Techniky simulace tekutin

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Techniky simulace tekutin"

Transkript

1 MASARYKOVA UNIVERZITA FAKULTA INFORMATIKY Techniky simulace tekutin BAKALÁŘSKÁ PRÁCE Karel Motlík Brno, podzim 2014

2 Prohlášení Prohlašuji, že tato bakalářská práce je mým původním autorským dílem, které jsem vypracoval samostatně. Všechny zdroje, prameny a literaturu, které jsem při vypracování používal nebo z nich čerpal, v práci řádně cituji s uvedením úplného odkazu na příslušný zdroj. Karel Motlík Vedoucí práce: doc. Ing. Jiří Sochor, CSc. i

3 Shrnutí V bakalářské práci se zabývám simulací tekutin ve virtuálním prostředí. Popisuji metody výpočtu dynamiky tekutin a možnosti dostupných technologií pro její simulaci. Zaměřuji se na fyzikální engine NVIDIA PhysX, který k simulaci využívá částicový systém a metodu zvanou Smoothed Particle Hydrodynamics. Pomocí tohoto enginu jsem vytvořil ukázkovou aplikaci demonstrující interakci kapaliny a kouře s okolním prostředím. ii

4 Klíčová slova fyzikální simulace, simulace tekutin, dynamika tekutin, fyzikální engine, NVIDIA PhysX, částicový systém, Smoothed Particle Hydrodynamics iii

5 Poděkování Rád bych poděkoval Mgr. Jiřímu Chmelíkovi, Ph.D. za pomoc při výběru tématu práce, Mgr. Janu Juráňovi za poskytnutí informací ohledně enginu PhysX a vykreslování kapalin a doc. Ing. Jiřímu Sochorovi, CSc. za odborné vedení a cenné rady při psaní bakalářské práce. iv

6 Obsah Úvod Fyzikální simulace ve virtuálním prostředí Simulace tekutin Vizuální jevy tekutin Prostředky pro fyzikální simulace Fyzikální engine Přehled dostupných real-time fyzikálních enginů Částicové systémy Emitor částic Teoretické základy simulace tekutin Rovnice chování tekutiny Metody výpočtu simulace tekutiny Lagrangeho metoda Eulerova metoda Smoothed particle hydrodynamics (SPH) Výpočet SPH NVIDIA PhysX PhysX SDK Vlastnosti PhysX SDK Materiály Parametry částicového systému Postup při simulace tekutin Simulování tekutin pomocí NVIDIA PhysX Simulace kapaliny Emitor kapaliny Vizualizace kapaliny Tvorba povrchu kapaliny Funkcionalita v demonstrační aplikaci Simulace kouře Emitory kouře Vizualizace kouře Funkcionalita v demonstrační aplikaci Závěr Literatura Přílohy v

7 Úvod Základní kameny výpočtů dynamiky tekutin (Computational Fluid Dynamics, CFD) položili Claude Navier kolem roku 1821 a George Stokes kolem roku 1845, když nezávisle na sobě formulovali rovnici popisující dynamiku tekutin (rovnice je známá jako Navier- Stokesova, dále ji zmiňuji v druhé kapitole). Jakmile se objevila možnost numerických výpočtů na počítačích, začaly se rozvíjet speciální techniky pro simulaci tekutin. V roce 1983 představil T. Reeves koncept částicového systému jako techniku pro modelování objektů těžko popsatelných, nebo příliš členitých. Od té doby jsou tekutiny simulovány dvěma způsoby (Lagrangeho a Eulerovým), které v textu vysvětluji a pro simulaci využívám. Cílem práce bylo prostudovat oblast simulace tekutin, zvláště pak jejich řešení s využitím existujících technologií (NVIDIA PhysX, Bullet, Havok), popsat metody a jejich principy a vytvořit ukázkovou aplikaci demonstrující využití tohoto přístupu ve virtuálním prostředí. V první části popisuji důvody, proč je oblast fyzikálních simulací resp. simulace tekutin v počítačové grafice důležitá a jakými prostředky dosahujeme požadovaných výsledků. Uvádím charakteristiky dostupných technologií a jejich možnosti pro simulaci tekutin. Další část je shrnutím teoretických základů pro simulaci. Popisuji zde vlastnosti tekutin, rovnici jejich pohybu a výpočetní metody pro simulaci. V práci se zaměřuji na Lagrangeho přístup k problematice, s nímž pracuji ve čtvrté kapitole. Třetí část se zabývá popisem fyzikálního enginu NVIDIA PhysX, který jsem si zvolil jako nástroj pro vývoj demonstrační aplikace. Zmiňuji vývojové prostředí a použité nástroje, dále pak způsob, jakým se s PhysX SDK pracuje, a zaměřuji se především na možnosti simulace tekutin pomocí integrovaného částicového systému. V poslední části píši o vývoji a funkcionalitě demonstrační aplikace. Vysvětluji použité metody, které souvisí se simulací tekutin, a okrajově se dotýkám způsobu jejich vizualizace. 1

8 Kapitola 1 Fyzikální simulace ve virtuálním prostředí Cílem virtuálního prostředí [1] (virtuální reality) je vyvolat v uživateli dojem, že se nachází a pohybuje v umělém světě. Toto prostředí je nejčastěji vytvořeno počítačem a působením na lidské smysly dociluje u uživatele co možná nejautentičtějšího zážitku jakoby na virtuálním místě doopravdy byl. Této iluze se dosahuje pomocí speciálních zařízení (stereoskopická helma, haptické rukavice), nejčastěji je ale ovlivňován zrak a sluch, k čemuž stačí obrazovka počítače a reproduktory. Důležitým aspektem věrohodnosti virtuálního prostředí je přirozené chování jednotlivých součástí systému. To znamená, že by měly být v souladu fyzikální zákonitosti (např. gravitace), na které jsme z reality zvyklí. Nevyžadujeme ovšem přesnou fyzikální simulaci, nýbrž stačí přiblížení se reálnému chování a to z důvodu omezené výpočetní rychlosti. Je totiž nutné, aby vykreslování scény a interakce s uživatelem probíhala zároveň a nedocházelo k velké časové prodlevě. 1.1 Simulace tekutin Tekutiny nás obklopují a hrají důležitou roli v každodenním životě. Přirozeně bychom s jevy jako je vítr, déšť, loď houpající se na vlnách oceánu, plnění sklenice vodou, plápolající oheň, stoupající kouř atd. rádi přicházeli do styku i ve virtuálním prostředí. Realisticky animované tekutiny totiž umí výrazně podpořit autentičnost interaktivních aplikací, zvláště pak v oblasti počítačových her, kde nelpíme na velké přesnosti simulace. Tyto úkazy známé ze skutečného světa jsou pro nás běžné, ale při jejich komplexnosti je simulace tekutin velmi náročná. 2

9 1. Fyzikální simulace ve virtuálním prostředí Ačkoli jsou výpočty dynamiky tekutin oblastí výzkumu s dlouhou historií, stále zůstává velké množství nevyřešených problémů. Důvodem složitosti chování tekutin je celková souhra rozličných jevů, jako je proudění, rozptyl, turbulence a povrchové napětí [2] Vizuální jevy tekutin Všechny jevy, ve kterých hrají roli tekutiny, mají společný znak a tím je proudění částic. Se simulací kapalin souvisí i simulování kouře či ohně, kde se částice pohybují daným způsobem ve vzduchu (proudění částic v plynu). Voda Nejčastěji simulovaná kapalina je voda vytvářející velkou množinu jevů, které chceme přenést do virtuálního prostředí. Šplouchání, cákání, vlnění, zrcadlení okolního prostředí od hladiny, kaustika 1 a interakce s okolím, jako je např. plavání lehkých předmětu na hladině nebo změna barvy povrchu objektu vlivem vlhkosti. Pro všechny tyto jevy má smysl se zabývat prouděním částic v tekutině, aby jejich simulace vypadala přirozeně. Kouř Na kouř může být nahlíženo buď jako na zplodinu hoření, kdy se zbytkové částice uvolňují do vzduchu, nebo obecně jako na viditelný plyn, jehož částice se ve vzduchu rozptylují do všech směrů. V průběhu rozptylování klesá koncentrace kouře a my vidíme, jak postupně mizí. Jeho chování se liší v závislosti na teplotě a hmotnosti částic. Kouř ohně má ve vzduchu tendenci stoupat směrem vzhůru, kdežto např. při sublimaci suchého ledu za pokojové teploty se pohybuje směrem dolů. 1 Známý optický jev, ke kterému dochází při zakřivení paprsků světla procházejících kapalinou. Jedná se o jasnou oblast světla, která vzniká ve stínu kapaliny (např. na dně bazénu nebo za sklenicí osvícenou sluncem). 3

10 1. Fyzikální simulace ve virtuálním prostředí Oheň Při vysokých teplotách dochází k jevu zvanému oheň. Je charakterizován plameny, jež jsou zdrojem světla a tepla. Jedná se o plynové oblasti, které v příznivých podmínkách (přítomnost paliva, přístup kyslíku) hoří. Na rozdíl od kouře, u něhož se částice rozptylují do všech stran, částice hoření se sbíhají k místu s vyšší teplotou, což má za následek kuželovitý tvar plamenu (hořící svíčka), a s postupným ochlazováním částice zcela mizí, resp. přecházejí v kouř. 1.2 Prostředky pro fyzikální simulace Fyzikální engine Počítačové nástroje pro simulaci fyziky, také nazývané jako fyzikální enginy, v dnešní době dokáží napodobovat chování pevných předmětů (rigid body dynamics), jejich deformace, destrukce a detekci kolizí. Dále chování tkanin oblečení, vlajek a provazů (soft body dynamics) a dokáží napodobovat i kouř, plameny a kapaliny (obecně dynamiku tekutin 2, fluid dynamics). Hlavní využití fyzikálních enginů je v oblasti počítačových her resp. při vědeckých simulacích. Nástroje jsou dvojího typu: real-time (simulace v reálném čase) high-precision (simulace s vysokou přesností) Kvůli zmíněným požadavkům na rychlost interakce virtuálního prostředí s uživatelem se budu zabývat pouze real-time fyzikálními enginy. 2 Ve fyzice je dynamika tekutin poddisciplínou mechaniky tekutin, která se zabývá pohybem (tokem) kapalin a plynů. 4

