci můžeme linearizovat logaritmováním funkčního předpisu. c) Ne, tuto funkci nelze použít k vyjádření regresní funkce. d) Ne, toto lze řešit metodami nelineární regrese. 7. Lze metodami lineární regrese nalézt regresní funkci ve tvaru mocninné funkce f: y = a 0 + a 1 x a k x k, kde a i R, i = 0,1,? a) Ano, tato funkce je lineární vzhledem k parametrům. b) Ano, tuto funkci můžeme linearizovat logaritmováním funkčního předpisu. c) Ne, tuto funkci nelze použít k vyjádření regresní funkce. d) Ne, toto lze řešit metodami nelineární regrese. 8. Lze metodami lineární regrese nalézt regresní funkci ve tvaru mocninné funkce f: y = a 0 + a 1 e a 2x 2, kde a i R, i = 0, 1, 2? a) Ano, tato funkce je lineární vzhledem k parametrům. b) Ano, tuto funkci můžeme linearizovat logaritmováním funkčního předpisu. c) Ne, tuto funkci nelze použít k vyjádření regresní funkce. d) Ne, toto lze řešit metodami nelineární regrese. 9. Koeficienty regresní funkce jsou a) konstanty, b) náhodné veličiny. 10. Index determinace může nabývat hodnot z intervalu a) 1; 1, b) 0; 1, c) 0; ). 11. Rezidua jsou odchylky a) pozorovaných a odhadovaných hodnot závislé proměnné, b) pozorovaných a odhadovaných hodnot nezávislé proměnné, c) pozorovaných a odhadovaných regresních funkcí. 12. S rostoucím rozptylem reziduí se odhad rozptylu odhadů regresních koeficientů a) zvyšuje, b) snižuje. 13. S rostoucím rozptylem jednotlivých regresorů se rozptyl odhadů regresních koeficientů a) zvyšuje, b) snižuje. 14. K ověření, zda hodnota vysvětlované proměnné závisí na lineární kombinaci všech vysvětlujících proměnných, používáme a) celkový F-test, b) dílčí t-testy, c) analýzu reziduí, d) index determinace. 15. K testování oprávněnosti setrvání jednotlivých vysvětlujících proměnných v regresním modelu používáme
4 a) celkový F-test, b) dílčí t-testy, c) analýzu reziduí, d) index determinace. 16. Rezidua považujeme za nekorelované, pokud Durbin-Watsonova statistika leží v intervalu a) 1; 1, b) 0; 1, c) 0; ), d) 1; 1, e) 1, 4; 2, 6, f) 1, 4; 2, 6) nebo (2, 6; ). 17. Pojmem multikolinearita označujeme a) lineární závislost mezi vysvětlovanou proměnnou a jednotlivými vysvětlujícími proměnnými, b) lineární závislost mezi vysvětlujícími proměnnými, c) lineární závislost mezi vysvětlovanými proměnnými, d) lineární závislost mezi jednotlivými regresními funkcemi. 18. Pás spolehlivosti (odhad střední hodnoty závisle proměnné při daných hodnotách regresorů) je a) stejně široký jako b) širší než c) užší než pás predikce. 19. Odhad závislé proměnné pro hodnoty regresorů ležící mimo interval pozorovaných hodnot označujeme jako a) interpolaci, b) extrapolaci, c) korelaci. 20. Doplňte: a) K ověření, zda hodnota vysvětlované proměnné závisí na lineární kombinaci vysvětlujících proměnných, používáme b) K testování oprávněnosti setrvání jednotlivých vysvětlujících proměnných v regresním modelu používáme. c) Při analýze reziduí ověřujeme,..,.,. d) Pojmem multikolinearita označujeme...
