Houževnatost. i. Základní pojmy (tranzitní lomové chování ocelí, teplotní závislost pevnostních vlastností, fraktografie)

Save this PDF as:
Rozměr: px
Začít zobrazení ze stránky:

Download "Houževnatost. i. Základní pojmy (tranzitní lomové chování ocelí, teplotní závislost pevnostních vlastností, fraktografie)"

Transkript

1 Houževnatost i. Základní pojmy (tranzitní lomové chování ocelí, teplotní závislost pevnostních vlastností, fraktografie) ii. (Empirické) zkoušky houževnatosti (Charpy, TNDT) iii. Lineárně-elastická elastická lomová mechanika (Irwin,, zkoušky lomové houževnatosti) iv. Elasto-plastická lomová mechanika (zkoušky, interpretace, podmínky šíření trhliny) 1

2 Tranzitní lomové chování Změna charakteru lomu oceli z tvárného lomu na lom štěpný v závislosti na poklesu teploty. Jak zabránit havárii ocelové svařované konstrukce křehkým lomem? - filosofie zastavení trhliny tranzitní teplota - filosofie zabránění iniciace lomu lomová mechanika 2

3 Lomový diagram podle Pelliniho 3

4 Změna koncepce Zastavení trhliny Zabránění iniciaci lomu 4

5 Změna koncepce Lodě Liberty aj. - příčiny: zbytková napětí (svar) definice tranzitních teplot koncentrátory napětí σ max R f /k k - koeficient bezpečnosti (svar, metalurgické vady) R f - charakteristika pevnosti t min tt + t tt - tranzitní teplota t - bezpečnostní přídavek k tt 5

6 Základy lomové mechaniky Co to je lomová mechanika? Lomová mechanika je vědní obor, který se zabývá mezním stavem součástí s trhlinami. 6

7 Základy lomové mechaniky 1) Úvod 2) Zatížené těleso s trhlinou energetická analýza Griffith parametr G 3) Zatížené těleso s trhlinou napěťová analýza Irwin (Kinz) parametr K 7

8 30 léta Inglis elastické řešení Pevnost součásti s trhlinou σ = 2 A σ a ρ [1] když _ ρ 0 _ pak _ σ A Součást, která obsahuje trhlinu by se měla porušit při velice malém zatížení. Zdánlivý paradox se vysvětlil až v 50. letech. 8

9 Odhad kohezivní pevnosti E. γ 1/ S σ = [2] C a0 2 9

10 Pevnost součásti s trhlinou Materiál má krystalovou mřížku. Trhlina v materiálu nemůže být nekonečně ostrá. Eγ s σ = f 4a [3] 10

11 nekonečně velká deska zatížená konstantním napětím energetická bilance (zákon zachování energie) práce spojená s přírůstkem lomové plochy uhrazena elastickou energií uvolněnou v okolí rostoucí trhliny Energetická kriteria - Griffith dw dwel dws = + 0 da da da dwel dws = da da 11

12 Při havárii křehkým lomem je práce spojená se vznikem lomu vykonána elastickou energií akumulovanou v konstrukci, tj. trhlina může vzniknout (růst) pouze tehdy jestliže tento proces způsobí, že celková energie systému zůstane konstantní, nebo se zmenší. Energetická kriteria - Griffith K lomu součásti dojde v případě, že uvolněná elastická energie při šíření trhliny je schopna vyvolat vznik nových povrchů. 12

13 dw dwel dws = + 0 [4] da da da dwel dws = da da Energetická kriteria - Griffith π. a.. B W el E W s 2 σ 2 = 1/ 2 2. E. γ σ = s f = 2 * 2. a. B. γ s π. a 13

14 Energetická kriteria Griffith-Orowan ω f = γ s σ f = 2. E. γ s π. a 1/ 2 ω f = γ s + γ p σ σ f f = 2Eω f πa 1/ 2 2E( γ s + γ = π. a p ) 1/ 2 ω f = γ s 14

15 Jak tuto teorii použít k výpočtům? (Irwinova modifikace Griffithovy teorie) MJ m 2 Energetická kriteria Griffith-Orowan G G = = dw da 2 πσ a E el ( ) MPa MPa 2 m = MNm 2 m [7] rychlost uvolňování energie energy release rate MN m hnací síla trhliny crack driving force 15

16 Energetická kriteria Griffith-Orowan Jak tuto teorii použít k výpočtům? (Irwinova modifikace Griffithovy teorie) dw da s = 2ω f = 2( γ s + γ p ) [8] 2ω f G c - lomová houževnatost materiálu R- křivka - odpor materiálu vůči lomu 16

17 HNACÍ SÍLA TRHLINY G rychlost uvolňování energie (rychlost změny potenciální energie v závislosti na růstu lomové plochy) G = dw da el G = Energetická kriteria - Irwin πσ a E ( MPa) ODPOR MATERIÁLU PROTI ŠÍŘENÍ R 2 rychlost vzrůstu povrchové energie s růstem lomových povrchů; kritická hodnota podmínka pro počátek šíření trhliny MPa 2 m = MJ m 2 = MN m R dw da s = R = 2( γ s + γ p) = GC HOUŽEVNATOST G C 17

18 Energetická kriteria - Irwin ODPOR MATERIÁLU PROTI ŠÍŘENÍ R R = dw da s R = 2( γ + γ ) = s p G C HOUŽEVNATOST G C Analogie s mezí kluzu: deformace nastane je-li lom nastane je-li σ nom > R p0,2 G > G C 18

19 Energetická kriteria - Irwin tvar plochá křivky R - křivka inherentní vlastnost rostoucí materiálu R - křivka G C materiálová vlastnost (lomová houževnatost nestabilita nestabilní stabilní stabilní šíření trhliny trhlina se nešíří, pokud neroste zátěžná síla nestabilní šíření trhlina se šíří samovolně, bez nutnosti dalšího zatěžování 19

20 Napěťová kriteria - Irwin r a θ - polární souřadnice σ ij - složky tenzoru napětí k - konstanta f ij ( θ ), g ( θ ) ij - bezrozměrné veličiny (funkcí úhlu θ ) σ ij = k r. f ij ( θ ) + A. r 2 g ( θ ) m= 0 m m ( m) ij 20

21 Napěťová kriteria - Irwin 21

22 Napěťová kriteria - Irwin Protože lom vznikne v blízkosti čela trhliny budeme se zajímat o tuto oblast 22

23 Napěťová kriteria - Irwin Součinitel (faktor) intenzity napětí σ ij = k r. f ij ( θ ) + m= 0 A m. r m 2 ( m) gij ( θ ) σ ij = k. f r ij ( θ ) K = k. I 2π 23

24 Napěťová kriteria - Irwin 24

25 Napěťová kriteria - Irwin 25

26 Napěťová kriteria - Irwin rovinné napětí vs. rovinná deformace 26

27 základní řešení příklady Napěťová kriteria - Irwin K I σ 2 K I = σ π.a K I = σ π. a π obecná řešení (tabelována) F K I =. f B. W a W B tloušťka tělesa W rozměr tělesa ve směru šíření trhliny a délka trhliny F lomová síla 27