11 1. Fyzikální simulace ve virtuálním prostředí Real-time engine Real-time fyzikální enginy jsou nejčastěji používány v interaktivních aplikacích (především počítačových hrách), kde k výpočtu simulace dochází v průběhu animace. Jelikož je u tohoto typu systému mnohem důležitější rychlost, spokojíme se s aproximovaným výpočtem, kdy nám zkreslení nevadí, dokud výsledek vypadá přirozeně. High-precision engine High-precision fyzikální enginy se využívají především pro vědecké a průmyslové simulace, např. při testech hydrodynamiky a aerodynamiky. Dále mají enginy využití ve filmovém průmyslu pro tvorbu speciálních efektů a animovaných filmů. Pro všechny tyto účely je potřeba vyšší výpočetní rychlost a usiluje se o maximální přesnost, nehledě na délku času pro výpočet, neboť i malé odchylky můžou drasticky ovlivnit předpovídaný výsledek Přehled dostupných real-time fyzikálních enginů Havok Bullet Physics Library NVIDIA PhysX Open Dynamic Engine (ODE) Vortex Havok Jedním z nejrychlejších a nejrobustnějších enginů je Havok, který poskytuje především kompletní řešení herní fyziky a to pro všechny herní platformy (Microsoft Windows, Microsoft Xbox, Sony Playstation, Nintendo Wii atd.). Je složen z několika modulů, které umožňují simulovat kolize objektů, dynamiku pevných těles, dynamiku tkanin, destrukce a deformace objektů [3]. Dále také nabízí pluginy 3 pro 3D animační software (Maya, 3D Studio Max). 3 nástroje rozšiřující funkcionalitu 5

12 1. Fyzikální simulace ve virtuálním prostředí Co se týče možností pro simulaci tekutin, nabízí pouze standardní částicový systém, což znamená, že dynamiku tekutin by při využití tohoto enginu bylo potřeba doimplementovat. Bullet Physics Library Konkurujícím enginem je Bullet, který nabízí stejné možnosti při fyzikálních simulacích jako Havok, nicméně více než pro počítačové hry se využívá právě jako plugin (např. pro Blender nebo Cinema 4D) a při tvorbě speciálních efektů ve filmech (Hancock, Shrek 4, Sherlock Holmes a další). Pro real-time simulaci tekutin se Bullet, stejně jako Havok, nehodí. NVIDIA PhysX PhysX je škálovatelný fyzikální engine podporující široké spektrum zařízení, od smartphonů po high-end vícejádrové procesory a grafické karty. Poskytuje v reálném čase detekci kolizí a simulace pevných těles, tkanin, tekutin, částicových systémů a také pohyb lidské postavy či vozidla [4]. Pomocí speciálního částicového systému dokáže PhysX simulovat chování tekutin bez potřeby přidávat jakoukoli funkcionalitu. Proto se dále v práci budu zabývat podrobněji právě tímto enginem Částicové systémy Silnou modelovací a zobrazovací technikou jsou systémy částic (particle systems), které se používají zejména k modelování objektů, jejichž tvar je natolik členitý, nebo se mění takovým způsobem, že ho není možno reprezentovat jako povrch. Takovými objekty jsou hejna ptáků či ryb, padající sníh, déšť, oheň, mlha, dým, tráva, les atp." [1] 6

13 1. Fyzikální simulace ve virtuálním prostředí Částicový systém P je uskupení konečného počtu k částic, které jsou během svého života (tedy po dobu od vytvoření po jejich odstranění) popsány několika parametry. Každá částice má svůj index j z intervalu [0; k - 1] a nese informaci o své poloze v prostoru x j, o své rychlosti u j a případně o dalších vlastnostech, jako je např. délka života, barva či velikost. Při užití částicového systému dosahujeme požadovaného vizuálního výsledku definováním pohybu charakteristického pro určitý druh objektu a vykreslením konkrétního objektu resp. textury na pozici jednotlivých částic. Např. pro padající sníh stačí napodobit poletování vloček ve vzduchu a na pozici částic vykreslovat texturu vloček nebo jen bílé body. V některých případech je ale potřeba počítat i s interakcí mezi jednotlivými částicemi. Vzájemné narážení sněhových vloček nás tolik netrápí, jako spíš kouř nebo kapalina, u kterých očekáváme, že mezi sebou budou částice interagovat podle aerodynamických popř. hydrodynamických zákonů Emitor částic Emitor je ve virtuálním prostředí speciální typ objektu, který produkuje částice. Typickými vlastnostmi emitoru jsou rychlost produkování částic (kolik částic je vytvořeno za jednotku času), výchozí rychlostní vektor (udává směr pohybu částic po jejich vytvoření), délka života (po jaké době dojde k propuštění částice ze scény), objem (velikost oblasti, ve které se budou částice tvořit) a další. Představit si můžeme např. jiskry odlétávající z jednoho místa do všech směrů nebo sopku, ze které stoupá dým. 7

14 Kapitola 2 Teoretické základy simulace tekutin Tekutina je z fyzikálního hlediska látka, která se neustále deformuje (teče) pod vlivem smykového (tečného) napětí a nedokáže udržet svůj stálý tvar. Zahrnuje kapaliny, plyny a do jisté míry i pevná tělesa z materiálu, který se může roztékat (plast, sklo atd.) resp. sypké látky (např. písek) taktéž splňující podmínku tekutosti. Viskozita Speciální vlastností tekutin je viskozita, což je veličina charakterizující vnitřní tření a závisí především na přitažlivých silách mezi částicemi. Tato vlastnost se projevuje pouze tehdy, pokud není tekutina v klidu. Tekutiny s větší přitažlivou silou mají větší viskozitu, tedy větší brzdění pohybu samotné tekutiny nebo těles v tekutině [5]. Např. med je více viskózní než voda. 2.1 Rovnice chování tekutiny Ve většině případů je tok částic tekutiny řízen tzv. nestlačitelnou Navier Stokesovou rovnicí (soustava parciálních diferenciálních rovnic). Rovnice je obyčejně zapsána jako [6]: u t + u u + 1 p = g + v u, ρ u = 0. (2.1) (2.2) Kde je operátor gradientu 4, je diferenciální operátor divergence a je Laplaceův operátor, který je definovaný jako divergence gradientu daného skalárního pole. Výsledkem divergence je funkce popisující rychlost růstu. Je-li např. zkoumaným polem gradient teploty (vektory udávají rychlost vedení tepla), potom kladná divergence v daném bodě znamená, že v tomto bodě vzniká teplo, záporná naopak, že v daném místě teplo zaniká [7]. 4 Gradient znamená obecně směr růstu. 8

15 2. Teoretické základy simulace tekutin Popis proměnných: u... rychlost proudění tekutiny ρ... hustota tekutiny (pro vodu přibližně kg/m 3, pro vzduch přibližně 1.3 kg/m 3 ) p... tlak (síla plošné jednotky, která působí na okolí) g... gravitační zrychlení (obyčejně (0.0, -9.81, 0.0) m/s 2, za předpokladu, že osa Y směřuje vertikálně nahoru) v... kinematická viskozita První diferenciální rovnice (2.1) se nazývá rovnice hybnosti a charakterizuje chování tekutiny při působení gravitace bez dalšího omezení. Pro interakci s okolním prostředím (chceme např. tekutinou naplnit sklenici nebo do klidné tekutiny vhodit pevný předmět) je třeba přidat vnější silové působení (viz Obrázek 2.1). Obrázek 2.1: Příklad vnější síly působící na tekutinu. Druhou diferenciální rovnicí (2.2) je podmínka nestlačitelnosti, která zajišťuje zachování objemu jednotlivých částic a simuluje tak nestlačitelnost skutečné tekutiny. 2.2 Metody výpočtu simulace tekutiny Vhodným prostředkem k simulování tekutin ve virtuálním prostředí je částicový systém již zmíněný v první kapitole. Vstupními daty výpočtu jsou částice (viz Obrázek 2.2) reprezentující malé dílky tekutiny, které mají svoje počáteční parametry (např. rychlost), na jejichž základě se počítá stav částic v dalším kroku animace. 9

16 2. Teoretické základy simulace tekutin Když pro simulaci chování tekutiny použijeme částicový systém, můžeme sledovat a měřit její pohyb dvěma způsoby. Obrázek 2.2: Částice tekutiny znázorněny ve 2D prostoru Lagrangeho metoda Lagrangeho přístup, pojmenovaný podle známého francouzského matematika (Joseph-Louis Lagrange), na jehož základě se soustředíme na částice tekutiny (particle-based), je častý způsob napodobení chování tekutin. Částice nesou údaje o své pozici v prostoru x a rychlosti u, kterou se pohybují (viz Obrázek 2.3). Obrázek 2.3: Užití Lagrangeho metody ve 2D prostoru. 10

17 2. Teoretické základy simulace tekutin Eulerova metoda Druhým způsobem je Eulerův přístup, podle švýcarského matematika (Leonhard Euler), kdy se namísto sledování jednotlivých částic soustředíme na specifické body v prostoru resp. mřížku složenou z těchto bodů, přes které se tekutina pohybuje (grid-based). V těchto bodech měříme veličiny jako je hustota, tlak, teplota atd. a pozorujeme, jak se veličiny mění v čase (viz Obrázek 2.4). Hodnotu veličin mezi jednotlivými body můžeme zjistit aproximací. Obrázek 2.4: Užití Eulerovy metody ve 2D prostoru. Rozdílnost těchto dvou přístupů si lze představit jako měření počasí. Podle Lagrangeho jsme unášení větrem v horkovzdušném balónu, ze kterého měříme tlak, teplotu, vlhkost atd. v okolí. Podle Eulera stejné měření provádíme ze zemského povrchu. Ač obě měření počasí provádíme v odpovídajícím prostředí, podoba vzniklých grafů změn veličin v závislosti na čase bude naprosto odlišná a to právě kvůli rozdílnému způsobu měření [6]. Lagrangeho metoda (particle-based) se může zdát oproti Eulerově (grid-based) jednodušší, neboť je přirozenější lze její pomocí snadno popsat rychlost a zrychlení částic, nicméně je mnohem těžší stanovit hustotu, tlak a teplotu tekutiny, což je naopak snadné při využití Eulerovy metody [8]. V bakalářské práci se nadále budu zabývat particle-based metodou, jelikož se navzdory své 11

