SPECIÁLNÍ ZKUŠEBNÍ METODY studijní opora

Rozměr: px
Začít zobrazení ze stránky:

Download "SPECIÁLNÍ ZKUŠEBNÍ METODY studijní opora"

Transkript

1 Vysoká škola báňská Technická univerzita Ostrava Fakulta metalurgie a materiálového inženýrství SPECIÁLNÍ ZKUŠEBNÍ METODY studijní opora Karel Matocha Petr Jonšta Ostrava 2013

2 Recenze: Ing. Ladislav Kander, Ph.D. Název: Speciální zkušební metody Autor: prof. Ing. Karel Matocha, CSc., Ing. Petr Jonšta, Ph.D. Vydání: první, 2013 Počet stran: 161 Studijní materiály pro studijní program Materiálové inženýrství na Fakultě metalurgie a materiálového inženýrství. Jazyková korektura: nebyla provedena. Studijní opora vznikla v rámci projektu: Název: ModIn - Modulární inovace bakalářských a navazujících magisterských programů na Fakultě metalurgie a materiálového inženýrství VŠB - TU Ostrava Číslo: CZ.1.07/2.2.00/ Karel Matocha, Petr Jonšta VŠB Technická univerzita Ostrava ISBN

3 Obsah Předmluva 5 Průvodce studium 6 1. Materiálové vlastnosti konstrukčních materiálů a metody hodnocení mechanických vlastností Rozdělení vlastností konstrukčních materiálů Mechanické vlastnosti kovových materiálů a jejich rozdělení Druhy zkoušek mechanických vlastností kovových materiálů 9 2. Základy lomové mechaniky Úvod Způsoby namáhání tělesa s trhlinou Lineární lomová mechanika Napjatost v tělese s trhlinou Hnací síla trhlina G Odpor proti růstu trhliny R Plastická zóna na špici trhliny Lomová houževnatost Elasticko-plastická lomová mechanika Rozevření špice trhliny (CTOD) J-integrál Stabilní růst trhliny při jednosměrném zatížení Hodnocení únavových charakteristik kovových materiálů Úvod Cyklická křivka napětí deformace a - apl Stádium změn mechanických vlastností Křivka životnosti at N f (Manson Coffinova křivka) Křivka životnosti a N f (Wöhlerova křivka) Hodnocení odolnosti materiálu vůči růstu únavových trhlin Kinetika růstu únavových trhlin na vzduchu Vliv korozního prostředí na růstu únavových trhlin Hodnocení lomového chování kovových materiálů Úvod Filozofie tranzitní teploty Zkouška rázem v ohybu Zkouška DWT Zkouška DWTT Zkouška rázem v ohybu velkých těles (DT-dynamic tear) Filozofie založená na lomové mechanice Obecná teplotní závislost lomové houževnatosti Lomová houževnatost při rovinné deformaci K IC Stanovení lomové houževnatosti v tranzitní oblasti Lomová houževnatost stanovená z rozevření špice trhliny Lomová houževnatost stanovená z J-integrálu Stanovení lomové houževnatosti 0,2 a J 0,2 zkoušením 3

4 více těles Stanovení referenční teploty T Postupy pro stanovení charakteristik tečení kovových materiálů Definice pojmu tečení (creep) Mezní teplota T g Křivka tečení -t Základní charakteristiky odolnosti materiálu proti tečení Zkoušky tečení kovových materiál jednoosým tahem Tvar a rozměry zkušebních těles Metody extrapolace výsledků zkoušek tečení Grafická metoda extrapolace výsledků zkoušek tečení Parametrické metody extrapolace výsledků zkoušení tečení Larson-Millerova (L-M) parametrická metoda Sherby-Dornova (S-D) parametrická metoda Manson-Haferdova (M-H) parametrická metoda Seifertova metoda Rovnice SVÚM Praktické příklady vyhodnocení výsledků zkoušek tčení pomocí parametrických rovnic Hodnocení odolnosti konstrukčních ocelí vůči koroznímu praskání ve vodním prostředí o teplotě C Úvod Mechanismy stabilního růstu trhlin ve vodních prostředích Mechanismus vodíkového zkřehnutí Mechanismus anodického rozpouštění Postup pro hodnocení odolnosti ocelí vůči koroznímu praskání pod napětím Hodnocení odolnosti ocelí vůči vodíkové křehkosti v prostředích obsahujících sulfan (H 2 S) Úvod Základní typy degradačních mechanismů v prostředí sulfanu Vodíkem indukované praskání (HIC) Sulfidické praskání pod napětím Napěťově orientované vodíkem indukované praskání 121 4