5 PŘÍKLADY 1) Máme k dispozici výsledky prvního a druhého zápočtového testu deseti studentů. Na hladině významnosti 0,05 testujte hypotézu, že výsledky zápočtových testů jsou kladně korelované. X i (1. test) Y i (2. test) Vizuální posouzení závislosti: Korelační koeficienty pro spojitá data: Ověření normality: Zvolený korelační koeficient: Bodový odhad korelačního koeficientu: Test, zda lze korelační koeficient považovat za kladný:
6 2) V níže uvedené tabulce je zaznamenána spotřeba alkoholu a úmrtnost na cirhózu jater a alkoholismus ve vybraných zemích. Určete, zda úmrtnost na cirhózu jater a alkoholismus závisí na spotřebě alkoholu. (Zadání příkladu bylo převzato z [1]). Tab.: Spotřeba alkoholu a úmrtnost na cirhózu jater ve vybraných zemích země spotřeba alkoholu [l/osoba] úmrtnost na cirhózu jater a alkoholismus [počet zemřelých na obyvatel] Finsko 3,9 3,6 Norsko 4,2 4,3 Irsko 5,6 3,4 Holandsko 5,7 3,7 Švédsko 6,0 7,2 Anglie 7,2 3,0 Belgie 10,8 12,3 Rakousko 10,9 7,0 SRN 12,3 23,7 Itálie 15,7 23,6 Francie 24,7 46,1 Vizuální posouzení závislosti: Korelační koeficienty pro spojitá data: Ověření normality: Zvolený korelační koeficient: Bodový odhad korelačního koeficientu: Test nulovosti korelačního koeficientu:
7 3) Procentuální obsah křemíku v surovém železe Y závisí na teplotě strusky x (kremik.xls). Navrhněte pro tuto závislost regresní model, verifikujte jej a posuďte jeho kvalitu. Na základě nalezeného modelu odhadněte (včetně příslušného intervalu spolehlivosti) průměrný procentuální obsah křemíku v surovém železe, bude-li při jeho výrobě používaná struska o teplotě 1350 o C. (Součásti řešení příkladu musí být závěr obsahující: nalezený model, hodnocení jeho věrohodnosti a kvality (slovně) + konkrétní vysvětlení výsledku predikce, včetně komentáře k její věrohodnosti!!!) a) Vizuální posouzení: b) Primárně zvolený regresní model: (na základě vizuálního posouzení a orientačního srovnání alternativních modelů) c) Ověření normality závislé proměnné i regresoru: d) Dílčí t-testy: e) Optimalizovaný regresní model:
8 f) Analýza reziduí: Ověření normality: Ověření nulové střední hodnoty: Ověření nulové autokorelace: Ověření homoskedasticity: g) Index determinace: Hodnocení kvality modelu: h) Závěr: i) Predikce: Bodový odhad: Intervalový odhad: Komentář k věrohodnosti predikce: 4) Proč nestačí při regresní analýze pouze najít odhad regresní funkce a index determinace? Srovnejte výsledky regresní analýzy pro tzv. Anscombův kvartet Anscombe.xls. Které předpoklady pro použití lineárního regresního modelu jsou porušeny u jednotlivých sad dat? Sada 1: Sada 2:
9 Sada 3: Sada 4: 5) Byla vyšetřována výška 20-ti 18letých mladíků y a výška jejich rodičů a prarodičů, žijících izolovaně v horské vesnici po několik generací a hledaná lineární závislost mezi závisle proměnnou y a nezávisle proměnnými x1 až x7 (podrobnější popis regresorů viz Mladici.xls). Navrhněte pro tuto závislost regresní model, verifikujte jej a posuďte jeho kvalitu. Na základě nalezeného modelu predikujte výšku 18-ti letého mladíka z dat jeho rodičů a prarodičů: x 1=51 cm, x 2=152 cm, x 3=183 cm, x 4=155 cm, x 5=180 cm, x 6=157 cm, x 7=178 cm. (Součásti řešení příkladu musí být závěr obsahující: nalezený model, hodnocení jeho věrohodnosti a kvality (slovně) + konkrétní vysvětlení výsledku predikce, včetně komentáře k její věrohodnosti!!!) a) Vizuální posouzení: b) Identifikace vlivných bodů: c) Primárně zvolený regresní model: d) Ověření normality závislé proměnné i regresorů: e) Multikolinearita:
10 f) Celkový F-test: g) Dílčí t-testy: h) Optimalizovaný regresní model: i) Regresní analýza: Ověření normality: Ověření nulové střední hodnoty: Ověření nulové autokorelace: Ověření homoskedasticity: j) Index determinace: Hodnocení kvality modelu: k) Závěr:
11 l) Predikce: Bodový odhad: Intervalový odhad: Komentář k věrohodnosti predikce:
Statgraphics v. 5.0 STATISTICKÁ INDUKCE PRO JEDNOROZMĚRNÁ DATA. Martina Litschmannová 1. Typ proměnné. Požadovaný typ analýzy
Dichotomická proměnná (0-1) Spojitá proměnná STATISTICKÁ INDUKCE PRO JEDNOROZMĚRNÁ DATA Typ proměnné Požadovaný typ analýzy Ověření variability Předpoklady Testy, resp. intervalové odhad Test o rozptylu
Příklad 1. Korelační pole. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 13
Příklad 1 Máme k dispozici výsledky prvního a druhého testu deseti sportovců. Na hladině významnosti 0,05 prověřte, zda jsou výsledky testů kladně korelované. 1.test : 7, 8, 10, 4, 14, 9, 6, 2, 13, 5 2.test
Statistická analýza jednorozměrných dat
Statistická analýza jednorozměrných dat Prof. RNDr. Milan Meloun, DrSc. Univerzita Pardubice, Pardubice 31.ledna 2011 Tato prezentace je spolufinancována Evropským sociálním fondem a státním rozpočtem
RNDr. Eva Janoušová doc. RNDr. Ladislav Dušek, Dr.