18 2. Teoretické základy simulace tekutin složitosti využívá v real-time aplikacích častěji. Důvodem je rychlejší výpočet simulace. 2.3 Smoothed particle hydrodynamics (SPH) Metoda SPH, kterou detailně popisuje J. J. Monaghan [9], byla vyvinuta za účelem simulace astrofyzikálních problémů, své využití má však obecně pro simulaci všech druhů tekutin. SPH je způsob implementace nestlačitelné Navier-Stokesovy rovnice tekutiny z Lagrangeho (particle-based) pohledu. Metoda pracuje na principu konvolučního filtrování, kdy bereme v potaz parametry jednotlivých částic a pomocí vyhlazovacích jader (smoothing kernel) interpolujeme veličiny, které je při sledování částic těžké určit Výpočet SPH Cílem je získání aproximované hodnoty skalární veličiny, kterou nám particle-based metoda přímo neposkytuje. Skaláry, které chceme znát, jsou hustota, tlak a teplota v každém místě tekutiny. Abychom tyto hodnoty pro konkrétní bod získali, vypočítáme vážený průměr z parametrů částic v okolí tohoto bodu. Předpokládáme existenci částicového systému P definovaného v první kapitole, jehož každá částice P j má danou svoji pozici v prostoru x j a skalární veličinu Aj. Potom je možné pro libovolný bod v prostoru X [x, y, z] tuto veličinu interpolovat pomocí několika nejbližších částic užitím vyhlazovacího jádra W takto: k A(X) = m A j j W( X x ρ j, h), j j (2.3) kde ρ j je hustota částice, mj je hmotnost částice a h je poloměr vyhlazovacího jádra. Pro každou částici P j vypočítáme její vzdálenost od bodu X (viz Obrázek 2.5). Když je vzdálenost menší než poloměr h, můžeme spočíst váhu částice P j pomocí vyhlazovacího jádra W 12

19 2. Teoretické základy simulace tekutin (viz Obrázek 2.6). Pokud je vzdálenost větší, váha je nula [10]. Mezi nejčastěji používané vyhlazovací jádra patří Gaussian, B-Spline a Q- spline [8]. Obrázek 2.5: Zjištění vzdáleností okolních částic od bodu X. Obrázek 2.6: Výpočet váhy částice pomocí vyhlazovacího jádra W. Je ale důležité si uvědomit, že SPH metoda má několik zásadních problémů. Při odvození rovnice tekutiny pro částice není zaručeno dodržení některých fyzikálních zákonitostí jako třeba souměrnost sil (symmetry of forces) nebo zachování hybnosti [2]. Výpočtem SPH se budu dále zabývat ve 3. kapitole v rámci simulace tekutiny pomocí fyzikálního enginu NVIDIA PhysX, který této metody využívá. 13

20 Kapitola 3 NVIDIA PhysX Při průzkumu funkcionality dostupných fyzikálních enginů jsem dospěl k závěru, že nejvhodnějším enginem pro simulaci tekutin je NVIDIA PhysX, neboť nabízí možnost výpočtu simulace v reálném čase prostřednictvím speciálního částicového systému. 3.1 PhysX SDK Middleware PhysX SDK (Software development kit), nyní ve verzi 3.x, je volně dostupný nástroj pro nekomerční i komerční účely s podporou pro tyto platformy: Microsoft Windows Linux Mac OS X Android Playstation Microsoft Xbox Výpočty všech fyzikálních simulací obstarává CPU. Pokud je ale zařízení vybaveno grafickou kartou NVIDIA GeForce, výpočet složitějších jevů (fluid dynamics, soft body dynamics) značně urychluje GPU akcelerace. S PhysX SDK je na platformě Microsoft Windows možné pracovat pouze prostřednictvím vývojového prostředí Microsoft Visual Studio (VS) 2008 nebo 2010 [11] se znalostí programovacího jazyka C++. Já jsem k práci použil verzi VS 2010 a k vykreslování grafického výstupu jsem zvolil knihovnu OpenGL. Použití samotné knihovny PhysX je poměrně složité, jelikož nastavení projektu ve VS 2010 vyžaduje přesné linkování knihovních souborů. I když SDK obsahuje uživatelskou příručku s odkazy na příklady použití jednotlivých částí funkcionality, způsob jak vytvořit 14

21 3. NVIDIA PhysX nový projekt v ní popsán není. V začátcích mi velmi pomohl článek Getting started on PhysX & OpenGL [12], který popisuje, jak knihovnu PhysX správně inicializovat a projekt nastavit. Nutno dodat, že tutoriál je napsaný pro verzi PhysX SDK 3.2.1, nicméně už ve verzi jsou provedeny takové změny, že tutoriál není kompatibilní a nelze jej bez patřičných úprav použít. Práce s touto sadou nástrojů zahrnuje dvě části, které je potřeba udržovat konzistentní, aby se simulovaná fyzika a objekty vykreslované ve scéně chovaly správně. Knihovna OpenGL obstarává pouze vykreslení objektů. K fyzikální simulaci je potřeba mít jednak nastavené globální parametry (např. gravitace) a dále je třeba, aby každý vykreslovaný objekt měl definovaný svůj tvar (geometrii), materiál, váhu atp. Bez toho by se při spuštění animace mohlo např. stát, že kostka, na kterou působí gravitace, propadne skrz podlahu, čehož není vůbec těžké dosáhnout. V každé iteraci, kdy grafická knihovna renderuje další snímek pro zobrazení na obrazovku, dochází k výpočtu nové pozice objektů. 3.2 Vlastnosti PhysX SDK Základními objekty fyzikální simulace jsou scéna (PxScene) reprezentující fyzikální svět a tzv. aktéři (PxActor), což jsou prvky v tomto světě. Scéna je popsána několika parametry specifikovanými ve struktuře PxSceneDesc. Základním parametrem struktury je vektor gravitace (scenedesc.gravity), dále pak objekt CpuDispatcher mapující jednotlivé simulační úkoly na procesní vlákna a objekt GpuDispatcher, který na platformě Windows slouží pro CUDA akcelerované funkce. Gravitace je síla působící globálně v celé PhysX scéně. Aproximace reálné gravitace odpovídá vektoru (0.0, -9.81, 0.0). 15

22 3. NVIDIA PhysX Materiály Všechny fyzikální objekty mají stanovený svůj materiál, který určují parametry tření (friction) a restituce (restitution). Ten je použit při kolizích objektů. Jednotliví aktéři ve scéně mohou být následujícího typu: pevná tělesa (PxRigidActor) tkaniny (PxCloth) částice (PxParticleBase) Třída PxRigidActor PhysX nabízí dva typy pevných těles statická tělesa (PxRigid- Static) a dynamická tělesa (PxRigidDynamic). Se statickými aktéry se při simulaci nepracuje, jejich parametry zadané při vytváření zůstávají stejné, kdežto dynamičtí aktéři se v průběhu pohybují, ať už přičiněním uživatele, který uvádí aktéry do pohybu, nebo při automatické simulaci Newtonovské fyziky (zákon akce a reakce). Třída PxParticleBase Částicové systémy poskytují rozhraní pro manipulaci s částicemi a funkcionalitu při kolizích s okolím. Dělí se na obecný částicový systém (PxParticleSystem) a částicový systém tekutin (PxParticleFluid) Parametry částicového systému Existují tři skupiny parametrů určující vlastnosti částicového systému: 1) neměnné parametry, ty je třeba definovat při vytváření a částicového systému. maxparticles Maximální počet částic, které může systém obsahovat (čím je hodnota menší, tím menší má částicový systém nároky na paměť). 16

23 3. NVIDIA PhysX PxParticleBaseFlag:: eper_particle_rest_offset Příznak povolující/zakazující posun klidu po částicích. 2) měnitelné vlastnosti, ty je možné měnit pouze tehdy, když systém není součástí scény. maxmotiondistance Maximální vzdálenost, kterou může částice urazit během jednoho kroku simulace (omezuje rychlost částice). restoffset contactoffset restparticledistance (pouze pro částicový systém tekutin) Určuje nejmenší vzdálenost mezi částicemi a povrchem pevných těles, která je udržována kolizním systémem (ke kolizi částice s pevným tělesem dochází pro vzdálenosti menší, než jaká je tato hodnota). Určuje vzdálenost, při které dochází ke kontaktu mezi částicemi a pevnými tělesy. Tento kontakt je interně používán k předcházení chvění a ulpívání částic. Je potřeba, aby vzdálenost byla větší než hodnota restoffset. Určuje rozlišení (velikost) částice tekutiny (pokud je tekutina v klidu, částice mezi sebou mají právě tuto vzdálenost). PxParticleBaseFlag::eGPU Příznak povolující/zakazující GPU akceleraci. PxParticleBaseFlag:: ecollision_twoway Příznak povolující/zakazující obousměrnou interakci mezi části-cemi a pevnými tělesy. 17

24 3. NVIDIA PhysX 3) měnitelné vlastnosti, ty lze měnit kdykoli v průběhu simulace. restitution dynamicfriction staticfriction damping externalacceleration particlemass Stiffness (pouze pro částicový systém tekutin) Viscosity (pouze pro částicový systém tekutin) PxParticleBaseFlag:: eenabled PxParticleBaseFlag:: eproject_to_plane Udává restituci pro kolizi částic. Dynamické tření částic. Statické tření částic. Konstanta tlumení rychlosti částic, která působí na každou částici (určuje, jak snadno se částice pohybuje prostorem). Vektor zrychlení aplikovaného na každou částici. Podle výchozího nastavení se do tohoto vektoru započítává i vektor globální gravitace, což lze pro daný částicový systém zakázat příznakem PxActorFlag:: edisable_gravity. Hmotnost částic použita pro obousměrnou interakci s pevnými tělesy. Určuje tuhost/pružnost tekutiny. Pro nízké hodnoty je tekutina více stlačitelná. Určuje viskozitu tekutiny. Příznak povolující/zakazující simulaci částic. Pomocí tohoto příznaku lze omezit pohyb částic pouze v jedné rovině (2D). Hodnoty jednotlivých parametrů použitých v demonstrační aplikaci zmiňuji v příloze bakalářské práce. 18

25 3. NVIDIA PhysX Po nastavení parametrů a vytvoření aktéra částicového systému zbývá začít do scény přidávat částice. Jelikož ale PhysX SDK nemá vestavěný žádný emitor a nabízí pouze jednoduché rozhraní pro vytváření částic [11], implementoval jsem v rámci vývoje demonstrační aplikace emitory vlastní. 3.3 Postup při simulace tekutin Knihovna PhysX k výpočtu využívá SPH metodu, kterou jsem popsal v 2. kapitole, a simulaci provádí ve třech fázích [13]. 1) Jak ukazuje Obrázek 3.1, nejprve se ověří, jestli nedochází ke kolizi částic s okolním statickým prostředím a v případě nutnosti se přesunou částice mimo pevná tělesa. Obrázek 3.1: Detekce kolizí se statickým okolím. Inspirováno článkem [13]. 2) Zatímco první krok je totožný s chováním obecného částicového systému, v druhé fázi se odehrává hlavní SPH práce. Cílem je přivést částice k požadované hustotě, v níž jsou částice v klidu nadále jen klidová hustota (rest density). Nicméně nejprve musíme definovat, co myslíme hustotou, a poté ji spočítat pro každou částici systému. Chceme, aby hustota každé částice byla ovlivňována počtem sousedních částic v určité vzdálenosti. Čím blíž je částice svým sousedům, tím větší chceme naměřit hustotu a také bychom rádi, aby se hustota hladce měnila během pohybu částic. Výpočet hustoty SPH metodou (viz Obrázek 3.2) si lze představit jako umísťování Gaussovy křivky na pozici každé 19

