Ideální frekvenční charakteristiky filtrů podle bodu 1. až 4. v netypických lineárních souřadnicích jsou znázorněny na následujícím obrázku. U 1.

Rozměr: px
Začít zobrazení ze stránky:

Download "Ideální frekvenční charakteristiky filtrů podle bodu 1. až 4. v netypických lineárních souřadnicích jsou znázorněny na následujícím obrázku. U 1."

Transkript

1 Aktivní filtry Filtr je obecně selektivní obvod, který propouští určité frekvenční pásmo, zatímco ostatní frekvenční pásma potlačuje. Filtry je možno realizovat sítí pasivních součástek, tj. rezistorů, kapacitorů a induktorů. Použití pasivních filtrů je běžné všude tam, kde nejsou příliš vysoké nároky na přesnost aproximace přenosové funkce filtru. V ostatních případech dáváme přednost aktivním filtrům, které obsahují jeden nebo několik zesilovačů. Jednou z výhod aktivních filtrů je možnost vyloučení induktorů při návrhu a realizaci přenosové funkce obvykle stačí zapojovat rezistory a kapacitory. Induktor je totiž obvykle charakterizován velkými rozměry, relativně velkou cenou vzhledem ke složitosti výroby, ale zejména při použití feromagnetického materiálu se vždy jedná o nelineární prvek, který může negativně ovlivňovat přesnost aproximace přenosové funkce celého filtru. Dalšími výhodami aktivních filtrů je, že při vhodné konstrukci si vystačíme i pro nízké frekvence s malými kapacitami a dále lze dosáhnout velkých vstupních a malých výstupních impedancí.

2 Podle účelu, ke kterému má filtr sloužit, rozlišujeme celkem čtyři základní typy:. filtr typu dolní propust (DP, low-pass, propouští všechny kmitočty menší než horní mezní kmitočet). filtr typu horní propust (HP, high-pass, propouští všechny kmitočty větší než dolní mezní kmitočet) 3. filtr typu pásmová propust (PP, band-pass, propouští jen dané pásmo kmitočtů) 4. filtr typu pásmová zádrž (PZ, notch, latch, band-stop, zadržuje dané pásmo kmitočtů) Ideální frekvenční charakteristiky filtrů podle bodu. až 4. v netypických lineárních souřadnicích jsou znázorněny na následujícím obrázku. U U U U DP HP U U 0 f c f U U 0 fc f PP PZ 0 fd fh f 0 fd f h f

3 Hranice mezi propustným pásmem a nepropustným pásmem nastává při určité frekvenci f c, která se nazývá frekvence zlomu. Při této frekvenci může dosáhnout amplitudová frekvenční charakteristika, aproximovaná v logaritmických souřadnicích přímkami své největší chyby proti skutečné hodnotě. Reálná frekvenční charakteristika se od ideální liší. Příklad je znázorněn (pro DP) na následujícím obrázku. U U ideální frekvenční charakteristika DP A 0 reálná frekvenční charakteristika DP A 0 f0 f f pásmo propusti přechodová oblast pásmo útlumu

4 Hranice pásma propustnosti a pásma útlumu nejsou přesně rozlišeny. Za pásmo propustnosti U budeme považovat frekvence, kde neklesne pod zvolenou hodnotu (obvykle se jedná o U hodnotu menší o 3 db proti hodnotě v propustném pásmu). Za pásmo útlumu budeme A 0 považovat frekvence, pro které platí, že U U klesne pod zvolenou hodnotu. Rychlost útlumu je určena řádem filtru n (n = 3 ~ filtr 3. řádu, n = 6 ~ filtr 6. řádu). Čím větší řád filtru, tím rychleji dochází k útlumu. Na druhou stranu je nutné upozornit na to, že s řádem filtru roste i jeho složitost, což znamená, že v praxi jsme omezeni asi na řád n 0.

5 Druhy filtrů:. Butterworthovy filtry Amplitudová charakteristika Butterworthových filtrů má velmi plochý průběh v propustném pásmu, který začíná klesat teprve v blízkosti frekvence zlomu. Rozdíl mezi ideální a aproximovanou amplitudovou frekvenční charakteristikou je na frekvenci zlomu (f = f c ) 3 db a nezáleží na řádu filtru. Normovaným Butterworthovým polynomem n-tého řádu rozumíme polynom, jehož komplexně sdružené kořeny leží v levé polorovině, přitom pro liché njejedenkořen vždy reálný a roven -, dalších n- kořenů jsou komplexně sdružené kořeny se zápornou reálnou částí. Pro sudá n má polynom n/ dvojic komplexně sdružených kořenů se zápornou reálnou částí. V následující tabulce jsou uvedeny normované Butterworthovy polynomy. n... řád filtru koeficienty normovaného Butterworthova polynomu B N (p) (p + ) (p +.44p + ) 3 (p +p+)(p+) 4 (p p + )(p p + ) 5 (p p + )(p +.68p + )(p + ) 6 (p p + )(p +.44p + )(p +.939p + ) 7 (p p + )(p +.47p + )(p +.809p + )(p + ) 8 (p p + )(p +.p + )(p +.669p + )(p +.966p + ) 9 (p p + )(p +p+)(p +.53p + )(p p + )(p + ) 0 (p p + )(p p + )(p +.44p + )(p +.78p + ) (p p + )

6 Obecně lze přenos např. systému. řádu napsat ve tvaru: Au 0 G( p) p k p c c c[ s ]... je frekvence zlomu k[ ]... je poměrné tlumení Ivpřípadě Butterworthových filtrů současně platí, že řešením charakteristické rovnice jsou dva komplexně sdružené kořeny ležící v levé polorovině. Butterworthův filtr však lze obecně popsat přenosem: G( p) ( p) [] u0 [] B A N kde ( p) je Butterworthův polynom n-tého řádu. Jestliže dosadíme p j, B N bude pro absolutní velikost G( j) v případě Butterworthova filtru platit: A u 0 G( j) G( j) G( j) c n [3]

7 Ze vztahu (3) vyplývá, že absolutní hodnota přenosu G( j) je dána vztahem: kde n je řád polynomu. G( j) A u 0 c n [4] Z výrazu (4) vyplývá velmi důležitá vlastnost Butterworthových filtrů: platí totiž, že pro c poklesne amplituda na výstupu filtru na hodnotu: G A [5] u0 ( j ) 0,707 Au 0 tj. na hodnotu o 3 db nižší oproti propustnému pásmu.

8

9 Fázová frekvenční charakteristika vykazuje v propustném pásmu plynulou změnu fáze s frekvencí, se sklonem daným řádem filtru. Pro posouzení těchto vlastností se používá pojmu skupinové zpoždění, což je derivace fáze podle frekvence. U tohoto typu filtru nemá v propustném pásmu skupinové zpoždění zvlnění

10 Přechodová charakteristika se vyznačuje rychlým čelem impulsu a mírným překmitem. Butterworthův filtr je nejvíce používaný filtr v regulační technice.

11 Pro normovaný filtr, kdy uvažujeme, že ω 0 = rad/s, je možné přenosovou funkci přepsat ve dvou tvarech. Pro n sudá (, 4, 6, ) Pro n lichá (, 3, 5, ) G( p) n / k A0 G( p) p b p n / 0 k Ak a p b p k Vpředcházející tabulce jsou uvedeny normované Butterworthovy polynomy pro filtr. až 0. řádu. Koeficienty jednotlivých polynomů lze určit pomocí vztahů (6) a (7). k Ak a p b k k b k [6] (k ) a k sin kde k je pořadí polynomu [7] n Pro příklad určeme ze vztahu (7) koeficienty pro n = 6: k k k / sin( /) 0, / sin(3 /), 44 6 / sin(5 /), 939 : a sin : a sin 3 : a3 sin

12 n... řád filtru koeficienty normovaného Butterworthova polynomu B N (p) (p + ) (p +.44p + ) 3 (p +p+)(p+) 4 (p p + )(p p + ) 5 (p p + )(p +.68p + )(p + ) 6 (p p + )(p +.44p + )(p +.939p + ) 7 (p p + )(p +.47p + )(p +.809p + )(p + ) 8 (p p + )(p +.p + )(p +.669p + )(p +.966p + ) 9 (p p + )(p +p+)(p +.53p + )(p p + )(p + ) 0 (p p + )(p p + )(p +.44p + )(p +.78p + ) (p p + )

13 . Besselovy filtry Besselovy filtry (nazývané též Bessel-Thomsonovy nebo Thomsonovy filtry) jsou navrhovány tak, aby fázová charakteristika byla v pásmu okolo kritické frekvence maximálně lineární. Amplitudová charakteristika v nepropustném pásmu je velmi plochá. Na následujícím obrázku jsou amplitudové frekvenční charakteristiky Besselových filtrů sudého řádu 0. Amplitudová charakteristika má neostrý zlom a oproti filtrům ostatních druhů je její přechodové pásmo nejdelší.

