Degradace stavebních nekovových materiálů Chemická analýza

Rozměr: px
Začít zobrazení ze stránky:

Download "Degradace stavebních nekovových materiálů Chemická analýza"

Transkript

1 Degradace stavebních nekovových materiálů Chemická analýza Ing. Milena Pavlíková, Ph.D. K123, D ,

2 Obsah Degradace stavebních hmot Degradace fyzikální, chemická, a biologická Degradace stavebních materiálů a možnosti ochrany před degradací Kovy Hliněné pojivo Kamenivo Sádra Vápenné pojivo Beton Keramika Sklo Plasty Ochrana proti degradaci Analytická chemie Odběr vzorků a jejich příprava k analýze Kvalitativní analýze Kvantitativní analýza Chyby chemických stanovení Zpracování a interpretace výsledků zkoušek

3 Degradace stavebních materiálů Degradace = rozrušování materiálu fyzikálně chemickým působením vnějšího prostředí znehodnocení materiálu Vzniklé škody : ztráty materiálu náklady na opravu zkorodovaného zařízení ztráty vzniklé přerušením provozu závodu atd. životnost konstrukcí - v přímé vazbě s trvanlivostí materiálů V praxi se snažíme průběh korozních dějů zpomalit, zastavit či omezit.

4 Degradační působení Vnitřní: Chemické a mineralogické složení materiálu Změna pórovitosti Vnější: Fyzikální zatížení a vibrace, nárazy, eroze abrazí a kavitací, změny a rozdíly teplot, vlhkostní změny Chemické korozívní vody, atmosféra, anorganické roztoky, organické sloučeniny Biologické mechanické působení rostlin, chemické působení produktů životních pochodů živočichů, mikrobiologické působení

5 Fyzikální degradace materiál vystaven působení různých sil a tlaků (vně i uvnitř porézní struktury materiálů) poškození struktury vznik sil a jimi vyvolanými tlaky souvisí se změnami teploty, působením vody a vodných roztoků solí, vznikem nových minerálů, mechanickými vibracemi a abrazí povrchu

6 Chemická degradace mění se chemické složení materiálů nebo některé jeho složek reakcí s okolím (nečistoty z atmosféry, ze vzlínající vody, metabolické produkty živých organismů, nevhodné konzervátorské zásahy apod.) výsledkem probíhající chemické koroze - změna barvy, objemu a hlavně rozpustnosti napadené složky

7 Vliv teplotních změn stavební materiál představuje většinou heterogenní soustavu, jejíž jednotlivé složky se mohou lišit jednou z heterogenních vlastností je právě změna objemu jako odezva na změnu teploty dáno schopností jednotlivých složek absorbovat teplo jejich koeficientem teplotní roztažnosti v důsledku zahřívání povrchu materiálu (slunce, požár, atd.) dochází k šíření tepla do vnitřní struktury hmoty vznik teplotního gradientu mezi povrchem a vnitřkem hmoty rozdílné koeficienty teplené roztažnosti a teplotní gradient mezi povrchovými a vnitřními vrstvami vedou ke vzniku pnutí na rozhraní jednotlivých částic, krystalů vznik trhlin pokles pevnosti, růst pórovitosti, zvětšení povrchu materiálu snížení odolnosti proti působení vody, vodných roztoků solí atd. objemové změny vlivem teploty nejsou zcela reversibilní

8 Vliv vody pórovité stavební materiály obsahují vždy určité množství vody, která je v rovnováze s vlhkostí prostředí, tzv. rovnovážná vlhkost závisí na vlastnostech materiálů, na teplotě a vlhkosti prostředí voda volná pohyb vlivem gravitace a kapilárních sil voda vázaná na stěny porézního prostoru snížená pohyblivost molekul vody (při poklesu pod 0 C nemrzne) Mechanismy degradace vlivem vody: poškození mrazem při přechodu z kapalného do pevného skupenství se objem vody zvyšuje cca o 10% - porušení krystalizačními tlaky ledu voda představuje nebezpečí jako rozpouštědlo a transportní medium některých škodlivých látek (hlavně soli) voda urychluje nebo přímo ovlivňuje chemické reakce na povrchu pórů voda podporuje existenci živých organismů (lišejníků, řas, apod.) látky obsažené ve vodě rozrušují zdivo, kovy atd. obecně je možné říci, že i poměrně vysoký obsah vody ve stavebním materiálu je méně škodlivý, než jeho změny (dokonce i při celkově malém množství vlhkosti)

9 Mechanismus působení solí krystalizace solí hydratace solí krystalizační a hydratační tlaky ( MPa) hygroskopická nasákavost výkvěty a výluhy Schematické znázornění nárůstu krystalů v porézním prostoru: pro stavební materiály jsou nejvíce nebezpečné soli, které mění své formy během běžných klimatických podmínek síran sodný, uhličitan sodný, dusičnan vápenatý

10 Vliv ovzduší vzduch obsahuje kromě základních složek také vodní páru, oxidy síry, dusíku, uhlovodíky a další plyny a částice pevných látek jako produkty živých organismů, sopečných erupcí, průmyslových procesů, činnosti spalovacích procesů apod. pevné částice a kapky kapalin unášené vzduchem jsou součástí aerosolu mlha, prach Velice důležitým faktorem pro degradaci stavebních materiálů je také obsah oxidu uhličitého (CO 2 ) důsledek spalování fosilních i recentních paliv, výroba cementu 1t PC = 1t CO 2 Vymývání plynných exhalátů deštěm zředěné roztoky kyselin kyselé deště (ph<4) Nejohroženější uhličitany ve vápencích, dolomitech, mramorech, opukách, vápenných maltách a omítkách nevratně působí sírany, siřičitany, dusičnany a dusitany, vratně uhličitany (tzv. krasové jevy, místní koroze) Korozní produkty rozpustnější rozpuštěny a odplaveny Napadány i živce, sloučeniny Fe a Cu charakteristické zabarvení skvrny na omítkách Abraze - na korozi stavebních materiálů se podílejí i pevné částice ze vzduchu (anorganické i organické)

11 Biologická koroze jevy vyvolané či podmíněné živými organismy jejich působení se ve své podstatě projevuje jako koroze: fyzikální - např. vrůstání kořenů nebo houbových vláken do substrátu chemická - rozpuštění substrátu kyselinami tzn. vznikem tlaků, působících na materiál nebo chemickou přeměnou některé ze složek

12 Vliv živých organizmů Bakterie optimální podmínky 10%RH, 5-35 C, sirné, nitrifikační, zdrojem S a N prach, trus, půda, voda Řasy barevné povlaky Houby mechanické poškození, produkují organické kyseliny Lišejníky - mechanické poškození, produkují organické kyseliny Vyšší rostliny - mechanické poškození, produkují organické kyseliny Ptactvo vybírají vápenná zrna, ucpávání okapů, větracích a ventilačních systémů, trus koroduje chemicky Hlodavci vyžírání izolací, zdí, trus

13

14 Fyzikální, chemická i biologická koroze probíhají současně a podporují se nutná komplexní ochrana.

15

16 Koroze stavebních materiálů Kovy Hliněné pojivo Kamenivo Sádra Vápenné pojivo Beton Keramika Stavební sklo Plasty

17 Koroze kovů Kovy v přírodě ve formě chemických sloučenin stabilní forma Koroze kovů analogie přírodních dějů snaha kovu přejít do stálého stavu vznikají korozní produkty Kov s prostředím může být ve stavu: Imunity reakce není možná, např. Au, Pt Pasivity reakce je možná, vznikající korozní produkty mají ochranný charakter velmi pomalá koroze, např. korozivzdorné oceli, Ti Aktivity reakce možná, produkty neochrání značná rychlost koroze, např. ocel Koroze: Chemická především v plynném prostředí (kyslík ve vzduchu) za vysokých teplot Elektrochemická působení kovů a elektrolytů (voda, roztoky solí, taveniny solí) Anodový (oxidační) a katodový (redukční) proces Typy koroze: Rovnoměrná stejnoměrný úbytek kovu po celém povrchu, nejrozšířenější Nerovnoměrná napadání části materiálu, bodová (Al), důlková (ocel), laminární (Cu), krystalová (ocel, není viditelná na povrchu!!) Selektivní slitiny (odzinkování mosazi)

18 Ochrana kovů před korozí Aktivní elektrochemická Pasivní nanášení ochranných povrchů: Galvanizace Ni, Cr, Cd, Zn, 0,012mm Difúzní způsob vystavení plynům CrCl 2 za vysokých teplot Smalty Organické povlaky laky, plasty, živice, ochranné fólie

19

20 Degradace hliněného pojiva Hlavní příčina koroze voda: déšť rozmývá a odplavuje materiál vzlínající voda způsobuje botnání jílových částic ucpání pórů Nadměrné vysušení sprašování a vydrolování materiálu Cicváry uhličitan vápenatý rozložený výpalem na oxid Krystalizující soli destrukce zdiva Mechanismus koroze: Krystalizace solí Mrazové škody Hydrolýza sklovité matrice pomalá, ale nelze jí zabránit

21 Degradace kameniva Vyvřelé křehké, praská chemicky velmi odolné Usazené snadno hydratuje méně odolné zvětrávání Opuka nadměrné sušení způsobuje mechanické poškození Pískovec odolnější proti působení vody a kyselých axhalátů Vápenec koroduje kyselými látkami, málo mechanicky odolné Přeměněné (matamorfované) mramor