26 3. NVIDIA PhysX částice a sčítání hodnot jednotlivých hodnot křivek. Následující graf ukazuje, jak výpočet vypadá v 1D prostoru. Osa X reprezentuje vzdálenost od počátku a osa Y hustotu. Obrázek 3.2: Vypočet hustoty v jednorozměrném prostoru. Inspirováno článkem [13]. 3) Jakmile známe hustotu všech částic, vypočte se v každé částici tlak. Ten PhysX počítá jako rozdíl hustoty a klidové hustoty (rest density). Po té dojde k aplikování sil k přemístění částic z oblasti s vysokým tlakem do oblasti, kde je tlak nízký, jak ukazuje obrázek 3.3. Obrázek 3.3: Přesun částic z oblasti s vysokým tlakem, do oblasti, kde je tlak nízký. Inspirováno článkem [13]. 20

27 3. NVIDIA PhysX Výpočet se opakuje do té doby, než dojde k ustálení všech částic, tedy k uklidnění kapaliny (viz Obrázek 3.4). Výsledkem tohoto chování je věrohodné napodobení nestlačitelnosti kapaliny. Obrázek 3.4: Ustálení částic. Inspirováno článkem [13]. 21

28 Kapitola 4 Simulování tekutin pomocí NVIDIA PhysX 4.1 Simulace kapaliny Pro simulaci kapaliny jsem vytvořil jednoduchou scénu obsahující skleněnou nádobu, do které je možné kapalinu prostřednictvím emitoru nalévat a interagovat v ní s pevnými tělesy resp. vnějšími silami (míchání, naklánění nádoby, vlnění) Emitor kapaliny Pro rychlejší práci s přidáváním částic kapaliny do scény jsem implementoval třídu LiquidEmitter. Při vytváření její instance stačí předat několik parametrů a pro spuštění emitoru pak už jen volat funkci LiquidEmitter::createParticles() někde ve vykreslovací smyčce OpenGL. Parametry emitoru kapaliny ukazatel na již existující částicový systém maximální počet částic pozice v prostoru, kde bude emitor ve scéně umístěn vektor výchozí rychlosti částic objem přitékající tekutiny (udává počet částic, které se při jednom zavolání LiquidEmitter::createParticles() do scény přidají) tempo, s jakým budou částice vytvářeny Poznámka: Částice se do scény nepřidávají při každém zavolání funkce LiquidEmitter::createParticles(), neboť by mohlo docházet ke kolizím mezi částicemi vytvářejícími se velkou rychlostí na jednom místě (vzdálenost mezi nově vytvářenými částicemi by byla menší, než restparticledistance). Aby se zabránilo nežádoucímu efektu, kdy se nové částice rozletí do všech směrů, obsahuje třída čítač, který zajišťuje vytvoření nových částic každé N-té zavolání zmíněné funkce (hodnotu N udává parametr tempa). 22

29 4. Simulování tekutin pomocí NVIDIA PhysX Vizualizace kapaliny Abychom po spuštění simulace viděli, jak se částice ve scéně chovají, nejprve musíme stanovit způsob jejich vizualizace. Nejjednodušším způsobem zobrazení je vykreslení bodů na pozici jednotlivých částic systému. Další možností je vykreslovat na pozici částic kuličky, které budou mít poloměr roven velikosti částice restparticledistance (popř. o trochu větší), což vizuálně dodá skupině částic objem. Vytvoření věrné vizualizace kapaliny je ale mnohem složitější, neboť potřebujeme z částic vytvořit souvislý povrch (hladinu), což není triviální a v implementaci se tím dále nezabývám. Pouze nastíním metody, které tento problém řeší Tvorba povrchu kapaliny Marching Cubes Prvním postupem je známý algoritmus Marching Cubes (metoda pochodující kostky). Algoritmus funguje na principu řezání krychle, která se pohybuje v 3D mřížce v prostoru, kde se vyskytují částice. Řezáním krychle na základě hustoty rozmístění částic v prostoru se vytváří trojúhelníková síť, která po skončení algoritmu vytvoří povrch okolo každého shluku částic. Princip algoritmu je zobrazen dvourozměrně na obrázku 4.1, kde dochází k řezání čtverce. Obrázek 4.1: 2D znázorněný postup při algoritmu Marching Cubes. 23

30 4. Simulování tekutin pomocí NVIDIA PhysX Nevýhodou algoritmu je jeho výpočetní náročnost, zvláště pak v případě, kdy se na obrazovce zobrazuje jenom část povrchu, který algoritmus počítá. Screen Space Fluid Rendering Rychlejším způsobem je metoda Screen Space Fluid Rendering, která pracuje pouze v oblasti zobrazené na obrazovce a tvoří jen povrch, který je nejblíž kameře (zadní plochy stejně nejsou vidět). Princip tvorby hladiny tekutiny je vidět na obrázku 4.2. Detailně je algoritmus popsán v článku Screen Space Meshes [14]. Obrázek 4.2: Znázornění principu metody Screen Space Fluid Rendering Funkcionalita v demonstrační aplikaci Tvorba částic kapaliny Demonstrační aplikace simuluje nalévání kapaliny do průhledné nádoby ve tvaru krychle. Obsahuje přepínač, který zapíná/vypíná emitor částic a je možné libovolně částice přidávat až do dosažení maximálního počtu částic. Interakce s pevnými tělesy Do scény lze přidávat pevná tělesa, konkrétně jsou to krychličky těžší než kapalina, takže po vhození do kapaliny zůstávají na dně. 24

31 4. Simulování tekutin pomocí NVIDIA PhysX Simulace míchání Aplikace obsahuje přepínač pro zapnutí/vypnutí simulace odstředivé síly při míchání krouživým pohybem s nádobou. Simulace vlnění Pomocí příslušného přepínače je možné zapnout/vypnout pohyb jedné ze stěn nádoby, ve které se částice kapaliny nachází. Stěna kmitá v jedné ose a kolize s kapalinou simulují tvorbu vln. Mód vykreslování Implementovány jsou dva módy vykreslování. Buď je možné částice vykreslovat jako body, které jsou zbarvené podle směru, v němž se pohybují (šedé, pokud se nehýbou), což je vidět na obrázku 4.3. Nebo jsou částice zobrazeny jako kuličky v odstínech modré barvy v závislosti na rychlosti pohybu částice (viz Obrázek 4.4). Pro přepínání módů slouží vlastní přepínač. Obrázek 4.3: Částice jsou vykreslovány jako body. 25

32 4. Simulování tekutin pomocí NVIDIA PhysX Obrázek 4.4: Částice jsou vykreslovány jako kuličky. 4.2 Simulace kouře Hlavní rozdíl oproti simulaci kapaliny je ten, že plynové částice přidávané do scény by se pro dosažení věrohodného pohybu v prostoru měly rozptylovat ve vzduchu. Tedy mezi částicemi, které nejsou vidět. Jelikož je nemožné simulovat veškerý vzduch ve scéně, jsou dvě možnosti, jak docílit dostatečně věrohodného a zároveň výpočetně nenáročného výsledku. Pro obě možnosti jsem implementoval vlastní emitory Emitory kouře Podobně jako pro kapalinu jsem implementoval pro simulaci kouře tyto dvě třídy: AirSmokeEmitter VacuumSmokeEmitter AirSmokeEmitter V prvním případě určíme ve scéně oblast (definovanou pěti plochami podlaha a čtyři stěny), ve které budeme pracovat a tu vyplníme částicemi vzduchu. Je třeba definovat speciální parametr pro jednotlivé částice a to temperature (teplotu). 26

33 4. Simulování tekutin pomocí NVIDIA PhysX Všechny vzduchové částice budou mít hodnotu 0.0, kdežto nové částice budou mít teplotu nastavenu na 1.0 a postupně se budou při rozptylování do okolí "ochlazovat", až se jejich hodnota ustálí na nule. Z hlediska vykreslování pak jednoduše určíme, že viditelné budou pouze ty částice, které mají teplotu vyšší jak 0.0. Jak budou částice vypadat v průběhu klesání teploty, už záleží na tom, jaký výsledek očekáváme (v případě kouře se může např. lineárně zvyšovat průhlednost částice resp. její textury). VacuumSmokeEmitter V druhém případě můžeme vzduchové částice zanedbat a simulaci provádět pouze s částicemi, které jsou vidět. Zavedením parametru lifespan (délka života), který nahrazuje teplotu, se výrazně sníží nároky na paměť, neboť částice, které naplní svoji délku života, jsou z částicového systému propuštěny. Obdobně jako v prvním případě se částice vytvořené emitorem rozptylují v prostoru a mění se s narůstající délkou života podle toho, jak určíme. Tento způsob je sice rychlejší, ale simulace je tím zkreslená a může docházet k nepřiro-zenému chování kouře. Parametry emitoru kouře Parametry emitoru jsou stejné jako u emitoru kapaliny s tím rozdílem, že VacuumSmokeEmitter má navíc parametr určující maximální délku života částic Vizualizace kouře Existuje hned několik metod, pomocí kterých lze vykreslovat věrohodný kouř. Já jsem pro demonstraci zvolil střední cestu, ta není náročná na výpočet a výsledek vypadá dostatečně věrohodně. Použil jsem 2D texturu (viz Obrázek 4.5) společně s billboardingem a alphablendingem. 27

34 4. Simulování tekutin pomocí NVIDIA PhysX Obrázek 4.5: Pro vykreslování kouře jsem použil texturu Perlinova šumu s postupným přechodem do černé barvy při okrajích. Billboarding je technika, při které na 2D ploše zobrazujeme texturu, přičemž je tato plocha vždy natočená směrem ke kameře (viz Obrázek 4.6). Tím v 3D prostoru tvoří iluzi, že vypadá ze všech úhlů stejně. Tato technika se dříve používala např. pro vykreslování stromů, kvůli zjednodušení jejich členitosti. Obrázek 4.6: Znázornění principu billboardingu. 28

INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ

INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ CZ.1.07/1.1.00/08.0010 NUMERICKÉ SIMULACE ING. KATEŘINA

Více

BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY

BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY ROTAČNÍ POHYB TĚLESA, MOMENT SÍLY, MOMENT SETRVAČNOSTI DYNAMIKA Na rozdíl od kinematiky, která se zabývala

Více

VY_32_INOVACE_INF.19. Inkscape, GIMP, Blender

VY_32_INOVACE_INF.19. Inkscape, GIMP, Blender VY_32_INOVACE_INF.19 Inkscape, GIMP, Blender Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Jiří Kalous Základní a mateřská škola Bělá nad Radbuzou, 2011 INKSCAPE Inkscape je open source

Více

Tvorba 3D výukových aplikací pomocí technologie

Tvorba 3D výukových aplikací pomocí technologie Tvorba 3D výukových aplikací pomocí technologie Microsoft Silverlight Martin Tribula, Martin Vavrek, Michal Otčenášek Abstrakt V dnešním moderním světě je virtuální realita považovaná za rozvíjející se

Více

9 Prostorová grafika a modelování těles

9 Prostorová grafika a modelování těles 9 Prostorová grafika a modelování těles Studijní cíl Tento blok je věnován základům 3D grafiky. Jedná se především o vysvětlení principů vytváření modelů 3D objektů, jejich reprezentace v paměti počítače.

