Termika. Nauka o teple se zabývá měřením teploty, tepla a tepelnými ději.
|
|
- Vladimíra Kučerová
- před 9 lety
- Počet zobrazení:
Transkript
1 Termika Nauka o teple se zabývá měřením teploty, tepla a tepelnými ději.
2 1. Vnitřní energie Brownův pohyb a difúze látek prokazují, že částice látek jsou v neustálém neuspořádaném pohybu. Proto mají kinetickou energii E k. Částice pevných látek jsou uspořádány v pevné krystalické mřížce, kde zaujímají svou polohu, kolem které kmitají. Abychom částice z těchto míst posunuli, musíme působit určitou silou na těleso, vykonat určitou práci. Částice v pevném tělese mají i svou potenciální energii E p. Důkazem toho je, že přestane-li na těleso působit síla, částice se vracejí na své místo. Každá částice má tedy svou kinetickou i potenciální energii. Součet kinetické a potenciální energie všech částic tělesa budeme nazývat vnitřní energií tělesa. Platí tedy: E = Ek + Ep
3 Vnitřní energie Ve vnitřní energii pevných těles převažuje energie potenciální, naopak vnitřní energie plynných těles je především kinetickou energií neuspořádaného pohybu molekul. Vnitřní energie tělesa se značí U. Jednotkou je 1 joule, J. Velikost vnitřní energie závisí na teplotě, na počtu částic a na vzájemné poloze částic v tělese. Vnitřní energii lze měnit konáním práce nebo změnou tepla. Platí: U 2 - U 1 =W + Q W je konaná práce, Q je množství tepla, která předá teplejší těleso chladnějšímu.
4 2. Teplo Teplo je druh energie, udávající energii, kterou si vyměňují tělesa různé teploty. Vzniká též přeměnou jiných energií, mechanické, chemické nebo elektrické. Označuje se písmenem Q a jako každá energie se měří v joulech. Samovolně se teplo přenáší vždy jen z teplejšího na chladnější těleso. Množství předaného tepla závisí na rozdílu teplot těles Dt, na hmotnosti m a vlastnostech látky tělesa. Čím větší je teplotní rozdíl, tím více tepla je třeba dodat. Čím větší je hmotnost, tím více tepla je třeba dodat.
5 Teplo Množství předaného tepla závisí na rozdílu teplot těles Dt, na hmotnosti m a vlastnostech látky tělesa. Čím větší je teplotní rozdíl, tím více tepla je třeba dodat. Čím větší je hmotnost, tím více tepla je třeba dodat. Vlastnosti látky jsou dány měrnou tepelnou kapacitou. Je to veličina, která udává, kolik tepla je třeba dodat, aby se 1kg látky ohřál o 1 C. Měrná tepelná kapacita se označuje písmenem c a její jednotkou je J/kg. C. Pro množství tepla, které je třeba dodat platí tedy vzorec: Q = c.m.(t 2 t 1 ) Kovy mají hodnoty měrné tepelné kapacity malé (stovky J/kg. C), ostatní látky naopak vysoké (tisíce J/kg. C).
6 Shrnutí
7 3. Změna vnitřní energie tělesa konáním práce Při mechanické práci se pohyb molekul zrychluje a tím se také zvyšuje vnitřní energie látky, což se většinou navenek projeví jako zvýšení teploty tělesa.
8 1. příklad Do bazénku, ve kterém je voda s objemem 1 m3, spadl kámen s hmotností 10 kg z výšky 10 m nad dnem bazénku. O kolik stupňů se voda ohřála? Řešení: Kámen má ve výšce 10 m potenciální energii, ta se po dopadu přemění na energii kinetickou a odpovídá zvýšení vnitřní energie, které se navenk projeví zvýšením teploty vody. O kolik stupňů se voda ohřála? c = J/kg. C Potenciální energie kamene g = 10 m/s 2 E p = m.g.h = J = J h = 10 m Přeměna na teplo m k =10 kg Q = m.c.dt, z toho m v = 1000 kg t 2 t 1 = Dt = Q/m.c Dt = C Dt = 1 000/ C = 0,00024 C Voda se ohřála o 0,00024 C.
9 2. příklad Původní teplota studené vody byla 10s. Množství vody v konvici je 0,5 l. Ze zjištěných údajů a naměřených hodnot vypočti měrnou tepelnou kapacitu vody. Řešení: V = 0,5 l, m = 0,5 kg P = W T = 108 s ( čas se značí v tomto případě T, aby nedošlo záměně s obvyklým značením teploty t) t 1 = 10 C t 2 = 100 C c = J/kg. C Teplo dodané k ohřevu vody je rovno práci vykonané elektrickým proudem, W = Q W = P. T W = J = 216 kj K ohřátí 0,5 l vody o 90 C je potřeba vykonat práci 216 kj. K ohřevu 1kg vody se vykoná práce 432 kj. K ohřevu 1kg vody o 1 C bude práce 90krát menší, tedy 4,8 kj. Zjištěná hodnota je větší, než hodnota uváděná v tabulkách. Důvodem je nepřesnost měření a tepelné ztráty.
10 4. Kalorimetrie Kalorimetrická rovnice popisuje tepelnou výměnu těles, pro kterou platí zákon zachování energie - tedy veškeré teplo, které při výměně jedno těleso odevzdá, druhé těleso přijme. Q 1 = Q 2 K zabránění výměny tepla mezi zkoumanými tělesy a okolím slouží KALORIMETR. Je to tepelně izolovaná nádoba, uzavřená víkem, kterým prochází teploměr. Může být doplněn míchacím zařízením.
11 Schéma kalorimetru
12 Kalorimetrická rovnice V tepelně izolované soustavě se teplo odevzdané teplejším tělesem rovná teplu přijatému chladnějším tělesem. Q 1 = Q 2 Neboli: m 1.c 1. (t 1 t ) = m 2. c 2. (t t 2 ) Kde: m 1 je hmotnost teplejšího tělesa c 1 je měrná tepelná kapacita teplejšího tělesa t 1 je teplota teplejšího tělesa m 2 je hmotnost chladnějšího tělesa c 2 je měrná tepelná kapacita chladnějšího tělesa t 2 je teplota chladnějšího tělesa t je výsledná teplota obou těles po dosažení rovnovážného stavu Rovnice v tomto tvaru platí pouze za předpokladu, že Q 1 Q 2 Metoda kalorimetrické rovnice se často používá k určení měrné tepelné kapacity látek a jiných fyzikálních konstant v termice.
13 1. Příklad Do 5 litrů vody, která má teplotu 18 C, hodím 300 gramový měděný váleček o teplotě 70 C. O kolik stupňů se voda ohřeje po ustálení teploty? Předpokládejme, že tepelná výměna nastane pouze mezi vodou a válečkem. Měrná tepelná kapacita vody je 4180 J/ C kg, měrná tepelná kapacita mědi je 383 J/ C kg. Řešení: Stačí si říct, že teplo, které předá váleček vodě (těleso o vyšší teplotě vždy předává teplo tělesu o nižší teplotě), se rovná teplu, které voda od válečku přijme to je logické. Zákon zachování energie to, co se předá, to se na druhé straně přijme. Q 1 válečku =Q 2 vody m 1 = 300 g = 0,3 kg m 1.c 1. (t 1 t ) = m 2. c 2. (t t 2 ) t 1 = 70 C 0, (70 t) = (t 18) C m 2 = 5 l = 5 kg ,9 t = t C t 2 = 18 C C = ,9 t c 1 = 383 J/ kg. C t = 18,3 C c 2 = J/ kg. C t =. C Teplota ohřáté vody je 18,3 C.