22 Degradace materiálů na bázi sádry Zatvrdlá sádra neodolá působení vody - v jemných kapilárách dochází ke kondenzaci a následnému rozpouštění sádrového pojiva, to je transportováno a tvoří krusty rozpouštění bude intenzivnější, bude-li voda u povrchu sádry obměňována Citlivá na vyšší teploty: >40 C dehydratace >110 C rozklad sádra působí korozně na kovy je-li vlhká (při RH > 60%) obsahuje roztok Ca 2 (SO 4 ) (ph 5), při této vlhkosti dochází ke korozi železa a hliníku, které jsou v kontaktu se sádrou (rezavé skvrny na povrchu sádry)

23 Ochrana sádry proti korozi pro zvýšení odolnosti sádry proti vlhkosti je nezbytné použít hydrofobizátory hydrofobizace vnitřní - vmíchání do sádrové kaše vnější - nátěrem na povrchu vlastnosti sádry lze ovlivnit vodním součinitelem s použitím plastifikátorů odolnost sádry lze zvýšit přidáním polymerů

24 Degradace materiálů s vápenným pojivem 1. působení agresivního oxidu uhličitého CaCO + CO + H O Ca + 2HCO - reakce je vratná HCO 3 je vysoce rozpustný ve vodě a může být z materiálu vyplaven ochuzení materiálu o pojivo překročení hranice soudružnosti rozpad materiálu - tato reakce probíhá v přírodě ve vápencových a dolomitických pohořích a je podstatou krasových jevů

25 2. působení oxidu siřičitého s vodou vytváří kyselinu siřičitou může dojít také k jeho oxidaci na SO 3, z kterého vznikne kyselina sírová obě kyseliny reagují s uhličitanem vápenatým CaCO3 + H2SO3 CaSO3+ CO2 + H 2O CaSO + 1/2H O CaSO 1/2H O CaCO3 + H 2SO4 CaSO4 + CO2 + H 2O CaSO + 2H O CaSO 2H O konečný produkt (sádrovec) má velký molární objem a jeho krystalizací může docházet k rozpadu materiálu

26 3. působení oxidů dusíku NO x -oxid dusnatý NO se snadno oxiduje na oxid dusičitý NO 2, který s vodou vytváří směs kyseliny dusité a dusičné 2NO + O 2NO NO2 + H 2O HNO2 + HNO3 CaCO + 2 HNO Ca( NO ) + CO + H O vzniklý dusičnan vápenatý je dobře rozpustný a nemá pojivé vlastnosti může být vyplaven dešťovou vodou, často také může hydratovat za nárůstu molárního objemu

27 Degradace betonu pro pochopení korozních procesů betonu je nezbytné se zaměřit na degradaci jeho jednotlivých složek: cement ve formě produktů hydratace - Ca(OH) 2, hydratované křemičitany, hlinitany a železitany vápenaté kamenivo reaktivní formy, amorfní SiO 2, dolomit atd. voda - nesmí obsahovat látky ovlivňující hydratační reakce cementu a korozi výztuže Komplikované vzájemně se překrývající procesy doprovázené fyzikálními účinky. Fyzikální koroze: vlivy mechanické, teplotní, vlhkostní mechanické porušování betonu souvisí s nárazy, třením a proudící vodou (abraze, eroze a kavitace) tyto děje porušují cementový tmel a dochází tak k jeho postupnému odstraňování a obnažování kameniva, které se může z betonu uvolnit Porušení betonu vlivem nízkých a vysokých teplot: působení nízkých teplot krystalizační tlaky ledu při teplotách nad 150 C se začínají rozkládat produkty hydratace cementu (postupně se uvolňuje vázaná voda) a dochází k poklesu pevnosti betonu (min. pevnost při teplotě 800 C v závislosti na typu cementu

28

29 Chemická koroze I. druhu rozpouštění a vyluhování Těžce rozpustné sloučeniny přechází na lehce rozpustné vyplavovány. Především vyluhování a rozpouštění Ca(OH) 2 vzniklého hydratací cementu snižuje se koncentrace hydroxidových iontů OH - Stupeň napadení závisí na druhu, koncentraci a síle kyseliny, také ph >12 Měkká voda - vody s nízkým obsahem vápenatých CaCOa 3 + hořečnatých 2NH 4OH iontů Ca( OH s ) 2nízkou + ( NH 4přechodnou ) 2CO3 tvrdostí (vody říční, rybniční, srážkové) vyluhují Ca 2+ Kyseliny uhličitá přebytečná vyluhuje Ca 2+ CaCO Amonné soli 3 + 2NH 4 Cl CaCl + ( NH 4 ) 2 CO 3 Oleje, tuky obsahují slabé kyseliny při úplném vyloužení Ca(OH) 2 dojde ke snížení koncentrace OH - snížení stability hydratovaných slínkových minerálů v konečné fázi mohou vzniknout amorfní nepojivé sloučeniny SiO 2, Al 2 O 3, Fe 2 O 3 snížení pevnosti a soudržnosti s výztuží k tomuto typu koroze dochází např. u vodních staveb

30 Chemická koroze II. druhu tvorba výkvětů je způsobena výměnnými reakcemi mezi složkami cementového tmelu zahrnuje reakce agresivního CO 2, hydroxidů, kyselin, hořečnatých a amonných solí sloučeniny (rozpustné, nerozpustné), které nemají vazebné vlastnosti po odpaření vody na povrchu nebo reakcí s CO 2 bílé až špinavě žluté krystalické nebo amorfní výkvěty Lze odstranit mechanicky (okartáčování, omytí), chemicky (zředěnou HCl) Ochrana nátěrem, impregancí Obecně lze reakci portlanditu s kyselinou zapsat: Reakce jednotlivých kyselin: Ca(OH) 2 + 2H + Ca H 2 O Ca(OH) 2 + H 2 SO 4 CaSO 4 2H 2 O Ca(OH) 2 + 2HNO 3 Ca (NO 3 ) 2 + 2H 2 O 3Ca(OH) 2 + 2H 3 PO 4 Ca 3 (PO 4 ) 2 + 6H 2 O Ca(OH) 2 + 2HF CaF 2 + 2H 2 O Ca(OH)2 + CO2 CaCO3 + H2O CaCO3 + H2O + CO2 Ca2+ + 2HCO3-

31 Chemická koroze III. druhu rozpínání betonu porušování betonu vlivem tvorby objemných sloučenin rozpínání síranové (sádrovcové, sulfátové), vápenaté, hořečnaté a alkáliové hlavní podíl vzniku této koroze představují sírany, které reagují s Ca(OH) 2 a vytvářejí málo rozpustný síran vápenatý sádrovcová koroze Ca(OH) 2 + SO 4 2- CaSO 4 2H 2 O + 2 OH - vznik sádrovce je spojen s nárůstem objemu o 17% dochází k zaplnění pórů cementového gelu a za vhodných vlhkostních a teplotních podmínek může dojít k rekrystalizaci (tlaky Mpa) sádrovec reaguje s hydratovanými i nehydratovanými alumináty a způsobuje sulfoaluminátovou korozi, např.: 3CaO Al2O3 6H2O + 3 (CaSO4 2H2O) + 19 H2O 3CaO Al2O3 CaSO4 32 H2O vzniká málo rozpustný ettringit, který tvoří jehlicovité krystaly molární objem je 2.65 x větší než molární objem původních látek!!! ettringit vzniká až v zatvrdlém betonu, na rozdíl od ettringitu, který je příčinou zpomalení hydratace cementu a vzniká v plastické směsi čerstvého betonu

32 Rozpínání: Vápenaté Hořečnaté Alkáliové Vznikají kruhové, bílé výkvěty, odprýskání betonu, síťové trhliny

33 Chemická koroze cementového tmele plynným agresivním prostředím plyny kyselého charakteru CO 2, SO 2, NO 2, HCl, H 2 S, HF ostatní plyny (NH 3, Cl 2 ) reakce složek cementového tmele s kyselými plyny = neutralizace nejlépe prostudovaným korozním procesem plynnými látkami je reakce s CO 2 karbonatace ve stavební praxi je zvykem zahrnovat pod pojmem karbonatace veškeré neutralizační reakce kyselých plynů s betonem Etapy: 1. Neutralizace hydroxidu vápenatého CaCO 3 krystaly v pórech a kapilárách (u dostatečně hutných betonů konec utěsnění pórů) 2. Zreaguje veškerý hydroxid vápenatý klesá ph na 9 koroze výztuže 3. Překrystalování velké vyvinuté krystaly v pórech a kapilárách krystalizační tlaky pokles pevnosti 4. Silné překrystalování v praxi řídce, ztráta soudržnosti

34 Chemická koroze cementového tmele působením CO 2 z ovzduší v běžném ovzduší se vyskytuje oxid uhličitý v koncentraci obj. % 746 mg CO 2 v 1 m 3 vzduchu těsně při zemi je však koncentrace CO 2 několikanásobně vyšší (přírodní, průmyslové, zemědělské a komunální zdroje), CO 2 je 1,53 x těžší než vzduchu CO 2 neutralizuje Ca(OH) 2 až do jeho úplného vyčerpání a snížení ph roztoku na 8.3 negativní vliv na ochranu výztuže z hlediska koroze Ca(OH) 2 + CO 2 CaCO 3 + H 2 O CO 2 reaguje také s dalšími hydratačními produkty cementu s vápenatou složkou CSH a CAH se tvoří nejprve jemnozrný kalcit a termodynamicky nestálé formy CaCO 3 (vaterit, aragonit), které později rekrystalizují na velké krystaly kalcitu C x S y H z + CO 2 + H 2 O CaCO 3 (kalcit, vaterit, aragonit kalcit) + SiO 2 H 2 O C x AH z + CO 2 + H 2 O CaCO 3 (kalcit, vaterit, aragonit kalcit) + SiO 2 H 2 O + Al(OH) 3 (gibbsit)