Více

15 MECHANIKA IDEÁLNÍCH TEKUTIN. Hydrostatika ideální kapaliny Hydrodynamika ideální tekutiny

15 MECHANIKA IDEÁLNÍCH TEKUTIN. Hydrostatika ideální kapaliny Hydrodynamika ideální tekutiny 125 15 MECHANIKA IDEÁLNÍCH TEKUTIN Hydrostatika ideální kapaliny Hydrodynamika ideální tekutiny Na rozdíl od pevných látek, které zachovávají při pohybu svůj tvar, setkáváme se v přírodě s látkami, které

Více

VÝUKOVÝ SOFTWARE PRO ANALÝZU A VIZUALIZACI INTERFERENČNÍCH JEVŮ

VÝUKOVÝ SOFTWARE PRO ANALÝZU A VIZUALIZACI INTERFERENČNÍCH JEVŮ VÝUKOVÝ SOFTWARE PRO ANALÝZU A VIZUALIZACI INTERFERENČNÍCH JEVŮ P. Novák, J. Novák Katedra fyziky, Fakulta stavební, České vysoké učení technické v Praze Abstrakt V práci je popsán výukový software pro

Více

3D grafika. Proces tvorby sekvence s 3D modely Sbírání údajů na natáčecím place Motion capture Matchmoving Compositing

3D grafika. Proces tvorby sekvence s 3D modely Sbírání údajů na natáčecím place Motion capture Matchmoving Compositing 3D grafika Proces tvorby sekvence s 3D modely Sbírání údajů na natáčecím place Motion capture Matchmoving Compositing Počítačová grafika, 3D grafika 2 3D grafika CGI = computer graphic imagery Simulace

Více

DATOVÉ FORMÁTY GRAFIKY, JEJICH SPECIFIKA A MOŽNOSTI VYUŽITÍ

DATOVÉ FORMÁTY GRAFIKY, JEJICH SPECIFIKA A MOŽNOSTI VYUŽITÍ DATOVÉ FORMÁTY GRAFIKY, JEJICH SPECIFIKA A MOŽNOSTI VYUŽITÍ UMT Tomáš Zajíc, David Svoboda Typy počítačové grafiky Rastrová Vektorová Rastrová grafika Pixely Rozlišení Barevná hloubka Monitor 72 PPI Tiskárna

Více

Hydromechanické procesy Obtékání těles

Hydromechanické procesy Obtékání těles Hydromechanické procesy Obtékání těles M. Jahoda Klasifikace těles 2 Typy externích toků dvourozměrné osově symetrické třírozměrné (s/bez osy symetrie) nebo: aerodynamické vs. neaerodynamické Odpor a vztlak

Více

ANALÝZA A OPTIMALIZACE VÝROBNÍCH PROCESŮ MALOSÉRIOVÉ SLOŽITÉ VÝROBY V NOVÝCH VÝROBNÍCH PROSTORECH NA ZÁKLADĚ DISKRÉTNÍ SIMULACE

ANALÝZA A OPTIMALIZACE VÝROBNÍCH PROCESŮ MALOSÉRIOVÉ SLOŽITÉ VÝROBY V NOVÝCH VÝROBNÍCH PROSTORECH NA ZÁKLADĚ DISKRÉTNÍ SIMULACE ANALÝZA A OPTIMALIZACE VÝROBNÍCH PROCESŮ MALOSÉRIOVÉ SLOŽITÉ VÝROBY V NOVÝCH VÝROBNÍCH PROSTORECH NA ZÁKLADĚ DISKRÉTNÍ SIMULACE Doc. Václav Votava, CSc. (a), Ing. Zdeněk Ulrych, Ph.D. (b), Ing. Milan Edl,

Více

StatSoft Jak poznat vliv faktorů vizuálně

StatSoft Jak poznat vliv faktorů vizuálně StatSoft Jak poznat vliv faktorů vizuálně V tomto článku bychom se rádi věnovali otázce, jak poznat již z grafického náhledu vztahy a závislosti v analýze rozptylu. Pomocí následujících grafických zobrazení

Více

BIM & Simulace CFD simulace ve stavebnictví. Ing. Petr Fischer

BIM & Simulace CFD simulace ve stavebnictví. Ing. Petr Fischer BIM & Simulace CFD simulace ve stavebnictví Ing. Petr Fischer Agenda 10:15 11:00 Úvod do problematiky Petr Fischer Technické informace a příklady Jiří Jirát Otázky a odpovědi Používané metody navrhování

Více

Zobrazování bannerů podporují pouze nově vytvořené šablony motivů vzhledu.

Zobrazování bannerů podporují pouze nově vytvořené šablony motivů vzhledu. Bannerový systém ProEshop od verze 1.13 umožňuje zobrazování bannerů na popředí e-shopu. Bannerový systém je přístupný v administraci e-shopu v nabídce Vzhled, texty Bannerový systém v případě, že aktivní

Více

2. Numerické výpočty. 1. Numerická derivace funkce

2. Numerické výpočty. 1. Numerická derivace funkce 2. Numerické výpočty Excel je poměrně pohodlný nástroj na provádění různých numerických výpočtů. V příkladu si ukážeme možnosti výpočtu a zobrazení diferenciálních charakteristik analytické funkce, přičemž

Více

Katedra geotechniky a podzemního stavitelství

Katedra geotechniky a podzemního stavitelství Katedra geotechniky a podzemního stavitelství Modelování v geotechnice Metoda oddělených elementů (prezentace pro výuku předmětu Modelování v geotechnice) doc. RNDr. Eva Hrubešová, Ph.D. Inovace studijního

Více

Obsah. Proč právě Flash? 17 Systémové požadavky 17. Jak používat tuto knihu 18 Doprovodný CD-ROM 19

Obsah. Proč právě Flash? 17 Systémové požadavky 17. Jak používat tuto knihu 18 Doprovodný CD-ROM 19 Úvod.............................15 Proč právě Flash? 17 Systémové požadavky 17 Jak používat tuto knihu 18 Doprovodný CD-ROM 19 Část první Začínáme s tvorbou her ve Flashi..............21 1 První kroky........................23

Více

Programové vybavení počítačů operační systémy

Programové vybavení počítačů operační systémy Programové vybavení počítačů operační systémy Operační systém Základní program, který oživuje hardware a poskytuje prostředí pro ostatní programy Řídí využití procesoru, síťovou komunikaci, tisk, ovládá

Více

ZÁKLADNÍ ŠKOLA KOLÍN II., KMOCHOVA 943 škola s rozšířenou výukou matematiky a přírodovědných předmětů

ZÁKLADNÍ ŠKOLA KOLÍN II., KMOCHOVA 943 škola s rozšířenou výukou matematiky a přírodovědných předmětů ZÁKLADNÍ ŠKOLA KOLÍN II., KMOCHOVA 943 škola s rozšířenou výukou matematiky a přírodovědných předmětů Autor Mgr. Vladimír Hradecký Číslo materiálu 8_F_1_02 Datum vytvoření 2. 11. 2011 Druh učebního materiálu

Více

10. Energie a její transformace

10. Energie a její transformace 10. Energie a její transformace Energie je nejdůležitější vlastností hmoty a záření. Je obsažena v každém kousku hmoty i ve světelném paprsku. Je ve vesmíru a všude kolem nás. S energií se setkáváme na

Více

Numerické řešení variačních úloh v Excelu

Numerické řešení variačních úloh v Excelu Numerické řešení variačních úloh v Excelu Miroslav Hanzelka, Lenka Stará, Dominik Tělupil Gymnázium Česká Lípa, Gymnázium Jírovcova 8, Gymnázium Brno MirdaHanzelka@seznam.cz, lenka.stara1@seznam.cz, dtelupil@gmail.com

Více

Střední škola aplikované kybernetiky s.r.o.: Maturitní okruhy z odborných předmětů 2010

Střední škola aplikované kybernetiky s.r.o.: Maturitní okruhy z odborných předmětů 2010 NAW WEBOVÉ STRÁNKY 1 Barevné modely (nejen v oblasti webdesignu), fyzikální podstata barvy 2 Zacházení s barvou v oblasti webdesignu a její účinek na psychiku 3 Tvar vizuálních prvků webdesignu, vliv na

Více

Počítačová chemie. výpočetně náročné simulace chemických a biomolekulárních systémů. Zora Střelcová

Počítačová chemie. výpočetně náročné simulace chemických a biomolekulárních systémů. Zora Střelcová Počítačová chemie výpočetně náročné simulace chemických a biomolekulárních systémů Zora Střelcová Národní centrum pro výzkum biomolekul, Masarykova univerzita, Kotlářská 2, 611 37 Brno, Česká Republika

Více

IVT. 8. ročník. listopad, prosinec 2013. Autor: Mgr. Dana Kaprálová

IVT. 8. ročník. listopad, prosinec 2013. Autor: Mgr. Dana Kaprálová IVT Počítačová grafika - úvod 8. ročník listopad, prosinec 2013 Autor: Mgr. Dana Kaprálová Zpracováno v rámci projektu Krok za krokem na ZŠ Želatovská ve 21. století registrační číslo projektu: CZ.1.07/1.4.00/21.3443

Více

Škola: Gymnázium, Brno, Slovanské náměstí 7 III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Název projektu: Inovace výuky na GSN

Škola: Gymnázium, Brno, Slovanské náměstí 7 III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Název projektu: Inovace výuky na GSN Škola: Gymnázium, Brno, Slovanské náměstí 7 Šablona: III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Název projektu: Inovace výuky na GSN prostřednictvím ICT Číslo projektu: CZ.1.07/1.5.00/34.0940

Více

Animace a geoprostor. První etapa: Animace 2. přednáško-cvičení. Jaromír Landa. jaromir.landa@mendelu.cz Ústav informatiky PEF MENDELU v Brně