Analýza dat pro Neurovědy RNDr. Eva Janoušová doc. RNDr. Ladislav Dušek, Dr. Jaro 2014 Institut biostatistiky Janoušová, a analýz Dušek: Analýza dat pro neurovědy Blok 7 Jak hodnotit vztah spojitých proměnných
6. Lineární regresní modely
6. Lineární regresní modely 6.1 Jednoduchá regrese a validace 6.2 Testy hypotéz v lineární regresi 6.3 Kritika dat v regresním tripletu 6.4 Multikolinearita a polynomy 6.5 Kritika modelu v regresním tripletu
1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004.
Prostá regresní a korelační analýza 1 1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Problematika závislosti V podstatě lze rozlišovat mezi závislostí nepodstatnou, čili náhodnou
6. Lineární regresní modely
6. Lineární regresní modely 6.1 Jednoduchá regrese a validace 6.2 Testy hypotéz v lineární regresi 6.3 Kritika dat v regresním tripletu 6.4 Multikolinearita a polynomy 6.5 Kritika modelu v regresním tripletu
INDUKTIVNÍ STATISTIKA
10. SEMINÁŘ INDUKTIVNÍ STATISTIKA 3. HODNOCENÍ ZÁVISLOSTÍ HODNOCENÍ ZÁVISLOSTÍ KVALITATIVNÍ VELIČINY - Vychází se z kombinační (kontingenční) tabulky, která je výsledkem třídění druhého stupně KVANTITATIVNÍ
Regresní analýza 1. Regresní analýza
Regresní analýza 1 1 Regresní funkce Regresní analýza Důležitou statistickou úlohou je hledání a zkoumání závislostí proměnných, jejichž hodnoty získáme při realizaci experimentů Vzhledem k jejich náhodnému
Ilustrační příklad odhadu LRM v SW Gretl
Ilustrační příklad odhadu LRM v SW Gretl Podkladové údaje Korelační matice Odhad lineárního regresního modelu (LRM) Verifikace modelu PEF ČZU Praha Určeno pro posluchače předmětu Ekonometrie Needitovaná
Tomáš Karel LS 2012/2013
Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není
Regresní a korelační analýza
Regresní a korelační analýza Mějme dvojici proměnných, které spolu nějak souvisí. x je nezávisle (vysvětlující) proměnná y je závisle (vysvětlovaná) proměnná Chceme zjistit funkční závislost y = f(x).
MÍRY ZÁVISLOSTI (KORELACE A REGRESE)
zhanel@fsps.muni.cz MÍRY ZÁVISLOSTI (KORELACE A REGRESE) 2.5 MÍRY ZÁVISLOSTI 2.5.1 ZÁVISLOST PEVNÁ, VOLNÁ, STATISTICKÁ A KORELAČNÍ Jednorozměrné soubory - charakterizovány jednotlivými statistickými znaky
Inovace bakalářského studijního oboru Aplikovaná chemie
http://aplchem.upol.cz CZ.1.07/2.2.00/15.0247 Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Regrese Závislostproměnných funkční y= f(x) regresní y= f(x)
LINEÁRNÍ REGRESE. Lineární regresní model
LINEÁRNÍ REGRESE Chemometrie I, David MILDE Lineární regresní model 1 Typy závislosti 2 proměnných FUNKČNÍ VZTAH: 2 závisle proměnné: určité hodnotě x odpovídá jediná hodnota y. KORELACE: 2 náhodné (nezávislé)
Regresní a korelační analýza
Regresní a korelační analýza Mějme dvojici proměnných, které spolu nějak souvisí. x je nezávisle (vysvětlující) proměnná y je závisle (vysvětlovaná) proměnná Chceme zjistit funkční závislost y = f(x).
odpovídá jedna a jen jedna hodnota jiných
8. Regresní a korelační analýza Problém: hledání, zkoumání a hodnocení souvislostí, závislostí mezi dvěma a více statistickými znaky (veličinami). Typy závislostí: pevné a volné Pevná závislost každé hodnotě
4ST201 STATISTIKA CVIČENÍ Č. 10
4ST201 STATISTIKA CVIČENÍ Č. 10 regresní analýza - vícenásobná lineární regrese korelační analýza Př. 10.1 Máte zadaný výstup regresní analýzy závislosti závisle proměnné Y na nezávisle proměnné X. Doplňte
Testování hypotéz o parametrech regresního modelu
Testování hypotéz o parametrech regresního modelu Ekonometrie Jiří Neubauer Katedra kvantitativních metod FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Jiří Neubauer (Katedra UO
Regresní a korelační analýza
Regresní a korelační analýza Mějme dvojici proměnných, které spolu nějak souvisí. x je nezávisle (vysvětlující) proměnná y je závisle (vysvětlovaná) proměnná Chceme zjistit funkční závislost y = f(x).