35 Parametry ovlivňující rychlost karbonatace: relativní vlhkost vzduchu ovlivňuje vlhkost v pórech betonu -při RH < 30% je rychlost karbonatace zanedbatelná koncentrace CO 2 v okolí druh cementu složení betonu a technologie jeho výroby ovlivňuje zásadně jeho porézní strukturu, vnitřní povrch porézního prostoru

36 Působení SO 2 na cementový tmel sulfatace betonu vlivem působení SO 2 je korozní děj, který není plošně významný a setkáme se s ním pouze místně SO 2 neutralizuje Ca(OH) 2 : Ca(OH) 2 + SO 2 + H 2 O CaSO 3 1/2 H 2 O + 11/2H 2 O CaSO 3 1/2 H 2 O + O H 2 O 2CaSO 4 2H 2 O konečným produktem působení SO 2 je tedy sádrovec, případně může vznikat ettringit 3CaO Al 2 O 3 3 CaSO 4 31 H 2 O nebo monosulfát 3CaO Al 2 O 3 3 CaSO 4 12 H 2 O!!! Všechny korozní produkty působení SO 2 mají větší molární objem než látky, ze kterých vznikly působení vysokých tlaků na vnitřní strukturu betonu degradace funkčnosti

37 HCl -tvoří s vodou kyselinu chlorovodíkovou, která neutralizuje hydroxid vápenatý a rozkládá hydratační produkty cementového slínku na rozpustné chloridy CaCl 2, AlCl 3, FeCl 3 a gel SiO 2 H 2 O Ca(OH) HCl + H 2 O CaCl H 2 O HF -tvoří s vodou velmi agresivní kyselinu fluorovodíkovou, která neutralizuje hydroxid vápenatý za vzniku nerozpustného CaF 2 Ca(OH) HF + H 2 O CaF H 2 O!!! vyšší koncentrace HF mohou napadat CSH a CAH gely za vzniku fluorokomplexů, které nemají vazebné vlastnosti

38 NO x - komplex oxidů, z nichž především NO 2 vytváří s vodou kyselinu dusitou (HNO 2 ) a dušičnou (HNO 3 ) - korozní působení poté spočívá v reakci H + iontů, které neutralizují Ca(OH) 2 Ca(OH) HNO 3 Ca(NO 3 ) H 2 O a dále dochází k rozkladu hydratačních produktů cementu za vzniku gelu SiO 2 nh 2 O NH 3 - s vodou vytváří hydroxid amonný NH 4 OH není škodlivý pro beton, ale pokud se z něho vytvoří působením kyselin amonné soli, dojde k uvolnění plynného amoniaku za vzniku vápenatých solí bez vazebných vlastností

39 Koroze výztuže v betonu Pórový roztok ph = 12 Pokles ph na 9,5 rezivění 2Fe+1,5 H 2 O 2FeO(OH) odprýskání betonu od výztuže Koroze ocelové výztuže: Chemická působení kyselin Elektrochemická Bludnými proudy Ochrana: Pozinkování již se nepoužívá Katodická ochrana

40 Koroze výztuže v betonu Skleněná výztuž: Reaguje s hydroxidy rozpouští se Alkalivzdorná vlákna s obsahem ZrO 2 na povrchu lubrikované Organická syntetická výztuž: Alkalivzdorná Špatná adheze k cementové metrici Organická přírodní výztuž: Různá odolnost vůči hydroxidům Celulóza a hemicelulóza resistentní Sisal, juta, agave degradují

41 Ochrana betonu před korozí Vnitřní: zvýšení odolnosti použitím vhodného cementu přídavkem hydrofóbních látek Vnější (povrchová): Impregnace silikony, vodní sklo, epoxidy Povrchová úprava izolační fólie, asfaltové lepenky, PVC fólie, fluátování Nátěry a obklady odolné omítky, keramické obklady, torkretování (cement+písek+voda) na povrch betonu

42 Keramika Výborná odolnost vůči chemikáliím, kromě HF, hydroxidy pomalu rozpouští povrch Při vysokých teplotách reaguje s oxidy, sírany a uhličitany Al 2 O 3 odolný, při vysokých teplotách reaguje s kyselými a zásaditými oxidy Ochranná glazura nepropustná pro kapaliny Žárovzdorné výrobky velice odolné, korodují roztavenou struskou, popílkem, tekutými plyny

43 Stavební sklo Chemicky odolné, kromě HF Kyseliny - výměna iontů v povrchové vrstvě Hydroxidy napadají siloxanové vazby Skla odolná proti HF na bázi fosforečnanů a hlinitanů

44 Plasty Obecně velice odolné Degradace závisí na: Složení plastu Korozním prostředí záření, teplota, vlhkost, působení kyslíku Skupiny: Fyzikální vlivy teplota, dlouhodobé mechanické namáhání, světlo, radiace změna barvy, lesku, vznik trhlin, zhoršení mechanických a elektrických vlastností Biologické vlivy napadení mikroorganismy (plísně), používají plast jako živnou půdu Chemické a fyzikálně-chemické vlivy uvnitř hmoty, rozrušení vazeb, porušení ochranné funkce plastu látka proniká do struktury a váže se botnání látka proniká do struktury a reaguje změna chemického složení

45 Ochrana proti korozi Vhodný výběr materiálu hledisko výrobní, mechanických vlastností, známých podmínek prostředí Úprava struktury a složení materiálu tepelným zpracováním lze odstranit pnutí a nehomogenní strukturu Vhodná konstrukce výrobku a správná kombinace materiálů snadnost odstraňování usazenin na konstrukcích, plochy na styku s korozním prostředím nejlépe oblé, bez dutin a přechodů, snadnost aplikace povrchové ochrany Úprava korozního prostředí např. odstranění vlhkosti Mechanická úprava povrchu čím jemnější povrch tím odolnější Ochranné povlaky anorganické i organické

46 Obsah Odběr vzorků a jejich příprava k analýze Základy kvalitativní analýzy Základy kvantitativní analýzy Chyby chemických stanovení, zpracování a interpretace výsledků zkoušek

47 Odběr vzorků a jejich příprava k analýze Vzorek část hmotného objektu (materiálu), ze kterého lze vyvodit závěry o vlastnostech celku. Způsob odběru a úpravy závisí na fyzikální povaze analyzovaného materiálu. Pravidla odběru a úpravy dána technickými normami, nebo smluvně dohodnuta. Správné vzorkování časově, materiálově i finančně náročné. Dává se přednost odběru vzorku při pohybu hmoty. Velikost vzorku se řídí: Poměrným zastoupením sledované složky ve vzorku Pracovním rozsahem použité analytické metody Minimálním obsahem složky s ohledem na mez detekce Typem materiálu a jeho homogenitou Zvláštní pozornost vyžadují materiály hygroskopické a oxidující V některých případech nutno zajistit sterilitu odběru

48 Odběr plynů a kapalin Předpokládá se homogenita odběr jednoduchý: Plyn pomocí vzorkovacích pipet obsahu ml Kapaliny plynule nebo přerušovaně ze vzorkovacích ventilů potrubí stáčením z cisteren odběry z různých hloubek nádrží a promíchání Složitější odběr nehomogenních či nemísitelných kapalin a suspenzí závisí na cíli

49 Odběr vzorků tuhých materiálů Homogenní kovy a slitiny Nehomogenní zjištění průměrného složení nebo složení vybraných lokalit Reprezentativní vzorek - obsahuje všechny součásti ve stejném hmotnostním nebo objemovém poměru, tak jak jsou přítomny v celém materiálu.

50 Jak získat reprezentativní vzorek? Kovy a slitiny vrtání, pilování, stříhání, odmaštění pilin a hoblin Pozor na segregaci slitin. Heterogenně kusové materiály odběr základního vzorku o hmotnosti až 2% z celkové hmotnosti materiálu rozdrcení drtiči na zrna asi 20 mm promíchání kvartace Sypký jemnozrnný materiál - vzorkovače

51 Laboratorní vzorek se rozdělí: 1. Dodavatel 2. Odběratel 3. Zkušebna 4. Zapečetění pro případ rozhodčí analýzy

52 Uchovávání vzorků Skleněné, kovově, plastové dobře uzavíratelné obaly Během skladování nesmí dojít ke kontaminaci. Některé vzorky nelze skladovat např. vodu

53 Úprava vzorků k analýze Způsob úpravy závisí na požadované informaci a použité analytické metodě. Nedestruktivní analytické metody úprava není nutná, nebo mechanicky. Převedení vzorku do roztoku. Destruktivní analýza převedení do roztoku a chemická přeměna nevratné změny. Prekoncentrační (obohacovací) postupy zkoncentrování stanovovaných složek za účelem zvýšení jejich relativního zastoupení ve vzorku.

54 Analýza Analysis rozbor, rozklad Synthesa skládání Třídění podle: množství vzorku mikro a makroanalýza přístupu ke vzorku destruktivní, nedestruktivní rozlišení metod stanovení na suché, na mokré cestě metody chemické, instrumentální náročnosti na jejich správnost a přesnost polokvantitativní, provozní, rozhodčí, vědecké Volba vhodné metody: Jakému účelu analýza slouží Přípustná chyba stanovení Obsah stanovované složky

55 Základy kvalitativní analýzy Zjištění fyzikálních vlastností vzorku Předběžné zkoušky na suché cestě plamenové, tepelný rozklad, perličková zkouška Převod látky do roztoku kolorimetrická zkouška, srážení, rozklad Rozbor důkaz kationtů a aniontů

56 Základy kvantitativní analýzy Vážková (gravimetrie) Odměrná (titrace) Speciální elektroanalytické, elektrochemické, chromatografické kvali i kvantitativní analýza současně

57 Chyby chemických stanovení Metody matematické statistiky objektivní posouzení přesnosti souboru výsledků ohodnotit, jak se jednotlivé výsledky navzájem shodují Nejpravděpodobnější odhad aritmetický průměr naměřených hodnot Správnost rozdíl mezi aritmetickým průměrem a skutečnou hodnotou Přesnost (vzájemná shoda) vyloučení odlehlých výsledků Chyba měření: Hrubá Soustavná (systematická) ovlivňuje správnost Náhodná ovlivňuje přesnost

58 Literatura Hennig, O. Lach V., Chemie ve stavebnictví, Praha, SNTL, Wasserbauer, R., Biologické poškození staveb, Praha, ABF, Rovnaníková P., Rovnaník P., Křístek R., Stavební chemie, Modul 3, Degradace stavebních materiálů a chemie kovů, CERM, Balík a kolektiv, Odvlhčování staveb, Grada Publishing a.s.., Kotlík P. a kolektiv, Stavební materiály historických objektů materiály, koroze, sanace, Vydavatelství VŠCHT, Praha, Rovnaníková P., Omítky, Chemické a technologické vlastnosti, Praha, STOP, 2002.

KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE DEGRADACE STAVEBNÍCH MATERIÁLŮ

KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE DEGRADACE STAVEBNÍCH MATERIÁLŮ KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE DEGRADACE STAVEBNÍCH MATERIÁLŮ Obsah Degradace (koroze) nekovových stavebních hmot Degradace chemická, fyzikální, fyzikálně-chemická, biologická Příčiny degradace

Více

Degradace stavebních nekovových materiálů

Degradace stavebních nekovových materiálů Degradace stavebních nekovových materiálů prof. Ing. Milena Pavlíková, Ph.D. K123, D1045 224 354 688, milena.pavlikova@fsv.cvut.cz http://tpm.fsv.cvut.cz Degradace stavebních materiálů degradace rozrušování

Více

KOROZE KONSTRUKCÍ. Ing. Zdeněk Vávra

KOROZE KONSTRUKCÍ. Ing. Zdeněk Vávra KOROZE KONSTRUKCÍ Ing. Zdeněk Vávra www.betosan.cz, vavra.z@betosan.cz +420 602 145 570 Skladba betonu Cement Kamenivo Voda Přísady a příměsi Cementový kámen (tmel) Kamenivo vzduch Návrhové parametry betonu

Více

Interakce materiálů a prostředí

Interakce materiálů a prostředí Interakce materiálů a prostředí Martin Keppert, Alena Vimmrová A329 martin.keppert@fsv.cvut.cz vimmrova@fsv.cvut.cz zk 1 Beton v kostce Se zřetelem k jeho trvanlivosti beton = cement + voda + kamenivo

Více

Degradace stavebních materiálů

Degradace stavebních materiálů Degradace stavebních materiálů Martin Keppert, Alena Vimmrová a externisté A329 martin.keppert@fsv.cvut.cz vimmrova@fsv.cvut.cz zk Obsah předmětu 20.2. CO 2 a stavební materiály 27.2. Ing. Vávra Betosan

Více

KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE

KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE DEGRADACE STAVEBNÍCH MATERIÁLŮ Obsah Degradace (koroze) nekovových stavebních hmot Degradace chemická, fyzikální, fyzikálně-chemická, biologická IE RIÁLOVÉHO

Více

- Máte před sebou studijní materiál na téma KOVY ALKALICKÝCH ZEMIN, který obsahuje nejdůležitější fakta z této oblasti. - Doporučuji také prostudovat příslušnou kapitolu v učebnici PŘEHLED STŘEDOŠKOLSKÉ

Více

CHO cvičení, FSv, ČVUT v Praze

CHO cvičení, FSv, ČVUT v Praze 2. Chemické rovnice Chemická rovnice je schématický zápis chemického děje (reakce), který nás informuje o reaktantech (výchozích látkách), produktech, dále o stechiometrii reakce tzn. o vzájemném poměru

Více

J. Kubíček FSI Brno 2018

J. Kubíček FSI Brno 2018 J. Kubíček FSI Brno 2018 Fosfátování je povrchová úprava, kdy se na povrch povlakovaného kovu vylučují nerozpustné fosforečnany. Povlak vzniká reakcí iontů z pracovní lázně s ionty rozpuštěnými z povrchu

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ PAVLA ROVNANÍKOVÁ PAVEL ROVNANÍK RICHARD KŘÍSTEK STAVEBNÍ CHEMIE

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ PAVLA ROVNANÍKOVÁ PAVEL ROVNANÍK RICHARD KŘÍSTEK STAVEBNÍ CHEMIE VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ PAVLA ROVNANÍKOVÁ PAVEL ROVNANÍK RICHARD KŘÍSTEK STAVEBNÍ CHEMIE MODUL 3 DEGRADACE STAVEBNÍCH MATERIÁLŮ A CHEMIE KOVŮ STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY

Více

Trvanlivost betonových konstrukcí. Prof. Ing. Jaroslav Procházka, CSc. ČVUT - stavební fakulta katedra betonových konstrukcí 1

Trvanlivost betonových konstrukcí. Prof. Ing. Jaroslav Procházka, CSc. ČVUT - stavební fakulta katedra betonových konstrukcí 1 Trvanlivost betonových konstrukcí Prof. Ing. Jaroslav Procházka, CSc. ČVUT - stavební fakulta katedra betonových konstrukcí 1 Rešerše - témata: 1. Volba materiálů a úpravy detailů z hlediska zvýšení trvanlivosti

Více

Trhliny v betonu. Bc. Vendula Davidová

Trhliny v betonu. Bc. Vendula Davidová Trhliny v betonu Bc. Vendula Davidová Obsah Proč vadí trhliny v betonu Z jakého důvodu trhliny v betonu vznikají Jak jim předcházet Negativní vliv přítomnosti trhlin Snížení životnosti: Vnikání a transport

Více

ZŠ ÚnO, Bratří Čapků 1332

ZŠ ÚnO, Bratří Čapků 1332 Úvodní obrazovka Menu (vlevo nahoře) Návrat na hlavní stránku Obsah Výsledky Poznámky Záložky edunet Konec Chemie 2 (pro 12-16 let) LangMaster Obsah (střední část) výběr tématu - dvojklikem v seznamu témat

Více

Ústřední komise Chemické olympiády. 42. ročník. KRAJSKÉ KOLO Kategorie D. SOUTĚŽNÍ ÚLOHY TEORETICKÉ ČÁSTI Časová náročnost: 60 minut

Ústřední komise Chemické olympiády. 42. ročník. KRAJSKÉ KOLO Kategorie D. SOUTĚŽNÍ ÚLOHY TEORETICKÉ ČÁSTI Časová náročnost: 60 minut Ústřední komise Chemické olympiády 42. ročník 2005 2006 KRAJSKÉ KOLO Kategorie D SOUTĚŽNÍ ÚLOHY TEORETICKÉ ČÁSTI Časová náročnost: 60 minut Institut dětí a mládeže Ministerstva školství, mládeže a tělovýchovy

Více

Úvod do koroze. (kapitola, která bude společná všem korozním laboratorním pracím a kterou studenti musí znát bez ohledu na to, jakou práci dělají)

Úvod do koroze. (kapitola, která bude společná všem korozním laboratorním pracím a kterou studenti musí znát bez ohledu na to, jakou práci dělají) Úvod do koroze (kapitola, která bude společná všem korozním laboratorním pracím a kterou studenti musí znát bez ohledu na to, jakou práci dělají) Koroze je proces degradace kovu nebo slitiny kovů působením

Více

Koroze kovů. Koroze lat. corode = rozhlodávat

Koroze kovů. Koroze lat. corode = rozhlodávat Koroze kovů Koroze lat. corode = rozhlodávat Koroze kovů Koroze kovů, plastů, silikátových materiálů Principy korozních procesů = korozní inženýrství Strojírenství Mechanická pevnost Vzhled Elektotechnika

Více

NÁZEV ŠKOLY: Základní škola Javorník, okres Jeseník REDIZO: 600 150 585 NÁZEV:VY_32_INOVACE_102_Soli AUTOR: Igor Dubovan ROČNÍK, DATUM: 9., 15. 9.

NÁZEV ŠKOLY: Základní škola Javorník, okres Jeseník REDIZO: 600 150 585 NÁZEV:VY_32_INOVACE_102_Soli AUTOR: Igor Dubovan ROČNÍK, DATUM: 9., 15. 9. NÁZEV ŠKOLY: Základní škola Javorník, okres Jeseník REDIZO: 600 150 585 NÁZEV:VY_32_INOVACE_102_Soli AUTOR: Igor Dubovan ROČNÍK, DATUM: 9., 15. 9. 2011 VZDĚL. OBOR, TÉMA: Chemie, Soli ČÍSLO PROJEKTU: OPVK

Více

Soli kyslíkatých kyselin

Soli kyslíkatých kyselin Soli kyslíkatých kyselin Temacká oblast : Chemie anorganická chemie Datum vytvoření: 19. 8. 2012 Ročník: 2. ročník čtyřletého gymnázia (sexta osmiletého gymnázia) Stručný obsah: Soli důležitých anorganických

Více

Degradace stavebních materiálů. D p a v l a. r y p a r o v f s v. c v u t. c z

Degradace stavebních materiálů. D p a v l a. r y p a r o v f s v. c v u t. c z Degradace stavebních materiálů P A V L A R Y P A R O V Á D 1 0 3 5 p a v l a. r y p a r o v a @ f s v. c v u t. c z Literatura Biczók I.: Concrete corrosion concrete protection, 1972 Matoušek M., Drochyta

Více

POKYNY FAKTORY OVLIVŇUJÍCÍ RYCHLOST REAKCÍ

POKYNY FAKTORY OVLIVŇUJÍCÍ RYCHLOST REAKCÍ POKYNY Prostuduj si teoretický úvod a následně vypracuj postupně všechny zadané úkoly zkontroluj si správné řešení úkolů podle řešení FAKTORY OVLIVŇUJÍCÍ RYCHLOST REAKCÍ 1) Vliv koncentrace reaktantů čím

Více

MECHANIKA HORNIN A ZEMIN

MECHANIKA HORNIN A ZEMIN MECHANIKA HORNIN A ZEMIN podklady k přednáškám doc. Ing. Kořínek Robert, CSc. Místnost: C 314 Telefon: 597 321 942 E-mail: robert.korinek@vsb.cz Internetové stránky: fast10.vsb.cz/korinek Katedra geotechniky

Více

JEMNOZRNNÉ BETONY S ČÁSTEČNOU NÁHRADOU CEMENTU PŘÍRODNÍM ZEOLITEM

JEMNOZRNNÉ BETONY S ČÁSTEČNOU NÁHRADOU CEMENTU PŘÍRODNÍM ZEOLITEM JEMNOZRNNÉ BETONY S ČÁSTEČNOU NÁHRADOU CEMENTU PŘÍRODNÍM ZEOLITEM Pavla Rovnaníková, Martin Sedlmajer, Martin Vyšvařil Fakulta stavební VUT v Brně Seminář Vápno, cement, ekologie, Skalský Dvůr 12. 14.