Animace a geoprostor. První etapa: Animace 2. přednáško-cvičení. Jaromír Landa. jaromir.landa@mendelu.cz Ústav informatiky PEF MENDELU v Brně Animace a geoprostor První etapa: Animace 2. přednáško-cvičení Jaromír Landa jaromir.landa@mendelu.cz Ústav informatiky PEF MENDELU v Brně Náplň přednáško-cvičení - Flamingo Prostředí Nekonečná rovina

Více

Programování v jazyku LOGO - úvod

Programování v jazyku LOGO - úvod Programování v jazyku LOGO - úvod Programovací jazyk LOGO je určen pro výuku algoritmizace především pro děti školou povinné. Programovací jazyk pracuje v grafickém prostředí, přičemž jednou z jeho podstatných

Více

Základní pojmy Zobrazení zrcadlem, Zobrazení čočkou Lidské oko, Optické přístroje

Základní pojmy Zobrazení zrcadlem, Zobrazení čočkou Lidské oko, Optické přístroje Optické zobrazování Základní pojmy Zobrazení zrcadlem, Zobrazení čočkou Lidské oko, Optické přístroje Základní pojmy Optické zobrazování - pomocí paprskové (geometrické) optiky - využívá model světelného

Více

Novinky v Solid Edge ST7

Novinky v Solid Edge ST7 Novinky v Solid Edge ST7 Primitiva Nově lze vytvořit základní geometrii pomocí jednoho příkazu Funkce primitiv je dostupná pouze v synchronním prostředí Těleso vytvoříme ve dvou navazujících krocích, kde

Více

Počítačová grafika SZŠ A VOŠZ MERHAUTOVA 15, BRNO

Počítačová grafika SZŠ A VOŠZ MERHAUTOVA 15, BRNO Počítačová grafika SZŠ A VOŠZ MERHAUTOVA 15, BRNO 1 Základní dělení 3D grafika 2D grafika vektorová rastrová grafika 2/29 Vektorová grafika Jednotlivé objekty jsou tvořeny křivkami Využití: tvorba diagramů,

Více

TEPLOTNÍHO POLE V MEZIKRUHOVÉM VERTIKÁLNÍM PRŮTOČNÉM KANÁLE OKOLO VYHŘÍVANÉ NEREZOVÉ TYČE

TEPLOTNÍHO POLE V MEZIKRUHOVÉM VERTIKÁLNÍM PRŮTOČNÉM KANÁLE OKOLO VYHŘÍVANÉ NEREZOVÉ TYČE TEPLOTNÍHO POLE V MEZIKRUHOVÉM VERTIKÁLNÍM PRŮTOČNÉM KANÁLE OKOLO VYHŘÍVANÉ NEREZOVÉ TYČE Autoři: Ing. David LÁVIČKA, Ph.D., Katedra eneegetických strojů a zařízení, Západočeská univerzita v Plzni, e-mail:

Více

Webové stránky. 16. Obrázky na webových stránkách, optimalizace GIF. Datum vytvoření: 12. 1. 2013. str ánk y. Vytvořil: Petr Lerch. www.isspolygr.

Webové stránky. 16. Obrázky na webových stránkách, optimalizace GIF. Datum vytvoření: 12. 1. 2013. str ánk y. Vytvořil: Petr Lerch. www.isspolygr. Webové stránky 16. Vytvořil: Petr Lerch www.isspolygr.cz Datum vytvoření: 12. 1. 2013 Webové Strana: 1/6 Škola Ročník Název projektu Číslo projektu Číslo a název šablony Autor Tématická oblast Název DUM

Více

Shrnutí kinematiky. STŘEDNÍ ODBORNÁ ŠKOLA a STŘEDNÍ ODBORNÉ UČILIŠTĚ, Česká Lípa, 28. října 2707, příspěvková organizace

Shrnutí kinematiky. STŘEDNÍ ODBORNÁ ŠKOLA a STŘEDNÍ ODBORNÉ UČILIŠTĚ, Česká Lípa, 28. října 2707, příspěvková organizace Název školy: Číslo a název projektu: Číslo a název šablony klíčové aktivity: Označení materiálu: Typ materiálu: Předmět, ročník, obor: Číslo a název sady: Téma: Jméno a příjmení autora: Datum vytvoření:

Více

Kinetická teorie ideálního plynu

Kinetická teorie ideálního plynu Přednáška 10 Kinetická teorie ideálního plynu 10.1 Postuláty kinetické teorie Narozdíl od termodynamiky kinetická teorie odvozuje makroskopické vlastnosti látek (např. tlak, teplotu, vnitřní energii) na

Více

Registrační číslo projektu: CZ.1.07/1.4.00/21.3075

Registrační číslo projektu: CZ.1.07/1.4.00/21.3075 Registrační číslo projektu: CZ.1.07/1.4.00/21.3075 Šablona: III/2 Sada: VY_32_INOVACE_5IS Ověření ve výuce Třída 9. B Datum: 21. 1. 2013 Pořadové číslo 11 1 Merkur, Venuše Předmět: Ročník: Jméno autora:

Více

Ing. Jiří Fejfar, Ph.D. Dálkový průzkum Země

Ing. Jiří Fejfar, Ph.D. Dálkový průzkum Země Ing. Jiří Fejfar, Ph.D. Dálkový průzkum Země strana 2 Co je DPZ Dálkový průzkum je umění rozdělit svět na množství malých barevných čtverečků, se kterými si lze hrát na počítači a odhalovat jejich neuvěřitelný

Více

3D sledování pozice vojáka v zastavěném prostoru a budově

3D sledování pozice vojáka v zastavěném prostoru a budově 3D sledování pozice vojáka v zastavěném prostoru a budově Úvod Programový produkt 3D sledování pozice vojáka v zastavěném prostoru a budově je navržen jako jednoduchá aplikace pro 3D zobrazení objektů

Více

scale n_width width center scale left center range right center range value weight_sum left right weight value weight value weight_sum weight pixel

scale n_width width center scale left center range right center range value weight_sum left right weight value weight value weight_sum weight pixel Změna velikosti obrázku Převzorkování pomocí filtrů Ačkoliv jsou výše uvedené metody mnohdy dostačující pro běžné aplikace, občas je zapotřebí dosáhnout lepších výsledků. Pokud chceme obrázky zvětšovat

Více

Splněno ANO/NE/hodnota

Splněno ANO/NE/hodnota část 1 - software pro přípravu interaktivních výukových hodin postavený na aktivní účasti žáků základní specifikace: autorský objektově orientovaný výukový software v českém jazyce s implementovanou galerií

Více

Odraz světla na rozhraní dvou optických prostředí

Odraz světla na rozhraní dvou optických prostředí Odraz světla na rozhraní dvou optických prostředí Může kulová nádoba naplněná vodou sloužit jako optická čočka? Exponát demonstruje zaostření světla procházejícího skrz vodní kulovou čočku. Pohyblivý světelný

Více

Téma 1: Elektrostatika I - Elektrický náboj Kapitola 22, str. 577 592

Téma 1: Elektrostatika I - Elektrický náboj Kapitola 22, str. 577 592 Téma 1: Elektrostatika I - Elektrický náboj Kapitola 22, str. 577 592 Shrnutí: Náboj a síla = Coulombova síla: - Síla jíž na sebe náboje Q působí je stejná - Pozn.: hledám-li velikost, tak jen dosadím,

Více

1. Určete závislost povrchového napětí σ na objemové koncentraci c roztoku etylalkoholu ve vodě odtrhávací metodou.

1. Určete závislost povrchového napětí σ na objemové koncentraci c roztoku etylalkoholu ve vodě odtrhávací metodou. 1 Pracovní úkoly 1. Určete závislost povrchového napětí σ na objemové koncentraci c roztoku etylalkoholu ve vodě odtrhávací metodou. 2. Sestrojte graf této závislosti. 2 Teoretický úvod 2.1 Povrchové napětí

Více

Přehled vhodných metod georeferencování starých map

Přehled vhodných metod georeferencování starých map Přehled vhodných metod georeferencování starých map ČVUT v Praze, katedra geomatiky 12. 3. 2015 Praha Georeferencování historická mapa vs. stará mapa georeferencování umístění obrazu mapy do referenčního

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím

Více

2.12 Vstupní zařízení II.

2.12 Vstupní zařízení II. Název školy Číslo projektu Autor Název šablony Název DUMu Tematická oblast Předmět Druh učebního materiálu Anotace Vybavení, pomůcky Ověřeno ve výuce dne, třída Střední průmyslová škola strojnická Vsetín

Více

6. Viskoelasticita materiálů

6. Viskoelasticita materiálů 6. Viskoelasticita materiálů Viskoelasticita materiálů souvisí se schopností materiálů tlumit mechanické vibrace. Uvažujme harmonické dynamické namáhání (tzn. střídavě v tahu a tlaku) materiálu v oblasti

Více

pracovní list studenta

pracovní list studenta Výstup RVP: Klíčová slova: pracovní list studenta Dynamika Vojtěch Beneš žák měří vybrané veličiny vhodnými metodami, zpracuje a vyhodnotí výsledky měření, určí v konkrétních situacích síly působící na

Více

F-1 Fyzika hravě. (Anotace k sadě 20 materiálů) ROVNOVÁŽNÁ POLOHA ZAPOJENÍ REZISTORŮ JEDNODUCHÝ ELEKTRICKÝ OBVOD

F-1 Fyzika hravě. (Anotace k sadě 20 materiálů) ROVNOVÁŽNÁ POLOHA ZAPOJENÍ REZISTORŮ JEDNODUCHÝ ELEKTRICKÝ OBVOD F-1 Fyzika hravě ( k sadě 20 materiálů) Poř. 1. F-1_01 KLID a POHYB 2. F-1_02 ROVNOVÁŽNÁ POLOHA Prezentace obsahuje látku 1 vyučovací hodiny. materiál slouží k opakování látky na téma relativnost klidu

Více

Příklady z hydrostatiky

Příklady z hydrostatiky Příklady z hydrostatiky Poznámka: Při řešení příkladů jsou zaokrouhlovány pouze dílčí a celkové výsledky úloh. Celý vlastní výpočet všech úloh je řešen bez zaokrouhlování dílčích výsledků. Za gravitační

Více

METODICKÉ LISTY Z MATEMATIKY pro gymnázia a základní vzdělávání

METODICKÉ LISTY Z MATEMATIKY pro gymnázia a základní vzdělávání METODICKÉ LISTY Z MATEMATIKY pro gymnázia a základní vzdělávání Jaroslav Švrček a kolektiv Rámcový vzdělávací program pro základní vzdělávání Vzdělávací oblast: Matematika a její aplikace Tematický okruh:

Více

Význam vody pro globální chlazení. Globe Processes Model. Verze pro účastníky semináře Cloud 3.12.2009

Význam vody pro globální chlazení. Globe Processes Model. Verze pro účastníky semináře Cloud 3.12.2009 Význam vody pro globální chlazení Globe Processes Model Verze pro účastníky semináře Cloud 3.12.2009 Jaromír Horák, jaromir.horak@equica.cz, 2009 Role vody v globálních (klimatických) změnách Dík vodě

Více

3 Mechanická energie 5 3.1 Kinetická energie... 6 3.3 Potenciální energie... 6. 3.4 Zákon zachování mechanické energie... 9

3 Mechanická energie 5 3.1 Kinetická energie... 6 3.3 Potenciální energie... 6. 3.4 Zákon zachování mechanické energie... 9 Obsah 1 Mechanická práce 1 2 Výkon, příkon, účinnost 2 3 Mechanická energie 5 3.1 Kinetická energie......................... 6 3.2 Potenciální energie........................ 6 3.3 Potenciální energie........................