14 Fázová část frekvenční charakteristiky je ve své přechodné části plochá nejvíce ze všech popisovaných filtrů.

15 skoku. Přechodová charakteristika má malý překmit, menší než % amplitudy vstupního Besselovy filtry se používají v televizní technice, při zpracování digitálně syntetizovaného signálu a též v měřicí technice. Použití nacházejí všude tam, kde je na závadu překmit přechodové charakteristiky.

16 n... řád filtru koeficienty normovaného Besselova polynomu B L (p) (p + ) (p +.73p + ) 3 (p +,49p +.06)(946p + ) 4 (p +.344p +.)(p p ) 5 (p +.703p + 0.9)(p +.8p +.78)(0.964p + ) 6 (p +.888p )(p p )(p +.077p +.5) 7 (p +.76p )(p p )(p p +.57) (0.995p + ) 8 (p +.894p )(p p )(p +.4p +.0) (p p +.836) 9 (p +.78p )(p +.696p )(p p +.055) (p p +.34)(0.955p + ) 0 (p +.88p )(p p )(p p ) (p +.836p )(p p )

17 3. Eliptické filtry Eliptické, též Cauerovy nebo Cauer-Čebyševovy filtry, byly navrženy Cauerem v roce 93. Tyto filtry se vyznačují maximální strmostí zlomové části amplitudové charakteristiky, čemuž odpovídá krátké přechodové pásmo.

18

19

20 Eliptické filtry nacházejí použití všude tam, kde se požaduje velmi strmý pokles amplitudové frekvenční charakteristiky na zlomové frekvenci. Eliptický filtr představuje optimální řešení pro tento požadavek. Eliptické filtry najdeme v televizní, měřicí a komunikační technice. Vstupními parametry návrhu eliptického filtru jsou n, ω c,r p a R s, tedy řád, zlomová frekvence, maximální zvlnění v propustném směru a minimální útlum v nepropustném pásmu.

21 Příklad návrhu a realizace Butterworthova filtru Návrh Butterworthova filtru s použitím operačních zesilovačů a s využitím normovaných polynomů B N (p) je možno řešit různým způsobem. Především je možné dokázat, že lze s jedním operačním zesilovačem a sítí RC realizovat filtr libovolného řádu. Tímto způsobem lze redukovat na nejmenší možnou míru počet aktivních součástek obvodu, na druhé straně však vytvořené obvody splňují požadované vlastnosti pouze s velmi přesnými hodnotami součástek. Tato citlivost roste s rostoucím řádem filtru. Příklad zapojení aktivní dolní propusti n-tého řádu s jedním operačním zesilovačem je možné nalézt např. v literatuře [3].

22 Jiný způsob návrhu dolních nebo horních propustí využívá operačních zesilovačů jako impedančních převodníků, tj. zesilovačů s kladným zesílením s vysokou vstupní impedancí a minimální výstupní impedancí. V tomto případě je možné použít zapojení pro první řád podle následujícího obrázku. Impedance Z az jsou tvořeny prvky RC. V případě aktivního filtru typu dolní propust bude impedance Z nahrazena rezistorem a impedance Z kapacitorem. R R Z OZ U U Z

23 Zapojení s jedním operačním zesilovačem pro druhý řád je na následujícím obrázku. Tomuto zapojení se běžně říká Salen-Key filtr. Impedance Z až Z 4 jsou tvořeny stejně jako v případě filtru. řádu prvky RC. V případě aktivního filtru typu dolní propust budou impedance Z a Z nahrazeny rezistory, zatímco impedance Z 3 a Z 4 budou nahrazeny kapacitory. Při realizaci filtru typu horní propust budou zaměněny rezistory a kapacitory. R R U Z Ux Z3 Z Ui Ui Z OZ U

24 Chceme-li realizovat filtr vyššího řádu, pak pro liché n se zapojení skládá z kaskádního spojení (n-)/ obvodů druhého řádu a jednoho obvodu prvního řádu. Pro sudé n se pak výsledné schéma skládá z n/ obvodů druhého řádu. Určitá nevýhoda tohoto způsobu návrhu je v tom, že pro zaručení přenosové funkce B N (p) vycházejí obvykle rozdílné hodnoty kapacit nebo odporů pro jednotlivá zapojení. V následujícím odvozeních bude použit vztah (), který představuje typickou přenosovou funkci obecného systému druhého řádu: Au 0 G( p) p k p c V obou popisovaných zapojeních je operační zesilovač zapojen jako neinvertující zesilovač, jehož zesílení A U 0 je v pásmu provozovaných frekvencí dáno vztahem: c A U R R R 0 R R S využitím vztahu (8) platí pro zapojení druhého řádu: [8] U i U R R R U A U 0 [9]

25 Pro napětí U x platí: U x U Z Z Z Z 3 4 Z Z Z 3 4 Z3 Z Z4 Z Z Z 3 4 U Z 3 Z Z Z 4 Z Z Z 4 Z Z Z4 Z Z Z 4 [0] Napětí na neinvertujícím vstupu je jednak dáno vztahem (9), ale současně můžeme psát: U i U x Z Z4 Z 4 Dosadíme-li za U x ze vztahu (0) do vztahu () a současně porovnáme vztahy (9) a () dostaneme po úpravě: [] U A U 0 UZZ UZZ ZZ ZZ ZZ ZZ ZZ [] Další úpravou dostaneme přenos ve tvaru: U U AU 0Z3Z4 ZZ ZZ ZZ ZZ ZZ A ZZ [3] U 0 4

26 Chceme-li nyní realizovat např. dolní propust druhého řádu typu Butterworth, definujeme: Z Z R Z Z U U a po úpravě dostaneme: ( p) ( p) U ( p) U ( p) 3 4 pc AU 0 pc [4] R R R R R AU 0 pc pc pc pc pc A U 0 prc 3 A prc Porovnáme-li nyní vztah (5) se vztahem () určíme: c U 0 Au 0 G( p) p k p c c [5] [6] RC AU 0 3 k Na základě vztahů (6) a (7) lze velmi jednoduše navrhovat požadovaný filtr tak, že určíme podle (6) prvky R, C a hledáme takové zesílení A U0 pro každý operační zesilovač, aby byl navržen koeficient tlumení podle tabulky normovaných Butterworthových polynomů. [7]

27 Návrh pásmových propustí pomocí filtrů polynomiálního typu DOLNÍ PROPUST U Realizace pásmové propusti podle principu na následujícím obrázku má velkou výhodu v univerzálnosti použití. Volbou řádu obou propustí můžeme volit sklony charakteristik nezávisle na sobě. Frekvence f d af h je možno libovolně měnit a vždy jsou vzájemně nezávislé, je-li splněna podmínka fd fh. HORNÍ PROPUST U Vlastní návrh pásmové propusti je velmi jednoduchý a lze použít stejný postup jako vpřípadech dolní či horní propusti, které byly popsány výše.

28 Návrh pásmových zádrží pomocí filtrů polynomiálního typu U tohoto návrhu, podobně jakovpředchozím případě, lze frekvence f d af h libovolně bez interakce měnit. Rovněž sklony frekvenčních charakteristik v okolí pásma zadržených frekvencí lze navrhovat nezávisle na sobě. Vlastnosti zapojení dolní a horní propusti však v tomto případě nelze provést kaskádně. Obě propusti se zapojují společně svými vstupy a jejich výstupy se přivádějí na součtový zesilovač podle následujícího obrázku. Návrh této pásmové zádrže vychází opět z výše popsaného způsobu návrhu dolní a horní propusti. DOLNÍ PROPUST U 0,5R R OZ U R U HORNÍ PROPUST U V tomto případě je výstupní napětí dáno vztahem: R R U U U 0, 5U U [8] R R

29 Butterworthův filtr typu horní propust 3. řádu Navrhněte Butterworthův filtr typu horní propust třetího řádu se zlomovou frekvencí f c = 800Hz. Máte k dispozici kapacitory nf, 3,3nF, 0nF, 33nF nebo 00nF. Vyberte vhodný kapacitor z nabízených tak, abyste vypočtený odpor mohli snadno nastavit pomocí odporové dekády kω až 999kΩ. Hodnoty rezistorů R =R = 0kΩ nemáte možnost měnit. Filtr bude sestaven ze zapojení filtru. řádu a ze zapojení Salen-Key. Výsledné zapojení je znázorněno na následujícím obrázku. R R R' R' U C R OZ C R C R U OZ

30 B N (p) = (p + )(p + p + ) První závorku bude realizovat OZ a druhou závorku OZ A U0 = 3 k = 3 = A U0 = 3 k = 3 = ' R R A U0 =A U0 = R = ' R = Ze zadání známe R = R = 0kΩ a snadno dopočítáme R = R (A U0 ) = R ( ) = 0kΩ R = R (A U0 ) = R ( ) = 0kΩ Frekvence zlomu je dána vztahem f C RC Volíme jednu součástku a druhou dopočítáme. Z praktického hlediska je vhodné volit velikost kapacitorů, neboť se obvykle jedná o rozměrnější součástku, která by měla být co do hodnoty v řadě vyráběných kapacitorů. Ze zadání plyne, že máme volit hodnotu kapacitoru C=nF, 3,3nF, 0nF, 33nF nebo 00nF. Např. pro C=33nF je: R 6,09k f C C=3,3nF C=0nF C=33nF C=00nF R [kω] 60,86 9,894 6,09,989 c