28 Napěťová kriteria - Irwin jednotky K I K I = σ π.a 1/ 2 MPa m = MPam = MPam 0,5 souvislost mezi G C a K IC G = πσ E 2 a G G= = E K K E 2 I I2 (1 ν 2 ) K I = σ π.a 28

29 Napěťová kriteria - Irwin Podmínky platnosti K I určuje napjatost v okolí trhliny má jednoznačný vztah ke G C 29

30 Napěťová kriteria - Irwin V případě, že plastická zóna je uvnitř disku na jehož okrajích dominuje singularita, pak konstrukce i zkušební těleso zatížené na stejnou hodnotu K mají stejné podmínky na čele trhliny. Lom nastane, když jak v tělese, tak i v konstrukci platí K I K C 30

31 Napěťová kriteria - Irwin Vliv rozměrů (tělesa, konstrukce) na hodnotu K c 31

32 Platnost lineární elastické LM LELM platí v případě, že k lomu dojde při existenci malé plastické zóny (2% velikosti tloušťky). Podmínky jsou splněny pro F fr (0,6 0,8) F GY (Keramika, některé plasty, hliníkové slitiny, vysocepevné oceli, u běžných konstrukčních ocelí pouze pro velké tloušťky příp. dynamické podmínky zatěžování). 32

33 Zkoušení K Ic 33

34 Zkoušení K Ic F/2 F/2 S a W b F trhlina Stejný neporušený průřez W=50 mm a/w=0,5 b=25 mm S=200 mm W=26 mm a/w=0,1 b=25 mm S=104 mm 34

35 a/w 0,5 největší hlavní napětí 35

36 a/w 0,5 největší hlavní napětí - detail 36

37 a/w 0,5 plastická deformace - detail 37

38 a/w 0,1 největší hlavní napětí - detail 38

39 a/w 0,1 plastická deformace - detail 39

40 Houževnatost i. Základní pojmy (tranzitní lomové chování ocelí, teplotní závislost pevnostních vlastností, fraktografie) ii. (Empirické) zkoušky houževnatosti (Charpy, TNDT) iii. Lineárně-elastická elastická lomová mechanika (Irwin,, zkoušky lomové houževnatosti) iv. Elasto-plastická lomová mechanika (zkoušky, interpretace, podmínky šíření trhliny) 40

Houževnatost. i. Základní pojmy (tranzitní lomové chování ocelí, teplotní závislost pevnostních vlastností, fraktografie)

Houževnatost. i. Základní pojmy (tranzitní lomové chování ocelí, teplotní závislost pevnostních vlastností, fraktografie) Houževnatost i. Základní pojmy (tranzitní lomové chování ocelí, teplotní závislost pevnostních vlastností, fraktografie) ii. (Empirické) zkoušky houževnatosti (Charpy, TNDT) iii. Lineárně-elastická elastická

Více

Houževnatost. i. Základní pojmy (tranzitní lomové chování ocelí, teplotní závislost pevnostních vlastností, fraktografie) ii.

Houževnatost. i. Základní pojmy (tranzitní lomové chování ocelí, teplotní závislost pevnostních vlastností, fraktografie) ii. Henry Kaiser, Hoover Dam 1 Henry Kaiser, 2 Houževnatost i. Základní pojmy (tranzitní lomové chování ocelí, teplotní závislost pevnostních vlastností, fraktografie) ii. (Empirické) zkoušky houževnatosti

Více

8. Základy lomové mechaniky. Únava a lomová mechanika Pavel Hutař, Luboš Náhlík

8. Základy lomové mechaniky. Únava a lomová mechanika Pavel Hutař, Luboš Náhlík Únava a lomová mechanika Koncentrace napětí nesingulární koncentrátor napětí singulární koncentrátor napětí 1 σ = σ + a r 2 σ max = σ 1 + 2( / ) r 0 ; σ max Nekonečný pás s eliptickým otvorem [Pook 2000]

Více

Historie velkých havárií - vývoj v oblasti zkoušení materiálů a studia mezních stavů

Historie velkých havárií - vývoj v oblasti zkoušení materiálů a studia mezních stavů Historie velkých havárií - vývoj v oblasti zkoušení materiálů a studia mezních stavů Motto: No man is civilised or mentally adult until he realises that the past, the present, and the future are indivisible.

Více

ÚVOD DO PROBLEMATIKY LOMOVÉ MECHANIKY KVAZIKŘEHKÝCH MATERIÁLŮ. Zbyněk Keršner Ústav stavební mechaniky FAST VUT v Brně

ÚVOD DO PROBLEMATIKY LOMOVÉ MECHANIKY KVAZIKŘEHKÝCH MATERIÁLŮ. Zbyněk Keršner Ústav stavební mechaniky FAST VUT v Brně ÚVOD DO PROBLEMATIKY LOMOVÉ MECHANIKY KVAZIKŘEHKÝCH MATERIÁLŮ Zbyněk Keršner Ústav stavební mechaniky FAST VUT v Brně 1 Motivace: trhliny v betonu mikrostruktura Vyhojování trhlin konstrukce Pražec po

Více

České vysoké učení technické v Praze, Fakulta strojní. Pevnost a životnost Jur II. Pevnost a životnost. Jur II

České vysoké učení technické v Praze, Fakulta strojní. Pevnost a životnost Jur II. Pevnost a životnost. Jur II České vysoké učení technické v Praze, Fakulta strojní 1/13 Pevnost a životnost Jur II Milan Růžička, Josef Jurenka, Zbyněk Hrubý Poděkování: Děkuji prof. Ing. Jiřímu Kunzovi, CSc za laskavé svolení s využitím

Více

Nauka o materiálu. Přednáška č.5 Základy lomové mechaniky

Nauka o materiálu. Přednáška č.5 Základy lomové mechaniky Nauka o materiálu Přednáška č.5 Základy lomové mechaniky Způsoby stanovení napjatosti a deformace Využívají se tři přístupy: 1. Analytický - jen jednoduché geometrie těles - vždy za jistých zjednodušujících

Více

5. Únava Zatížení při únavě, Wöhlerův přístup a lomová mechanika, únosnost, vliv vrubů, kumulace poškození, přístup podle Eurokódu.

5. Únava Zatížení při únavě, Wöhlerův přístup a lomová mechanika, únosnost, vliv vrubů, kumulace poškození, přístup podle Eurokódu. 5. Únava Zatížení při únavě, Wöhlerův přístup a lomová mechanika, únosnost, vliv vrubů, kumulace poškození, přístup podle Eurokódu. K poškození únavou dochází při zatížení výrazně proměnném s časem. spolehlivost

Více

Houževnatost. i. Základní pojmy (tranzitní lomové chování ocelí, teplotní závislost pevnostních vlastností, fraktografie)

Houževnatost. i. Základní pojmy (tranzitní lomové chování ocelí, teplotní závislost pevnostních vlastností, fraktografie) Houževnatost i. Základní pojmy (tranzitní lomové chování ocelí, teplotní závislost pevnostních vlastností, fraktografie) ii. (Empirické) zkoušky houževnatosti (Charpy, TNDT) iii. Lineárně-elastická elastická

Více

Test A 100 [%] 1. Čím je charakteristická plastická deformace? - Je to deformace nevratná.