Více

KAPITOLA 1 - ZÁKLADNÍ POJMY INFORMAČNÍCH A KOMUNIKAČNÍCH TECHNOLOGIÍ

KAPITOLA 1 - ZÁKLADNÍ POJMY INFORMAČNÍCH A KOMUNIKAČNÍCH TECHNOLOGIÍ KAPITOLA 1 - ZÁKLADNÍ POJMY INFORMAČNÍCH A KOMUNIKAČNÍCH TECHNOLOGIÍ KLÍČOVÉ POJMY technické vybavení počítače uchování dat vstupní a výstupní zařízení, paměti, data v počítači počítačové sítě sociální

Více

Autodesk Simulation CFD 2012. Webinář 02.12.2011, Martin Sás a Petr Fischer

Autodesk Simulation CFD 2012. Webinář 02.12.2011, Martin Sás a Petr Fischer Autodesk Simulation CFD 2012 Webinář 02.12.2011, Martin Sás a Petr Fischer Autodesk Simulation CFD 2012 - úvod Computational Fluid Dynamics (CFD) je simulační nástroj, který matematicky (MKP) modeluje

Více

Digitální učební materiál. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce podpory Gymnázium, Jevíčko, A. K.

Digitální učební materiál. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce podpory Gymnázium, Jevíčko, A. K. Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím

Více

Vývojové nástroje pro multiagentové systémy

Vývojové nástroje pro multiagentové systémy Vývojové nástroje pro multiagentové systémy Znalostní technologie III materiál pro podporu studia OBSAH Úvod... 3 Swarm... 3 NetLogo... 5 Repast... 6 Porovnání prostředí Swarm, NetLogo a RePast... 7 Mason...

Více

Základní škola, Ostrava Poruba, Bulharská 1532, příspěvková organizace

Základní škola, Ostrava Poruba, Bulharská 1532, příspěvková organizace Fyzika - 6. ročník Uvede konkrétní příklady jevů dokazujících, že se částice látek neustále pohybují a vzájemně na sebe působí stavba látek - látka a těleso - rozdělení látek na pevné, kapalné a plynné

Více

SOU Valašské Klobouky. VY_32_INOVACE_3_01 IKT Pc grafika základní pojmy Mgr. Radomír Soural. Zkvalitnění výuky prostřednictvím ICT

SOU Valašské Klobouky. VY_32_INOVACE_3_01 IKT Pc grafika základní pojmy Mgr. Radomír Soural. Zkvalitnění výuky prostřednictvím ICT SOU Valašské Klobouky VY_32_INOVACE_3_01 IKT Pc grafika základní pojmy Mgr. Radomír Soural Zkvalitnění výuky prostřednictvím ICT Název a číslo projektu CZ.1.07/1.5.00/34.0459 Název školy SOU Valašské Klobouky,

Více

Základní jednotky v astronomii

Základní jednotky v astronomii v01.00 Základní jednotky v astronomii Ing. Neliba Vlastimil AK Kladno 2005 Délka - l Slouží pro určení vzdáleností ve vesmíru Základní jednotkou je metr metr je definován jako délka, jež urazí světlo ve

Více

Vnitřní energie. Teplo. Tepelná výměna.

Vnitřní energie. Teplo. Tepelná výměna. Vnitřní energie. Teplo. Tepelná výměna. A) Výklad: Vnitřní energie vnitřní energie označuje součet celkové kinetické energie částic (tj. rotační + vibrační + translační energie) a celkové polohové energie

Více

Kapitola 2. o a paprsek sil lze ztotožnit s osou x (obr.2.1). sil a velikost rovnou algebraickému součtu sil podle vztahu R = F i, (2.

Kapitola 2. o a paprsek sil lze ztotožnit s osou x (obr.2.1). sil a velikost rovnou algebraickému součtu sil podle vztahu R = F i, (2. Kapitola 2 Přímková a rovinná soustava sil 2.1 Přímková soustava sil Soustava sil ležící ve společném paprsku se nazývá přímková soustava sil [2]. Působiště všech sil m i lze posunout do společného bodu

Více

Návod na použití vizualizačního modulu. Sector 3D verze 1.0

Návod na použití vizualizačního modulu. Sector 3D verze 1.0 Merick Calc 3000 Návod na použití vizualizačního modulu Sector 3D verze 1.0 Úvodem Modul Sector 3D umožňuje sestavovat z generovaných modelů jednotlivých kusů nábytku celkové kompozice, vizualizace pro

Více

Integrovaná střední škola, Hlaváčkovo nám. 673, Slaný

Integrovaná střední škola, Hlaváčkovo nám. 673, Slaný Označení materiálu: VY_32_INOVACE_STEIV_FYZIKA1_11 Název materiálu: Teplo a teplota. Tematická oblast: Fyzika 1.ročník Anotace: Prezentace slouží k vysvětlení základních fyzikálních veličin tepla a teploty.

Více

Laboratorní práce č. 2: Určení měrné tepelné kapacity látky

Laboratorní práce č. 2: Určení měrné tepelné kapacity látky Přírodní vědy moderně a interaktivně FYZIKA 4. ročník šestiletého a 2. ročník čtyřletého studia Laboratorní práce č. 2: Určení měrné tepelné kapacity látky Přírodní vědy moderně a interaktivně FYZIKA

Více

6.2.8 Vlnová funkce. ψ nemá (zatím?) žádný fyzikální smysl, fyzikální smysl má funkce. Předpoklady: 060207

6.2.8 Vlnová funkce. ψ nemá (zatím?) žádný fyzikální smysl, fyzikální smysl má funkce. Předpoklady: 060207 6..8 Vlnová funkce ředpoklady: 06007 edagogická poznámka: Tato hodina není příliš středoškolská. Zařadil jsem ji kvůli tomu, aby žáci měli alespoň přibližnou představu o tom, jak se v kvantové fyzice pracuje.

Více

Využití programu MS Excel při výuce vlastností kvadratické funkce

Využití programu MS Excel při výuce vlastností kvadratické funkce Využití programu MS Excel při výuce vlastností kvadratické funkce Martin Mikuláš Tabulkové kalkulátory lze ve škole velmi dobře využít při výuce matematiky. Lze v nich totiž snadno naprogramovat aplikace,

Více

Specifikace VT 11 ks. Ultrabook dle specifikace v příloze č. 1 11 ks. 3G modem TP-LINK M5350

Specifikace VT 11 ks. Ultrabook dle specifikace v příloze č. 1 11 ks. 3G modem TP-LINK M5350 Specifikace VT 11 ks. Ultrabook dle specifikace v příloze č. 1 Prodloužená záruka 3 roky 11 ks. 3G modem TP-LINK M5350 11 ks. MS Office 2013 pro podnikatele CZ 11 ks. brašna 11 ks. bezdrátová myš 5 ks.

Více

Dyson s Coulomb gas on a circle and intermediate eigenvalue statistics

Dyson s Coulomb gas on a circle and intermediate eigenvalue statistics Dyson s Coulomb gas on a circle and intermediate eigenvalue statistics Rainer Scharf, Félix M. Izrailev, 1990 rešerše: Pavla Cimrová, 28. 2. 2012 1 Náhodné matice Náhodné matice v současnosti nacházejí

Více

VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL

VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL Identifikační údaje školy Číslo projektu Název projektu Číslo a název šablony Vyšší odborná škola a Střední škola, Varnsdorf, příspěvková organizace Bratislavská

Více

1) Skupenství fáze, forma, stav. 2) 3 druhy skupenství (1 látky): pevné (led) kapalné (voda) plynné (vodní pára)

1) Skupenství fáze, forma, stav. 2) 3 druhy skupenství (1 látky): pevné (led) kapalné (voda) plynné (vodní pára) SKUPENSTVÍ 1) Skupenství fáze, forma, stav 2) 3 druhy skupenství (1 látky): pevné (led) kapalné (voda) plynné (vodní pára) 3) Pevné látky nemění tvar, objem částice blízko sebe, pohybují se kolem urč.

Více

Fyzika aplikovaná v geodézii

Fyzika aplikovaná v geodézii Průmyslová střední škola Letohrad Vladimír Stránský Fyzika aplikovaná v geodézii 1 2014 Tento projekt je realizovaný v rámci OP VK a je financovaný ze Strukturálních fondů EU (ESF) a ze státního rozpočtu

Více

K OZA SE PASE NA POLOVINĚ ZAHRADY Zadání úlohy

K OZA SE PASE NA POLOVINĚ ZAHRADY Zadání úlohy Koza se pase na polovině zahrady, Jaroslav eichl, 011 K OZA E PAE NA POLOVINĚ ZAHADY Zadání úlohy Zahrada kruhového tvaru má poloměr r = 10 m. Do zahrady umístíme kozu, kterou přivážeme provazem ke kolíku

Více

ROVNOMĚRNĚ ZRYCHLENÝ POHYB

ROVNOMĚRNĚ ZRYCHLENÝ POHYB ROVNOMĚRNĚ ZRYCHLENÝ POHYB Pomůcky: LabQuest, sonda čidlo polohy (sonar), nakloněná rovina, vozík, který se může po nakloněné rovině pohybovat Postup: Nakloněnou rovinu umístíme tak, aby svírala s vodorovnou

Více

DIMTEL - dimenzování otopných těles v teplovodních soustavách

DIMTEL - dimenzování otopných těles v teplovodních soustavách Dimenzování těles Dialogové okno Dimenzování těles lze otevřít z programu TZ (tepelné ztráty), z programu DIMOS_W a také z programu DIMTEL. Při spuštění z programu TZ jsou nadimenzovaná tělesa uložena