14 2. Příklad V nádobě jsou 3 kg vody o teplotě 10 C. Kolik vody o teplotě 90 C musíme přilít, aby výsledná teplota v nádobě byla 35 C. Tepelnou kapacitu nádoby zanedbejte. Řešení: Podle zákona zachování energie se musí při tepelné výměně teplo předané teplejší vodou rovnat teplu přijatému vodou chladnější. Potřebné množství vody se vypočte z kalorimetrické rovnice. Q 1 chladné vody = Q 2 teplé vody m 1 = 3 kg m 1.c 1. (t t 1 ) = m 2. c 2. (t 2 t) t 1 = 10 C (35 10) = m (90 35) m 2 =. kg = m t 2 = 90 C m 2 = 1,36 kg c vody = J/ kg. C t = 35 C Je třeba přidat 1,36 kg vody.
15 5. Tepelná výměna Při tepelné výměně dochází k přenosu tepla vždy z teplejšího tělesa na těleso chladnější. Rozeznáváme tři základní způsoby předávání tepla: vedení, proudění, záření.
16 Tepelná výměna vedením Vedením se teplo šíří v pevných látkách, v kapalinách i v plynech. Látky, které vedou teplo dobře (kovy), nazýváme tepelné vodiče. Látky, které vedou teplo špatně (kapaliny, plyny, dřevo, sklo nebo plasty), nazýváme tepelné izolanty. Nejlepším izolantem je vakuum. Pokud se jedná o jediné těleso, pak částice v teplejším místě tělesa předávají část své energie částicím v místě s nižší teplotou. Takový způsob šíření tepla, celým tělesem nebo z tělesa na těleso, nazýváme vedení tepla. Vlastnost vést teplo popisuje fyzikální veličina součinitel tepelné vodivosti udává, kolik tepla se odvede vrstvou tloušťky 1 m o průřezu 1m2 za dobu 1 s, je-li teplotní rozdíl na opačných stranách vrstvy 1 C.
17 Tepelná výměna prouděním Tepelná výměna prouděním probíhá pouze u plynů a kapalin. Zahřátá kapalina (plyn) má menší hustotu, než kapalina (plyn) okolí. Proto stoupá vzhůru a na původní místo se dostává kapalina (plyn) z horních vrstev. Aby došlo k proudění tepla, musíme kapalinu (plyn) vždy zahřívat zdola a ochlazovat shora. Využití proudění tepla Při vaření (např. vody) se kapalina sama promíchává. Kouřovod odvádí kouř komínem vzhůru. Teplovodní nebo teplovzdušné topení rozvádí teplo po celém domě.
18 Tepelné záření Tělesa a látky všech skupenství vydávají záření. Má původ ve změně energie jejich atomů a molekul. Při teplotě nižší než 500 C není toto záření vidět. Při vyšších teplotách (nad 600 C) s e záření stává viditelným. Barva se mění od červené, přes oranžovou, žlutou až po bílou. Tělesa s černým a drsným povrchem pohlcují více tepelného záření než lesklé a bílé plochy. Nejlepší prostředí pro šíření tepla zářením je vakuum. (Šíření tepelného záření v Kosmu.)
19 Tepelné záření Slunce Světelné a tepelné záření Slunce je nepostradatelné pro život na Zemi. Výroba elektrické energie pomocí větrné, sluneční, vodní síly a biomasy je možná díky působení Slunečního záření na Zemi. Fosilní paliva jsou uskladněnou energií Slunce.
20 6. Tepelné motory Motor je stroj, ve kterém se přijatá energie mění na pohybovou Tepelný motor koná práci působením tepla Tepelné motory: Parní stroj Parní turbína Spalovací motory Reaktivní motory
21 Parní stroj nejstarší, velmi těžký zdokonalil ho James Watt ( ) účinnost asi 15% využití zejména devatenácté století: parní lokomotivy, průmysl
22 Parní turbína horká pára dopadá velkou rychlostí na lopatky turbína a uvádí ji do pohybu účinnost asi 35% tepelné, jaderné elektrárny
23 Spalovací motory Využití především dopravní prostředky Rozdělení Spalovací benzinový čtyřdobý - dvoudobý Vznětový čtyřdobý, Dieselův naftový
24 Zážehový čtyřdobý motor Pracuje v cyklech, každý cyklus má 4 doby Palivo: směs benzínu a vzduchu (karburátor) Účinnost 30%
25 Pracovní cyklus čtyřdobého zážehového motoru 1. doba - sání - píst dolů - otevření sacího ventilu - nasání paliva 2. doba stlačení (komprese) - píst nahoru - ventily zavřeny - stlačení směsi (vysoký tlak a teplota)
26 3. doba výbuch (exploze) - zapálení plynu el. jiskrou - rozpínání = pracovní doba motoru - píst jde dolů 4. doba výfuk - píst jde nahoru, otevřen výfukový ventil - vytlačení spálených plynů pro plynulý chod - motor 4 válce
27 Zážehový dvoudobý motor 2 doby - pracovní a nepracovní Účinnost 20% Výhody: - jednodušší konstrukce - menší hmotnost - nemá ventily Nevýhody: - nedokonalé spalován - více znečišťuje ovzduší - větší spotřeba paliva + oleje - větší hlučnost
28 Činnost motoru 1. doba sání a stlačení - píst nahoru - palivová směs do prostoru pod pístem - stlačování směsi nad pístem 2. doba rozpínání a výfuk - zapálení el. jiskrou - rozpínání - konání práce -pracovní doba motoru - výfuk spálených plynů
29 Vznětový čtyřdobý motor (Dieselův) 4 doby jako u zážehového motoru nepotřebuje el. zapalování směsi do stlačeného horkého vzduchu se vstřikuje palivo (nafta) dojde k samovznícení účinnost 40%
30 7. Skupenské přeměny Skupenství je stav tělesa z termodynamického hlediska Skupenství rozeznáváme: 1. Pevné potenciální energie molekul je značně větší než jejich kinetická energie, proto se molekuly pohybují jen v blízkosti jednoho bodu, nemohou se vzájemně vyměňovat. mají molekuly uspořádány v krystalické mřížce pevná struktura, v níž se pravidelně opakuje geometrické uspořádání atomů. zachovávají tvar a objem pevné skupenství vody je led 2. Kapalné potenciální energie molekul je trochu větší než jejich kinetická energie, proto se molekuly mohou pohybovat a vzájemně se po sobě smýkat, ale nemohou se odpoutat nemají stálý tvar, ale zachovávají stálý objem kapalné skupenství vody je voda kapalina 3. Plynné potenciální energie už je menší než kinetická energie, proto se molekuly pohybují volně prostorem, dokud nenarazí na jinou molekulu nemají stálý tvar ani objem plynné skupenství vody jsou vodní páry Fyzikální děj, při kterém se mění skupenství látky, se nazývá změna skupenství.