Regresní analýza. Eva Jarošová
Regresní analýza Eva Jarošová 1 Obsah 1. Regresní přímka 2. Možnosti zlepšení modelu 3. Testy v regresním modelu 4. Regresní diagnostika 5. Speciální využití Lineární model 2 1. Regresní přímka 3 nosnost
Testování hypotéz o parametrech regresního modelu
Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Lineární regresní model kde Y = Xβ + e, y 1 e 1 β y 2 Y =., e = e 2 x 11 x 1 1k., X =....... β 2,
Lineární regrese. Komentované řešení pomocí MS Excel
Lineární regrese Komentované řešení pomocí MS Excel Vstupní data Tabulka se vstupními daty je umístěna v oblasti A1:B11 (viz. obrázek) na listu cela data Postup Základní výpočty - regrese Výpočet základních
Regresní a korelační analýza
Regresní a korelační analýza Mějme dvojici proměnných, které spolu nějak souvisí. x je nezávisle (vysvětlující) proměnná y je závisle (vysvětlovaná) proměnná Chceme zjistit funkční závislost y = f(x).
Úvodem Dříve les než stromy 3 Operace s maticemi
Obsah 1 Úvodem 13 2 Dříve les než stromy 17 2.1 Nejednoznačnost terminologie 17 2.2 Volba metody analýzy dat 23 2.3 Přehled vybraných vícerozměrných metod 25 2.3.1 Metoda hlavních komponent 26 2.3.2 Faktorová
Bodové a intervalové odhady parametrů v regresním modelu
Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Lineární regresní model Mějme lineární regresní model (LRM) Y = Xβ + e, kde y 1 e 1 β y 2 Y =., e
Cvičící Kuba Kubina Kubinčák Body u závěrečného testu
1. Příklad U 12 studentů jsme sledovali počet dosažených bodů na závěrečném testu (od 0 do 60). Vždy 4 z těchto studentů chodili k jednomu ze 3 cvičících panu Kubovi, panu Kubinovi, nebo panu Kubinčákovi.
4EK211 Základy ekonometrie
4EK211 Základy ekonometrie ZS 2015/16 Cvičení 7: Časově řady, autokorelace LENKA FIŘTOVÁ KATEDRA EKONOMETRIE, FAKULTA INFORMATIKY A STATISTIKY VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE 1. Časové řady Data: HDP.wf1
PRAVDĚPODOBNOST A STATISTIKA
PRAVDĚPODOBNOST A STATISTIKA Definice lineárního normálního regresního modelu Lineární normální regresní model Y β ε Matice n,k je matice realizací. Předpoklad: n > k, h() k - tj. matice je plné hodnosti
5EN306 Aplikované kvantitativní metody I
5EN306 Aplikované kvantitativní metody I Přednáška 5 Zuzana Dlouhá Předmět a struktura kurzu 1. Úvod: struktura empirických výzkumů 2. Tvorba ekonomických modelů: teorie 3. Data: zdroje a typy dat, význam
Kontingenční tabulky, korelační koeficienty
Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Mějme kategoriální proměnné X a Y. Vytvoříme tzv. kontingenční tabulku. Budeme tedy testovat hypotézu
EKONOMETRIE 7. přednáška Fáze ekonometrické analýzy
EKONOMETRIE 7. přednáška Fáze ekonometrické analýzy Ekonometrická analýza proces, skládající se z následujících fází: a) specifikace b) kvantifikace c) verifikace d) aplikace Postupné zpřesňování jednotlivých
Regresní a korelační analýza
Regresní a korelační analýza Mějme dvojici proměnných, které spolu nějak souvisí. x je nezávisle (vysvětlující) proměnná y je závisle (vysvětlovaná) proměnná Chceme zjistit funkční závislost y = f(x).