5 7.3 Postupy pro hodnocení odolnosti ocelí vůči HIC a vůči současnému působení tahového napětí a prostředí sulfanu Hodnocení ocelí vůči vodíkem indukovanému praskání (HIC) Hodnocení ocelí vůči současnému působení tahového napětí a prostředí sulfanu Metoda A NACE Standard Tensile test Hodnocení mechanických vlastností konstrukčních ocelí pomocí penetračních testů Úvod Princip penetračního testu Kuličkový penetrační test (Bulge Punch test) CWA Small Punch Test Method for Metallic Materials Postup pro provádění časově nezávislých penetračních testů Stanovení mechanických charakteristik z výsledků penetračních testů Stanovení meze kluzu R e (R p0,2 ) a meze pevnosti R m oceli z výsledků penetračních testů Stanovení tranzitního chování oceli z výsledků penetračních testů Odhad lomové houževnatosti z výsledků penetračních testů Dvoustupňová metoda stanovení K IC Přímý odhad lomové houževnatosti z výsledků penetračních testů EPRI-FAA inovovaný přístup pro odhad lomové houževnatosti J IC 158 5

6 Předmluva Studijní opora k předmětu Speciální zkušební metody je určena studentům kombinované formy studia ve 2. semestru navazujícího magisterského studia oboru Progresivní technické materiály. Slouží jako náhrada za významně nižší podíl přímé kontaktní výuky, což činí tuto formu studia pro studenty mnohem obtížnější. Mohou ji samozřejmě využívat i studenti prezenční (denní) formy studia jako osvěžení látky přednesené na přednáškách v průběhu semestru. Cílem předmětu je rozšíření znalostí o hodnocení speciálních materiálových charakteristik konstrukčních materiálů a seznámení se s důvody, které vedly k rozvoji a zavádění metod pro jejich hodnocení. Po prostudování této opory bude student schopen charakterizovat standardizované i nestandardizované zkušební metody a postupy pro stanovování speciálních únavových charakteristik materiálů, speciálních charakteristik lomového chování materiálů, creepových charakteristik materiálů, charakteristik korozního praskání pod napětím, charakteristik odolnosti vůči vodíkem indukovanému praskání a metod pro hodnocení aktuálních mechanických vlastností dlouhodobě provozovaných zařízení z výsledků penetračních testů. Opora je rozdělena do osmi samostatných kapitol. Většina z nich se dělí na menší celky podkapitoly. Aby byli studenti schopni snáze přistoupit ke studiu zkušebních metod a postupů pro stanovení materiálových charakteristik založených na lineární a elasto plastické mechanice lomu, je druhá kapitola opory věnována základům této vědní disciplíny. Při psaní textu jsme se snažili o co největší srozumitelnost při výkladu probírané látky. Pokud vám výklad některé z podkapitol nepřijde dostatečně srozumitelný, budeme rádi, když nás na to upozorníte, nejlépe na E mailovou adresu karel.matocha@vsb.cz nebo petr. jonsta@vsb.cz, abychom ho mohli upravit. Nedílnou součástí opory je Průvodce studiem, ve kterém je popsáno, jak se studijní oporou pracovat. 6