31 Skupenské přeměny
32 Tání Když zahříváme těleso z pevné látky, při dosažení teploty tání t t se přestane zvyšovat teplota a pevná látka se začne přeměňovat na kapalinu stejné teploty. Když pevná látka taje, přijímá teplo a zvětšuje se kinetická energie molekul. Částice zvětšují vzdálenosti od bodů, kolem kterých kmitají. Při dostatečné rychlosti molekul se narušuje vazba mezi částicemi, krystalická mřížka se bourá. Během tání látka přijímá teplo, které se nazývá skupenské teplo tání L t. Skupenské teplo tání vztažené na jeden kilogram je měrné skupenské teplo tání l t. Platí: Měrné skupenské teplo tání je teplo (energie), která se musí dodat jednomu kilogramu pevné látky, aby se rozpustila v kapalinu téže teploty. [l t ] = J/kg Měrná skupenská tepla tání různých látek jsou v tabulkách.
33 Tuhnutí Když ochlazujeme kapalinu, mění se při teplotě tuhnutí v pevnou látku téže teploty. Teplota tuhnutí je rovna teplotě tání. Při tuhnutí nevzniká pevné skupenství okamžitě. Při dosažení teploty tuhnutí se začnou v kapalině vytvářet krystalizační jádra. K nim se připojují a pravidelně uspořádávají další částice látky. V tavenině tak vzniká při krystalizaci soustava volně se pohybujících krystalků nepravidelného tvaru. V okamžiku, kdy všechna látka ztuhne, se krystalky vzájemně dotýkají a vytvářejí zrna. Z několika krystalizačních jader vznikne polykrystalická látka. Když je krystalické jádro jen jedno, připojují se postupně všechny částice látky a vznikne monokrystal. Vzniku monokrystalu se dosahuje tím, že do tuhnoucí taveniny se hned od začátku ponoří malý monokrystal, aby jej částice obalovaly. Monokrystaly mají široké využití, protože z monokrystalů křemíku se vyrábějí polovodičové součástky od diod a tranzistorů do rádií až po procesory počítačů. Při tuhnutí kapalina předá okolí skupenské teplo tuhnutí, vztažené na jeden kilogram měrné skupenské teplo tuhnutí, která jsou stejná jako skupenské teplo tání a měrné skupenské teplo tání.
34 Změny objemu Látky při tání nebo tuhnutí mění svůj objem. Většinou je objem pevné látky menší než objem kapaliny, protože molekuly uspořádané v krystalické mřížce zabírají menší objem než neuspořádané. Takové látky tuhnou ode dna. Ale některé látky tvoří výjimku. Nejběžnější z nich je voda. Led má větší objem než voda, proto se drží u hladiny a pak umožňuje izolaci vody pod ním, takže nezamrzne celý rybník a vodní organismy přečkají zimu. Led ale také způsobuje narušování skal, praskání zdí, potrubí apod. Když zvýšíme tlak na pevnou látku, zmenší se teplota tání. To lze dokázat tím, že necháme drát projít ledovým kvádrem. Drát zatížíme závažími, která pověsíme na oba jeho konce. Tím vyvoláme velký tlak. Led pod drátem roztaje, voda vniká nad drát, kde opět tuhne, protože už tam není takový tlak. Drát pronikne ledem, aniž by ho rozdělil. Bruslení umožňuje tenká vrstva vody, která je na ledu pod bruslí. Ta však není způsobena jen zvýšeným tlakem, ale také třením. Jev se nazývá regelace ledu. U většiny ostatních látek však se zvyšujícím se tlakem teplota tání roste.
35 Sublimace a desublimace Sublimace je přeměna pevné látky přímo ve skupenství plynné a desublimace je přeměna látky ve skupenství plynném na skupenství pevné. Za normálního tlaku kolem 1000 hpa sublimují např. jod, suchý led (pevný CO 2 ), ale i led nebo sníh. Sublimují také pevné látky, které voní nebo páchnou (naftalen). Při sublimaci se pevné látce musí dodat skupenské teplo sublimace L s, vztažené na jeden kilogram měrné skupenské teplo sublimace l s. Desublimace je přeměna látky ze skupenství plynného na skupenství pevné. Příkladem je například vznik krystalků jodu z jodových par.
36 Vypařování Vypařování je přeměna kapaliny v páru. Vypařování probíhá na volném povrchu kapaliny za každé teploty. Rychlost, kterou se kapalina vypařuje, závisí na látce (líh se vypařuje rychleji než voda), na teplotě kapaliny (voda se vypaří rychleji v létě než pozdě na podzim, kdy je teplota kolem nuly), na ploše volného povrchu (rychleji se vypaří litr vody, když ho rozlijeme po zemi než když ho necháme ve sklenici) a na množství par nad volným povrchem kapaliny (z tohoto důvodu se nevypaří všechna kapalina v uzavřené nádobě; po dosažení určitého množství par se už látka dál nevypařuje vypařování lze zvýšit odsáváním, foukáním, větrem). Při vypařování získávají molekuly na povrchu kapaliny kinetickou energii, která je větší než potenciální, takže překonají síly, které je poutají k ostatním molekulám a uniknou do volného prostoru na kapalinou a vytvoří páru. Pára patří do plynného skupenství látky, ale má jiné vlastnosti než plyn. Když je volný povrch kapaliny ve styku se vzduchem, uniknou částice a rozptýlí se ve vzduchu. Některé molekuly se opět vracejí do kapaliny, proto se z uzavřené nádoby nevypaří všechna kapalina.
37 Var, kondenzace Když kapalinu zahříváme, při dosažení určité teploty se pára začne tvořit po celém objemu kapaliny, a bubliny stoupají k volnému povrchu. Tento děj se nazývá var. Teplota t v, při které kapalina začne vřít, je teplota varu. Teplota varu je závislá na vnějším tlaku. S rostoucím tlakem zvětšuje ( Papinův hrnec je tam vyšší tlak, proto voda vře až při asi 110 C; naopak při sníženém tlaku vře voda při mnohem nižší teplotě výroba sirupů, krystalového cukru) Teplo, které musíme kapalině dodat, aby se přeměnila na páru stejné teploty a tlaku, se nazývá skupenské teplo varu L v, vztažené na jeden kilogram měrné skupenské teplo varu l v. Pro měrné skupenské teplo varu platí podobný vztah, jako pro měrné skupenské teplo tání (tuhnutí). Při vypařování se musí molekulám, které se uvolňují z kapaliny, dodat kinetická energie skupenské teplo vypařování, ale při tom látce nedodáváme žádné teplo zvnějšku. Při vypařování se snižuje teplota kapaliny toho se využívá pro konstrukci chladniček. Obrácený děj k vypařování a varu je kapalnění (kondenzace). Při tomto ději se pára v důsledku zmenšování svého objemu nebo snížení teploty přemění na kapalinu. Při kapalnění se uvolní skupenské teplo kondenzační, vztaženo na kilogram měrné skupenské teplo kondenzační. Je stejně velké jako skupenské teplo varu a měrné skupenské teplo varu.