Mannův-Whitneyův(Wilcoxonův) test pořadová obdoba dvouvýběrového t-testu. Statistika (MD360P03Z, MD360P03U) ak. rok 2007/2008
Statistika (MD30P03Z, MD30P03U) ak. rok 007/008 Karel Zvára karel.zvara@mff.cuni.cz http://www.karlin.mff.cuni.cz/ zvara (naposledy upraveno. listopadu 007) 1(4) Mann-Whitney párový Wilcoxon párový znaménkový
4EK211 Základy ekonometrie
4EK211 Základy ekonometrie ZS 2014/15 Cvičení 5: Vícenásobná regrese, multikolinearita LENKA FIŘTOVÁ KATEDRA EKONOMETRIE, FAKULTA INFORMATIKY A STATISTIKY VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE 1. Jednoduchá
You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com)
Závislost náhodných veličin Úvod Předchozí přednášky: - statistické charakteristiky jednoho výběrového nebo základního souboru - vztahy mezi výběrovým a základním souborem - vztahy statistických charakteristik
KGG/STG Statistika pro geografy
KGG/STG Statistika pro geografy 9. Korelační analýza Mgr. David Fiedor 20. dubna 2015 Analýza závislostí v řadě geografických disciplín studujeme jevy, u kterých vyšetřujeme nikoliv pouze jednu vlastnost
Závislost obsahu lipoproteinu v krevním séru na třech faktorech ( Lineární regresní modely )
Úloha M608 Závislost obsahu lipoproteinu v krevním séru na třech faktorech ( Lineární regresní modely ) Zadání : Při kvantitativní analýze lidského krevního séra ovlivňují hodnotu obsahu vysokohustotního
4EK211 Základy ekonometrie
4EK11 Základy ekonometrie Autokorelace Cvičení 5 Zuzana Dlouhá Gauss-Markovy předpoklady Náhodná složka: Gauss-Markovy předpoklady 1. E(u) = náhodné vlivy se vzájemně vynulují. E(uu T ) = σ I n konečný
Sever Jih Západ Plechovka Točené Sever Jih Západ Součty Plechovka Točené Součty
Neparametrické testy (motto: Hypotézy jsou lešením, které se staví před budovu a pak se strhává, je-li budova postavena. Jsou nutné pro vědeckou práci, avšak skutečný vědec nepokládá hypotézy za předmětnou
4EK211 Základy ekonometrie
4EK Základy ekonometrie Odhad klasického lineárního regresního modelu II Cvičení 3 Zuzana Dlouhá Klasický lineární regresní model - zadání příkladu Soubor: CV3_PR.xls Data: y = maloobchodní obrat potřeb
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická
STATISTIKA A INFORMATIKA - bc studium OZW, 1.roč. (zkušební otázky)
STATISTIKA A INFORMATIKA - bc studium OZW, 1.roč. (zkušební otázky) 1) Význam a využití statistiky v biologických vědách a veterinárním lékařství ) Rozdělení znaků (veličin) ve statistice 3) Základní a
Kontingenční tabulky, korelační koeficienty
Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel 973 442029 email:jirineubauer@unobcz Budeme předpokládat, že X a Y jsou kvalitativní náhodné veličiny, obor hodnot X obsahuje r hodnot (kategorií,
Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1
Logistická regrese Menu: QCExpert Regrese Logistická Modul Logistická regrese umožňuje analýzu dat, kdy odezva je binární, nebo frekvenční veličina vyjádřená hodnotami 0 nebo 1, případně poměry v intervalu
LINEÁRNÍ REGRESE Komentované řešení pomocí programu Statistica
LINEÁRNÍ REGRESE Komentované řešení pomocí programu Statistica Vstupní data Data umístěná v excelovském souboru překopírujeme do tabulky ve Statistice a pojmenujeme proměnné, viz prezentace k tématu Popisná
10. Předpovídání - aplikace regresní úlohy
10. Předpovídání - aplikace regresní úlohy Regresní úloha (analýza) je označení pro statistickou metodu, pomocí nichž odhadujeme hodnotu náhodné veličiny (tzv. závislé proměnné, cílové proměnné, regresandu
Statistika. Regresní a korelační analýza Úvod do problému. Roman Biskup
Statistika Regresní a korelační analýza Úvod do problému Roman Biskup Jihočeská univerzita v Českých Budějovicích Ekonomická fakulta (Zemědělská fakulta) Katedra aplikované matematiky a informatiky 2008/2009
31. 3. 2014, Brno Hanuš Vavrčík Základy statistiky ve vědě
31. 3. 2014, Brno Hanuš Vavrčík Základy statistiky ve vědě Motto Statistika nuda je, má však cenné údaje. strana 3 Statistické charakteristiky Charakteristiky polohy jsou kolem ní seskupeny ostatní hodnoty
Název testu Předpoklady testu Testová statistika Nulové rozdělení. ( ) (p počet odhadovaných parametrů)
VYBRANÉ TESTY NEPARAMETRICKÝCH HYPOTÉZ TESTY DOBRÉ SHODY Název testu Předpoklady testu Testová statistika Nulové rozdělení test dobré shody Očekávané četnosti, alespoň 80% očekávaných četností >5 ( ) (p
Regrese. používáme tehdy, jestliže je vysvětlující proměnná kontinuální pokud je kategoriální, jde o ANOVA
Regrese používáme tehd, jestliže je vsvětlující proměnná kontinuální pokud je kategoriální, jde o ANOVA Specifikace modelu = a + bx a závisle proměnná b x vsvětlující proměnná Cíl analýz Odhadnout hodnot
VŠB Technická univerzita Ostrava Fakulta elektrotechniky a informatiky
VŠB Technická univerzita Ostrava Fakulta elektrotechniky a informatiky PRAVDĚPODOBNOST A STATISTIKA Zadání 1 JMÉNO STUDENTKY/STUDENTA: OSOBNÍ ČÍSLO: JMÉNO CVIČÍCÍ/CVIČÍCÍHO: DATUM ODEVZDÁNÍ DOMÁCÍ ÚKOL
4EK211 Základy ekonometrie
4EK211 Základy ekonometrie LS 2014/15 Cvičení 7: Autokorelace LENKA FIŘTOVÁ KATEDRA EKONOMETRIE, FAKULTA INFORMATIKY A STATISTIKY VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE 1. Autokorelace - teorie Zopakujte si G-M
Náhodné veličiny jsou nekorelované, neexistuje mezi nimi korelační vztah. Když jsou X; Y nekorelované, nemusí být nezávislé.