31 Butterworthův filtr typu horní propust 3. řádu Navrhněte Butterworthův filtr typu dolní propust čtvrtého řádu se zlomovou frekvencí f c = khz. Máte k dispozici kapacitory nf, 3,3nF, 0nF, 33nF nebo 00nF. Vyberte vhodný kapacitor z nabízených tak, abyste vypočtený odpor mohli snadno nastavit pomocí odporové dekády kω až 999kΩ. Hodnoty rezistorů R =R =0kΩ nemáte možnost měnit. Filtr bude sestaven ze dvou zapojení Salen-Key. Výsledné zapojení je znázorněno na následujícím obrázku. R R R' R' U R C R C OZ R C R C OZ U

32 B N (p) = (p + 0,7654p + )(p +,8478p + ) První závorku bude realizovat OZ a druhou závorku OZ A U0 = 3 k = 3 0,7654 =,346 A U0 = 3 k = 3,8478 =,5 ' R R A U0 = =,346 A U0 = ' =,5 R R Ze zadání známe R = R = 0kΩ a snadno dopočítáme R R AU ) R (,346 ), 346k ( ) ' ' ' ' R R ( AU ) R (,5 ), 5k 0 Frekvence zlomu je dána vztahem f C RC Volíme jednu součástku a druhou dopočítáme. Z praktického hlediska je vhodné volit velikost kapacitorů, neboť se obvykle jedná o rozměrnější součástku, která by měla být co do hodnoty v řadě vyráběných kapacitorů. Ze zadání plyne, že máme volit hodnotu kapacitoru C=nF, 3,3nF, 0nF, 33nF nebo 00nF. Např. pro C=0nF je: R 5,95k f C C=nF C=3,3nF C=0nF C=33nF C=00nF R [kω] 59,55 48,9 5,95 4,83,59 c

33

34 R R +IN A R R OZ +IN B V 80 Hz AC -IN A C C -IN B

35

36 R R OUT +IN A R R OZ +IN B GND -IN A -IN B C C

37

38 Filtry se spínanými kapacitory V předchozích části přednášky jsme poznali jak lze vytvořit aktivní filtry z diskrétních pasivních a aktivních prvků. U těchto filtrů lze velmi složitým způsobem měnit jejich parametry, především pak přeladění jejich kmitočtových vlastností. Nabízí se zde použití filtrů, kde se tato změna provádí velmi elegantním způsobem. Rezistory v nich jsou nahrazeny periodicky spínanými kapacitory, což dovoluje změnu jejich ekvivalentních odporů a následně i přeladění filtru úpravou přepínacího kmitočtu. Proto jsou tyto filtry v literatuře označovány jako SCF (Switched Capacitors Filters). Princip filtru se spínaným kapacitorem fclk 3 C U S t U OZ U0 S t C 3 - +

39 Označíme-li časový interval t, jako interval po který je sepnut spínač S a t jako interval, po který je sepnut spínač S, bude pro periodu T CLK platit: T CLK t t [9] f kde T CLK je perioda vzorkování a f CLK je vzorkovací frekvence. Náboj kapacitoru C je v okamžicích přepnutí dán vztahy: Qt ( ) CLK Cu Qt ( ) Cu [0] Změna náboje na kondenzátoru za jednu vzorkovací periodu je tedy: u u I TCLK Q( t) Q( t ) Q( t) C [] Změna náboje v časovém intervalu je proto dána střední hodnotou proudu v tomto časovém intervalu. Z tohoto a s využitím Ohmova zákona můžeme psát: I u T C u CLK u R u ekv []

40 Ze vztahu () plyne, že pomocí vzorkování lze realizovat časovou konstantu, ve které figuruje TCLK přídavný kapacitor C a odpor je nahrazen fiktivním odporem Rekv. C Časová konstanta obvodu je tedy: R ekv C C C T Časová konstanta podle vztahu (3) nezávisí na skutečném odporu, ale pouze na periodě C vzorkování T CLK a na poměru dvou kapacit. C Přenos obvodu je dán vztahem: ekv CLK CLK [3] U O ( p) C [4] U ( p) pc R C pt C Pokud zaručíme konstantní poměr, bude zlomová frekvence řízena pouze frekvencí C vzorkovací, přičemžsenemění tvar charakteristiky filtru. Toto je základní výhoda filtrů se spínaným kapacitorem. Další výhodou je, že mezní kmitočet je dán poměrem kapacit, což je příznivé z hlediska vlivu teploty na parametry filtru.

41 Aliasing Aliasing, neboli překrývání ve frekvenčním spektru vzniká v důsledku přepínání kapacitoru, které je současně vzorkováním. Běžná dolní propust je pásmovou propustí pro frekvence od 0Hz do f C. Filtr se spínaným kapacitorem je však navíc propustí frekvence od f CLK -f C do f CLK +f C,odf CLK -f C do f CLK +f C,,přeložené do propustného pásma filtru. Aliasingu se zamezuje vložením klasického filtru za filtr se spínaným kapacitorem. Filtr se spínaným kapacitorem tedy zajistí požadovaný řád a typ filtru (velkou strmost, malou chybu) a klasický (spojitý) dolnopropustný filtr zajistí, aby ve spektru signálu vystupujícího z filtru byly frekvence vyšší než f CLK / dostatečně potlačeny. Nevýhodou je, že spojitý filtr není snadné plynule přelaďovat elektrickým signálem. Pevným spojitým filtrem se omezíme jen na určité pásmo, ve kterém lze celý filtr přelaďovat. Stabilita filtru je závislá na vhodně zvolené vzorkovací frekvenci vzhledem k požadované frekvenci zlomu. Pro stabilitu je nutno zaručit, aby vzorkovací frekvence f CLK byla podle Shannonovy věty f CLK >> f C,kdef C je požadovaná frekvence zlomu. Poměr f CLK /f C bývá pro běžné aplikace volen v pásmu 50:, v přesnějších aplikacích až 00:.

42 MAX9 (Butterworthova aproximace), MAX9 (Besselova aproximace) a MAX93 (eliptická aproximace) filtry 8. řádu Příkladem filtru se spínaným kapacitorem je např. řada integrovaných obvodů MAX 9x. Základní vlastnosti této řady jsou uvedeny v následující tabulce: Označení Aproximace f / f Řád f C (max) MAX 9 Butterworthova 00: 8 5 khz MAX 9 Besselova 00: 8 5 khz MAX 93 Eliptická 00: 8 5 khz MAX 94 Eliptická 00: 8 5 khz MAX 95 Butterworthova 50: 8 50kHz MAX 96 Besselova 50: 8 50kHz MAX 97 Eliptická 50: 8 50kHz CLK C

43 Parametr min max Napájecí napětí - symetrické.375v 5.500V Napájecí napětí - nesymetrické V +.000V Napájecí proud Rozkmit vstupního napětí Rozkmit výstupního napětí Příkon ma 4V 4V 760 mw Pin Název Popis funkce CLK Vstup hodinového signálu U- Záporné napájecí napětí 3 OP OUT Výstup volného OZ 4 OP IN Vstup volného OZ 5 OUT Výstup filtru 6 GND Analogová zem 7 U+ Kladné napájecí napětí 8 IN Vstup filtru Filtry umožňují připojit k vnitřnímu oscilátoru MAX 9x externí kapacitor. Tento externí kapacitor se připojuje místo vstupního hodinového signálu f CLK mezi svorku vstup CLK a svorku GND. Frekvence generovaného hodinového signálu se vypočte takto: 5 0 fclk khz [5] 3Cext pf Pozn.: Hodnota kapacity se zadává v pf (viz vztah 5) a výsledná hodnota frekvence je v khz. Opět je nutné si uvědomit, že takto jsme spočítali pouze vstupní hodinový kmitočet f CLK aže poměr mezi f CLK /f C je opět 00:.