38 Použitá literatura a odkazy ml Karel Rauner, Josef Petřík, Jitka Prokšová, Miroslav Randa: Fyzika 8 pro základní školy a víceletá gymnázia Nakladatelství Fraus, Plzeň 2006, ISBN Vlastní poznámky
II. VNITŘNÍ ENERGIE, PRÁCE A TEPLO
II. VNITŘNÍ ENERGIE, PRÁCE A TEPLO 2.1 Vnitřní energie tělesa a) celková energie (termodynamické) soustavy E tvořena kinetickou energií E k jejího makroskopického pohybu jako celku potenciální energií
23_ 2 24_ 2 25_ 2 26_ 4 27_ 5 28_ 5 29_ 5 30_ 7 31_
Obsah 23_ Změny skupenství... 2 24_ Tání... 2 25_ Skupenské teplo tání... 2 26_ Anomálie vody... 4 27_ Vypařování... 5 28_ Var... 5 29_ Kapalnění... 5 30_ Jak určíš skupenství látky?... 7 31_ Tepelné motory:...
TEPELNÉ JEVY. Mgr. Jan Ptáčník - GJVJ - Fyzika - Tercie
TEPELNÉ JEVY Mgr. Jan Ptáčník - GJVJ - Fyzika - Tercie Vnitřní energie tělesa Každé těleso se skládá z látek. Látky se skládají z částic. neustálý neuspořádaný pohyb kinetická energie vzájemné působení
ZMĚNY SKUPENSTVÍ LÁTEK ČÁST 01
ZMĚNY SKUPENSTVÍ LÁTEK ČÁST 01 A) Výklad: Změny skupenství látky Látka se může vyskytovat ve třech různých skupenstvích PEVNÉM, KAPALNÉM nebo PLYNNÉM. Např. voda (H 2 O)- může se vyskytovat jako krystalický
ZÁKLADNÍ ŠKOLA KOLÍN II., KMOCHOVA 943 škola s rozšířenou výukou matematiky a přírodovědných předmětů
ZÁKLADNÍ ŠKOLA KOLÍN II., KMOCHOVA 943 škola s rozšířenou výukou matematiky a přírodovědných předmětů Autor Číslo materiálu Mgr. Vladimír Hradecký 8_F_1_13 Datum vytvoření 2. 11. 2011 Druh učebního materiálu
Teplo. Částicové složení látek
Teplo Částicové složení látek Částicové složení látek látky jsou složeny z částic nepatrných rozměrů částice: atomy, molekuly, ionty částice se neustále neuspořádaně pohybují důkaz: difúze a Brownův pohyb
Veličiny- základní N A. Látkové množství je dáno podílem N částic v systému a Avogadrovy konstanty NA
YCHS, XCHS I. Úvod: plán přednášek a cvičení, podmínky udělení zápočtu a zkoušky. Základní pojmy: jednotky a veličiny, základy chemie. Stavba atomu a chemická vazba. Skupenství látek, chemické reakce,
TÉMA: Molekulová fyzika a tepelné děje v plynech VNITŘNÍ ENERGIE TĚLESA
U.. vnitřní energie tělesa ( termodynamické soustavy) je celková kinetická energie neuspořádaně se pohybujících částic tělesa ( molekul, atomů, iontů) a celková potenciální energie vzájemné polohy těchto
Výměna tepla může probíhat vedením (kondukcí), prouděním (konvekcí) nebo sáláním (zářením).
10. VÝMĚNÍKY TEPLA Výměníky tepla jsou zařízení, ve kterých se jeden proud ohřívá a druhý ochlazuje sdílením tepla. Nezáleží přitom na konečném cíli operace, tj. zda chceme proud ochladit nebo ohřát, ani
KINETICKÁ TEORIE STAVBY LÁTEK
KINETICKÁ TEORIE STAVBY LÁTEK Látky kteréhokoliv skupenství se skládají z částic. Prostor, který těleso zaujímá, není částicemi beze zbytku vyplněn (diskrétní struktura látek). Rozměry částic jsou řádově
ÚVODNÍ POJMY, VNITŘNÍ ENERGIE, PRÁCE A TEPLO POJMY K ZOPAKOVÁNÍ. Testové úlohy varianta A
Škola: Autor: DUM: Vzdělávací obor: Tematický okruh: Téma: Masarykovo gymnázium Vsetín Mgr. Jitka Novosadová MGV_F_SS_3S3_D08_Z_OPAK_T_Uvodni_pojmy_vnitrni_energie _prace_teplo_t Člověk a příroda Fyzika
5.7 Vlhkost vzduchu 5.7.5 Absolutní vlhkost 5.7.6 Poměrná vlhkost 5.7.7 Rosný bod 5.7.8 Složení vzduchu 5.7.9 Měření vlhkosti vzduchu
Fázové přechody 5.6.5 Fáze Fázové rozhraní 5.6.6 Gibbsovo pravidlo fází 5.6.7 Fázový přechod Fázový přechod prvního druhu Fázový přechod druhého druhu 5.6.7.1 Clausiova-Clapeyronova rovnice 5.6.8 Skupenství
Vnitřní energie, práce a teplo
Vnitřní energie, práce a teplo Zákon zachování mechanické energie V izolované soustavě těles je v každém okamžiku úhrnná mechanická energie stálá. Mění se navzájem jen potenciální energie E p a kinetická
Kontrolní otázky k 1. přednášce z TM
Kontrolní otázky k 1. přednášce z TM 1. Jak závisí hodnota izobarického součinitele objemové roztažnosti ideálního plynu na teplotě a jak na tlaku? Odvoďte. 2. Jak závisí hodnota izochorického součinitele
TEPELNÉ MOTORY (první část)
TEPELNÉ MOTORY (první část) A) Výklad: Tepelné motory: Tepelné motory jsou hnací stroje, které přeměňují část vnitřní energie paliva uvolněné hořením na energii pohybovou (tj. mechanickou). Obecný princip
Doprovodné otázky pro studenty, kvízy, úkoly aj.
Doprovodné otázky pro studenty, kvízy, úkoly aj. Otázky: 1. Jak se projeví menší hustota ledu v porovnání s vodou při zamrzání vodních nádrží a toků? 2. Jaký jev se nazývá anomálie vody? 3. Vysvětlete
Vnitřní energie, práce, teplo.
Vnitřní energie, práce, teplo. Vnitřní energie tělesa Částice uvnitř látek mají kinetickou a potenciální energii. Je to energie uvnitř tělesa, proto ji nazýváme vnitřní energie. Značíme ji písmenkem U
Digitální učební materiál
Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím
Téma sady: Všeobecně o vytápění. Název prezentace: základní pojmy 1
Téma sady: Všeobecně o vytápění. Název prezentace: základní pojmy 1 Autor prezentace: Ing. Eva Václavíková VY_32_INOVACE_1201_základní_pojmy_1_pwp Název školy: Číslo a název projektu: Číslo a název šablony
V izolované soustavě nedochází k výměně tepla s okolím. Dokonalá izolovaná soustava neexistuje, nejvíce se jí blíží kalorimetr nebo termoska.