Test A 100 [%] 1. Čím je charakteristická plastická deformace? - Je to deformace nevratná. Test A 1. Čím je charakteristická plastická deformace? - Je to deformace nevratná. 2. Co je to µ? - Poissonův poměr µ poměr poměrného příčného zkrácení k poměrnému podélnému prodloužení v oblasti pružných

Více

12. Únavové šíření trhliny. Únava a lomová mechanika Pavel Hutař, Luboš Náhlík

12. Únavové šíření trhliny. Únava a lomová mechanika Pavel Hutař, Luboš Náhlík Únava a lomová mechanika Proces únavového porušení Iniciace únavové trhliny v krystalu Cu (60 000 cyklů při 20 C) (převzato z [Suresh 2006]) Proces únavového porušení Jednotlivé stádia únavového poškození:

Více

Zkoušky založené na principu šíření defektů. Zkoušky lomové houževnatosti

Zkoušky založené na principu šíření defektů. Zkoušky lomové houževnatosti Zkoušky založené na principu šíření defektů Zkoušky lomové houževnatosti Houževnatost materiálu udává jeho odolnost proti křehkému lomu. Ten je nebezpečným druhem porušení, neboť při malé spotřebě energie

Více

Křehké materiály. Technická univerzita v Liberci Nekovové materiály, 5. MI Doc. Ing. Karel Daďourek, 2008

Křehké materiály. Technická univerzita v Liberci Nekovové materiály, 5. MI Doc. Ing. Karel Daďourek, 2008 Křehké materiály Technická univerzita v Liberci Nekovové materiály, 5. MI Doc. Ing. Karel Daďourek, 2008 Základní charakteristiky Křehký lom bez znatelné trvalé deformace Mez pevnosti má velký rozptyl

Více

b) Křehká pevnost 2. Podmínka max τ v Heigově diagramu a) Křehké pevnosti

b) Křehká pevnost 2. Podmínka max τ v Heigově diagramu a) Křehké pevnosti 1. Podmínka max τ a MOS v Mohrově rovině a) Plasticity ϭ K = ϭ 1 + ϭ 3 b) Křehké pevnosti (ϭ 1 κ R * ϭ 3 ) = ϭ Rt Ϭ red = max (ϭ 1, ϭ 1 - κ R * ϭ 3 ) MOS : max (ϭ 1, ϭ 1 - κ R * ϭ 3 ) = ϭ Rt a) Plasticita

Více

ZKOUŠKY MECHANICKÝCH. Mechanické zkoušky statické a dynamické

ZKOUŠKY MECHANICKÝCH. Mechanické zkoušky statické a dynamické ZKOUŠKY MECHANICKÝCH VLASTNOSTÍ MATERIÁLŮ Mechanické zkoušky statické a dynamické Úvod Vlastnosti materiálu, lze rozdělit na: fyzikální a fyzikálně-chemické; mechanické; technologické. I. Mechanické vlastnosti

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE DISERTAČNÍ PRÁCE KŘEHKOLOMOVÉ VLASTNOSTI STAVEBNÍCH OCELÍ

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE DISERTAČNÍ PRÁCE KŘEHKOLOMOVÉ VLASTNOSTI STAVEBNÍCH OCELÍ ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE DISERTAČNÍ PRÁCE KŘEHKOLOMOVÉ VLASTNOSTI STAVEBNÍCH OCELÍ Praha, září 2009 Ing. Aleš Jůza ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta stavební Doktorský studijní program:

Více

Zkoušky založené na principu šíření defektů. Zkoušky lomové houževnatosti

Zkoušky založené na principu šíření defektů. Zkoušky lomové houževnatosti Zkoušky založené na principu šíření defektů Zkoušky lomové houževnatosti Houževnatost materiálu udává jeho odolnost proti křehkému lomu. Ten je nebezpečným druhem porušení, neboť při malé spotřebě energie

Více

Zkouška rázem v ohybu. Autor cvičení: prof. RNDr. B. Vlach, CSc; Ing. Petr Langer. Jméno: St. skupina: Datum cvičení:

Zkouška rázem v ohybu. Autor cvičení: prof. RNDr. B. Vlach, CSc; Ing. Petr Langer. Jméno: St. skupina: Datum cvičení: BUM - 6 Zkouška rázem v ohybu Autor cvičení: prof. RNDr. B. Vlach, CSc; Ing. Petr Langer Jméno: St. skupina: Datum cvičení: Úvodní přednáška: 1) Vysvětlete pojem houževnatost. 2) Popište princip zkoušky

Více

Wöhlerova křivka (uhlíkové oceli výrazná mez únavy)

Wöhlerova křivka (uhlíkové oceli výrazná mez únavy) Únava 1. Úvod Mezním stavem únava je definován stav, kdy v důsledku působení časově proměnných zatížení dojde k poruše funkční způsobilosti konstrukce či jejího elementu. Charakteristické pro tento proces

Více

PREDIKCE TEPLOTNÍ ZÁVISLOSTI LOMOVÉ HOUŽEVNATOSTI

PREDIKCE TEPLOTNÍ ZÁVISLOSTI LOMOVÉ HOUŽEVNATOSTI VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV MATERIÁLOVÝCH VĚD A INŽENÝRSTVÍ FACULTY OF MECHANICAL ENGINEERING INSTITUTE OF MATERIALS SCIENCE AND ENGINEERING

Více

NAUKA O MATERIÁLU I. Zkoušky mechanické. Přednáška č. 04: Zkoušení materiálových vlastností I

NAUKA O MATERIÁLU I. Zkoušky mechanické. Přednáška č. 04: Zkoušení materiálových vlastností I NAUKA O MATERIÁLU I Přednáška č. 04: Zkoušení materiálových vlastností I Zkoušky mechanické Autor přednášky: Ing. Daniela ODEHNALOVÁ Pracoviště: TUL FS, Katedra materiálu ZKOUŠENÍ mechanických vlastností

Více

2. Mezní stavy. MS porušení

2. Mezní stavy. MS porušení p02 1 2. Mezní stavy V kapitole 6. Zatížení tělesa jsou mezi různými zatěžovacími stavy zavedeny stavy přechodové a mezní jako stavy, v nichž je částečně nebo úplně a dočasně nebo trvale znemožněna funkce

Více

Vlastnosti a zkoušení materiálů. Přednáška č.9 Plasticita a creep

Vlastnosti a zkoušení materiálů. Přednáška č.9 Plasticita a creep Vlastnosti a zkoušení materiálů Přednáška č.9 Plasticita a creep Vliv teploty na chování materiálu 1. Teplotní roztažnost L = L α T ( x) dl 2. Závislost modulu pružnosti na teplotě: Modul pružnosti při