1. Korelační analýza V životě většinou nesledujeme pouze jeden statistický znak. Sledujeme více statistických znaků zároveň. Kromě vlastností statistických znaků nás zajímá také jejich těsnost (velikost,
Korelace. Komentované řešení pomocí MS Excel
Korelace Komentované řešení pomocí MS Excel Vstupní data Tabulka se vstupními daty je umístěna v oblasti A2:B84 (viz. obrázek) Prvotní představu o tvaru a síle závislosti docházky a počtu bodů nám poskytne
MATEMATIKA III V PŘÍKLADECH
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ MATEMATIKA III V PŘÍKLADECH Cvičení 10 Mgr. Petr Otipka Ostrava 01 Mgr. Petr Otipka Vysoká škola báňská Technická univerzita Ostrava ISBN
VŠB Technická univerzita Ostrava Fakulta elektrotechniky a informatiky SMAD
VŠB Technická univerzita Ostrava Fakulta elektrotechniky a informatiky JMÉNO STUDENTKY/STUDENTA: OSOBNÍ ČÍSLO: JMÉNO CVIČÍCÍ/CVIČÍCÍHO: SMAD Cvičení Ostrava, AR 2016/2017 Popis datového souboru Pro dlouhodobý
PRAVDĚPODOBNOST A STATISTIKA
PRAVDĚPODOBNOST A STATISTIKA Definice lineárního normálního regresního modelu Lineární normální regresní model Y Xβ ε Předpoklady: Matice X X n,k je matice realizací. Předpoklad: n > k, h(x) k - tj. matice
Porovnání dvou výběrů
Porovnání dvou výběrů Menu: QCExpert Porovnání dvou výběrů Tento modul je určen pro podrobnou analýzu dvou datových souborů (výběrů). Modul poskytuje dva postupy analýzy: porovnání dvou nezávislých výběrů
{ } ( 2) Příklad: Test nezávislosti kategoriálních znaků
Příklad: Test nezávislosti kategoriálních znaků Určete na hladině významnosti 5 % na základě dat zjištěných v rámci dotazníkového šetření ve Šluknově, zda existuje závislost mezi pohlavím respondenta a
4EK211 Základy ekonometrie
4EK211 Základy ekonometrie Predikce Multikolinearita Cvičení 4 Zuzana Dlouhá Aplikace EM predikce obecně ekonomické prognózování, předpověď, předvídání hlavním cílem je odhad hodnot vysvětlované proměnné
Tomáš Karel LS 2012/2013
Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není
KORELACE. Komentované řešení pomocí programu Statistica
KORELACE Komentované řešení pomocí programu Statistica Vstupní data I Data umístěná v excelovském souboru překopírujeme do tabulky ve Statistice a pojmenujeme proměnné, viz prezentace k tématu Popisná
4EK211 Základy ekonometrie
4EK211 Základy ekonometrie Predikce Multikolinearita Cvičení 4 Zuzana Dlouhá Aplikace EM predikce obecně ekonomické prognózování, předpověď, předvídání hlavním cílem je odhad hodnot vysvětlované proměnné
6. Lineární regresní modely
6. Lineární regresní modely 6.1 Jednoduchá regrese a validace 6.2 Testy hypotéz v lineární regresi 6.3 Kritika dat v regresním tripletu 6.4 Multikolinearita a polynomy 6.5 Kritika modelu v regresním tripletu
Grafický a číselný popis rozložení dat 3.1 Způsoby zobrazení dat Metody zobrazení kvalitativních a ordinálních dat Metody zobrazení kvan
1 Úvod 1.1 Empirický výzkum a jeho etapy 1.2 Význam teorie pro výzkum 1.2.1 Konstrukty a jejich operacionalizace 1.2.2 Role teorie ve výzkumu 1.2.3 Proces ověření hypotéz a teorií 1.3 Etika vědecké práce
Úloha 1: Lineární kalibrace
Úloha 1: Lineární kalibrace U pacientů s podezřením na rakovinu prostaty byl metodou GC/MS měřen obsah sarkosinu v moči. Pro kvantitativní stanovení bylo nutné změřit řadu kalibračních roztoků o různé
Zápočtová práce STATISTIKA I
Zápočtová práce STATISTIKA I Obsah: - úvodní stránka - charakteristika dat (původ dat, důvod zpracování,...) - výpis naměřených hodnot (v tabulce) - zpracování dat (buď bodové nebo intervalové, podle charakteru
VYBRANÉ DVOUVÝBĚROVÉ TESTY. Martina Litschmannová
VYBRANÉ DVOUVÝBĚROVÉ TESTY Martina Litschmannová Obsah přednášky Vybrané dvouvýběrové testy par. hypotéz test o shodě rozptylů (F-test), testy o shodě středních hodnot (t-test, Aspinové-Welchův test),
KGG/STG Statistika pro geografy