Více

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 19. 11. 2012 Číslo DUM: VY_32_INOVACE_14_FY_B

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 19. 11. 2012 Číslo DUM: VY_32_INOVACE_14_FY_B Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 19. 11. 2012 Číslo DUM: VY_32_INOVACE_14_FY_B Ročník: I. Fyzika Vzdělávací oblast: Přírodovědné vzdělávání Vzdělávací obor: Fyzika Tematický okruh:

Více

Projekt Obrázek strana 135

Projekt Obrázek strana 135 Projekt Obrázek strana 135 14. Projekt Obrázek 14.1. Základní popis, zadání úkolu Pracujeme na projektu Obrázek, který je ke stažení na http://java.vse.cz/. Po otevření v BlueJ vytvoříme instanci třídy

Více

modrana: flexibilní navigační systém Martin Kolman http://www.modrana.org/openalt2014 modrana@gmail.com

modrana: flexibilní navigační systém Martin Kolman http://www.modrana.org/openalt2014 modrana@gmail.com modrana: flexibilní navigační systém Martin Kolman http://www.modrana.org/openalt2014 modrana@gmail.com 1 Nevýhody uzavřených navigací nemožnost modifikovat funkcionalitu co když výrobce přestane podporovat

Více

SolidWorks Simulation

SolidWorks Simulation P O P I S P R O D U K T U SolidWorks Simulation Scootchi od Curventa Designworks LTD SolidWorks Flow Simulation SNADNÁ SIMULACE PROUDĚNÍ KAPALIN A PLYNŮ V SOFTWARU SOLIDWORKS Software SolidWorks Flow Simulation

Více

Práce, energie a další mechanické veličiny

Práce, energie a další mechanické veličiny Práce, energie a další mechanické veličiny Úvod V předchozích přednáškách jsme zavedli základní mechanické veličiny (rychlost, zrychlení, síla, ) Popis fyzikálních dějů usnadňuje zavedení dalších fyzikálních

Více

StatSoft Jak vyzrát na datum

StatSoft Jak vyzrát na datum StatSoft Jak vyzrát na datum Tento článek se věnuje podrobně možnostem práce s proměnnými, které jsou ve formě datumu. A že jich není málo. Pokud potřebujete pracovat s datumem, pak se Vám bude tento článek

Více

Kartometrická analýza starých map část 2

Kartometrická analýza starých map část 2 Podpora tvorby národní sítě kartografie nové generace Kartometrická analýza starých map část 2 Seminář NeoCartoLink, Olomouc, 29. 11. 2012 Tato prezentace je spolufinancována Evropským sociálním fondem

Více

MASSIV. Middleware pro tvorbu online her

MASSIV. Middleware pro tvorbu online her MASSIV Middleware pro tvorbu online her Obsah prezentace Úvod Prostředky poskytované Massivem Využití jádra Massivu v Demu Zhodnocení projektu Prezentace Dema Úvod Část 1. Tým projektu Massiv Zahájení

Více

Karel Bittner bittner@humusoft.com. HUMUSOFT s.r.o. HUMUSOFT s.r.o.

Karel Bittner bittner@humusoft.com. HUMUSOFT s.r.o. HUMUSOFT s.r.o. Karel Bittner bittner@humusoft.com COMSOL Multiphysics Co je COMSOL Multiphysics? - sw určený k simulaci fyzikálních modelů, na něž působí jeden nebo několik fyzikálních vlivů - sw úlohy řeší metodou konečných

Více

Jednoduchý elektrický obvod

Jednoduchý elektrický obvod 21 25. 05. 22 01. 06. 23 22. 06. 24 04. 06. 25 28. 02. 26 02. 03. 27 13. 03. 28 16. 03. VI. A Jednoduchý elektrický obvod Jednoduchý elektrický obvod Prezentace zaměřená na jednoduchý elektrický obvod

Více

PROGRAM MAXIMA. KORDEK, David, (CZ) PROGRAM MAXIMA

PROGRAM MAXIMA. KORDEK, David, (CZ) PROGRAM MAXIMA PROGRAM MAXIMA KORDEK, David, (CZ) Abstrakt. Co je to Open Source Software? Příklady některých nejpoužívanějších software tohoto typu. Výhody a nevýhody Open Source Software. Jak získat program Maxima.

Více

mechanická práce W Studentovo minimum GNB Mechanická práce a energie skalární veličina a) síla rovnoběžná s vektorem posunutí F s

mechanická práce W Studentovo minimum GNB Mechanická práce a energie skalární veličina a) síla rovnoběžná s vektorem posunutí F s 1 Mechanická práce mechanická práce W jednotka: [W] = J (joule) skalární veličina a) síla rovnoběžná s vektorem posunutí F s s dráha, kterou těleso urazilo 1 J = N m = kg m s -2 m = kg m 2 s -2 vyjádření

Více

Wonderware Information Server 4.0 Co je nového

Wonderware Information Server 4.0 Co je nového Wonderware Information Server 4.0 Co je nového Pavel Průša Pantek (CS) s.r.o. Strana 2 Úvod Wonderware Information Server je výrobní analytický a reportní informační portál pro publikaci výrobních dat

Více

DYNAMIKA - Dobový a dráhový účinek

DYNAMIKA - Dobový a dráhový účinek Název projektu: Automatizace výrobních procesů ve strojírenství a řemeslech Registrační číslo: CZ.1.07/1.1.30/01.0038 Příjemce: SPŠ strojnická a SOŠ profesora Švejcara Plzeň, Klatovská 109 Tento projekt

Více

MODELOVÁNÍ. Základní pojmy. Obecný postup vytváření induktivních modelů. Měřicí a řídicí technika magisterské studium FTOP - přednášky ZS 2009/10

MODELOVÁNÍ. Základní pojmy. Obecný postup vytváření induktivních modelů. Měřicí a řídicí technika magisterské studium FTOP - přednášky ZS 2009/10 MODELOVÁNÍ základní pojmy a postupy principy vytváření deterministických matematických modelů vybrané základní vztahy používané při vytváření matematických modelů ukázkové příklady Základní pojmy matematický

Více

LABORATORNÍ CVIČENÍ Střední průmyslová škola elektrotechnická

LABORATORNÍ CVIČENÍ Střední průmyslová škola elektrotechnická Střední průmyslová škola elektrotechnická a Vyšší odborná škola, Pardubice, Karla IV. 13 LABORATORNÍ CVIČENÍ Střední průmyslová škola elektrotechnická Příjmení: Hladěna Číslo úlohy: 10 Jméno: Jan Datum

Více

Metody využívající rentgenové záření. Rentgenovo záření. Vznik rentgenova záření. Metody využívající RTG záření

Metody využívající rentgenové záření. Rentgenovo záření. Vznik rentgenova záření. Metody využívající RTG záření Metody využívající rentgenové záření Rentgenovo záření Rentgenografie, RTG prášková difrakce 1 2 Rentgenovo záření Vznik rentgenova záření X-Ray Elektromagnetické záření Ionizující záření 10 nm 1 pm Využívá

Více

Derivační spektrofotometrie a rozklad absorpčního spektra

Derivační spektrofotometrie a rozklad absorpčního spektra Derivační spektrofotometrie a rozklad absorpčního spektra Teorie: Derivační spektrofotometrie, využívající derivace absorpční křivky, je obecně používanou metodou pro zvýraznění detailů průběhu záznamu,

Více

1. Úvod do Systémů CAD

1. Úvod do Systémů CAD 1. Úvod do Systémů CAD Studijní cíl Tento blok kurzu je věnován CA technologiím. Po úvodním seznámení se soustředíme především na oblast počítačové podpory konstruování, tedy CAD. Doba nutná k nastudování

Více

MS Excel 2007 Kontingenční tabulky

MS Excel 2007 Kontingenční tabulky MS Excel 2007 Kontingenční tabulky Obsah kapitoly V této kapitole se seznámíme s nástrojem, který se používá k analýze dat rozsáhlých seznamů. Studijní cíle Studenti budou umět pro analýzu dat rozsáhlých

Více

Postup při řešení matematicko-fyzikálně-technické úlohy

Postup při řešení matematicko-fyzikálně-technické úlohy Postup při řešení matematicko-fyzikálně-technické úlohy Michal Kolesa Žádná část této publikace NESMÍ být jakkoliv reprodukována BEZ SOUHLASU autora! Poslední úpravy: 3.7.2010 Úvod Matematicko-fyzikálně-technické

Více

E K O G Y M N Á Z I U M B R N O o.p.s. přidružená škola UNESCO

E K O G Y M N Á Z I U M B R N O o.p.s. přidružená škola UNESCO Seznam výukových materiálů III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Tematická oblast: Předmět: Vytvořil: MECHANIKA FYZIKA JANA SUCHOMELOVÁ 01 - Soustava SI notebook VY_32_INOVACE_01.pdf Datum

Více

METODICKÝ POKYN PRÁCE S MS PowerPoint - POKROČILÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky.

METODICKÝ POKYN PRÁCE S MS PowerPoint - POKROČILÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. METODICKÝ POKYN PRÁCE S MS PowerPoint - POKROČILÍ Pozadí snímku Pozadí snímku můžeme nastavit všem snímkům stejné nebo můžeme volit pro jednotlivé snímky různé pozadí. Máme několik možností: Pozadí snímku

Více

3.2 MATEMATIKA A JEJÍ APLIKACE (M) Charakteristika vzdělávací oblasti

3.2 MATEMATIKA A JEJÍ APLIKACE (M) Charakteristika vzdělávací oblasti 3.2 MATEMATIKA A JEJÍ APLIKACE (M) 51 Charakteristika vzdělávací oblasti Vzdělávací oblast matematika a její aplikace v základním vzdělávání je založena především na aktivních činnostech, které jsou typické

Více

VÝUKOVÝ MATERIÁL. 0301 Ing. Yvona Bečičková Tematická oblast

VÝUKOVÝ MATERIÁL. 0301 Ing. Yvona Bečičková Tematická oblast VÝUKOVÝ MATERIÁL Identifikační údaje školy Vyšší odborná škola a Střední škola, Varnsdorf, příspěvková organizace Bratislavská 2166, 407 47 Varnsdorf, IČO: 18383874 www.vosassvdf.cz, tel. +420412372632

Více

KDE VZÍT PLYNY? Václav Piskač, Brno 2014

KDE VZÍT PLYNY? Václav Piskač, Brno 2014 KDE VZÍT PLYNY? Václav Piskač, Brno 2014 Tento článek se zabývá možnostmi, jak pro školní experimenty s plyny získat něco jiného než vzduch. V dalším budu předpokládat, že nemáte kamarády ve výzkumném

Více