Více

ČSN EN 206. Chemické korozní procesy betonu. ph čerstvého betonu cca 12,5

ČSN EN 206. Chemické korozní procesy betonu. ph čerstvého betonu cca 12,5 Návrhové parametry betonu Diagnostika g železobetonovch konstrukcí Ing. Zdeněk Vávra vavra.z@betosan.cz +420 602 145 570 Pevnost v tlaku Modul pružnosti Vlastnosti betonu dle SVP Konzistence Maximální

Více

KONZERVACE A RESTAUROVÁNÍ KAMENE

KONZERVACE A RESTAUROVÁNÍ KAMENE KONZERVACE A RESTAUROVÁNÍ KAMENE Klíčová slova koroze fyzikální, chemická a biologická, průzkum, čištění, desalinace, likvidace bionapadení, petrifikace, hydrofobizace, restaurátorské práce (lepení, tmelení,

Více

Poškození strojních součástí

Poškození strojních součástí Poškození strojních součástí Degradace strojních součástí Ve strojích při jejich provozu probíhají děje, které mají za následek změny vlastností součástí. Tyto změny jsou prvotními technickými příčinami

Více

KOROZE. Autor: Mgr. Stanislava Bubíková. Datum (období) tvorby: 25. 4. 2012. Ročník: devátý

KOROZE. Autor: Mgr. Stanislava Bubíková. Datum (období) tvorby: 25. 4. 2012. Ročník: devátý Autor: Mgr. Stanislava Bubíková KOROZE Datum (období) tvorby: 25. 4. 2012 Ročník: devátý Vzdělávací oblast: Člověk a příroda / Chemie / Chemické reakce; chemie a společnost 1 Anotace: Žáci se seznámí se

Více

Možnosti zkoumání složení a degradace historických malt a omítek

Možnosti zkoumání složení a degradace historických malt a omítek Možnosti zkoumání složení a degradace historických malt a omítek Pavla Rovnaníková FAST VUT v Brně Odborně metodický den NPÚ ÚOP v Brně 15.3.2007 Podíl restaurátora a technologa na stanovení způsobu oprav

Více

HOŘČÍK KOVY ALKALICKÝCH ZEMIN. Pozn. Elektronová konfigurace valenční vrstvy ns 2

HOŘČÍK KOVY ALKALICKÝCH ZEMIN. Pozn. Elektronová konfigurace valenční vrstvy ns 2 HOŘČÍK KOVY ALKALICKÝCH ZEMIN Pozn. Elektronová konfigurace valenční vrstvy ns 2 Hořčík Vlastnosti: - stříbrolesklý, měkký, kujný kov s nízkou hustotou (1,74 g.cm -3 ) - diagonální podobnost s lithiem

Více

ŘEŠENÍ KONTROLNÍHO TESTU ŠKOLNÍHO KOLA

ŘEŠENÍ KONTROLNÍHO TESTU ŠKOLNÍHO KOLA Ústřední komise Chemické olympiády 48. ročník 2011/2012 ŠKOLNÍ KOLO kategorie C ŘEŠENÍ KONTROLNÍHO TESTU ŠKOLNÍHO KOLA KONTROLNÍ TEST ŠKOLNÍHO KOLA (60 BODŮ) Úloha 1 Neznámý nerost 21 bodů 1. Barva plamene:

Více

MINERALOGICKÉ A GEOCHEMICKÉ ZHODNOCENÍ KOROZIVNÍCH PRODUKTŮ POZINKOVANÝCH ŽELEZNÝCH TRUBEK

MINERALOGICKÉ A GEOCHEMICKÉ ZHODNOCENÍ KOROZIVNÍCH PRODUKTŮ POZINKOVANÝCH ŽELEZNÝCH TRUBEK MASARYKOVA UNIVERZITA PŘÍRODOVĚDECKÁ FAKULTA ÚSTAV GEOLOGICKÝCH VĚD MINERALOGICKÉ A GEOCHEMICKÉ ZHODNOCENÍ KOROZIVNÍCH PRODUKTŮ POZINKOVANÝCH ŽELEZNÝCH TRUBEK (Rešerše k bakalářské práci) Jana Krejčí Vedoucí

Více

SOLI. Autor: Mgr. Stanislava Bubíková. Datum (období) tvorby: 12. 4. 2013. Ročník: osmý

SOLI. Autor: Mgr. Stanislava Bubíková. Datum (období) tvorby: 12. 4. 2013. Ročník: osmý SOLI Autor: Mgr. Stanislava Bubíková Datum (období) tvorby: 12. 4. 2013 Ročník: osmý Vzdělávací oblast: Člověk a příroda / Chemie / Anorganické sloučeniny 1 Anotace: Žáci se seznámí s vlastnostmi solí,

Více

Anorganická pojiva, cementy, malty

Anorganická pojiva, cementy, malty Anorganická pojiva, cementy, malty Ing. Alexander Trinner Technický a zkušební ústav stavební Praha, s.p. pobočka Plzeň Zahradní 15, 326 00 Plzeň trinner@tzus.cz; www.tzus.cz 1 Anorganická pojiva Definice:

Více

ROZTOK. Autor: Mgr. Stanislava Bubíková. Datum (období) tvorby: Ročník: osmý. Vzdělávací oblast: Člověk a příroda / Chemie / Směsi

ROZTOK. Autor: Mgr. Stanislava Bubíková. Datum (období) tvorby: Ročník: osmý. Vzdělávací oblast: Člověk a příroda / Chemie / Směsi Autor: Mgr. Stanislava Bubíková ROZTOK Datum (období) tvorby: 12. 4. 2012 Ročník: osmý Vzdělávací oblast: Člověk a příroda / Chemie / Směsi 1 Anotace: Žáci se seznámí s pojmy roztok, stejnorodá směs. V

Více

KOROZE A TECHNOLOGIE POVRCHOVÝCH ÚPRAV

KOROZE A TECHNOLOGIE POVRCHOVÝCH ÚPRAV KOROZE A TECHNOLOGIE POVRCHOVÝCH ÚPRAV Přednáška č. 04: Druhy koroze podle vzhledu Autor přednášky: Ing. Vladimír NOSEK Pracoviště: TUL FS, Katedra materiálu Koroze podle vzhledu (habitus koroze) 2 Přehled

Více

Sklo chemické složení, vlastnosti, druhy skel a jejich použití

Sklo chemické složení, vlastnosti, druhy skel a jejich použití Sklo chemické složení, vlastnosti, druhy skel a jejich použití Jak je definováno sklo? ztuhlá tavenina průhledných křemičitanů (pevný roztok) homogenní amorfní látka (bez pravidelné vnitřní struktury,

Více

Trvanlivost a odolnost. Degradace. Vliv fyzikálních činitelů STAVEBNÍ LÁTKA I STAVEBNÍ KONSTRUKCE OD JEJICH POUŽITÍ IHNED ZAČÍNAJÍ DEGRADOVAT

Trvanlivost a odolnost. Degradace. Vliv fyzikálních činitelů STAVEBNÍ LÁTKA I STAVEBNÍ KONSTRUKCE OD JEJICH POUŽITÍ IHNED ZAČÍNAJÍ DEGRADOVAT VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ Ústav stavebního zkušebnictví Trvanlivost a odolnost stavebních materiálů Degradace STAVEBNÍ LÁTKA I STAVEBNÍ KONSTRUKCE OD JEJICH POUŽITÍ IHNED ZAČÍNAJÍ

Více

Úpravy povrchu. Pozinkovaný materiál. Zinkový povlak - záruka elektrochemického ochranného působení 1 / 16

Úpravy povrchu. Pozinkovaný materiál. Zinkový povlak - záruka elektrochemického ochranného působení 1 / 16 Úpravy povrchu Pozinkovaný materiál Zinkový povlak - záruka elektrochemického ochranného působení 1 / 16 Aplikace žárově zinkovaných předmětů Běžnou metodou ochrany oceli proti korozi jsou ochranné povlaky,

Více

VÁPNO A STANOVENÍ PH. Stavební hmoty I

VÁPNO A STANOVENÍ PH. Stavební hmoty I VÁPNO A STANOVENÍ PH Stavební hmoty I Není vápno jako vápno!!! Vzdušné x Hydraulické Vzdušné vápno Užíváno již od starověku, na našem území od období Velké Moravy (technologický import) Pálené vápno -