Více

Příloha č. 1. Pevnostní výpočty

Příloha č. 1. Pevnostní výpočty Příloha č. 1 Pevnostní výpočty Pevnostní výpočty navrhovaného CKT byly provedeny podle normy ČSN 69 0010 Tlakové nádoby stabilní. Technická pravidla. Vzorce a texty v této příloze jsou převzaty z této

Více

TESTOVÁNÍ LOMOVÉ HOUŽEVNATOSTI ZA VYSOKÝCH TEPLOT S VYUŽITÍM MINIATURNÍCH CT TĚLES

TESTOVÁNÍ LOMOVÉ HOUŽEVNATOSTI ZA VYSOKÝCH TEPLOT S VYUŽITÍM MINIATURNÍCH CT TĚLES VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV MATERIÁLOVÝCH VĚD A INŽENÝRSTVÍ FACULTY OF MECHANICAL ENGINEERING INSTITUTE OF MATERIALS SCIENCE AND ENGINEERING

Více

Kritéria porušení laminy

Kritéria porušení laminy Kap. 4 Kritéria porušení laminy Inormační a vzdělávací centrum kompozitních technologií & Ústav mechaniky, biomechaniky a mechatroniky S ČVU v Praze.. 007-6.. 007 Úvod omové procesy vyvolané v jednosměrovém

Více

Únava materiálu. únavového zatěžování. 1) Úvod. 2) Základní charakteristiky. 3) Křivka únavového života. 4) Etapy únavového života

Únava materiálu. únavového zatěžování. 1) Úvod. 2) Základní charakteristiky. 3) Křivka únavového života. 4) Etapy únavového života Únava materiálu 1) Úvod 2) Základní charakteristiky únavového zatěžování 3) Křivka únavového života 4) Etapy únavového života 5) Klíčové vlivy na únavový život 1 Degradace vlastností materiálu za provozu

Více

Nelineární problémy a MKP

Nelineární problémy a MKP Nelineární problémy a MKP Základní druhy nelinearit v mechanice tuhých těles: 1. materiálová (plasticita, viskoelasticita, viskoplasticita,...) 2. geometrická (velké posuvy a natočení, stabilita konstrukcí)

Více

Oceli do nízkých a kryogenních teplot. Podkladem pro přednášku byla zpráva pro Výzkumné centrum kolejových vozidel.

Oceli do nízkých a kryogenních teplot. Podkladem pro přednášku byla zpráva pro Výzkumné centrum kolejových vozidel. Oceli do nízkých a kryogenních teplot Podkladem pro přednášku byla zpráva pro Výzkumné centrum kolejových vozidel. Železniční neštěstí u Eschede 3.června 1998 Statistika pasažérů: 287 (v ICE-1 max. 651)

Více

Vlastnosti a zkoušení materiálů. Přednáška č.4 Úvod do pružnosti a pevnosti

Vlastnosti a zkoušení materiálů. Přednáška č.4 Úvod do pružnosti a pevnosti Vlastnosti a zkoušení materiálů Přednáška č.4 Úvod do pružnosti a pevnosti Teoretická a skutečná pevnost kovů Trvalá deformace polykrystalů začíná při vyšším napětí než u monokrystalů, tj. hodnota meze

Více

Mechanické vlastnosti technických materiálů a jejich měření. Metody charakterizace nanomateriálů 1

Mechanické vlastnosti technických materiálů a jejich měření. Metody charakterizace nanomateriálů 1 Mechanické vlastnosti technických materiálů a jejich měření Metody charakterizace nanomateriálů 1 Základní rozdělení vlastností ZMV Přednáška č. 1 Nejobvyklejší dělení vlastností materiálů v technické

Více

Stanovení lomové energie betonu

Stanovení lomové energie betonu Stanovení lomové energie betonu RNDr. Vítězslav Vydra, CSc. Habilitační přednáška 5. 10. 2006 1 / 17 Cíle přednášky Cíle Efekt rozměru Stanovení lomové energie ❶ Efekt rozměru při destrukci betonových

Více

TENSOR NAPĚTÍ A DEFORMACE. Obrázek 1: Volba souřadnicového systému

TENSOR NAPĚTÍ A DEFORMACE. Obrázek 1: Volba souřadnicového systému TENSOR NAPĚTÍ A DEFORMACE Obrázek 1: Volba souřadnicového systému Pole posunutí, deformace, napětí v materiálovém bodě {u} = { u v w } T (1) Obecně 9 složek pole napětí lze uspořádat do matice [3x3] -

Více

3.2 Základy pevnosti materiálu. Ing. Pavel Bělov

3.2 Základy pevnosti materiálu. Ing. Pavel Bělov 3.2 Základy pevnosti materiálu Ing. Pavel Bělov 23.5.2018 Normálové napětí představuje vazbu, která brání částicím tělesa k sobě přiblížit nebo se od sebe oddálit je kolmé na rovinu řezu v případě že je

Více

Výzkumný a zkušební ústav Plzeň s.r.o. Zkušební laboratoř Tylova 1581/46, 301 00 Plzeň

Výzkumný a zkušební ústav Plzeň s.r.o. Zkušební laboratoř Tylova 1581/46, 301 00 Plzeň Pracoviště zkušební laboratoře: 1. Zkušebna Analytická chemie 2. Zkušebna Metalografie 3. Mechanická zkušebna včetně detašovaného pracoviště Orlík 266, 316 06 Plzeň 4. Dynamická zkušebna Orlík 266, 316

Více

Kapitola 3.6 Charakterizace keramiky a skla POVRCHOVÉ VLASTNOSTI. Jaroslav Krucký, PMB 22

Kapitola 3.6 Charakterizace keramiky a skla POVRCHOVÉ VLASTNOSTI. Jaroslav Krucký, PMB 22 Kapitola 3.6 Charakterizace keramiky a skla POVRCHOVÉ VLASTNOSTI Jaroslav Krucký, PMB 22 SYMBOLY Řecká písmena θ: kontaktní úhel. σ: napětí. ε: zatížení. ν: Poissonův koeficient. λ: vlnová délka. γ: povrchová

Více

Ztráta stability tenkých přímých prutů - vzpěr

Ztráta stability tenkých přímých prutů - vzpěr Ztráta stability tenkých přímých prutů - vzpěr Motivace štíhlé pruty namáhané tlakem mohou vybočit ze svého původně přímého tvaru a může dojít ke ztrátě stability a zhroucení konstrukce dříve, než je dosaženo

Více

Plastická deformace a pevnost

Plastická deformace a pevnost Plastická deformace a pevnost Anelasticita vnitřní útlum Tahová zkouška (kovy, plasty, keramiky, kompozity) Fyzikální podstata pevnosti - dislokace (monokrystal polykrystal) - mez kluzu nízkouhlíkových