KGG/STG Statistika pro geografy 10. Mgr. David Fiedor 27. dubna 2015 Nelineární závislost - korelační poměr užití v případě, kdy regresní čára není přímka, ale je vyjádřena složitější matematickou funkcí
Příloha č. 1 Grafy a protokoly výstupy z adstatu
1 Příklad 3. Stanovení Si metodou OES Byly porovnávány naměřené hodnoty Si na automatickém analyzátoru OES s atestovanými hodnotami. Na základě testování statistické významnosti regresních parametrů (úseku
Parametry hledáme tak, aby součet čtverců odchylek byl minimální. Řešením podle teorie je =
Příklad 1 Metodou nejmenších čtverců nalezněte odhad lineární regresní funkce popisující závislost mezi výnosy pšenice a množstvím použitého hnojiva na základě hodnot výběrového souboru uvedeného v tabulce.
Statistika (KMI/PSTAT)
Statistika (KMI/PSTAT) Cvičení dvanácté aneb Regrese a korelace Statistika (KMI/PSTAT) 1 / 18 V souboru 25 jedinců jsme měřili jejich výšku a hmotnost. Výsledky jsou v tabulce a grafu. Statistika (KMI/PSTAT)
Statistická analýza jednorozměrných dat
Statistická analýza jednorozměrných dat Prof. RNDr. Milan Meloun, DrSc. Univerzita Pardubice, Pardubice 31.ledna 2011 Tato prezentace je spolufinancována Evropským sociálním fondem a státním rozpočtem
Testování hypotéz a měření asociace mezi proměnnými
Testování hypotéz a měření asociace mezi proměnnými Testování hypotéz Nulová a alternativní hypotéza většina statistických analýz zahrnuje různá porovnání, hledání vztahů, efektů Tvrzení, že efekt je nulový,
AVDAT Klasický lineární model, metoda nejmenších
AVDAT Klasický lineární model, metoda nejmenších čtverců Josef Tvrdík Katedra informatiky Přírodovědecká fakulta Ostravská univerzita Lineární model y i = β 0 + β 1 x i1 + + β k x ik + ε i (1) kde y i
18AEK Aplikovaná ekonometrie a teorie časových řad. Řešení domácích úkolů č. 1 a 2 příklad 1
18AEK Aplikovaná ekonometrie a teorie časových řad Řešení domácích úkolů č. 1 a 2 příklad 1 Obecné pravidlo pro všechny testy Je stanovena nulová hypotéza: H 0 Je stanovena alternativní hypotéza: H A Je
Základy biostatistiky II. Veřejné zdravotnictví 3.LF UK - II
Základy biostatistiky II Veřejné zdravotnictví 3.LF UK - II Teoretické rozložení-matematické modely rozložení Naměřená data Výběrové rozložení Teoretické rozložení 1 e 2 x 2 Teoretické rozložení-matematické
6. Lineární regresní modely
6. Lineární regresní modely 6.1 Jednoduchá regrese a validace 6.2 Testy hypotéz v lineární regresi 6.3 Kritika dat v regresním tripletu 6.4 Multikolinearita a polynomy 6.5 Kritika modelu v regresním tripletu
Dynamické metody pro predikci rizika
Dynamické metody pro predikci rizika 1 Úvod do analýzy časových řad Časová řada konečná posloupnost reálných hodnot určitého sledovaného ukazatele měřeného v určitých časových intervalech okamžikové např
Bodové a intervalové odhady parametrů v regresním modelu
Bodové a intervalové odhady parametrů v regresním modelu 1 Odhady parametrů 11 Bodové odhady Mějme lineární regresní model (LRM) kde Y = y 1 y 2 y n, e = e 1 e 2 e n Y = Xβ + e, x 11 x 1k, X =, β = x n1
Matematické modelování Náhled do ekonometrie. Lukáš Frýd
Matematické modelování Náhled do ekonometrie Lukáš Frýd Výnos akcie vs. Výnos celého trhu - CAPM model r it = r ft + β 1. (r mt r ft ) r it r ft = α 0 + β 1. (r mt r ft ) + ε it Ekonomický (finanční model)
Regresní a korelační analýza
Přednáška STATISTIKA II - EKONOMETRIE Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Regresní analýza Cíl regresní analýzy: stanovení formy (trendu, tvaru, průběhu)
Stanovení manganu a míry přesnosti kalibrace ( Lineární kalibrace )
Příklad č. 1 Stanovení manganu a míry přesnosti kalibrace ( Lineární kalibrace ) Zadání : Stanovení manganu ve vodách se provádí oxidací jodistanem v kyselém prostředí až na manganistan. (1) Sestrojte
Téma 9: Vícenásobná regrese
Téma 9: Vícenásobná regrese 1) Vytvoření modelu V menu Statistika zvolíme nabídku Vícerozměrná regrese. Aktivujeme kartu Detailní nastavení viz obr.1. Nastavíme Proměnné tak, že v příslušném okně viz.