Teplo a vnitřní energie pracovní list Vnitřní energie Všechny tělesa se skládají z částic, které vykonávají neustálý a neuspořádaný pohyb a které na sebe navzájem silově působí. Částice uvnitř všech těles
3. TEKUTINY A TERMIKA 3.1 TEKUTINY
3. TEKUTINY A TERMIKA 3.1 TEKUTINY 3.1.1 TEKUTINY, TLAK, HYDROSTATICKÝ A ATMOSFÉRICKÝ TLAK, VZTLAKOVÁ SÍLA Tekutiny: kapaliny a plyny Statika kapalin a plynů = Hydrostatika a Aerostatika Tlak v tekutině
Základní poznatky. Teplota Vnitřní energie soustavy Teplo
Molekulová fyzika a termika Základní poznatky Základní poznatky Teplota Vnitřní energie soustavy Teplo Termika = část fyziky zabývající se studiem vlastností látek a jejich změn souvisejících s teplotou
p V = n R T Při stlačování vkládáme do systému práci a tím se podle 1. věty termodynamické zvyšuje vnitřní energie systému U = q + w
3. DOPRAVA PLYNŮ Ve výrobních procesech se často dopravují a zpracovávají plyny za tlaků odlišných od tlaku atmosférického. Podle poměru stlačení, tj. poměru tlaků před a po kompresi, jsou stroje na dopravu
Úvod do teorie spalování tuhých paliv. Ing. Jirka Horák, Ph.D. jirka.horak@vsb.cz http://vec.vsb.cz/cz/
Úvod do teorie spalování tuhých paliv Ing. Jirka Horák, Ph.D. jirka.horak@vsb.cz http://vec.vsb.cz/cz/ Zkušebna Výzkumného energetického centra Web: http://vec.vsb.cz/zkusebna Základy spalování tuhých
V izolované soustavě nedochází k výměně tepla s okolím. Dokonalá izolovaná soustava neexistuje, nejvíce se jí blíží kalorimetr nebo termoska.
Teplo a vnitřní energie pracovní list Vnitřní energie Všechny tělesa se skládají z částic, které vykonávají neustálý a neuspořádaný pohyb a které na sebe navzájem silově působí. Částice uvnitř všech těles
Změny délky s teplotou
Termika Teplota t Dokážeme vnímat horko a zimu. Veličinu, kterou zavádíme pro popis, nazýváme teplota teplotu (horko-chlad) však nerozlišíme zcela přesně (líh, mentol, chilli, kapalný dusík) měříme empiricky
Digitální učební materiál
Evidenční číslo materiálu: 516 Digitální učební materiál Autor: Mgr. Pavel Kleibl Datum: 22. 1. 2013 Ročník: 8. Vzdělávací oblast: Člověk a příroda Vzdělávací obor: Fyzika Tematický okruh: Energie Téma:
Molekulová fyzika a termika:
Molekulová fyzika a termika: 1. Měření teploty: 2. Délková roztažnost a Objemová roztažnost látek 3. Bimetal 4. Anomálie vody 5. Částicová stavba látek, vlastnosti látek 6. Atomová hmotnostní konstanta
Kalorimetrická rovnice, skupenské přeměny
Základní škola Nový Bor, náměstí Míru 128, okres Česká Lípa, příspěvková organizace e mail: info@zsnamesti.cz; www.zsnamesti.cz; telefon: 487 722 010; fax: 487 722 378 Registrační číslo: CZ.1.07/1.4.00/21.3267
Úlohy z termiky pro fyzikální olympioniky
Závěr Experimenty demonstrující tepelnou a teplotní vodivost látek jsou velmi efektní při výuce fyziky a často dávají obecně nečekané a překvapivé výsledky. Přehled běžně provozovaných demonstrací tepelné
12. Termomechanika par, Clausius-Clapeyronova rovnice, parní tabulky, základni termodynamické děje v oblasti par
1/2 1. Určovací veličiny pracovní látky 2. Stavová rovnice, plynová konstanta, Avogadrův zákon, kilomol plynu 3. Směsi plynů, měrné tepelné kapacity plynů 4. První termodynamický zákon 5. Základní vratné
1 ZÁKLADNÍ VLASTNOSTI TECHNICKÝCH MATERIÁLŮ Vlastnosti kovů a jejich slitin jsou dány především jejich chemickým složením a strukturou.
1 ZÁKLADNÍ VLASTNOSTI TECHNICKÝCH MATERIÁLŮ Vlastnosti kovů a jejich slitin jsou dány především jejich chemickým složením a strukturou. Z hlediska použitelnosti kovů v technické praxi je obvyklé dělení
Tepelná výměna - proudění
Tepelná výměna - proudění Proč se při míchání horkého nápoje ve sklenici lžičkou nápoj rychleji ochladí - Při větrání místnosti (zejména v zimě) pozorujeme, že chladný vzduch se hromadí při zemi. Vysvětlete
6. Jaký je výkon vařiče, který ohřeje 1 l vody o 40 C během 5 minut? Měrná tepelná kapacita vody je W)
TEPLO 1. Na udržení stále teploty v místnosti se za hodinu spotřebuje 4,2 10 6 J tepla. olik vody proteče radiátorem ústředního topení za hodinu, jestliže má voda při vstupu do radiátoru teplotu 80 ºC
SKUPENSKÉ PŘEMĚNY POJMY K ZOPAKOVÁNÍ. Testové úlohy varianta A
Škola: Autor: DUM: Vzdělávací obor: Tematický okruh: Téma: Masarykovo gymnázium Vsetín Mgr. Jitka Novosadová MGV_F_SS_3S3_D11_Z_OPAK_T_Skupenske_premeny_T Člověk a příroda Fyzika Skupenské přeměny Opakování
Ch - Chemie - úvod VARIACE
Ch - Chemie - úvod Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. VARIACE 1 Tento dokument byl kompletně vytvořen,
Vnitřní energie, práce a teplo
Vnitřní energie, práce a teplo Míček upustíme z výšky na podlahu o Míček padá zvětšuje se, zmenšuje se. Celková mechanická energie se - o Míček se od země odrazí a stoupá vzhůru zvětšuje se, zmenšuje se.