Více

Pevnost v tahu vláknový kompozit

Pevnost v tahu vláknový kompozit Pevnost v tahu vláknový kompozit Obsah přednášky Předpoklady výpočtu pevnosti Stejná tažnost matrice i vlákna (disperze) Tažnější matrice než vlákna Kritické množství vláken Tažnější vlákna než matrice

Více

MECHANIKA PODZEMNÍCH KONSTRUKCÍ PODMÍNKY PLASTICITY A PORUŠENÍ

MECHANIKA PODZEMNÍCH KONSTRUKCÍ PODMÍNKY PLASTICITY A PORUŠENÍ STUDIJNÍ PODPORY PRO KOMBINOVANOU FORMU STUDIA NAVAZUJÍCÍHO MAGISTERSKÉHO PROGRAMU STAVEBNÍ INŽENÝRSTVÍ -GEOTECHNIKA A PODZEMNÍ STAVITELSTVÍ MECHANIKA PODZEMNÍCH KONSTRUKCÍ PODMÍNKY PLASTICITY A PORUŠENÍ

Více

OTÁZKY KE STÁTNÍ ZÁVĚREČNÉ ZKOUŠCE (NAVAZUJÍCÍ STUDIUM) OBOR 3901T APLIKOVANÁ MECHANIKA. Teorie pružnosti

OTÁZKY KE STÁTNÍ ZÁVĚREČNÉ ZKOUŠCE (NAVAZUJÍCÍ STUDIUM) OBOR 3901T APLIKOVANÁ MECHANIKA. Teorie pružnosti OTÁZKY KE STÁTNÍ ZÁVĚREČNÉ ZKOUŠCE (NAVAZUJÍCÍ STUDIUM) OBOR 3901T003-00 APLIKOVANÁ MECHANIKA Teorie pružnosti 1. Geometrie polohových změn a deformace tělesa. Tenzor přetvoření Green-Lagrangeův, Cauchyho.

Více

Pevnostní vlastnosti

Pevnostní vlastnosti Pevnostní vlastnosti J. Pruška MH 3. přednáška 1 Pevnost v prostém tlaku na opracovaných vzorcích Jedná se o mezní napětí při porušení zkušebního tělesa za jednoosého tlakového namáhání F R = mez d A pevnost

Více

Zkoušky rázem. Vliv deformační rychlosti

Zkoušky rázem. Vliv deformační rychlosti Zkoušky rázem V provozu působí často na strojní součásti síla, která se cyklicky mění, popř. Její působení je dynamického charakteru. Rázové působení síly je velmi nebezpečné, neboť to může iniciovat náhlou

Více

Zde je uveden abecední seznam důležitých pojmů interaktivního učebního textu

Zde je uveden abecední seznam důležitých pojmů interaktivního učebního textu index 1 Rejstřík Zde je uveden abecední seznam důležitých pojmů interaktivního učebního textu Pružnost a pevnost. U každého termínu je uvedeno označení kapitoly a čísla obrazovek, na nichž lze pojem nalézt.

Více

DESTRUKTIVNÍ ZKOUŠKY SVARŮ I.

DESTRUKTIVNÍ ZKOUŠKY SVARŮ I. DESTRUKTIVNÍ ZKOUŠKY SVARŮ I. Mgr. Ladislav Blahuta Střední škola, Havířov-Šumbark, Sýkorova 1/613, příspěvková organizace Tento výukový materiál byl zpracován v rámci akce EU peníze středním školám -

Více

5. Únava materiálu S-n přístup (Stress-life) Pavel Hutař, Luboš Náhlík

5. Únava materiálu S-n přístup (Stress-life) Pavel Hutař, Luboš Náhlík Příklad Zadání: Vytvořte přibližný S-n diagram pro ocelovou tyč a vyjádřete její rovnici. Jakou životnost můžeme očekávat při zatížení souměrně střídavým cyklem o amplitudě 100 MPa? Je dáno: Mez pevnosti

Více

Studentská 1402/2 461 17 Liberec 1 tel.: +420 485 353 006 cxi.tul.cz

Studentská 1402/2 461 17 Liberec 1 tel.: +420 485 353 006 cxi.tul.cz Pokročilé simulace pro komplexní výzkum a optimalizace Ing. Michal Petrů, Ph.D. Studentská 1402/2 461 17 Liberec 1 tel.: +420 485 353 006 cxi.tul.cz Stránka: 2 Modelové simulace pro komplexní výzkum Mechanických

Více

TENKOSTĚNNÉ A SPŘAŽENÉ KONSTRUKCE

TENKOSTĚNNÉ A SPŘAŽENÉ KONSTRUKCE 1 TENKOSTĚNNÉ A SPŘAŽENÉ KONSTRUKCE Michal Jandera, K134 Obsah přednášek 2 1. Stabilita stěn, nosníky třídy 4. 2. Tenkostěnné za studena tvarované profily: Výroba, chování průřezů, chování prutů. 3. Tenkostěnné

Více

10. Elasto-plastická lomová mechanika

10. Elasto-plastická lomová mechanika (J-integrál) Únava a lomová mechanika J-integrál je zobecněním hnací síly trhliny a umožňuje použití i v případech plastické deformace většího rozsahu: d J = A U da ( ) A práce vnějších sil působících

Více

3. Mezní stav křehké pevnosti. Únava a lomová mechanika Pavel Hutař, Luboš Náhlík

3. Mezní stav křehké pevnosti. Únava a lomová mechanika Pavel Hutař, Luboš Náhlík Únava a lomová mechanika Mezní stav křehké pevnosti Při monotónním zatěžování tělesa může dojít k nepředvídanému porušení křehkým lomem. Poškození houževnaté oceli při různých způsobech namáhání Poškození

Více

18MTY 1. Ing. Jaroslav Valach, Ph.D.

18MTY 1. Ing. Jaroslav Valach, Ph.D. 18MTY 1. Ing. Jaroslav Valach, Ph.D. valach@fd.cvut.cz Informace o předmětu http://mech.fd.cvut.cz/education/bachelor/18mty Popis předmětu Témata přednášek Pokyny k provádění cvičení Informace ke zkoušce

Více

DVA ZÁKLADNÍ PROBLÉMY PLASTICITY KOVŮ

DVA ZÁKLADNÍ PROBLÉMY PLASTICITY KOVŮ Úvod PLASTICITA DVA ZÁKLADNÍ PROBLÉMY PLASTICITY KOVŮ I. Návrh konstrukce z "mezního stavu Zahrnuje relativně malá plastická přetvoření často stejného řádu jako jsou souběžná elastická přetvoření. Analýza

Více

TENKOSTĚNNÉ A SPŘAŽENÉ KONSTRUKCE

TENKOSTĚNNÉ A SPŘAŽENÉ KONSTRUKCE 1 TENKOSTĚNNÉ A SPŘAŽENÉ KONSTRUKCE Michal Jandera Obsah přednášek 1. Stabilita stěn, nosníky třídy 4.. Tenkostěnné za studena tvarované profily: Výroba, chování průřezů, chování prutů. 3. Tenkostěnné