Více

ÚPRAVA VODY V ENERGETICE. Ing. Jiří Tomčala

ÚPRAVA VODY V ENERGETICE. Ing. Jiří Tomčala ÚPRAVA VODY V ENERGETICE Ing. Jiří Tomčala Úvod Voda je v elektrárnách po palivu nejdůležitější surovinou Její množství v provozních systémech elektráren je mnohonásobně větší než množství spotřebovaného

Více

POVRCHY A JEJICH DEGRADACE

POVRCHY A JEJICH DEGRADACE POVRCHY A JEJICH DEGRADACE Ing. V. Kraus, CSc. Opakování z Nauky o materiálu 1 Povrch Rozhraní dvou prostředí (není pouze plochou) Skoková změna sil ovlivní: povrchovou vrstvu materiálu (relaxace, rekonstrukce)

Více

Vzdušné x Hydraulické

Vzdušné x Hydraulické VÁPNO A STANOVENÍ PH Stavební hmoty I Není vápno jako vápno!!! Vzdušné x Hydraulické Vzdušné vápno Užíváno již od starověku, na našem území od období Velké Moravy (technologický import) Pálené vápno -

Více

Možnosti zvýšení trvanlivosti a sanace železobetonových konstrukcí. Ing. Pavel Fidranský, Ph.D. ČVUT v Praze - Fakulta stavební

Možnosti zvýšení trvanlivosti a sanace železobetonových konstrukcí. Ing. Pavel Fidranský, Ph.D. ČVUT v Praze - Fakulta stavební Možnosti zvýšení trvanlivosti a sanace železobetonových konstrukcí Ing. Pavel Fidranský, Ph.D. ČVUT v Praze - Fakulta stavební Zlepšování trvanlivosti železobetonu Chemické přísady do betonu Příměsi do

Více

DUM č. 4 v sadě. 24. Ch-2 Anorganická chemie

DUM č. 4 v sadě. 24. Ch-2 Anorganická chemie projekt GML Brno Docens DUM č. 4 v sadě 24. Ch-2 Anorganická chemie Autor: Aleš Mareček Datum: 26.09.2014 Ročník: 2A Anotace DUMu: Materiál je určen pro druhý ročník čtyřletého a šestý ročník víceletého

Více

EU peníze středním školám digitální učební materiál

EU peníze středním školám digitální učební materiál EU peníze středním školám digitální učební materiál Číslo projektu: Číslo a název šablony klíčové aktivity: Tematická oblast, název DUMu: Autor: CZ.1.07/1.5.00/34.0515 III/2 Inovace a zkvalitnění výuky

Více

Mechanismy degradace betonu a železobetonu. Ing. Pavel Fidranský, Ph.D. ČVUT v Praze - Fakulta stavební K133, B 733

Mechanismy degradace betonu a železobetonu. Ing. Pavel Fidranský, Ph.D. ČVUT v Praze - Fakulta stavební K133, B 733 Mechanismy degradace betonu a železobetonu Ing. Pavel Fidranský, Ph.D. ČVUT v Praze - Fakulta stavební K133, B 733 Degradace železobetonu Degradace zhoršení kvality, znehodnocení Degradovat mohou všechny

Více

Vlastnosti betonů modifikovaných minerálními příměsmi

Vlastnosti betonů modifikovaných minerálními příměsmi Vlastnosti betonů modifikovaných minerálními příměsmi Pavla Rovnaníková Fakulta stavební VUT v Brně Kalorimetrický seminář, 23. - 27. 5. 2011 Proč využívat příměsi v betonech Snížení emisí CO 2 1 t cementu

Více

Dusík a fosfor. Dusík

Dusík a fosfor. Dusík 5.9.010 Dusík a fosfor Dusík lyn Bezbarvý, bez chuti a zápachu Vyskytuje se v dvouatomových molekulách N Molekuly dusíku extremně stabilní říprava: reakce dusitanů s amonnými ionty NH N N ( ( ( ( Výroba:

Více

Úprava podzemních vod ODKYSELOVÁNÍ

Úprava podzemních vod ODKYSELOVÁNÍ Úprava podzemních vod ODKYSELOVÁNÍ 1 Způsoby úpravy podzemních vod Neutralizace = odkyselování = stabilizace vody odstranění CO 2 a úprava vody do vápenato-uhličitanové rovnováhy Odstranění plynných složek

Více

Učební osnovy Vzdělávací oblast: Člověk a příroda Vzdělávací obor: Chemický kroužek ročník 6.-9.

Učební osnovy Vzdělávací oblast: Člověk a příroda Vzdělávací obor: Chemický kroužek ročník 6.-9. Učební osnovy Vzdělávací oblast: Člověk a příroda Vzdělávací obor: Chemický kroužek ročník 6.-9. Školní rok 0/03, 03/04 Kapitola Téma (Učivo) Znalosti a dovednosti (výstup) Počet hodin pro kapitolu Úvod

Více

ZŠ ÚnO, Bratří Čapků 1332

ZŠ ÚnO, Bratří Čapků 1332 Úvodní obrazovka Menu (vlevo nahoře) Návrat na hlavní stránku Obsah Výsledky Poznámky Záložky edunet Konec Chemie 1 (pro 12-16 let) LangMaster Obsah (střední část) výběr tématu - dvojklikem v seznamu témat

Více

Prvek Značka Z - protonové číslo Elektronegativita Dusík N 7 3,0 Fosfor P 15 2,2 Arsen As 33 2,1 Antimon Sb 51 2,0 Bismut Bi 83 2,0

Prvek Značka Z - protonové číslo Elektronegativita Dusík N 7 3,0 Fosfor P 15 2,2 Arsen As 33 2,1 Antimon Sb 51 2,0 Bismut Bi 83 2,0 Otázka: Prvky V. A skupiny Předmět: Chemie Přidal(a): kevina.h Prvek Značka Z - protonové číslo Elektronegativita Dusík N 7 3,0 Fosfor P 15 2,2 Arsen As 33 2,1 Antimon Sb 51 2,0 Bismut Bi 83 2,0 valenční

Více

Směsi, roztoky. Disperzní soustavy, roztoky, koncentrace

Směsi, roztoky. Disperzní soustavy, roztoky, koncentrace Směsi, roztoky Disperzní soustavy, roztoky, koncentrace 1 Směsi Směs je soustava, která obsahuje dvě nebo více chemických látek. Mezi složkami směsi nedochází k chemickým reakcím. Fyzikální vlastnosti

Více

JČU-ZF, KATEDRA KRAJINNÉHO MANAGEMENTU STAVEBNÍ MATERIÁLY A KONSTRUKCE (STMK)

JČU-ZF, KATEDRA KRAJINNÉHO MANAGEMENTU STAVEBNÍ MATERIÁLY A KONSTRUKCE (STMK) JČU-ZF, KATEDRA KRAJINNÉHO MANAGEMENTU STAVEBNÍ MATERIÁLY A KONSTRUKCE (STMK) JČU-ZF, KATEDRA KRAJINNÉHO MANAGEMENTU STAVEBNÍ MATERIÁLY A KONSTRUKCE (STMK) Ing. Jan Závitkovský e-mail: jan.zavitkovsky@centrum.cz

Více

5. Nekovy sı ra. 1) Obecná charakteristika nekovů. 2) Síra a její vlastnosti

5. Nekovy sı ra. 1) Obecná charakteristika nekovů. 2) Síra a její vlastnosti 5. Nekovy sı ra 1) Obecná charakteristika nekovů 2) Síra a její vlastnosti 1) Obecná charakteristika nekovů Jedna ze tří chemických skupin prvků. Nekovy mají vysokou elektronegativitu. Jsou to prvky uspořádané

Více

Gymnázium Chomutov, Mostecká 3000, příspěvková organizace Mgr. Monika ŠLÉGLOVÁ VY_32_INOVACE_06B_05_Vlastnosti kovů, hliník_test ANOTACE

Gymnázium Chomutov, Mostecká 3000, příspěvková organizace Mgr. Monika ŠLÉGLOVÁ VY_32_INOVACE_06B_05_Vlastnosti kovů, hliník_test ANOTACE ŠKOLA: Gymnázium Chomutov, Mostecká 3000, příspěvková organizace AUTOR: Mgr. Monika ŠLÉGLOVÁ NÁZEV: VY_32_INOVACE_06B_05_Vlastnosti kovů, hliník_test TEMA: KOVY ČÍSLO PROJEKTU: CZ.1.07/1.5.00/34.0816 DATUM

Více

Masarykova střední škola zemědělská a Vyšší odborná škola, Opava, příspěvková organizace

Masarykova střední škola zemědělská a Vyšší odborná škola, Opava, příspěvková organizace Číslo projektu Číslo materiálu Název školy Autor Průřezové téma Tematický celek CZ.1.07/1.5.00/34.0565 VY_32_INOVACE_347_Chemické reakce a rovnice Masarykova střední škola zemědělská a Vyšší odborná škola,

Více

Digitální učební materiály III/ 2- Inovace a zkvalitnění výuky prostřednictvím ICT. VY_32_INOVACE_129_Sloučeniny Na+Ca_ prac_ list

Digitální učební materiály  III/ 2- Inovace a zkvalitnění výuky prostřednictvím ICT. VY_32_INOVACE_129_Sloučeniny Na+Ca_ prac_ list Název školy Číslo projektu STŘEDNÍ ODBORNÁ ŠKOLA a STŘEDNÍ ODBORNÉ UČILIŠTĚ, Česká Lípa, 28. října 2707, příspěvková organizace CZ.1.07/1.5.00/34.0880 Název projektu Klíčová aktivita Digitální učební materiály

Více

CO JE AKVATRON? VÝHODY IZOLACÍ AKVATRONEM

CO JE AKVATRON? VÝHODY IZOLACÍ AKVATRONEM CO JE AKVATRON? Tento hydroizolační systém se řadí do skupiny silikátových hydroizolačních hmot, které pracují na krystalizační bázi. Hydroizolační systém AKVATRON si již získal mezi těmito výrobky své