7 Průvodce studiem Předmět Speciální zkušební metody Základním učebním celkem jsou kapitoly a jejich podkapitoly. Přečtěte si výklad celé kapitoly. Podívejte se na shrnutí pojmů. Podívejte se na otázky a pokuste se na ně formulovat odpovědi. Pak přistupte k úlohám k řešení. Budete-li mít problémy se kterými si nebudete vědět rady, obraťte se mailem na pedagogy, jejichž mailové adresy jsou uvedeny v předmluvě. V rámci semestrálních prací budou studenty zpracovány ve formě zkušebních protokolů výsledy experimentů speciálních zkušebních zkoušek z oblasti únavy, lomového chování a tečení (creepu) konstrukčních materiálů. Před vlastní zkouškou absolvují všichni studenti zápočtový test. 7

8 1. Materiálové vlastnosti konstrukčních materiálů a metody hodnocení mechanických vlastností. Čas ke studiu: 0,5 hod. Cíl: Po prostudování této kapitoly byste měli umět: Vyjmenovat vlastnosti konstrukčních materiálů. Definovat speciální mechanické vlastnosti. Vyjmenovat druhy zkoušek mechanických vlastností konstrukčních materiálů. Výklad 1.1 Rozdělení vlastností konstrukčních materiálů Vlastnosti konstrukčních materiálů je možno rozdělit na: 1. mechanické vlastnosti 2. fyzikální vlastnosti 3. chemické vlastnosti 4. technologické vlastnosti Mechanické vlastnosti (mez kluzu R p,0,2, mez pevnosti R m, tažnost A, kontrakce Z, lomová houževnatost K IC, FATT, vrubová houževnatost KCV, mez pevnosti při tečení R mt/t/t atd.) jsou vlastností konstrukčního materiálu, které podmiňují jeho vhodnost pro určenou funkci a použití v praxi. Poznání a zlepšování mechanických vlastností konstrukčních materiálů je motivováno jejich optimálním využitím při výrobě konstrukčních dílů. Mezi fyzikální vlastnosti řadíme modul pružnosti v tahu E resp. ve smyku G [MPa], délkovou a objemovou roztažnost, hustotu ρ [kg/m 3 ], tepelnou vodivost λ [W/mK], 8

9 elektrickou vodivost G [S], měrný elektrický odpor ρ [Ὠ.m], permeabilita μ = B/H [H/m], kde B je magnetická indukce a H je intenzita vnějšího magnetického pole. Chemické vlastnosti vyjadřují chování konstrukčních materiálů ve vlhkém prostředí a jejich odolnost vůči působení kyselin a plynů. Nejdůležitější chemickou vlastností kovů je odolnost vůči korozi. Mezi technologické vlastnosti konstrukčních materiálů patří tvařitelnost, svařitelnost, slévatelnost, obrobitelnost a odolnost proti opotřebení. 1.2 Mechanické vlastnosti kovových materiálů a jejich rozdělení Výsledky hodnocení mechanických vlastností konstrukčních materiálů mohou sloužit pro: 1) Výběr vhodného materiálu při konstrukčním návrhu. 2) Kontrolu výroby. 3) Studium vlivu chemického složení, tepelného zpracování, technologie výroby, teploty a prostředí na materiálové vlastnosti, tedy pro účely vývoje a výzkumu. 4) Posuzování degradace materiálových vlastností dlouhodobým provozem zařízení, posuzování vad typu trhlin resp. odhady zbytkové životnosti konstrukcí a analýzu příčin porušování konstrukcí. Zvyšování užitných vlastností výrobků vyžaduje, mimo jiné, rozšiřování znalostí o základních a speciálních mechanických vlastnostech používaných materiálů a s tím související rozvoj a zavádění nových zkušebních metod. Mechanické vlastnosti dělíme na základní a speciální. Toto rozdělení vychází z následujících důvodů. Základní mechanické vlastnosti vyjadřují obecné požadavky na kvalitu materiálu a jsou tedy většinou uváděny v materiálových listech. Jsou kvantitativně vyjadřovány pomocí materiálových charakteristik jako je mez pevnosti R m, mez kluzu R eh, R p,0,2, tažnost A, kontrakce Z, tvrdost H, vrubová houževnatost KCV. Nevztahují se tedy k určitému typu lomového procesu (meznímu stavu materiálu). Speciální mechanické vlastnosti mají přímý vztah k určitému typu lomového procesu (meznímu stavu materiálu) a bývají součástí konkrétních technických podmínek. Zdaleka nejčastějším a inženýrsky nejdůležitějším mezním stavem, představujícím kolem 80% provozních lomů je únavový lom, resp. lom vyvolaný korozní únavou. Mezi další významné mezní stavy patří křehký tj. náhlý nestabilní lom, creepový lom a lom vyvolaný korozním 9