Více

Materiálové vlastnosti: Poissonův součinitel ν = 0,3. Nominální mez kluzu (ocel S350GD + Z275): Rozměry průřezu:

Materiálové vlastnosti: Poissonův součinitel ν = 0,3. Nominální mez kluzu (ocel S350GD + Z275): Rozměry průřezu: Řešený příklad: Výpočet momentové únosnosti ohýbaného tenkostěnného C-profilu dle ČSN EN 1993-1-3. Ohybová únosnost je stanovena na základě efektivního průřezového modulu. Materiálové vlastnosti: Modul

Více

Téma 2 Napětí a přetvoření

Téma 2 Napětí a přetvoření Pružnost a plasticita, 2.ročník bakalářského studia Téma 2 Napětí a přetvoření Deformace a posun v tělese Fzikální vztah mezi napětími a deformacemi, Hookeův zákon, fzikální konstant a pracovní diagram

Více

ZÁKLADY DEGRADAČNÍCH PROCESŮ

ZÁKLADY DEGRADAČNÍCH PROCESŮ Vysoká škola báňská Technická univerzita Ostrava ZÁKLADY DEGRADAČNÍCH PROCESŮ (název předmětu, studijní opory) učební text / scénáře / testy Stanislav Lasek Ostrava 2013 Recenze: Ing. Martin Kraus, Ph.D.

Více

Výzkumný a zkušební ústav Plzeň s.r.o. Zkušební laboratoř Tylova 1581/46, Plzeň

Výzkumný a zkušební ústav Plzeň s.r.o. Zkušební laboratoř Tylova 1581/46, Plzeň Pracoviště zkušební laboratoře: 1. Materiálová zkušebna včetně detašovaného pracoviště Orlík 266/15, Bolevec, 316 00 Plzeň 2. Dynamická zkušebna Orlík 266/15, Bolevec, 316 00 Plzeň korespondenční adresa:

Více

NAUKA O MATERIÁLU I. Přednáška č. 03: Vlastnosti materiálu II (vlastnosti mechanické a technologické, odolnost proti opotřebení)

NAUKA O MATERIÁLU I. Přednáška č. 03: Vlastnosti materiálu II (vlastnosti mechanické a technologické, odolnost proti opotřebení) NAUKA O MATERIÁLU I Přednáška č. 03: Vlastnosti materiálu II (vlastnosti mechanické a technologické, odolnost proti opotřebení) Autor přednášky: Ing. Daniela Odehnalová Pracoviště: TUL FS, Katedra materiálu

Více

Křehké porušení a zlomy. Ondrej Lexa, 2010

Křehké porušení a zlomy. Ondrej Lexa, 2010 Křehké porušení a zlomy Ondrej Lexa, 2010 Odpověď na působení napětí Reologie 2 Křehká deformace Obálky porušení Tenzní versus střižné fraktury Co je křehká deformace? pevné látky se skládají z atomů propojených

Více

KONSTITUČNÍ VZTAHY. 1. Tahová zkouška

KONSTITUČNÍ VZTAHY. 1. Tahová zkouška 1. Tahová zkouška Tahová zkouška se provádí dle ČSN EN ISO 6892-1 (aktualizována v roce 2010) Je nejčastější mechanickou zkouškou kovových materiálů. Zkoušky se realizují na trhacích strojích, kde se zkušební

Více

VYHODNOCENÍ A SIMULACE LOMOVÝCH TESTŮ BETONOVÝCH TĚLES VE VYBRANÝCH KONFIGURACÍCH

VYHODNOCENÍ A SIMULACE LOMOVÝCH TESTŮ BETONOVÝCH TĚLES VE VYBRANÝCH KONFIGURACÍCH VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STAVEBNÍ ÚSTAV STAVEBNÍ MECHANIKY FACULTY OF CIVIL ENGINEERING INSTITUTE OF STRUCTURAL MECHANICS VYHODNOCENÍ A SIMULACE LOMOVÝCH TESTŮ

Více

VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA

VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA METALURGIE A MATERIÁLOVÉHO INŽENÝRSTVÍ STUDIJNÍ OPORA Název opory/předmětu: Technické materiály Číslo předmětu: 636-0811 Autor: prof. Dr. Ing. Jaroslav

Více

Stavební hmoty. Přednáška 3

Stavební hmoty. Přednáška 3 Stavební hmoty Přednáška 3 Mechanické vlastnosti Pevné látky Pevné jsou ty hmoty, které reagují velmi mohutně proti silám působícím změnu objemu i tvaru. Ottova encyklopedie = skupenství, při kterém jsou

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV MECHANIKY TĚLES, MECHATRONIKY A BIOMECHANIKY FACULTY OF MECHANICAL ENGINEERING INSTITUTE OF SOLID MECHANICS,

Více

ZKOUŠKY MIKROLEGOVANÝCH OCELÍ DOMEX 700MC

ZKOUŠKY MIKROLEGOVANÝCH OCELÍ DOMEX 700MC Sborník str. 392-400 ZKOUŠKY MIKROLEGOVANÝCH OCELÍ DOMEX 700MC Antonín Kříž Výzkumné centrum kolejových vozidel, ZČU v Plzni,Univerzitní 22, 306 14, Česká republika, kriz@kmm.zcu.cz Požadavky kladené dnešními

Více

4. Napjatost v bodě tělesa

4. Napjatost v bodě tělesa p04 1 4. Napjatost v bodě tělesa Předpokládejme, že bod C je nebezpečným bodem tělesa a pro zabránění vzniku mezních stavů je m.j. třeba zaručit, že napětí v tomto bodě nepřesáhne definované mezní hodnoty.

Více

Fakulta strojního inženýrství VUT v Brně Ústav konstruování. KONSTRUOVÁNÍ STROJŮ strojní součásti. Přednáška 2

Fakulta strojního inženýrství VUT v Brně Ústav konstruování. KONSTRUOVÁNÍ STROJŮ strojní součásti. Přednáška 2 Fakulta strojního inženýrství VUT v Brně Ústav konstruování KONSTRUOVÁNÍ STROJŮ strojní součásti Přednáška 2 Porušování při cyklickém zatěžování All machine and structural designs are problems in fatigue

Více

Pružnost, pevnost, tvrdost, houževnatost. Jaký je v tom rozdíl?

Pružnost, pevnost, tvrdost, houževnatost. Jaký je v tom rozdíl? Pružnost, pevnost, tvrdost, houževnatost. Jaký je v tom rozdíl? Zkušební stroj pro zkoušky mechanických vlastností materiálů na Ústavu fyziky materiálů AV ČR, v. v. i. Pružnost (elasticita) Z fyzikálního

Více

Úvod do únavového poškozování

Úvod do únavového poškozování 4. Historie 1923 Palmgren Kumulativní poškození 1949 Irwin 1957 Irwin K-koncepce Historie r. 1843 Rankine hovoří o krystalizaci materiálu během opakovaného zatěžování, díky níž se materiál stává křehkým.