Název DUM: Změny skupenství v příkladech
Základní škola národního umělce Petra Bezruče, Frýdek-Místek, tř. T. G. Masaryka 454 Zpracováno v rámci OP VK - EU peníze školám Jednička ve vzdělávání CZ.1.07/1.4.00/21.2759 Název DUM: Změny skupenství
Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově
Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově 05_4_Mechanická práce a energie Ing. Jakub Ulmann 4 Mechanická práce a energie 4.1 Mechanická práce 4.2
F - Změny skupenství látek
F - Změny skupenství látek Určeno jako učební text pro studenty dálkového studia a jako shrnující text pro studenty denního studia. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn
Vnitřní energie pevné látky < Vnitřní energie kapaliny < Vnitřní energie plynu (nejmenší energie)
Změny skupenství Při změně tělesa z pevné látky na kapalinu nebo z kapaliny na plyn se jeho vnitřní energie zvyšuje musíme dodávat teplo (zahřívat). Při změně tělesa z plynu na kapalinu, nebo z kapaliny
STRUKTURA PEVNÝCH LÁTEK STRUKTURA PEVNÝCH LÁTEK
Předmět: Ročník: Vytvořil: Datum: FYZIKA PRVNÍ MGR. JÜTTNEROVÁ 21. 4. 2013 Název zpracovaného celku: STRUKTURA PEVNÝCH LÁTEK STRUKTURA PEVNÝCH LÁTEK Pevné látky dělíme na látky: a) krystalické b) amorfní
Maturitní okruhy Fyzika 2015-2016
Maturitní okruhy Fyzika 2015-2016 Mgr. Ladislav Zemánek 1. Fyzikální veličiny a jejich jednotky. Měření fyzikálních veličin. Zpracování výsledků měření. - fyzikální veličiny a jejich jednotky - mezinárodní
Výroba páry - kotelna, teplárna, elektrárna Rozvod páry do místa spotřeby páry Využívání páry v místě spotřeby Vracení kondenzátu do místa výroby páry
Úvod Znalosti - klíč k úspěchu Materiál přeložil a připravil Ing. Martin NEUŽIL, Ph.D. SPIRAX SARCO spol. s r.o. V Korytech (areál nádraží ČD) 100 00 Praha 10 - Strašnice tel.: 274 00 13 51, fax: 274 00
2. DOPRAVA KAPALIN. h v. h s. Obr. 2.1 Doprava kapalin čerpadlem h S sací výška čerpadla, h V výtlačná výška čerpadla 2.1 HYDROSTATICKÁ ČERPADLA
2. DOPRAVA KAPALIN Zařízení pro dopravu kapalin dodávají tekutinám energii pro transport kapaliny, pro hrazení ztrát způsobených jejich viskozitou (vnitřním třením), překonání výškových rozdílů, umožnění
Molekulová fyzika a termika
Molekulová fyzika a termika Fyzika 1. ročník Vzdělávání pro konkurenceschopnost Inovace výuky oboru Informační technologie MěSOŠ Klobouky u Brna Mgr. Petr Kučera 1 Obsah témat v kapitole Molekulová fyzika
Výstupy Učivo Průřezová témata
5.2.8.2 Vzdělávací obsah vyučovacího předmětu VZDĚLÁVACÍ OBLAST: Člověk a příroda PŘEDMĚT: Fyzika ROČNÍK: 6. Výstupy Učivo Průřezová témata -rozlišuje látku a těleso, dovede uvést příklady látek a těles
Západočeská univerzita v Plzni Fakulta strojní. Semestrální práce z Matematického Modelování
Západočeská univerzita v Plzni Fakulta strojní Semestrální práce z Matematického Modelování Dynamika pohybu rakety v 1D Vypracoval: Pavel Roud Obor: Technologie obrábění e mail:stu85@seznam.cz 1 1.Úvod...
Kalibrace teploměru, skupenské teplo Abstrakt: V této úloze se studenti seznámí s metodou kalibrace teploměru a na základě svých
Úloha 6 02PRA1 Fyzikální praktikum 1 Kalibrace teploměru, skupenské teplo Abstrakt: V této úloze se studenti seznámí s metodou kalibrace teploměru a na základě svých měření i ověří Gay-Lussacův zákon.
CELKOVÉ OPAKOVÁNÍ UČIVA + ZÁPIS DO ŠKOLNÍHO SEŠITU část 03 VNITŘNÍ ENERGIE, TEPLO.
CELKOVÉ OPAKOVÁNÍ UČIVA + ZÁPIS DO ŠKOLNÍHO SEŠITU část 03 VNITŘNÍ ENERGIE, TEPLO. 01) Složení látek opakování učiva 6. ročníku: Všechny látky jsou složeny z částic nepatrných rozměrů (tj. atomy, molekuly,
Termodynamika. T [K ]=t [ 0 C] 273,15 T [ K ]= t [ 0 C] termodynamická teplota: Stavy hmoty. jednotka: 1 K (kelvin) = 1/273,16 část termodynamické
Termodynamika termodynamická teplota: Stavy hmoty jednotka: 1 K (kelvin) = 1/273,16 část termodynamické teploty trojného bodu vody (273,16 K = 0,01 o C). 0 o C = 273,15 K T [K ]=t [ 0 C] 273,15 T [ K ]=
CHEMICKY ČISTÁ LÁTKA A SMĚS
CHEMICKY ČISTÁ LÁTKA A SMĚS Látka = forma hmoty, která se skládá z velkého množství základních stavebních částic: atomů, iontů a... Látky se liší podle druhu částic, ze kterých se skládají. Druh částic
Fyzikální veličiny. Převádění jednotek
Fyzikální veličiny Vlastnosti těles, které můžeme měřit nebo porovnávat nazýváme fyzikální veličiny. Značka fyzikální veličiny je písmeno, kterým se název fyzikální veličiny nahradí pro zjednodušení zápisu.
9 FYZIKA. 9.1 Charakteristika vyučovacího předmětu. 9.2 Vzdělávací obsah
9 FYZIKA 9.1 Charakteristika vyučovacího předmětu Obsahové vymezení Vzdělávací obsah vyučovacího předmětu je vytvořen na základě rozpracování oboru Fyzika ze vzdělávací oblasti Člověk a příroda. Vzdělávání
Naše zkušenost z denního života, technické praxe a samozřejmě i pokusy. částečná přeměna celkové energie ve vnitřní energii okolí [2, s. 162].
Nevratné procesy pro žáky základních škol LIBUŠE ŠVECOVÁ ERIKA MECHLOVÁ Přírodovědecká fakulta, Ostravská univerzita v Ostravě Naše zkušenost z denního života, technické praxe a samozřejmě i pokusy ukazují,
FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK 2006 2007
TEST Z FYZIKY PRO PŘIJÍMACÍ ZKOUŠKY ČÍSLO FAST-F-2006-01 1. Převeďte 37 mm 3 na m 3. a) 37 10-9 m 3 b) 37 10-6 m 3 c) 37 10 9 m 3 d) 37 10 3 m 3 e) 37 10-3 m 3 2. Voda v řece proudí rychlostí 4 m/s. Kolmo
ZMĚNY SKUPENSTVÍ LÁTEK
ZMĚNY SKUPENSTVÍ LÁTEK TÁNÍ A TUHNUTÍ - OSNOVA Kapilární jevy příklad Skupenské přeměny látek Tání a tuhnutí Teorie s video experimentem Příklad KAPILÁRNÍ JEVY - OPAKOVÁNÍ KAPILÁRNÍ JEVY - PŘÍKLAD Jak
Motory s vnějším spalováním
T E P E L N É M O T O R Y Spalovací motor je tepelný stroj, který využívá vnitřní energii tělesa (převážně chemickou - hoření) ke konání práce. Základní rozdělení podle druhu spalování paliva 1) Motory
MECHANIKA KAPALIN A PLYNŮ POJMY K ZOPAKOVÁNÍ. Testové úlohy varianta A
Škola: Autor: DUM: Vzdělávací obor: Tematický okruh: Téma: Masarykovo gymnázium Vsetín Mgr. Jitka Novosadová MGV_F_SS_3S3_D07_Z_OPAK_M_Mechanika_kapalin_a_plynu_T Člověk a příroda Fyzika Mechanika kapalin
Název materiálu: Vedení elektrického proudu v kapalinách
Název materiálu: Vedení elektrického proudu v kapalinách Jméno autora: Mgr. Magda Zemánková Materiál byl vytvořen v období: 2. pololetí šk. roku 2010/2011 Materiál je určen pro ročník: 9. Vzdělávací oblast:
Fyzikální vzdělávání. 1. ročník. Učební obor: Kuchař číšník Kadeřník. Implementace ICT do výuky č. CZ.1.07/1.1.02/02.0012 GG OP VK
Fyzikální vzdělávání 1. ročník Učební obor: Kuchař číšník Kadeřník 1 2 Termika 2.1Teplota, teplotní roztažnost látek 2.2 Teplo a práce, přeměny vnitřní energie tělesa 2.3 Tepelné motory 2.4 Struktura pevných
VNITŘNÍ ENERGIE. Mgr. Jan Ptáčník - GJVJ - Fyzika - 2. ročník - Termika
VNITŘNÍ ENERGIE Mgr. Jan Ptáčník - GJVJ - Fyzika - 2. ročník - Termika Zákon zachování energie Ze zákona zachování mechanické energie platí: Ek + Ep = konst. Ale: Vnitřní energie tělesa Každé těleso má
měření teploty Molekulová fyzika a termika Teplotní délková roztažnost V praxi úlohy
měření teploty Molekulová fyzika a termika rozdíl mezi stupnicí celsiovskou a termodynamickou př. str. 173 (nové vydání s. 172) teplo(to)měry roztažnost látek rtuťový, lihový, bimetalový vodivost polovodičů
DUM č. 12 v sadě. 10. Fy-1 Učební materiály do fyziky pro 2. ročník gymnázia
projekt GML Brno Docens DUM č. 12 v sadě 10. Fy-1 Učební materiály do fyziky pro 2. ročník gymnázia Autor: Vojtěch Beneš Datum: 03.05.2014 Ročník: 1. ročník Anotace DUMu: Kapaliny, změny skupenství Materiály
STRUKTURA PEVNÝCH LÁTEK A KAPALIN
STRUKTURA PEVNÝCH LÁTEK A KAPALIN 19. ZMĚNY SKUPENSTVÍ, FÁZOVÝ DIAGRAM Autor: Ing. Eva Jančová DESS SOŠ a SOU spol. s r. o. SKUPENSTVÍ - Skupenství neboli stav je konkrétní forma látky, charakterizovaná
Zadání příkladů řešených na výpočetních cvičeních z Fyzikální chemie I, obor CHTP. Termodynamika. Příklad 10
Zadání příkladů řešených na výpočetních cvičeních z Fyzikální chemie I, obor CHTP Termodynamika Příklad 1 Stláčením ideálního plynu na 2/3 původního objemu vzrostl při stálé teplotě jeho tlak na 15 kpa.