10 praskáním. Mezi speciální mechanické vlastnosti patří např. mez únavy σ c, lomová houževnatost K IC, rychlost koroze a další. 1.3 Druhy zkoušek mechanických vlastností kovových materiálů Z hlediska působení síly na zkušební těleso rozdělujeme mechanické zkoušky na: 1) Statické zkoušky, při nichž je zatížení konstantní (zkoušky creepové), a nebo je zatížení zvyšováno poměrně zvolna (zkoušky tahem, zkoušky statické lomové houževnatosti). Působí obvykle minuty, při dlouhodobých zkouškách dny až roky. 2) Dynamické zkoušky rázové a cyklické, při kterých působí síla nárazově po zlomek sekundy. Při cyklických zkouškách (únavové zkoušky) se proměnné zatížení opakuje i mnoha cykly za sekundu až do mnoha miliónů jejich celkového počtu. Podle teplot, při kterých jsou zkoušky prováděny je dělíme na zkoušky při laboratorní teplotě a zkoušky za zvýšených a snížených teplot. Aby byla zaručena reprodukovatelnost výsledků z různých zkušeben a laboratoří, jsou zkušební postupy pro stanovení mechanických vlastností normovány. Především kvalitativní změny v konstrukční filozofii od koncepce návrhu na bezpečný život (safe-life) ke koncepci konstrukce bezpečné i při výskytu poškození (damage tolerance) vyvolaly rozvoj mnoha nových zkušebních metod především v oblasti hodnocení stabilního růstu trhlin a lomového chování ocelí. Těmto metodám bude v následujících kapitolách věnována velká pozornost. : Shrnutí pojmů: Po prostudování kapitoly by vám měly být jasné následující pojmy: Vlastnosti konstrukčních materiálů. Speciální mechanické vlastnosti. Statické mechanické zkoušky. Dynamické mechanické zkoušky. 10

11 Otázky k probranému učivu: 1) Jaké znáte vlastnosti konstrukčních materiálů. 2) Jaké materiálové charakteristiky řadíme mezi fyzikální vlastnosti? 3) Co vyjadřují chemické vlastnosti materiálu? 4) Jak dělíme mechanické vlastnosti konstrukčních materiálů? 5) K čemu slouží výsledky hodnocení mechanických vlastností konstrukčních materiálů? 6) Co patří mezi základní mechanické vlastnosti? 7) Co patří mezi speciální mechanické vlastnosti? 8) Jaké druhy zkoušek mechanických vlastností znáte? Úlohy k řešení Pokuste se definovat, jaký je rozdíl mezi základními a speciálními mechanickými vlastnostmi. 11

12 2. Základy lomové mechaniky Čas ke studiu: 2 hod. Cíl: Po prostudování této kapitoly byste měli umět: Popsat rozdíl mezi lineární a elasto - plastickou lomovou mechanikou. Vyjmenovat možné způsoby namáhání tělesa s trhlinou. Definovat pojem faktor intenzity napětí K. Definovat pojem hnací síla trhliny G. Definovat pojem odpor proti růstu trhliny R. Definovat pojem plastická zóna. Popsat rozdíl mezi stavem rovinné deformace a rovinné napjatosti. Vyjmenovat parametry používané k vyjádření lomové houževnatosti v oblasti elasto-plastické lomové mechaniky. Výklad 2.1 Úvod Výrazný technický pokrok, ke kterému došlo v 19. a 20. století, byl doprovázen rostoucím počtem havárií rozměrných konstrukcí a strojních zařízení (ocelové mosty, zásobníky plynu, kotle atd.) náhlým nestabilním lomem. Značný nárůst počtu těchto havárií nastal v době významného uplatnění svařovaných rozměrných konstrukcí od 40. let minulého století. Během II. světové války bylo vyrobeno celkem asi 2700 lodí třídy Liberty první rozměrné konstrukce vyráběné svařováním. Přibližně každá sedmá loď byla porušena náhlým nestabilním (křehkým) lomem (viz obr. 2.1) mimo bojovou akci. Analýzy příčin těchto havárií prokázaly, že náhlé nestabilní (křehké) lomy byly iniciovány z defektů typu trhlin ve svarech a většina materiálů měla při provozní teplotě nízkou vrubovou houževnatost. Obecně může být výskyt defektů typu trhlin v provozovaném zařízení důsledkem: 12