Více

ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA STROJNÍ

ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA STROJNÍ ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA STROJNÍ Studijní program: B 2301 Strojní inženýrství Studijní zaměření: Materiálové inženýrství a strojírenská metalurgie BAKALÁŘSKÁ PRÁCE Vyhodnocování lomového

Více

Únava (Fatigue) Úvod

Únava (Fatigue) Úvod Únava (Fatigue) Úvod Únavové křivky napětí - historie 9. století rozvoj technického poznání rozšíření možnosti využití oceli a kovových materiálů v běžné praxi. Rozvoj železniční dopravy parní lokomotiva

Více

12. Struktura a vlastnosti pevných látek

12. Struktura a vlastnosti pevných látek 12. Struktura a vlastnosti pevných látek Osnova: 1. Látky krystalické a amorfní 2. Krystalová mřížka, příklady krystalových mřížek 3. Poruchy krystalových mřížek 4. Druhy vazeb mezi atomy 5. Deformace

Více

Reologické modely technických materiálů při prostém tahu a tlaku

Reologické modely technických materiálů při prostém tahu a tlaku . lekce Reologické modely technických materiálů při prostém tahu a tlaku Obsah. Základní pojmy Vnitřní síly napětí. Základní reologické modely technických materiálů 3.3 Elementární reologické modely creepu

Více

Přetváření a porušování materiálů

Přetváření a porušování materiálů Přetváření a porušování materiálů Přetváření a porušování materiálů 1. Viskoelasticita 2. Plasticita 3. Lomová mechanika 4. Mechanika poškození Přetváření a porušování materiálů 2. Plasticita 2.1 Konstitutivní

Více

Porušení lodí bylo zapříčiněno souhrou následujících faktorů:

Porušení lodí bylo zapříčiněno souhrou následujících faktorů: Dynamické zkoušky Zajímavost z historie Počátky výzkumu chování materiálu s trhlinou se datují do období II. světové války. V USA bylo vyrobeno cca 2 700 lodí třídy Liberty. Byly to první rozměrné konstrukce

Více

Jméno: St. skupina: Datum cvičení: Autor cvičení: Doc. Ing. Stanislav Věchet, CSc., Ing. Petr Liškutín, Ing. Martin Petrenec,

Jméno: St. skupina: Datum cvičení: Autor cvičení: Doc. Ing. Stanislav Věchet, CSc., Ing. Petr Liškutín, Ing. Martin Petrenec, BUM - 7 Únava materiálu Jméno: St. skupina: Datum cvičení: Autor cvičení: Doc. Ing. Stanislav Věchet, CSc., Ing. Petr Liškutín, Ing. Martin Petrenec, Úkoly k řešení 1. Vysvětlete stručně co je únava materiálu.

Více

Požadavky na technické materiály

Požadavky na technické materiály Základní pojmy Katedra materiálu, Strojní fakulta Technická univerzita v Liberci Základy materiálového inženýrství pro 1. r. Fakulty architektury Doc. Ing. Karel Daďourek, 2010 Rozdělení materiálů Požadavky

Více

OVMT Mechanické zkoušky

OVMT Mechanické zkoušky Mechanické zkoušky Mechanickými zkouškami zjišťujeme chování materiálu za působení vnějších sil, tzn., že zkoumáme jeho mechanické vlastnosti. Některé mechanické vlastnosti materiálu vyjadřují jeho odpor

Více

STANOVENÍ PODMÍNEK PORUŠENÍ BI-MATERIÁLOVÝCH VRUBŮ PŘI KOMBINOVANÉM MÓDU ZATÍŽENÍ

STANOVENÍ PODMÍNEK PORUŠENÍ BI-MATERIÁLOVÝCH VRUBŮ PŘI KOMBINOVANÉM MÓDU ZATÍŽENÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV MECHANIKY TĚLES MECHATRONIKY A BIOMECHANIKY FACULTY OF MECHANICAL ENGINEERING INSTITUTE OF SOLID MECHANICS,

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV MATERIÁLOVÝCH VĚD A INŽENÝRSTVÍ FACULTY OF MECHANICAL ENGINEERING INSTITUTE OF MATERIALS SCIENCE AND ENGINEERING

Více

Pevnost a životnost Jur III

Pevnost a životnost Jur III 1/48 Pevnost a životnost Jur III Milan Růžička, Josef Jurenka, Zbyněk Hrubý Poděkování: Děkuji prof. Ing. Jiřímu Kunzovi, CSc za laskavé svolení s využitím některých obrázků z jeho knihy Aplikovaná lomová

Více

4. Tenkostěnné za studena tvarované prvky. Návrh na únavu OK.

4. Tenkostěnné za studena tvarované prvky. Návrh na únavu OK. 4. Tenkostěnné za studena tvarované prvky. Návrh na únavu OK. Výroba, zvláštnosti návrhu, základní případy namáhání, spoje, navrhování z hlediska MSÚ a MSP. Návrh na únavu: zatížení, Wöhlerův přístup a

Více

3.2 Mechanické vlastnosti

3.2 Mechanické vlastnosti 3.2 Mechanické vlastnosti Mechanickými vlastnostmi je kvantitativně hodnoceno chování materiálu za působení vnějších mechanických sil. Mezi základní mechanické vlastnosti patří pružnost, pevnost, plasticita,

Více

ÚVOD DO MODELOVÁNÍ V MECHANICE

ÚVOD DO MODELOVÁNÍ V MECHANICE ÚVOD DO MODELOVÁNÍ V MECHANICE PRUŽNOST A PEVNOST Přednáška č. 5 Prof. Ing. Vladislav Laš. CSc. MECHANIKA PODDAJNÝCH TĚLES Úkolem PP z inženýrského hlediska je navrhnout součásti nebo konstrukce, které

Více

BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV MECHANIKY TĚLES, MECHATRONIKY A BIOMECHANIKY

BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV MECHANIKY TĚLES, MECHATRONIKY A BIOMECHANIKY VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV MECHANIKY TĚLES, MECHATRONIKY A BIOMECHANIKY FACULTY OF MECHANICAL ENGINEERING INSTITUTE OF SOLID MECHANICS,

Více

SPECIÁLNÍ ZKUŠEBNÍ METODY učební text

SPECIÁLNÍ ZKUŠEBNÍ METODY učební text Vysoká škola báňská Technická univerzita Ostrava SPECIÁLNÍ ZKUŠEBNÍ METODY učební text prof. Ing. Karel Matocha, CSc. Ing. Petr Jonšta, Ph.D. Ostrava 2013 Recenze: Ing. Ladislav Kander, Ph.D. Název: Autor:

Více

Navrhování konstrukcí z korozivzdorných ocelí

Navrhování konstrukcí z korozivzdorných ocelí Navrhování konstrukcí z korozivzdorných ocelí Marek Šorf Seminář Navrhování konstrukcí z korozivzdorných ocelí 27. září 2017 ČVUT Praha 1 Obsah 1. část Ing. Marek Šorf Rozdíl oproti navrhování konstrukcí