Termodynamika 1. UJOP Hostivař 2014
Termodynamika 1 UJOP Hostivař 2014 Termodynamika Zabývá se tepelnými ději obecně. Existují 3 termodynamické zákony: 1. Celkové množství energie (všech druhů) izolované soustavy zůstává zachováno. 2. Teplo
5.6. Člověk a jeho svět
5.6. Člověk a jeho svět 5.6.1. Fyzika ŠVP ZŠ Luštěnice, okres Mladá Boleslav verze 2012/2013 Charakteristika vyučujícího předmětu FYZIKA I. Obsahové vymezení Vyučovací předmět Fyzika vychází z obsahu vzdělávacího
I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í
CHEMICKY ČISTÉ LÁTKY A SMĚSI Látka = forma hmoty, která se skládá z velkého množství základních částic: atomů, iontů a... 1. Přiřaďte látky: glukóza, sůl, vodík a helium k níže zobrazeným typům částic.
Variace. Mechanika kapalin
Variace 1 Mechanika kapalin Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Pascalův zákon, mechanické vlastnosti
Úlohy z fyziky 8. ROČNÍK
Úlohy z fyziky Úlohy jsou čerpány z publikace Tématické prověrky z učiva fyziky základní školy autorů Jiřího Bohuňka a Evy Hejnové s ilustracemi Martina Maška (vydavatelství Prometheus 2005), která odpovídá
FYZIKA Charakteristika vyučovacího předmětu 2. stupeň
FYZIKA Charakteristika vyučovacího předmětu 2. stupeň Obsahové, časové a organizační vymezení Předmět Fyzika se vyučuje jako samostatný předmět v 6. ročníku 1 hodinu týdně a v 7. až 9. ročníku 2 hodiny
SKUPENSTVÍ LÁTEK Prima - Fyzika
SKUPENSTVÍ LÁTEK Prima - Fyzika Skupenství látek Pevné skupenství Skupenství látek Skupenství látek Pevné skupenství Kapalné skupenství Skupenství látek Pevné skupenství Kapalné skupenství Plynné skupenství
Měření rychlosti rozpuštění kostek ledu v obyčejné a slané (sladké) vodě
Zvyšování kvality výuky v přírodních a technických oblastech CZ.1.07/1.1.28/02.0055 Měření rychlosti rozpuštění kostek ledu v obyčejné a slané (sladké) vodě Označení: EU-Inovace-F-8-07 Předmět: Fyzika
Změna objemu těles při zahřívání teplotní roztažnost
Změna objemu těles při zahřívání teplotní roztažnost 6. třída - Teplota Změna objemu pevných těles při zahřívání Vezmeme plastové pravítko, prkénko a dva hřebíky. Hřebíky zatlučeme do prkénka tak, aby
Teplotní roztažnost Přenos tepla Kinetická teorie plynů
Teplotní roztažnost Přenos tepla Kinetická teorie plynů Teplotní roztažnost pevných látek l a kapalin Teplotní délková roztažnost Teplotní objemová roztažnost a závislost hustoty na teplotě Objemová roztažnost
CZ.1.07/1.5.00/34.0880 Digitální učební materiály www.skolalipa.cz. III/ 2- Inovace a zkvalitnění výuky prostřednictvím ICT
Název školy: Číslo a název projektu: Číslo a název šablony klíčové aktivity: STŘEDNÍ ODBORNÁ ŠKOLA a STŘEDNÍ ODBORNÉ UČILIŠTĚ, Česká Lípa, 8. října 707, příspěvková organizace CZ.1.07/1.5.00/34.0880 Digitální
J i h l a v a Základy ekologie
S třední škola stavební J i h l a v a Základy ekologie 19. Energie alternativní zdroje Digitální učební materiál projektu: SŠS Jihlava šablony registrační číslo projektu:cz.1.09/1.5.00/34.0284 Tomáš Krásenský
Pracovní list: Opakování učiva 8. ročníku
Pracovní list: Opakování učiva 8. ročníku Komentář ke hře: 1. Třída se rozdělí do čtyř skupin. Vždy spolu soupeří dvě skupiny a vítězné skupiny se pak utkají ve finále. 2. Každé z čísel skrývá otázku.
Mol. fyz. a termodynamika
Molekulová fyzika pracuje na základě kinetické teorie látek a statistiky Termodynamika zkoumání tepelných jevů a strojů nezajímají nás jednotlivé částice Molekulová fyzika základem jsou: Látka kteréhokoli
1) Skupenství fáze, forma, stav. 2) 3 druhy skupenství (1 látky): pevné (led) kapalné (voda) plynné (vodní pára)
SKUPENSTVÍ 1) Skupenství fáze, forma, stav 2) 3 druhy skupenství (1 látky): pevné (led) kapalné (voda) plynné (vodní pára) 3) Pevné látky nemění tvar, objem částice blízko sebe, pohybují se kolem urč.