44

45

46 Literatura:. Hlinovský M., Honců J., Němeček P., Vysoký O.: ELEKTRONICKÉ SYSTÉMY - Návody ke cvičením, skriptum ČVUT FEL, Praha 006. Punčochář J.: OPERAČNÍ ZESILOVAČE v elektronice, BEN technická literatura, Praha Vysoký, O.: Elektronické systémy II, skriptum ČVUT, Praha 003

filtry FIR zpracování signálů FIR & IIR Tomáš Novák

filtry FIR zpracování signálů FIR & IIR Tomáš Novák filtry FIR 1) Maximální překývnutí amplitudové frekvenční charakteristiky dolní propusti FIR řádu 100 je podle obr. 1 na frekvenci f=50hz o velikosti 0,15 tedy 1,1dB; přechodové pásmo je v rozsahu frekvencí

Více

Teoretický úvod: [%] (1)

Teoretický úvod: [%] (1) Vyšší odborná škola a Střední průmyslová škola elektrotechnická Božetěchova 3, Olomouc Laboratoře elektrotechnických měření Název úlohy Číslo úlohy ZESILOVAČ OSCILÁTOR 101-4R Zadání 1. Podle přípravku

Více

Signál v čase a jeho spektrum

Signál v čase a jeho spektrum Signál v čase a jeho spektrum Signály v časovém průběhu (tak jak je vidíme na osciloskopu) můžeme dělit na periodické a neperiodické. V obou případech je lze popsat spektrálně určit jaké kmitočty v sobě

Více

Kompenzovaný vstupní dělič Analogový nízkofrekvenční milivoltmetr

Kompenzovaný vstupní dělič Analogový nízkofrekvenční milivoltmetr Kompenzovaný vstupní dělič Analogový nízkofrekvenční milivoltmetr. Zadání: A. Na předloženém kompenzovaném vstupní děliči k nf milivoltmetru se vstupní impedancí Z vst = MΩ 25 pf, pro dělící poměry :2,

Více

Návrh frekvenčního filtru

Návrh frekvenčního filtru Návrh frekvenčního filtru Vypracoval: Martin Dlouhý, Petr Salajka 25. 9 2010 1 1 Zadání 1. Navrhněte co nejjednodušší přenosovou funkci frekvenčního pásmového filtru Dolní propusti typu Bessel, která bude

Více

Obrázek č. 1 : Operační zesilovač v zapojení jako neinvertující zesilovač

Obrázek č. 1 : Operační zesilovač v zapojení jako neinvertující zesilovač Teoretický úvod Oscilátor s Wienovým článkem je poměrně jednoduchý obvod, typické zapojení oscilátoru s aktivním a pasivním prvkem. V našem případě je pasivním prvkem Wienův článek (dále jen WČ) a aktivním

Více

Nízkofrekvenční (do 1 MHz) Vysokofrekvenční (stovky MHz až jednotky GHz) Generátory cm vln (až desítky GHz)

Nízkofrekvenční (do 1 MHz) Vysokofrekvenční (stovky MHz až jednotky GHz) Generátory cm vln (až desítky GHz) Provazník oscilatory.docx Oscilátory Oscilátory dělíme podle několika hledisek (uvedené třídění není zcela jednotné - bylo použito vžitých názvů, které vznikaly v různém období vývoje a za zcela odlišných

Více

Při návrhu FIR filtru řešíme obvykle následující problémy:

Při návrhu FIR filtru řešíme obvykle následující problémy: Návrh FIR filtrů Při návrhu FIR filtru řešíme obvykle následující problémy: volba frekvenční odezvy požadovaného filtru; nejčastěji volíme ideální charakteristiku normovanou k Nyquistově frekvenci, popř.

Více

Teorie úlohy: Operační zesilovač je elektronický obvod, který se využívá v měřící, výpočetní a regulační technice. Má napěťové zesílení alespoň A u

Teorie úlohy: Operační zesilovač je elektronický obvod, který se využívá v měřící, výpočetní a regulační technice. Má napěťové zesílení alespoň A u Fyzikální praktikum č.: 7 Datum: 7.4.2005 Vypracoval: Tomáš Henych Název: Operační zesilovač, jeho vlastnosti a využití Teorie úlohy: Operační zesilovač je elektronický obvod, který se využívá v měřící,

Více

Oscilátory. Návod k přípravku pro laboratorní cvičení v předmětu EO.

Oscilátory. Návod k přípravku pro laboratorní cvičení v předmětu EO. Oscilátory Návod k přípravku pro laboratorní cvičení v předmětu EO. Měření se skládá ze dvou základních úkolů: (a) měření vlastností oscilátoru 1 s Wienovým členem (můstkový oscilátor s operačním zesilovačem)

Více

Měřící přístroje a měření veličin

Měřící přístroje a měření veličin Číslo projektu Číslo a název šablony klíčové aktivity Tematická oblast CZ.1.07/1.5.00/34.0556 III / 2 = Inovace a zkvalitnění výuky prostřednictvím ICT Měřící přístroje a měření veličin Číslo projektu

Více

Laboratorní úloha 7 Fázový závěs

Laboratorní úloha 7 Fázový závěs Zadání: Laboratorní úloha 7 Fázový závěs 1) Změřte regulační charakteristiku fázového závěsu. Změřené průběhy okomentujte. Jaký vliv má na dynamiku filtr s různými časovými konstantami? Cíl měření : 2)

Více

Zesilovače. Ing. M. Bešta

Zesilovače. Ing. M. Bešta ZESILOVAČ Zesilovač je elektrický čtyřpól, na jehož vstupní svorky přivádíme signál, který chceme zesílit. Je to tedy elektronické zařízení, které zesiluje elektrický signál. Zesilovač mění amplitudu zesilovaného

Více

Základní zapojení s OZ. Vlastnosti a parametry operačních zesilovačů

Základní zapojení s OZ. Vlastnosti a parametry operačních zesilovačů OPEAČNÍ ZESLOVAČ (OZ) Operační zesilovač je polovodičová součástka vyráběná formou integrovaného obvodu vyznačující se velkým napěťovým zesílením vstupního rozdílového napětí (diferenciální napěťový zesilovač).

Více

VY_32_INOVACE_ENI_3.ME_01_Děliče napětí frekvenčně nezávislé Střední odborná škola a Střední odborné učiliště, Dubno Ing.

VY_32_INOVACE_ENI_3.ME_01_Děliče napětí frekvenčně nezávislé Střední odborná škola a Střední odborné učiliště, Dubno Ing. Číslo projektu..07/.5.00/34.058 Číslo materiálu VY_3_INOVAE_ENI_3.ME_0_Děliče napětí frekvenčně nezávislé Název školy Střední odborná škola a Střední odborné učiliště, Dubno Autor Ing. Miroslav Krýdl Tematická

Více

Měřená veličina. Rušení vyzařováním: magnetická složka (9kHz 150kHz), magnetická a elektrická složka (150kHz 30MHz) Rušivé elektromagnetické pole

Měřená veličina. Rušení vyzařováním: magnetická složka (9kHz 150kHz), magnetická a elektrická složka (150kHz 30MHz) Rušivé elektromagnetické pole 13. VYSOKOFREKVENČNÍ RUŠENÍ 13.1. Klasifikace vysokofrekvenčního rušení Definice vysokofrekvenčního rušení: od 10 khz do 400 GHz Zdroje: prakticky všechny zdroje rušení Rozdělení: rušení šířené vedením

Více

1.1 Pokyny pro měření

1.1 Pokyny pro měření Elektronické součástky - laboratorní cvičení 1 Bipolární tranzistor jako zesilovač Úkol: Proměřte amplitudové kmitočtové charakteristiky bipolárního tranzistoru 1. v zapojení se společným emitorem (SE)

Více

Senzor teploty. Katalogový list SMT 160-30

Senzor teploty. Katalogový list SMT 160-30 Senzor teploty Katalogový list SMT 160-30 Obsah 1. Úvod strana 2 2. Inteligentní senzor teploty strana 2 3. Vývody a pouzdro strana 4 4. Popis výrobku strana 4 5. Charakteristické údaje strana 5 6. Definice

Více

Osnova přednášky. Univerzita Jana Evangelisty Purkyně Základy automatizace Vlastnosti regulátorů

Osnova přednášky. Univerzita Jana Evangelisty Purkyně Základy automatizace Vlastnosti regulátorů Osnova přednášky 1) Základní pojmy; algoritmizace úlohy 2) Teorie logického řízení 3) Fuzzy logika 4) Algebra blokových schémat 5) Vlastnosti členů regulačních obvodů 6) 7) Stabilita regulačního obvodu

Více

Elektronické praktikum EPR1

Elektronické praktikum EPR1 Elektronické praktikum EPR1 Úloha číslo 4 název Záporná zpětná vazba v zapojení s operačním zesilovačem MAA741 Vypracoval Pavel Pokorný PINF Datum měření 9. 12. 2008 vypracování protokolu 14. 12. 2008

Více

ISŠ Nova Paka, Kumburska 846, 50931 Nova Paka Automatizace Dynamické vlastnosti členů členy a regulátory

ISŠ Nova Paka, Kumburska 846, 50931 Nova Paka Automatizace Dynamické vlastnosti členů členy a regulátory Regulátory a vlastnosti regulátorů Jak již bylo uvedeno, vlastnosti regulátorů určují kvalitu regulace. Při volbě regulátoru je třeba přihlížet i k přenosovým vlastnostem regulované soustavy. Cílem je,

Více

Kategorie M. Test. U všech výpočtů uvádějte použité vztahy včetně dosazení! 1 Sběrnice RS-485 se používá pro:

Kategorie M. Test. U všech výpočtů uvádějte použité vztahy včetně dosazení! 1 Sběrnice RS-485 se používá pro: Krajské kolo soutěže dětí a mládeže v radioelektronice, Vyškov 2009 Test Kategorie M START. ČÍSLO BODŮ/OPRAVIL U všech výpočtů uvádějte použité vztahy včetně dosazení! 1 Sběrnice RS-485 se používá pro:

Více

VY_32_INOVACE_E 15 03

VY_32_INOVACE_E 15 03 Název a adresa školy: Střední škola průmyslová a umělecká, Opava, příspěvková organizace, Praskova 399/8, Opava, 746 01 Název operačního programu: OP Vzdělávání pro konkurenceschopnost, oblast podpory

Více

Střední odborná škola a Střední odborné učiliště, Hustopeče, Masarykovo nám. 1

Střední odborná škola a Střední odborné učiliště, Hustopeče, Masarykovo nám. 1 Číslo Projektu Škola CZ.1.07/1.5.00/34.0394 Střední odborná škola a Střední odborné učiliště, Hustopeče, Masarykovo nám. 1 Autor Ing. Bc.Štěpán Pavelka Číslo VY_32_INOVACE_EL_2.17_zesilovače 8 Název Základní

Více

Příloha č. 3 TECHNICKÉ PARAMETRY PRO DODÁVKU TECHNOLOGIE: UNIVERZÁLNÍ MĚŘICÍ ÚSTŘEDNA

Příloha č. 3 TECHNICKÉ PARAMETRY PRO DODÁVKU TECHNOLOGIE: UNIVERZÁLNÍ MĚŘICÍ ÚSTŘEDNA Příloha č. 3 TECHNICKÉ PARAMETRY PRO DODÁVKU TECHNOLOGIE: UNIVERZÁLNÍ MĚŘICÍ ÚSTŘEDNA 1. Technická specifikace Možnost napájení ze sítě nebo akumulátoru s UPS funkcí - alespoň 2 hodiny provozu z akumulátorů

Více

3. Kmitočtové charakteristiky

3. Kmitočtové charakteristiky 3. Kmitočtové charakteristiky Po základním seznámení s programem ATP a jeho preprocesorem ATPDraw následuje využití jednotlivých prvků v jednoduchých obvodech. Jednotlivé příklady obvodů jsou uzpůsobeny

Více

Spojité regulátory Zhotoveno ve školním roce: 2011/2012. Spojité regulátory. Jednoduché regulátory

Spojité regulátory Zhotoveno ve školním roce: 2011/2012. Spojité regulátory. Jednoduché regulátory Název a adresa školy: Střední škola průmyslová a umělecká, Opava, příspěvková organizace, Praskova 399/8, Opava, 746 01 Název operačního programu: OP Vzdělávání pro konkurenceschopnost, oblast podpory

Více

2. Pomocí Theveninova teorému zjednodušte zapojení na obrázku, vypočtěte hodnoty jeho prvků. U 1 =10 V, R 1 =1 kω, R 2 =2,2 kω.

2. Pomocí Theveninova teorému zjednodušte zapojení na obrázku, vypočtěte hodnoty jeho prvků. U 1 =10 V, R 1 =1 kω, R 2 =2,2 kω. A5M34ELE - testy 1. Vypočtěte velikost odporu rezistoru R 1 z obrázku. U 1 =15 V, U 2 =8 V, U 3 =10 V, R 2 =200Ω a R 3 =1kΩ. 2. Pomocí Theveninova teorému zjednodušte zapojení na obrázku, vypočtěte hodnoty

Více

Projektová dokumentace ANUI

Projektová dokumentace ANUI Projektová dokumentace NUI MULTI CONTROL s.r.o., Mírová 97/4, 703 00 Ostrava-Vítkovice, tel/fax: 596 614 436, mobil: +40-777-316190 http://www.multicontrol.cz/ e-mail: info@multicontrol.cz ROZŠÍŘENĚ MĚŘENÍ

Více

popsat princip činnosti základních zapojení čidel napětí a proudu samostatně změřit zadanou úlohu

popsat princip činnosti základních zapojení čidel napětí a proudu samostatně změřit zadanou úlohu 9. Čidla napětí a proudu Čas ke studiu: 15 minut Cíl Po prostudování tohoto odstavce budete umět popsat princip činnosti základních zapojení čidel napětí a proudu samostatně změřit zadanou úlohu Výklad

Více

Šum AD24USB a možnosti střídavé modulace

Šum AD24USB a možnosti střídavé modulace Šum AD24USB a možnosti střídavé modulace Vstup USB měřicího modulu AD24USB je tvořen diferenciálním nízkošumovým zesilovačem s bipolárními operačními zesilovači. Charakteristickou vlastností těchto zesilovačů

Více

ČVUT FEL. Obrázek 1 schéma zapojení měřícího přípravku. Obrázek 2 realizace přípravku

ČVUT FEL. Obrázek 1 schéma zapojení měřícího přípravku. Obrázek 2 realizace přípravku Laboratorní měření 2 Seznam použitých přístrojů 1. Laboratorní zdroj stejnosměrného napětí Vývojové laboratoře Poděbrady 2. Generátor funkcí Instek GFG-8210 3. Číslicový multimetr Agilent, 34401A 4. Digitální

Více

Zpětná vazba a linearita zesílení

Zpětná vazba a linearita zesílení Zpětná vazba Zpětná vazba přivádí část výstupního signálu zpět na vstup. Kladná zp. vazba způsobuje nestabilitu, používá se vyjímečně. Záporná zp. vazba (zmenšení vstupního signálu o část výstupního) omezuje

Více

PROTOKOL O LABORATORNÍM CVIČENÍ - AUTOMATIZACE

PROTOKOL O LABORATORNÍM CVIČENÍ - AUTOMATIZACE STŘEDNÍ PRŮMYSLOVÁ ŠKOLA V ČESKÝCH BUDĚJOVICÍCH, DUKELSKÁ 13 PROTOKOL O LABORATORNÍM CVIČENÍ - AUTOMATIZACE Provedl: Tomáš PRŮCHA Datum: 23. 1. 2009 Číslo: Kontroloval: Datum: 4 Pořadové číslo žáka: 24

Více

1. Navrhněte RC oscilátor s Wienovým článkem, operačním zesilovačem a žárovkovou stabilizací amplitudy, podle doporučeného zapojení, je-li dáno:

1. Navrhněte RC oscilátor s Wienovým článkem, operačním zesilovačem a žárovkovou stabilizací amplitudy, podle doporučeného zapojení, je-li dáno: C OSCILÁTO 20-4. Navrhněte C oscilátor s Wienovým článkem, operačním zesilovačem a žárovkovou stabilizací amplitudy, podle doporučeného zapojení, je-li dáno: - rozsah frekvencí: f 60 Hz, f 600Hz - operační

Více

10. Operační zesilovače a jejich aplikace, parametry OZ. Vlastnosti lineárních operačních sítí a sítí s nelineární zpětnou vazbou

10. Operační zesilovače a jejich aplikace, parametry OZ. Vlastnosti lineárních operačních sítí a sítí s nelineární zpětnou vazbou 10. Operační zesilovače a jejich aplikace, parametry OZ. Vlastnosti lineárních operačních sítí a sítí s nelineární zpětnou vazbou Jak to funguje Operační zesilovač je součástka, která byla původně vyvinuta

Více

Elektronika 2. Vysoká škola báská - Technická univerzita Ostrava Fakulta elektrotechniky a informatiky. Píklady P1 až P8

Elektronika 2. Vysoká škola báská - Technická univerzita Ostrava Fakulta elektrotechniky a informatiky. Píklady P1 až P8 Vysoká škola báská - Technická univerzita Ostrava Fakulta elektrotechniky a informatiky lektronika. Píklady P až P8 Tutor : Dr. ng. Gajdošík Libor Datum : kvten / 5 Student : Hanus Miroslav [HAN76] Forma

Více

Czech Technical University in Prague Faculty of Electrical Engineering. Fakulta elektrotechnická. České vysoké učení technické v Praze.

Czech Technical University in Prague Faculty of Electrical Engineering. Fakulta elektrotechnická. České vysoké učení technické v Praze. Nejprve několik fyzikálních analogií úvodem Rezonance Rezonance je fyzikálním jevem, kdy má systém tendenci kmitat s velkou amplitudou na určité frekvenci, kdy malá budící síla může vyvolat vibrace s velkou

Více

popsat činnost základních zapojení operačních usměrňovačů samostatně změřit zadanou úlohu

popsat činnost základních zapojení operačních usměrňovačů samostatně změřit zadanou úlohu 4. Operační usměrňovače Čas ke studiu: 15 minut Cíl Po prostudování tohoto odstavce budete umět popsat činnost základních zapojení operačních usměrňovačů samostatně změřit zadanou úlohu Výklad Operační

Více

VY_32_INOVACE_ENI_2.MA_04_Zesilovače a Oscilátory

VY_32_INOVACE_ENI_2.MA_04_Zesilovače a Oscilátory Číslo projektu Číslo materiálu CZ..07/.5.00/34.058 VY_3_INOVACE_ENI_.MA_04_Zesilovače a Oscilátory Název školy Střední odborná škola a Střední odborné učiliště, Dubno Autor Ing. Miroslav Krýdl Tematická

Více

VÝUKOVÝ MATERIÁL. Pro vzdělanější Šluknovsko. 32 Inovace a zkvalitnění výuky prostřednictvím ICT. 0210 Bc. David Pietschmann.