Více

Sanace betonu. Hrubý Zdeněk, 2.S

Sanace betonu. Hrubý Zdeněk, 2.S Sanace betonu Hrubý Zdeněk, 2.S Co je to sanace? obnovení soudržnosti vlastního betonového pojiva nebo oprava poškozené betonové konstrukce zabránění stárnutí a rozpadu kce odstranění uvolněných a zpuchřelých

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY PORTLANDSKÉ CEMENTY S VÁPENCEM A PORTLANDSKÉ SMĚSNÉ CEMENTY - VLASTNOSTI, MOŽNOSTI POUŽITÍ

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY PORTLANDSKÉ CEMENTY S VÁPENCEM A PORTLANDSKÉ SMĚSNÉ CEMENTY - VLASTNOSTI, MOŽNOSTI POUŽITÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STAVEBNÍ ÚSTAV TECHNOLOGIE STAVEBNÍCH HMOT A DÍLCŮ FACULTY OF CIVIL ENGINEERING INSTITUTE OF TECHNOLOGY OF BUILDING MATERIALS AND COMPONENTS

Více

kyslík ve vodě CO 2 (vápenato-)uhličitanová rovnováha alkalita

kyslík ve vodě CO 2 (vápenato-)uhličitanová rovnováha alkalita kyslík ve vodě CO 2 ph (vápenato-)uhličitanová rovnováha alkalita elementární plyny s vodou nereagují, ale rozpouštějí se fyzikálně (N 2, O 2, ) plynné anorganické sloučeniny (CO 2, H 2 S, NH 3 ) s vodou

Více

A U T O R : I N G. J A N N O Ž I Č K A S O Š A S O U Č E S K Á L Í P A V Y _ 3 2 _ I N O V A C E _ 1 3 0 8 _ K O R O Z E A O C H R A N A P R O T I K

A U T O R : I N G. J A N N O Ž I Č K A S O Š A S O U Č E S K Á L Í P A V Y _ 3 2 _ I N O V A C E _ 1 3 0 8 _ K O R O Z E A O C H R A N A P R O T I K A U T O R : I N G. J A N N O Ž I Č K A S O Š A S O U Č E S K Á L Í P A V Y _ 3 2 _ I N O V A C E _ 1 3 0 8 _ K O R O Z E A O C H R A N A P R O T I K O R O Z I _ P W P Název školy: Číslo a název projektu:

Více

kyslík ve vodě CO 2 (vápenato-)uhličitanová rovnováha alkalita

kyslík ve vodě CO 2 (vápenato-)uhličitanová rovnováha alkalita kyslík ve vodě CO 2 ph (vápenato-)uhličitanová rovnováha alkalita elementární plyny s vodou nereagují, ale rozpouštějí se fyzikálně (N 2, O 2, ) plynné anorganické sloučeniny (CO 2, H 2 S, NH 3 ) s vodou

Více

ANORGANICKÁ POJIVA - VÁPNO

ANORGANICKÁ POJIVA - VÁPNO ANORGANICKÁ POJIVA - VÁPNO Vzdušné vápno Vzdušné vápno je typickým představitelem vzdušných pojiv a zároveň patří k nejdéle používaným pojivům vůbec. Technicky vzato je vápno názvem pro oxid vápenatý (CaO)

Více

KONTROLNÍ TEST ŠKOLNÍHO KOLA (70 BODŮ)

KONTROLNÍ TEST ŠKOLNÍHO KOLA (70 BODŮ) KONTROLNÍ TEST ŠKOLNÍHO KOLA (70 BODŮ) Úloha 1 Ic), IIa), IIId), IVb) za každé správné přiřazení po 1 bodu; celkem Úloha 2 8 bodů 1. Sodík reaguje s vodou za vzniku hydroxidu sodného a dalšího produktu.

Více

Stanovení složení a míry degradace betonu nosných prvků železobetonové konstrukce budovy nádraží. Ing. Ámos Dufka, Ph.D. Ing. Patrik Bayer, Ph.D.

Stanovení složení a míry degradace betonu nosných prvků železobetonové konstrukce budovy nádraží. Ing. Ámos Dufka, Ph.D. Ing. Patrik Bayer, Ph.D. Stanovení složení a míry degradace betonu nosných prvků železobetonové konstrukce Ing. Ámos Dufka, Ph.D. Ing. Patrik Bayer, Ph.D. 1. Úvod Analyzovány byly betony konstrukčních prvků železobetonového skeletu

Více

Vzdělávací oblast: Člověk a příroda. Vyučovací předmět: Chemie. Třída: tercie. Očekávané výstupy. Poznámky. Přesahy. Žák: Průřezová témata

Vzdělávací oblast: Člověk a příroda. Vyučovací předmět: Chemie. Třída: tercie. Očekávané výstupy. Poznámky. Přesahy. Žák: Průřezová témata Vzdělávací oblast: Člověk a příroda Vyučovací předmět: Chemie Třída: tercie Očekávané výstupy Uvede příklady chemického děje a čím se zabývá chemie Rozliší tělesa a látky Rozpozná na příkladech fyzikální

Více

1996D0603 CS 12.06.2003 002.001 1

1996D0603 CS 12.06.2003 002.001 1 1996D0603 CS 12.06.2003 002.001 1 Tento dokument je třeba brát jako dokumentační nástroj a instituce nenesou jakoukoli odpovědnost za jeho obsah B ROZHODNUTÍ KOMISE ze dne 4. října 1996, kterým se stanoví

Více

VZNIK SOLÍ, NEUTRALIZACE

VZNIK SOLÍ, NEUTRALIZACE VZNIK SOLÍ, NEUTRALIZACE Autor: Mgr. Stanislava Bubíková Datum (období) tvorby: 25. 4. 2013 Ročník: osmý Vzdělávací oblast: Člověk a příroda / Chemie / anorganické sloučeniny 1 Anotace: Žáci se seznámí

Více

STANOVENÍ CHLORIDŮ. Odměrné argentometrické stanovení chloridů podle Mohra

STANOVENÍ CHLORIDŮ. Odměrné argentometrické stanovení chloridů podle Mohra STANOVENÍ CHLORIDŮ Odměrné argentometrické stanovení chloridů podle Mohra Cíl práce Stanovte titr odměrného standardního roztoku dusičnanu stříbrného titrací 5 ml standardního srovnávacího roztoku chloridu

Více

Chemické děje a rovnice procvičování Smart Board

Chemické děje a rovnice procvičování Smart Board Chemické děje a rovnice procvičování Smart Board VY_52_INOVACE_216 Vzdělávací oblast: Člověk a příroda Vzdělávací obor: Chemie Ročník: 9. Projekt EU peníze školám Operačního programu Vzdělávání pro konkurenceschopnost

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ. FAKULTA STAVEBNÍ Ústav stavebního zkušebnictví

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ. FAKULTA STAVEBNÍ Ústav stavebního zkušebnictví VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ Ústav stavebního zkušebnictví Kámen a kamenivo Kámen Třída Pevnost v tlaku min. [MPa] Nasákavost max. [% hm.] I. 110 1,5 II. 80 3,0 III. 40 5,0 Vybrané druhy

Více

CZ.1.07/1.5.00/

CZ.1.07/1.5.00/ CZ.1.07/1.5.00/34.0556 Číslo projektu CZ.1.07/1.5.00/34.0556 Číslo materiálu VY_32_INOVACE_ZF_POS_20 Cement - vlastnosti Název školy Autor Střední průmyslová škola a Vyšší odborná škola, Příbram II, Hrabákova

Více

Do této skupiny patří dusík, fosfor, arsen, antimon a bismut. Společnou vlastností těchto prvků je pět valenčních elektronů v orbitalech ns a np:

Do této skupiny patří dusík, fosfor, arsen, antimon a bismut. Společnou vlastností těchto prvků je pět valenčních elektronů v orbitalech ns a np: PRVKY PÁTÉ SKUPINY Do této skupiny patří dusík, fosfor, arsen, antimon a bismut. Společnou vlastností těchto prvků je pět valenčních elektronů v orbitalech ns a np: Obecná konfigurace: ns np Nejvyšší kladné

Více

Chemické složení (%): SiO 2 6 Al 2 O 3 38 42 Fe 2 O 3 13 17 CaO 36 40 MgO < 1,5 SO 3 < 0,4

Chemické složení (%): SiO 2 6 Al 2 O 3 38 42 Fe 2 O 3 13 17 CaO 36 40 MgO < 1,5 SO 3 < 0,4 Všeobecně je normálně tuhnoucí, ale rychle tvrdnoucí hlinitanový cement s vysokou počáteční pevností. Na základě jeho výrobního postupu, jeho chemického složení a jeho schopnosti tuhnutí se výrazně liší

Více

Chemické názvosloví anorganických sloučenin 2

Chemické názvosloví anorganických sloučenin 2 Chemické názvosloví anorganických sloučenin 2 Tříprvkové sloučeniny Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je. Mgr. Vlastimil Vaněk. Dostupné z Metodického portálu www.rvp.cz, ISSN:

Více

Test vlastnosti látek a periodická tabulka

Test vlastnosti látek a periodická tabulka DUM Základy přírodních věd DUM III/2-T3-2-08 Téma: Test vlastnosti látek a periodická tabulka Střední škola Rok: 2012 2013 Varianta: A Zpracoval: Mgr. Pavel Hrubý Mgr. Josef Kormaník TEST Test vlastnosti

Více

Oborový workshop pro ZŠ CHEMIE

Oborový workshop pro ZŠ CHEMIE PRAKTICKÁ VÝUKA PŘÍRODOVĚDNÝCH PŘEDMĚTŮ NA ZŠ A SŠ CZ.1.07/1.1.30/02.0024 Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Oborový workshop pro ZŠ CHEMIE