Chemické výpočty. = 1,66057. 10-27 kg
1. Relativní atomová hmotnost Chemické výpočty Hmotnost atomů je velice malá, řádově 10-27 kg, a proto by bylo značně nepraktické vyjadřovat ji v kg, či v jednontkách odvozených. Užitečnější je zvolit
3.2 Látka a její skupenství
3.2 Látka a její skupenství Skupenství látky a jejich změny sublimace PEVNÁ LÁTKA tání desublimace tuhnutí PLYN vy pa řo vá ní KAPALINA zka pal ňo vá ní Látka a změna vnitřní energie Změna vnitřní energie
Základní škola a mateřská škola, Ostrava-Hrabůvka, Mitušova 16, příspěvková organizace Školní vzdělávací program 2. stupeň, Člověk a příroda.
Fyzika Fyzika je tou součástí školního vzdělávacího plánu školy, která umožňuje žákům porozumět přírodním dějům a zákonitostem. Dává jim potřebný základ pro lepší pochopení a orientaci v životě. Díky praktickým
Tepelná vodivost. střední rychlost. T 1 > T 2 z. teplo přenesené za čas dt: T 1 T 2. tepelný tok střední volná dráha. součinitel tepelné vodivosti
Tepelná vodivost teplo přenesené za čas dt: T 1 > T z T 1 S tepelný tok střední volná dráha T součinitel tepelné vodivosti střední rychlost Tepelná vodivost součinitel tepelné vodivosti při T = 300 K součinitel
[381 m/s] 12. Ocelovou součást o hmotnosti m z = 4 kg, měrném teple c z = 420 J/kgK, zahřátou na teplotu t z = 900 C ponoříme do olejové lázně o
3 - Termomechanika 1. Hustota vzduchu při tlaku p l = 0,2 MPa a teplotě t 1 = 27 C je ρ l = 2,354 kg/m 3. Jaká je jeho hustota ρ 0 při tlaku p 0 = 0,1MPa a teplotě t 0 = 0 C [1,29 kg/m 3 ] 2. Určete objem
ZÁKLADNÍ POZNATKY MOLEKULOVÉ FYZIKY A TERMIKY. Mgr. Jan Ptáčník - GJVJ - 2. ročník - Molekulová fyzika a termika
ZÁKLADNÍ POZNATKY MOLEKULOVÉ FYZIKY A TERMIKY Mgr. Jan Ptáčník - GJVJ - 2. ročník - Molekulová fyzika a termika Částicová struktura látek Látky jakéhokoli skupenství se skládají z částic Částicemi jsou
Názvosloví Kvalita Výroba Kondenzace Teplosměnná plocha
Názvosloví Kvalita Výroba Kondenzace Teplosměnná plocha Názvosloví páry Pro správné pochopení funkce parních systémů musíme znát základní pojmy spojené s párou. Entalpie Celková energie, příslušná danému
Poznámky k používání této příručky... 4 Seznamte se se suchým ledem a oxidem uhličitým... 6 Použití suchého ledu... 7
Chillistick Ltd www.funnyice.cz Tel. +420 545 244 404-8 Strana 5 Obsah Poznámky k používání této příručky... 4 Seznamte se se suchým ledem a oxidem uhličitým... 6 Použití suchého ledu... 7 Pokusy Plovoucí
9. MĚŘENÍ TEPELNÉ VODIVOSTI
Měřicí potřeby 9. MĚŘENÍ TEPELNÉ VODIVOSTI 1) střídavý zdroj s regulačním autotransformátorem 2) elektromagnetická míchačka 3) skleněná kádinka s olejem 4) zařízení k měření tepelné vodivosti se třemi
1.6.4 Vaříme. Předpoklady: 010603. Pomůcky: vařič (nejlépe plynový nebo plynový kahan), teploměr Vernier, PC, kastrůlek,
1.6.4 Vaříme Předpoklady: 010603 Pomůcky: vařič (nejlépe plynový nebo plynový kahan), teploměr Vernier, PC, kastrůlek, Pedagogická poznámka: Naměření pokusu by nemělo trvat déle než 20 minut. 20 minut
POŽÁRNÍ TAKTIKA. Proces hoření
MV- Ř EDITELSTVÍ H ASIČ SKÉHO ZÁCHRANNÉHO SBORU ČR O DBORNÁ PŘ ÍPRAVA JEDNOTEK POŽÁRNÍ OCHRANY KONSPEKT POŽÁRNÍ TAKTIKA 1-1-01 Základy požární taktiky Proces hoření Zpracoval : Oldřich VOLF HZS okresu
TEPLO. Náměty na pokusy na Malé Hraštici 2008. (1. verze, L. Dvořák, 3. 5. 2008)
1. Jak co drží teplo Zkuste změřit: TEPLO Náměty na pokusy na Malé Hraštici 2008 (1. verze, L. Dvořák, 3. 5. 2008) Tepelnou kapacitu nejrůznějších věcí (matiček, kovové lžičky, kamenů, dřeva, buřtu, )
Demonstrujeme teplotní vodivost
Demonstrujeme teplotní vodivost JIŘÍ ERHART PETR DESENSKÝ Fakulta přírodovědně-humanitní a pedagogická TU, Liberec Úvod Mezi dvěma místy s rozdílnou teplotou dochází k předávání tepla. Omezíme-li se pouze
Termokamera ve výuce fyziky
Termokamera ve výuce fyziky PaedDr. Jiří Tesař, Ph.D. Katedra aplikované fyziky a technické výchovy, Fakulta pedagogická, Jihočeská univerzita v Českých Budějovicích Jeronýmova 10, 371 15 České Budějovice
ELEKTRICKÝ PROUD V KAPALINÁCH, PLYNECH A POLOVODIČÍCH
Škola: Autor: DUM: Vzdělávací obor: Tematický okruh: Téma: Masarykovo gymnázium Vsetín Mgr. Jitka Novosadová MGV_F_SS_3S3_D14_Z_OPAK_E_Elektricky_proud_v_kapalinach _plynech_a_polovodicich_t Člověk a příroda
T0 Teplo a jeho měření
Teplo a jeho měření 1 Teplo 2 Kalorimetrie Kalorimetr 3 Tepelná kapacita 3.1 Měrná tepelná kapacita Měrná tepelná kapacita při stálém objemu a stálém tlaku Poměr měrných tepelných kapacit 3.2 Molární tepelná
STROJÍRENSKÁ TECHNOLOGIE PŘEDNÁŠKA 7
STROJÍRENSKÁ TECHNOLOGIE PŘEDNÁŠKA 7 Slévání postup výroby odlitků; Přesné lití - metoda vytavitelného modelu; SLÉVÁNÍ Je způsob výroby součástí z kovů nebo jiných tavitelných materiálů, při kterém se
POZNÁMKA: V USA se používá ještě Fahrenheitova teplotní stupnice. Převodní vztahy jsou vzhledem k volbě základních bodů složitější: 9 5
TEPLO, TEPLOTA Tepelný stav látek je charakterizován veličinou termodynamická teplota T Jednotkou je kelvin T K Mezi Celsiovou a Kelvinovou teplotní stupnicí existuje převodní vztah T 73,5C t POZNÁMKA:
Úkol č. 1: Změřte měrnou tepelnou kapacitu kovového tělíska.
Měření měrné tepelné kapacity pevných látek a kapalin Měření měrné tepelné kapacity pevných látek a kapalin Úkol č : Změřte měrnou tepelnou kapacitu kovového tělíska Pomůcky Směšovací kalorimetr s míchačkou