VÝUKOVÝ MATERIÁL. Pro vzdělanější Šluknovsko. 32 Inovace a zkvalitnění výuky prostřednictvím ICT. 0210 Bc. David Pietschmann. VÝUKOVÝ MATERIÁL Identifikační údaje školy Číslo projektu Název projektu Číslo a název šablony Autor Tematická oblast Číslo a název materiálu Anotace Vyšší odborná škola a Střední škola, Varnsdorf, příspěvková

Více

Přenos signálů, výstupy snímačů

Přenos signálů, výstupy snímačů Přenos signálů, výstupy snímačů Topologie zařízení, typy průmyslových sběrnic, výstupní signály snímačů Přenosy signálů informací Topologie Dle rozmístění ŘS Distribuované řízení Většinou velká zařízení

Více

MĚŘENÍ Laboratorní cvičení z měření Měření nízkofrekvenčního koncového zesilovače, část 3-13-2

MĚŘENÍ Laboratorní cvičení z měření Měření nízkofrekvenčního koncového zesilovače, část 3-13-2 MĚŘENÍ Laboratorní cvičení z měření Měření nízkofrekvenčního koncového zesilovače, část 3-13-2 Výukový materiál Číslo projektu: CZ.1.07/1.5.00/34.0093 Šablona: III/2 Inovace a zkvalitnění výuky prostřednictvím

Více

Zdroje napětí - usměrňovače

Zdroje napětí - usměrňovače ZDROJE NAPĚTÍ Napájecí zdroje napětí slouží k přeměně AC napětí na napětí DC a následnému předání energie do zátěže, která tento druh napětí (proudu) vyžaduje ke správné činnosti. Blokové schéma síťového

Více

Pracovní třídy zesilovačů

Pracovní třídy zesilovačů Pracovní třídy zesilovačů Tzv. pracovní třída zesilovače je určená polohou pracovního bodu P na převodní charakteristice dobou, po kterou zesilovacím prvkem protéká proud, vzhledem ke vstupnímu zesilovanému

Více

Elektrická měření pro I. ročník (Laboratorní cvičení)

Elektrická měření pro I. ročník (Laboratorní cvičení) Střední škola informatiky a spojů, Brno, Čichnova 23 Elektrická měření pro I. ročník (Laboratorní cvičení) Studentská verze Zpracoval: Ing. Jiří Dlapal B R N O 2011 Úvod Výuka předmětu Elektrická měření

Více

Kapitola 1. Signály a systémy. 1.1 Klasifikace signálů

Kapitola 1. Signály a systémy. 1.1 Klasifikace signálů Kapitola 1 Signály a systémy 1.1 Klasifikace signálů Signál představuje fyzikální vyjádření informace, obvykle ve formě okamžitých hodnot určité fyzikální veličiny, která je funkcí jedné nebo více nezávisle

Více

3. Změřte závislost proudu a výkonu na velikosti kapacity zařazené do sériového RLC obvodu.

3. Změřte závislost proudu a výkonu na velikosti kapacity zařazené do sériového RLC obvodu. Pracovní úkoly. Změřte účiník: a) rezistoru, b) kondenzátoru C = 0 µf) c) cívky. Určete chybu měření. Diskutujte shodu výsledků s teoretickými hodnotami pro ideální prvky. Pro cívku vypočtěte indukčnost

Více

VLASTNOSTI KOMPONENTŮ MĚŘICÍHO ŘETĚZCE - ANALOGOVÁČÁST

VLASTNOSTI KOMPONENTŮ MĚŘICÍHO ŘETĚZCE - ANALOGOVÁČÁST VLASTNOSTI KOMPONENTŮ MĚŘICÍHO ŘETĚZCE - ANALOGOVÁČÁST 5.1. Snímač 5.2. Obvody úpravy signálu 5.1. SNÍMAČ Napájecí zdroj snímač převod na el. napětí - úprava velikosti - filtr analogově číslicový převodník

Více

Oddělovací moduly VariTrans

Oddělovací moduly VariTrans Oddělovací moduly VariTrans VariTrans B 13000 určen pro standardní průmyslové aplikace, kalibrované rozsahy VariTrans P 15000 profesionální převodník pro standardní signály, kalibrované rozsahy VariTrans

Více

+ U CC R C R B I C U BC I B U CE U BE I E R E I B + R B1 U C I - I B I U RB2 R B2

+ U CC R C R B I C U BC I B U CE U BE I E R E I B + R B1 U C I - I B I U RB2 R B2 Pro zadané hodnoty napájecího napětí, odporů a zesilovacího činitele β vypočtěte proudy,, a napětí,, (předpokládejte, že tranzistor je křemíkový a jeho pracovní bod je nastaven do aktivního normálního

Více

1 Modelování systémů 2. řádu

1 Modelování systémů 2. řádu OBSAH Obsah 1 Modelování systémů 2. řádu 1 2 Řešení diferenciální rovnice 3 3 Ukázka řešení č. 1 9 4 Ukázka řešení č. 2 11 5 Ukázka řešení č. 3 12 6 Ukázka řešení č. 4 14 7 Ukázka řešení č. 5 16 8 Ukázka

Více

SINEAX U 554 Převodník střídavého napětí s různými charakteristikami

SINEAX U 554 Převodník střídavého napětí s různými charakteristikami S připojením napájecího napětí Měření efektivní hodnoty Pouzdro P13/70 pro montáž na lištu Použití Převodník SINEAX U 554 (obr. 1) převádí sinusové nebo zkreslené střídavé napětí na vnucený stejnosměrný

Více

VSTUPNÍ VÝSTUPNÍ ROZSAHY

VSTUPNÍ VÝSTUPNÍ ROZSAHY Univerzální vysokonapěťový oddělovací modul VariTrans P 29 000 P0 ní signály ±30 mv až ±1000 V ±20 ma, ±10 V nebo 0(4)..20 ma Pracovní napětí až 1000 V ac/dc Přesnost 0,1 nebo 0,2 % z rozsahu Zkušební

Více

Střídavé měniče. Přednášky výkonová elektronika

Střídavé měniče. Přednášky výkonová elektronika Přednášky výkonová elektronika Projekt ESF CZ.1.07/2.2.00/28.0050 Modernizace didaktických metod a inovace výuky technických předmětů. Vstupní a výstupní proud střídavý Rozdělení střídavých měničů f vst

Více

Návod k instalaci VIDEOMULTIPLEX

Návod k instalaci VIDEOMULTIPLEX Principem vícenásobného přenosu videosignálu je přenos videosignálu označeného jako VIDEO 1 v základním spektru. Další videosignál (označen VIDEO 2) je prostřednictvím modulátoru namodulován na určený

Více

Impulsní regulátor ze změnou střídy ( 100 W, 0,6 99,2 % )

Impulsní regulátor ze změnou střídy ( 100 W, 0,6 99,2 % ) ZÁPADOČESKÁ UNIVERZITA V PLZNI Fakulta elektrotechnická Impulsní regulátor ze změnou střídy ( 100 W, 0,6 99,2 % ) Školní rok: 2007/2008 Ročník: 2. Datum: 12.12. 2007 Vypracoval: Bc. Tomáš Kavalír Zapojení

Více

Laboratorní měření 1. Seznam použitých přístrojů. Popis měřicího přípravku

Laboratorní měření 1. Seznam použitých přístrojů. Popis měřicího přípravku Laboratorní měření 1 Seznam použitých přístrojů 1. Generátor funkcí 2. Analogový osciloskop 3. Měřící přípravek na RL ČVUT FEL, katedra Teorie obvodů Popis měřicího přípravku Přípravek umožňuje jednoduchá

Více

Obrázek č. 1 : Operační zesilovač v zapojení jako neinvertující zesilovač

Obrázek č. 1 : Operační zesilovač v zapojení jako neinvertující zesilovač Teoretický úvod Nízkofrekvenční zesilovač s OZ je poměrně jednoduchý elektronický obvod, který je tvořen několika základními prvky. Základní komponentou zesilovače je operační zesilovač v neinvertujícím

Více

Pracovní list žáka (SŠ)

Pracovní list žáka (SŠ) Pracovní list žáka (SŠ) vzorová úloha (SŠ) Jméno Třída.. Datum.. 1 Teoretický úvod Rezistory lze zapojovat do série nebo paralelně. Pro výsledný odpor sériového zapojení rezistorů platí: R = R1 + R2 +

Více

Dioda jako usměrňovač

Dioda jako usměrňovač Dioda A K K A Dioda je polovodičová součástka s jedním P-N přechodem. Její vývody se nazývají anoda a katoda. Je-li na anodě kladný pól napětí a na katodě záporný, dioda vede (propustný směr), obráceně

Více

Účinky měničů na elektrickou síť

Účinky měničů na elektrickou síť Účinky měničů na elektrickou síť Výkonová elektronika - přednášky Projekt ESF CZ.1.07/2.2.00/28.0050 Modernizace didaktických metod a inovace výuky technických předmětů. Definice pojmů podle normy ČSN

Více

1 Zdroj napětí náhradní obvod

1 Zdroj napětí náhradní obvod 1 Zdroj napětí náhradní obvod Příklad 1. Zdroj napětí má na svorkách naprázdno napětí 6 V. Při zatížení odporem 30 Ω klesne napětí na 5,7 V. Co vše můžete o tomto zdroji říci za předpokladu, že je v celém

Více

Měření vlastností jednostupňových zesilovačů. Návod k přípravku pro laboratorní cvičení v předmětu EOS.