Aplikovaná statistika v R - cvičení 2
Aplikovaná statistika v R - cvičení 2 Filip Děchtěrenko Matematicko-fyzikální fakulta filip.dechterenko@gmail.com 5.6.2014 Filip Děchtěrenko (MFF UK) Aplikovaná statistika v R 5.6.2014 1 / 18 Přehled Rkových
UNIVERZITA PARDUBICE FAKULTA CHEMICKO-TECHNOLOGICKÁ
UNIVERZITA PARDUBICE FAKULTA CHEMICKO-TECHNOLOGICKÁ SEMESTRÁLNÍ PRÁCE Kalibrace a limity její přesnosti Precheza a.s. Přerov 2005 Ing. Miroslav Štrajt 1. Zadání Úloha 1. Lineární kalibrace: u přímkové
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 2010 1.týden (20.09.-24.09. ) Data, typy dat, variabilita, frekvenční analýza
9. cvičení 4ST201. Obsah: Jednoduchá lineární regrese Vícenásobná lineární regrese Korelační analýza. Jednoduchá lineární regrese
cvčící 9. cvčení 4ST01 Obsah: Jednoduchá lneární regrese Vícenásobná lneární regrese Korelační analýza Vysoká škola ekonomcká 1 Jednoduchá lneární regrese Regresní analýza je statstcká metoda pro modelování
UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11.
UNIVERZITA OBRANY Fakulta ekonomiky a managementu Aplikace STAT1 Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 Jiří Neubauer, Marek Sedlačík, Oldřich Kříž 3. 11. 2012 Popis a návod k použití aplikace
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 010 1.týden (0.09.-4.09. ) Data, typy dat, variabilita, frekvenční analýza
t-test, Studentův párový test Ing. Michael Rost, Ph.D.
Testování hypotéz: dvouvýběrový t-test, Studentův párový test Ing. Michael Rost, Ph.D. Úvod do problému... Již známe jednovýběrový t-test, při kterém jsme měli k dispozici pouze jeden výběr. Můžeme se
12. cvičení z PST. 20. prosince 2017
1 cvičení z PST 0 prosince 017 11 test rozptylu normálního rozdělení Do laboratoře bylo odesláno n = 5 stejných vzorků krve ke stanovení obsahu alkoholu X v promilích alkoholu Výsledkem byla realizace
Korelační a regresní analýza. 1. Pearsonův korelační koeficient 2. jednoduchá regresní analýza 3. vícenásobná regresní analýza
Korelační a regresní analýza 1. Pearsonův korelační koeficient 2. jednoduchá regresní analýza 3. vícenásobná regresní analýza Pearsonův korelační koeficient u intervalových a poměrových dat můžeme jako
Testování hypotéz. Analýza dat z dotazníkových šetření. Kuranova Pavlina
Testování hypotéz Analýza dat z dotazníkových šetření Kuranova Pavlina Statistická hypotéza Možné cíle výzkumu Srovnání účinnosti různých metod Srovnání výsledků různých skupin Tzn. prokázání rozdílů mezi
4EK211 Základy ekonometrie
4EK211 Základy ekonometrie ZS 2015/16 Cvičení 6: Multikolinearita, umělé proměnné LENKA FIŘTOVÁ KATEDRA EKONOMETRIE, FAKULTA INFORMATIKY A STATISTIKY VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE Otevřete si data z
Charakteristika datového souboru
Zápočtová práce z předmětu Statistika Vypracoval: 10. 11. 2014 Charakteristika datového souboru Zadání: Při kontrole dodržování hygienických norem v kuchyni se prováděl odběr vzduchu a pomocí filtru Pallflex
6. Lineární regresní modely
6. Lineární regresní modely 6.1 Jednoduchá regrese a validace 6.2 Testy hypotéz v lineární regresi 6.3 Kritika dat v regresním tripletu 6.4 Multikolinearita a polynomy 6.5 Kritika modelu v regresním tripletu