Více

v PRAZE - ZKUŠEBNÍ LABORATOŘ ÍCH HMOT

v PRAZE - ZKUŠEBNÍ LABORATOŘ ÍCH HMOT ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ v PRAZE FAKULTA STAVEBNÍ - ZKUŠEBNÍ LABORATOŘ OL 123 - ODBORNÁ LABORATOŘ STAVEBNÍS ÍCH HMOT INTERNÍ DOKUMENT č. OL 123/7 Seznam akreditovaných zkoušek a identifikace zkušebních

Více

Nauka o materiálu. Přednáška č.14 Kompozity

Nauka o materiálu. Přednáška č.14 Kompozity Nauka o materiálu Úvod Technické materiály, které jsou určeny k dalšímu technologickému zpracování zahrnují širokou škálu možného chemického složení, různou vnitřní stavbu a různé vlastnosti. Je nutno

Více

Gymnázium Jiřího Ortena, Kutná Hora. Pojmy Metody a formy Poznámky

Gymnázium Jiřího Ortena, Kutná Hora. Pojmy Metody a formy Poznámky Předmět: Náplň: Třída: Počet hodin: Pomůcky: Chemie (CHE) Obecná chemie, anorganická chemie 2. ročník a sexta 2 hodiny týdně Školní tabule, interaktivní tabule, tyčinkové a kalotové modely molekul, zpětný

Více

chartakterizuje přírodní vědy,charakterizuje chemii, orientuje se v možných využití chemie v běžníém životě

chartakterizuje přírodní vědy,charakterizuje chemii, orientuje se v možných využití chemie v běžníém životě Kapitola Téma (Učivo) Znalosti a dovednosti (výstup). Úvod do chemie Charakteristika chemie a její význam Charakteristika přírodních věd charakteristika chemie Chemie kolem nás chartakterizuje přírodní

Více

Učivo. ÚVOD DO CHEMIE - vymezení předmětu chemie - látky a tělesa - chemické děje - chemická výroba VLASTNOSTI LÁTEK

Učivo. ÚVOD DO CHEMIE - vymezení předmětu chemie - látky a tělesa - chemické děje - chemická výroba VLASTNOSTI LÁTEK - zařadí chemii mezi přírodní vědy - uvede, čím se chemie zabývá - rozliší fyzikální tělesa a látky - uvede příklady chemického děje ÚVOD DO CHEMIE - vymezení předmětu chemie - látky a tělesa - chemické

Více

SMĚSI. 3. a) Napiš 2 typy pevné směsi:... b) Napiš 2 typy kapalné směsi:... c) Napiš 2 typy plynné směsi:... krev

SMĚSI. 3. a) Napiš 2 typy pevné směsi:... b) Napiš 2 typy kapalné směsi:... c) Napiš 2 typy plynné směsi:... krev 1 SMĚSI 1. Zakroužkuj stejnorodé směsi: destilovaná voda slaná voda polévka med krev sirup 2. a) Směs kapaliny a pevné látky se nazývá:... b) Směs dvou nemísitelných kapalin se nazývá:... c) Směs kapaliny

Více

CHEMICKÉ REAKCE A HMOTNOSTI A OBJEMY REAGUJÍCÍCH LÁTEK

CHEMICKÉ REAKCE A HMOTNOSTI A OBJEMY REAGUJÍCÍCH LÁTEK CHEMICKÉ REAKCE A HMOTNOSTI A OBJEMY REAGUJÍCÍCH LÁTEK Význam stechiometrických koeficientů 2 H 2 (g) + O 2 (g) 2 H 2 O(l) Počet reagujících částic 2 molekuly vodíku reagují s 1 molekulou kyslíku za vzniku

Více

Metody gravimetrické

Metody gravimetrické Klíčový požadavek - kvantitativní vyloučení stanovované složky z roztoku - málorozpustná sloučenina - SRÁŽECÍ ROVNOVÁHY VYLUČOVACÍ FORMA se převede na (sušení, žíhání) CHEMICKY DEFINOVANÝ PRODUKT - vážitelný

Více

16.5.2010 Halogeny 1

16.5.2010 Halogeny 1 16.5.010 Halogeny 1 16.5.010 Halogeny Prvky VII.A skupiny: F, Cl, Br, I,(At) Obecnávalenčníkonfigurace:ns np 5 Pro plné zaplnění valenční vrstvy potřebují 1 e - - nejčastější sloučeniny s oxidačním číslem

Více

Ukázky z pracovních listů 1) Vyber, který ion je: a) ve vodném roztoku barevný b) nejstabilnější c) nejlépe oxidovatelný

Ukázky z pracovních listů 1) Vyber, který ion je: a) ve vodném roztoku barevný b) nejstabilnější c) nejlépe oxidovatelný Ukázky z pracovních listů 1) Vyber, který ion je: a) ve vodném roztoku barevný b) nejstabilnější c) nejlépe oxidovatelný Fe 3+ Fe 3+ Fe 3+ Fe 2+ Fe 6+ Fe 2+ Fe 6+ Fe 2+ Fe 6+ 2) Vyber správné o rtuti:

Více

Inhibitory koroze kovů

Inhibitory koroze kovů Inhibitory koroze kovů Úvod Korozní rychlost kovových materiálů lze ovlivnit úpravou prostředí, ve kterém korozní děj probíhá. Mezi tyto úpravy patří i použití inhibitorů koroze kovů. Inhibitor je látka,

Více

Výroba stavebních hmot

Výroba stavebních hmot Výroba stavebních hmot 1.Typy stavebních hmot Pojiva = anorganické hmoty, které mohou vázat kamenivo dohromady (tvrdnou s vodou nebo na vzduchu) hydraulická tvrdnou na vzduchu nebo ve vodě (např. cement)

Více

Chemie povrchů verze 2013

Chemie povrchů verze 2013 Chemie povrchů verze 2013 Definice povrchu složitá, protože v nanoměřítku (na úrovni velikosti atomů) je elektronový obal atomů difúzní většinou definován fyzikální adsorpcí nereaktivních plynů Vlastnosti

Více

SHRNUTÍ A ZÁKLADNÍ POJMY chemie 8.ročník ZŠ

SHRNUTÍ A ZÁKLADNÍ POJMY chemie 8.ročník ZŠ SHRNUTÍ A ZÁKLADNÍ POJMY chemie 8.ročník ZŠ 1. ČÍM SE ZABÝVÁ CHEMIE VLASTNOSTI LÁTEK, POKUSY - chemie přírodní věda, která studuje vlastnosti a přeměny látek pomocí pozorování, měření a pokusu - látka

Více

Inovace bakalářského studijního oboru Aplikovaná chemie CZ.1.07/2.2.00/ Výpočty z chemických vzorců

Inovace bakalářského studijního oboru Aplikovaná chemie CZ.1.07/2.2.00/ Výpočty z chemických vzorců Výpočty z chemických vzorců 1. Hmotnost kyslíku je 80 g. Vypočítejte : a) počet atomů kyslíku ( 3,011 10 atomů) b) počet molů kyslíku (2,5 mol) c) počet molekul kyslíku (1,505 10 24 molekul) d) objem (dm

Více

Netkané textilie. Materiály 2

Netkané textilie. Materiály 2 Materiály 2 1 Pojiva pro výrobu netkaných textilií Pojivo je jednou ze dvou základních složek pojených textilií. Forma pojiva a jeho vlastnosti předurčují technologii a podmínky procesu pojení způsob rozmístění

Více

Otázky a jejich autorské řešení

Otázky a jejich autorské řešení Otázky a jejich autorské řešení Otázky: 1a Co jsou to amfoterní látky? a. látky krystalizující v krychlové soustavě b. látky beztvaré c. látky, které se chovají jako kyselina nebo jako zásada podle podmínek

Více

Gymnázium Jiřího Ortena, Kutná Hora

Gymnázium Jiřího Ortena, Kutná Hora Předmět: Seminář chemie (SCH) Náplň: Obecná chemie, anorganická chemie, chemické výpočty, základy analytické chemie Třída: 3. ročník a septima Počet hodin: 2 hodiny týdně Pomůcky: Vybavení odborné učebny,

Více

Trvanlivost je schopnost konstrukce odolávat vlivům

Trvanlivost je schopnost konstrukce odolávat vlivům Prof.Ing. Milan Holický, DrSc. Kloknerův ústav ČVUT Trvanlivost je schopnost konstrukce odolávat vlivům prostředí. Rozlišují se dva základní druhy vlivů: Fyzikální: Chemické: - abraze, otěr - sulfáty,

Více

Katedra materiálového inženýrství a chemie IZOLAČNÍ MATERIÁLY, 123IZMA

Katedra materiálového inženýrství a chemie IZOLAČNÍ MATERIÁLY, 123IZMA Katedra materiálového inženýrství a chemie IZOLAČNÍ MATERIÁLY, 123IZMA o Anotace a cíl předmětu: návrh stavebních konstrukcí - kromě statické funkce důležité zohlednit nároky na vnitřní pohodu uživatelů

Více

Vláknobetony. Ing. Milena Pavlíková, Ph.D. K123, D1045 224 354 688, milena.pavlikova@fsv.cvut.cz www.tpm.fsv.cvut.cz

Vláknobetony. Ing. Milena Pavlíková, Ph.D. K123, D1045 224 354 688, milena.pavlikova@fsv.cvut.cz www.tpm.fsv.cvut.cz Vláknobetony Ing. Milena Pavlíková, Ph.D. K123, D1045 224 354 688, milena.pavlikova@fsv.cvut.cz www.tpm.fsv.cvut.cz Úvod Beton křehký materiál s nízkou pevností v tahu a deformační kapacitou Od konce 60.

Více