Měření vlastností jednostupňových zesilovačů. Návod k přípravku pro laboratorní cvičení v předmětu EOS. Měření vlastností jednostupňových zesilovačů Návod k přípravku pro laboratorní cvičení v předmětu EOS. Cílem měření je seznámit se s funkcí a základními vlastnostmi jednostupňových zesilovačů a to jak

Více

ZDROJE MĚŘÍCÍHO SIGNÁLU MĚŘÍCÍ GENERÁTORY

ZDROJE MĚŘÍCÍHO SIGNÁLU MĚŘÍCÍ GENERÁTORY INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ CZ.1.07/1.1.00/08.0010 ZDROJE MĚŘÍCÍHO SIGNÁLU MĚŘÍCÍ

Více

2. MĚŘENÍ TEPLOTY TERMOČLÁNKY

2. MĚŘENÍ TEPLOTY TERMOČLÁNKY 2. MĚŘENÍ TEPLOTY TERMOČLÁNKY Otázky k úloze (domácí příprava): Jaká je teplota kompenzačního spoje ( studeného konce ), na kterou koriguje kompenzační krabice? Dá se to zjistit jednoduchým měřením? Čemu

Více

Vzdálené laboratoře pro IET1

Vzdálené laboratoře pro IET1 Vzdálené laboratoře pro IET1 1. Bezpečnost práce v elektrotechnice Odpovědná osoba - doc. Ing. Miloslav Steinbauer, Ph.D. (steinbau@feec.vutbr.cz) Náplní tématu je uvést posluchače do problematiky: - rizika

Více

Inovace a zkvalitnění výuky směřující k rozvoji odborných kompetencí žáků středních škol CZ.1.07/1.5.00/34.0452

Inovace a zkvalitnění výuky směřující k rozvoji odborných kompetencí žáků středních škol CZ.1.07/1.5.00/34.0452 Inovace a zkvalitnění výuky směřující k rozvoji odborných kompetencí žáků středních škol CZ.1.07/1.5.00/34.0452 Číslo projektu Číslo materiálu CZ.1.07/1.5.00/34.0452 OV_2_61_Převodník kmitočtu na napětí

Více

18A - PRINCIPY ČÍSLICOVÝCH MĚŘICÍCH PŘÍSTROJŮ Voltmetry, A/D převodníky - principy, vlastnosti, Kmitoměry, čítače, fázoměry, Q- metry

18A - PRINCIPY ČÍSLICOVÝCH MĚŘICÍCH PŘÍSTROJŮ Voltmetry, A/D převodníky - principy, vlastnosti, Kmitoměry, čítače, fázoměry, Q- metry 18A - PRINCIPY ČÍSLICOVÝCH MĚŘICÍCH PŘÍSTROJŮ Voltmetry, A/D převodníky - principy, vlastnosti, Kmitoměry, čítače, fázoměry, Q- metry Digitální voltmetry Základním obvodem digitálních voltmetrů je A/D

Více

Řídící a regulační obvody fázové řízení tyristorů a triaků

Řídící a regulační obvody fázové řízení tyristorů a triaků A10-1 Řídící a regulační obvody fázové řízení tyristorů a triaků.puls.výstup.proud Ig [ma] pozn. U209B DIP14 155 tacho monitor, softstart, U211B DIP18 155 proud.kontrola, softstart, tacho monitor, limitace

Více

Generátory měřicího signálu

Generátory měřicího signálu Generátory měřicího signálu. Zadání: A. Na předloženém generátoru obdélníkového a trojúhelníkového signálu s OZ změřte: a) kmitočet f 0 b) amplitudu obdélníkového mp a trojúhelníkového mt signálu c) rozsah

Více

zdroji 10 V. Simulací zjistěte napětí na jednotlivých rezistorech. Porovnejte s výpočtem.

zdroji 10 V. Simulací zjistěte napětí na jednotlivých rezistorech. Porovnejte s výpočtem. Téma 1 1. Jaký odpor má žárovka na 230 V s příkonem 100 W? 2. Kolik žárovek 230 V, 60 W vyhodí pojistk 10 A? 3. Kolik elektronů reprezentje logicko jedničk v dynamické paměti, když kapacita paměťové bňky

Více

Pedagogická fakulta v Ústí nad Labem Fyzikální praktikum k elektronice 2 Číslo úlohy : 1

Pedagogická fakulta v Ústí nad Labem Fyzikální praktikum k elektronice 2 Číslo úlohy : 1 Pedagogická fakulta v Ústí nad Labem Fyzikální praktikum k elektronice Číslo úlohy : 1 Název úlohy : Vypracoval : ročník : 3 skupina : F-Zt Vnější podmínky měření : měřeno dne : 3.. 004 teplota : C tlak

Více

Bipolární tranzistory

Bipolární tranzistory Bipolární tranzistory h-parametry, základní zapojení, vysokofrekvenční vlastnosti, šumy, tranzistorový zesilovač, tranzistorový spínač Bipolární tranzistory (bipolar transistor) tranzistor trojpól, zapojení

Více

Fázorové diagramy pro ideální rezistor, skutečná cívka, ideální cívka, skutečný kondenzátor, ideální kondenzátor.

Fázorové diagramy pro ideální rezistor, skutečná cívka, ideální cívka, skutečný kondenzátor, ideální kondenzátor. FREKVENČNĚ ZÁVISLÉ OBVODY Základní pojmy: IMPEDANCE Z (Ω)- charakterizuje vlastnosti prvku pro střídavý proud. Impedance je základní vlastností, kterou potřebujeme znát pro analýzu střídavých elektrických

Více

DIPLOMOVÁ PRÁCE Lock-in zesilovač 500 khz 10 MHz

DIPLOMOVÁ PRÁCE Lock-in zesilovač 500 khz 10 MHz DIPLOMOVÁ PRÁCE Lock-in zesilovač 500 khz 10 MHz Petr Sládek Princip a použití lock-in zesilovače Im koherentní demodulátor f r velmi úzkopásmový Re příjem typ. 0,01 Hz 3 Hz zesilování harmonických měřený

Více

- Stabilizátory se Zenerovou diodou - Integrované stabilizátory

- Stabilizátory se Zenerovou diodou - Integrované stabilizátory 1.2 Stabilizátory 1.2.1 Úkol: 1. Změřte VA charakteristiku Zenerovy diody 2. Změřte zatěžovací charakteristiku stabilizátoru se Zenerovou diodou 3. Změřte převodní charakteristiku stabilizátoru se Zenerovou

Více

9. PRINCIPY VÍCENÁSOBNÉHO VYUŽITÍ PŘENOSOVÝCH CEST

9. PRINCIPY VÍCENÁSOBNÉHO VYUŽITÍ PŘENOSOVÝCH CEST 9. PRINCIPY VÍCENÁSOBNÉHO VYUŽITÍ PŘENOSOVÝCH CEST Modulace tvoří základ bezdrátového přenosu informací na velkou vzdálenost. V minulosti se ji využívalo v telekomunikacích při vícenásobném využití přenosových

Více

Multipřepínače MU pro hvězdicové rozvody

Multipřepínače MU pro hvězdicové rozvody Multipřepínače MU pro hvězdicové rozvody Multipřepínače ALCAD série 913 jsou určeny k hvězdicovému rozvodu signálu TV+FM (digitálního i analogového) a satelitního signálu z jednoho nebo dvou satelitních

Více

Stejnosměrné měniče. přednášky výkonová elektronika

Stejnosměrné měniče. přednášky výkonová elektronika přednášky výkonová elektronika Projekt ESF CZ.1.07/2.2.00/28.0050 Modernizace didaktických metod a ovace výuky technických předmětů. Stejnosměrné měniče - charakteristika vstupní proud stejnosměrný, výstupní

Více

Nalezněte pracovní bod fotodiody pracující ve fotovoltaickem režimu. Zadáno R = 100 kω, φ = 5mW/cm 2.