Více

STRUKTURA A VLASTNOSTI PEVNÝCH LÁTEK

STRUKTURA A VLASTNOSTI PEVNÝCH LÁTEK STRUKTURA A VLASTNOSTI PEVNÝCH LÁTEK 1. Druhy pevných látek AMORFNÍ nepravidelné uspořádání molekul KRYSTALICKÉ pravidelné uspořádání molekul krystalická mřížka polykrystaly více jader (krystalových zrn),

Více

Výzkumný a zkušební ústav Plzeň s.r.o. Zkušební laboratoř Tylova 1581/46, Jižní Předměstí, Plzeň

Výzkumný a zkušební ústav Plzeň s.r.o. Zkušební laboratoř Tylova 1581/46, Jižní Předměstí, Plzeň Pracoviště zkušební laboratoře: 1. Zkušebna metalografie Tylova 1581/46, 301 00 Plzeň 2. Mechanická zkušebna Tylova 1581/46, 301 00 Plzeň 3. Dynamická zkušebna Orlík 266/15, Bolevec, 316 00 Plzeň korespondenční

Více

URČOVÁNÍ LOMOVĚ-MECHANICKÝCH CHARAKTERISTIK Z PODROZMĚRNÝCH ZKUŠEBNÍCH TĚLES

URČOVÁNÍ LOMOVĚ-MECHANICKÝCH CHARAKTERISTIK Z PODROZMĚRNÝCH ZKUŠEBNÍCH TĚLES VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV MATERIÁLOVÝCH VĚD A INŽENÝRSTVÍ FACULTY OF MECHANICAL ENGINEERING INSTITUTE OF MATERIALS SCIENCE AND ENGINEERING

Více

Vzpěr, mezní stav stability, pevnostní podmínky pro tlak, nepružný a pružný vzpěr Ing. Jaroslav Svoboda

Vzpěr, mezní stav stability, pevnostní podmínky pro tlak, nepružný a pružný vzpěr Ing. Jaroslav Svoboda Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1 Šablona: Inovace a zkvalitnění výuky prostřednictvím ICT Název: Téma: Autor: Číslo: Anotace: Mechanika, pružnost pevnost Vzpěr,

Více

HODNOCENÍ PŘÍPUSTNOSTI VAD MONTÁŽNÍCH SVARŮ HORKOVODŮ. Ondrej Bielak, BiSAFE, s.r.o., Malebná 1049, 149 00 Praha 4,, e-mail: bielak@bisafe.

HODNOCENÍ PŘÍPUSTNOSTI VAD MONTÁŽNÍCH SVARŮ HORKOVODŮ. Ondrej Bielak, BiSAFE, s.r.o., Malebná 1049, 149 00 Praha 4,, e-mail: bielak@bisafe. HODNOCENÍ PŘÍPUSTNOSTI VAD MONTÁŽNÍCH SVARŮ HORKOVODŮ Ondrej Bielak, BiSAFE, s.r.o., Malebná 1049, 149 00 Praha 4,, e-mail: bielak@bisafe.cz Horkovody jsou namáhány opakovaně vnitřním přetlakem, dále pak

Více

ŠÍŘENÍ ÚNAVOVÝCH TRHLIN Z HLEDISKA LINEÁRNÍ LOMOVÉ MECHANIKY Doc.Ing. Jiří Kunz, CSc. Katedra materiálů FJFI ČVUT v Praze

ŠÍŘENÍ ÚNAVOVÝCH TRHLIN Z HLEDISKA LINEÁRNÍ LOMOVÉ MECHANIKY Doc.Ing. Jiří Kunz, CSc. Katedra materiálů FJFI ČVUT v Praze ŠÍŘENÍ ÚNAVOVÝCH TRHLIN Z HLEDISA LINEÁRNÍ LOMOVÉ MECHANIY Doc.Ing. Jiří unz, CSc. atedra materiálů FJFI ČVUT v Praze. Úvod Únava materiálů je velmi závažným degradačním procesem, neboť je primární příčinou

Více

LOGO. Struktura a vlastnosti pevných látek

LOGO. Struktura a vlastnosti pevných látek Struktura a vlastnosti pevných látek Rozdělení pevných látek (PL): monokrystalické krystalické Pevné látky polykrystalické amorfní Pevné látky Krystalické látky jsou charakterizovány pravidelným uspořádáním

Více

MOŽNOSTI URČOVÁNÍ VYBRANÝCH LOMOVÝCH PARAMETRŮ V RÁMCI LELM

MOŽNOSTI URČOVÁNÍ VYBRANÝCH LOMOVÝCH PARAMETRŮ V RÁMCI LELM VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV MECHANIKY TĚLES, MECHATRONIKY A BIOMECHANIKY FACULTY OF MECHANICAL ENGINEERING INSTITUTE OF SOLID MECHANICS,

Více

MECHANIKAPODZEMNÍCH KONSTRUKCÍ KLASIFIKACE VÝPOČETNÍCH METOD STABILITY A ZATÍŽENÍ OSTĚNÍ

MECHANIKAPODZEMNÍCH KONSTRUKCÍ KLASIFIKACE VÝPOČETNÍCH METOD STABILITY A ZATÍŽENÍ OSTĚNÍ STUDIJNÍ PODPORY PRO KOMBINOVANOU FORMU STUDIA NAVAZUJÍCÍHO MAGISTERSKÉHO PROGRAMU STAVEBNÍ INŽENÝRSTVÍ -GEOTECHNIKA A PODZEMNÍ STAVITELSTVÍ MECHANIKAPODZEMNÍCH KONSTRUKCÍ KLASIFIKACE VÝPOČETNÍCH METOD

Více

Návrh žebrové desky vystavené účinku požáru (řešený příklad)

Návrh žebrové desky vystavené účinku požáru (řešený příklad) Návrh žebrové desky vystavené účinku požáru (řešený příklad) Posuďte spřaženou desku v bednění z trapézového plechu s tloušťkou 1 mm podle obr.1. Deska je spojitá přes více polí, rozpětí každého pole je

Více

Inkrementální teorie plasticity - shrnutí

Inkrementální teorie plasticity - shrnutí Inkrementální teorie plasticity - shrnutí Aditivní zákon = e p. Hookeův zákon pro elastickou složku deformace =C: e. Podmínka plasticity f = f Y =0. Pravidlo zpevnění p e d =g, p,,d, d p,..., dy =h, p,y,

Více

SPECIÁLNÍ ZKUŠEBNÍ METODY studijní opora

SPECIÁLNÍ ZKUŠEBNÍ METODY studijní opora Vysoká škola báňská Technická univerzita Ostrava Fakulta metalurgie a materiálového inženýrství SPECIÁLNÍ ZKUŠEBNÍ METODY studijní opora Karel Matocha Petr Jonšta Ostrava 2013 Recenze: Ing. Ladislav Kander,

Více