Nalezněte pracovní bod fotodiody pracující ve fotovoltaickem režimu. Zadáno R = 100 kω, φ = 5mW/cm 2. Nalezněte pracovní bod fotodiody pracující ve fotovoltaickem režimu. Zadáno R 00 kω, φ 5mW/cm 2. Fotovoltaický režim: fotodioda pracuje jako zdroj (s paralelně zapojeným odporem-zátěží). Obvod je popsán

Více

Přenosová technika 1

Přenosová technika 1 Přenosová technika 1 Přenosová technika Základní pojmy a jednotky Přenosová technika je oblast sdělovací techniky, která se zabývá konstrukčním provedením, stavbou i provozem zařízení sloužících k přenášení,

Více

Usměrňovače, filtrace zvlněného napětí, zdvojovač a násobič napětí

Usměrňovače, filtrace zvlněného napětí, zdvojovač a násobič napětí Usměrňovače, filtrace zvlněného napětí, zdvojovač a násobič napětí Usměrňovače slouží k převedení střídavého napětí, nejčastěji napětí na sekundárním vinutí síťového transformátoru, na stejnosměrné. Jsou

Více

Jméno a příjmení. Ročník. Měřeno dne. 11.3.2013 Příprava Opravy Učitel Hodnocení. Charakteristiky optoelektronických součástek

Jméno a příjmení. Ročník. Měřeno dne. 11.3.2013 Příprava Opravy Učitel Hodnocení. Charakteristiky optoelektronických součástek FYZIKÁLNÍ PRAKTIKUM Ústav fyziky FEKT VUT BRNO Jméno a příjmení Petr Švaňa Ročník 1 Předmět IFY Kroužek 38 ID 155793 Spolupracoval Měřeno dne Odevzdáno dne Ladislav Šulák 25.2.2013 11.3.2013 Příprava Opravy

Více

Základy elektrického měření Milan Kulhánek

Základy elektrického měření Milan Kulhánek Základy elektrického měření Milan Kulhánek Obsah 1. Základní elektrotechnické veličiny...3 2. Metody elektrického měření...4 3. Chyby při měření...5 4. Citlivost měřících přístrojů...6 5. Měřící přístroje...7

Více

Řídicí obvody (budiče) MOSFET a IGBT. Rozdíly v buzení bipolárních a unipolárních součástek

Řídicí obvody (budiče) MOSFET a IGBT. Rozdíly v buzení bipolárních a unipolárních součástek Řídicí obvody (budiče) MOSFET a IGBT Rozdíly v buzení bipolárních a unipolárních součástek Řídicí obvody (budiče) MOSFET a IGBT Řídicí obvody (budiče) MOSFET a IGBT Hlavní požadavky na ideální budič Galvanické

Více

ODBORNÝ VÝCVIK VE 3. TISÍCILETÍ

ODBORNÝ VÝCVIK VE 3. TISÍCILETÍ Projekt: ODBORNÝ VÝCVIK VE 3. TISÍCILETÍ Téma: ME II 4.7.1. Kontrola,měření a opravy obvodů I Obor: Mechanik - elekronik Ročník: 2. Zpracoval: Ing. Michal Gregárek Střední průmyslová škola Uherský Brod,

Více

NÍZKOFREKVENČNÍ ZESILOVAČ S OZ

NÍZKOFREKVENČNÍ ZESILOVAČ S OZ NÍZKOFREKVENČNÍ ZESILOVAČ S OZ 204-4R. Navrhněte a sestavte neinvertující nf zesilovač s OZ : 74 CN, pro napěťový přenos a u 20 db (0 x zesílení) při napájecím napětí cc ± 5 V a zatěžovacím odporu R L

Více

ELEKTRONICKÉ MODULY. Souprava přepínání videosignálů. Princip zapojení:

ELEKTRONICKÉ MODULY. Souprava přepínání videosignálů. Princip zapojení: Souprava přepínání videosignálů. Vyprojektovaný systém kamerového dohledu, kde byl DVR umístěn mimo dosah ostrahy objektu a přístup ostrahy do tohoto systému se předpokládal prostřednictvím datové sítě

Více

TENZOMETRICKÝ PŘEVODNÍK

TENZOMETRICKÝ PŘEVODNÍK TENZOMETRICKÝ PŘEVODNÍK typ TENZ2109-5 Výrobu a servis zařízení provádí: ATERM, Nad Hřištěm 206, 765 02 Otrokovice Telefon/Fax: 577 932 759 Mobil: 603 217 899 E-mail: matulik@aterm.cz Internet: http://www.aterm.cz

Více

Návrh a analýza jednostupňového zesilovače

Návrh a analýza jednostupňového zesilovače Návrh a analýza jednostupňového zesilovače Zadání: U CC = 35 V I C = 10 ma R Z = 2 kω U IG = 2 mv R IG = 220 Ω Tolerance u napětí a proudů, kromě Id je ± 1 % ze zadaných hodnot. Frekvence oscilátoru u

Více

Měření na výkonovém zesilovači 1kW/144MHz by OK1GTH

Měření na výkonovém zesilovači 1kW/144MHz by OK1GTH Měření na výkonovém zesilovači 1kW/144MHz by OK1GTH Ing.Tomáš Kavalír, Katedra aplikované elektroniky a telekomunikací FEL /ZČU kavalir.t@seznam.cz, http://ok1gth.nagano.cz Zadání měření: 1. Měření max.

Více

11. MĚŘENÍ SŘÍDAVÉHO PROUDU A NAPĚTÍ

11. MĚŘENÍ SŘÍDAVÉHO PROUDU A NAPĚTÍ . MĚŘEÍ SŘÍDAVÉHO PROD A APĚTÍ Měření střídavého napětí a proudu: přehled použitelných přístrojů a metod měření Měřicí transformátory ( i, náhradní schéma, zapojení, použití, chyby) Číslicové multimetry

Více

Základní elektronické obvody

Základní elektronické obvody Základní elektronické obvody Soustava jednotek Coulomb (C) = jednotka elektrického náboje q Elektrický proud i = náboj, který proteče průřezem vodiče za jednotku času i [A] = dq [C] / dt [s] Volt (V) =

Více

RLC obvody sériový a paralelní rezonanční obvod

RLC obvody sériový a paralelní rezonanční obvod Vysoká škola báňská Technická universita Ostrava Fakulta elektrotechniky a informatiky Základy elektroniky ZE aboratorní úloha č. 2 R obvody sériový a paralelní rezonanční obvod Datum měření: 24. 9. 2011

Více

Analogový spektrální analyzátor

Analogový spektrální analyzátor Jihočeská univerzita v Českých Budějovicích Přírodovědecká fakulta Bakalářská práce Analogový spektrální analyzátor Pavel Bušek školitel: Ing. Ladislav Ptáček České Budějovice 2012 Bušek P. 2012: Analogový

Více

TECHNICKÝ POPIS ZDROJŮ ŘADY EZ1 T 73304

TECHNICKÝ POPIS ZDROJŮ ŘADY EZ1 T 73304 Signal Mont s.r.o Hradec Králové T73304 List č.: 1 Výzkumný ústav železniční Praha Sdělovací a zabezpečovací dílny Hradec Králové TECHNICKÝ POPIS ZDROJŮ ŘADY EZ1 T 73304 JKPOV 404 229 733 041 Zpracoval:

Více

Elektronika ve fyzikálním experimentu

Elektronika ve fyzikálním experimentu Elektronika ve fyzikálním experimentu Josef Lazar Ústav přístrojové techniky, AV ČR, v.v.i. E-mail: joe@isibrno.cz www: http://www.isibrno.cz/~joe/elektronika/ Elektrický obvod Analogie s kapalinou Základními

Více

Kapitola 9: Návrh vstupního zesilovače

Kapitola 9: Návrh vstupního zesilovače Kapitola 9: Návrh vstupního zesilovače Vstupní zesilovač musí zpracovat celý dynamický rozsah mikrofonu s přijatelným zkreslením a nízkým ekvivalentním šumovým odporem. To s sebou nese určité specifické

Více

1. Zadání. 2. Teorie úlohy ID: 78 357. Jméno: Jan Švec. Předmět: Elektromagnetické vlny, antény a vedení. Číslo úlohy: 7. Měřeno dne: 30.3.

1. Zadání. 2. Teorie úlohy ID: 78 357. Jméno: Jan Švec. Předmět: Elektromagnetické vlny, antény a vedení. Číslo úlohy: 7. Měřeno dne: 30.3. Předmět: Elektromagnetické vlny, antény a vedení Úloha: Symetrizační obvody Jméno: Jan Švec Měřeno dne: 3.3.29 Odevzdáno dne: 6.3.29 ID: 78 357 Číslo úlohy: 7 Klasifikace: 1. Zadání 1. Změřte kmitočtovou

Více