13 1) technologických operací při výrobě (např. svařováním). Tyto defekty jsou v zařízení přítomny před jeho uvedením do provozu, Obr. 2.1 Náhlé nestabilní porušení svařované lodi třídy Liberty 2) provozního namáhání a vlivu okolního prostředí. Tyto defekty jsou iniciovány v průběhu provozu zařízení především na koncentrátorech napětí. Zákonitostmi vzniku náhlých nestabilních lomů součástí s trhlinami se zabývá vědní disciplína, která vznikla v 60. letech minulého století a byla nazvána mechanika lomu. V současné době existují dvě základní koncepce: 1) Lineární lomová mechanika ( LEFM-Linear Elastic Fracture Mechanics), založená na platnosti lineárních vztahů mezi napětím a deformací při zatěžování. A používaná především pro křehké materiály. 2) Elasto-plastická lomová mechanika (EPFM - Elasto Plastic Fracture Mechanics), která se používá pro materiály, u kterých vzniká při zatěžování u čela defektu rozsáhlá plastická deformace. 13

14 2. 2. Způsoby namáhání tělesa s trhlinou Trhlina délky a nacházející se v tělese (viz obr. 2.2) může být zatěžována třemi různými způsoby (módy, viz obr. 2.3). Tyto tři módy, označené I, II, III se liší orientací vnějšího zatížení působícího na těleso vzhledem k rovině a čelu trhliny. Při zatěžování trhliny tahovým zatížením (označovaném mód I) působí tahové zatížení kolmo na rovinu trhliny. Při zatěžování trhliny smykovým zatížením v rovině trhliny (označovaném mód II) dochází k posunutí lomových ploch v rovině trhliny a kolmo na čelo trhliny. Růst trhliny je řízen smykovou složkou napětí τ yx. Při zatěžování trhliny antirovinným smykem (mód III) dochází k posunutí lomových ploch v rovině trhliny avšak rovnoběžně s čelem trhliny. Růst trhliny je řízen smykovou složkou napětí τ yz. Z hlediska běžné technické praxe je nejdůležitější tahový mód I. Obr. 2.2 Těleso šířky W, tloušťky B s trhlinou délky a 14

15 Obr. 2.3 Tři způsoby zatěžování resp. porušování tělesa s trhlinou 2.3 Lineární lomová mechanika Napjatost v tělese s trhlinou Uvažujme nekonečně širokou desku s trhlinou délky 2a zatíženou jednoosým tahem (mód I), (viz obr. 2.4). Na element plochy desky dx.dy ve vzdálenosti r od špice trhliny odkloněný o úhel θ od roviny trhliny působí normálová napětí σ x a σ y a smykové napětí τ xy, která je možno vyjádřit ve tvaru: Obr. 2.4 Trhlina délky 2a v nekonečně široké desce zatížené tahovým napětím σ 15

16 x a 3 cos 1 sin sin 2r a 3 cos 1 sin sin 2r (2.1) y x y a sin 2r cos 2 cos σ z = 0 pro stav rovinného napětí σ z = ν.(σ x + σ y ) pro stav rovinné deformace Složky napětí σ x, σ y, τ xy jsou úměrné vnějšímu tahovému napětí σ a druhé odmocnině délky trhliny a. Jejich velikost v okolí špice trhliny se blíží nekonečnu. Na obr. 2.5 je znázorněna závislost napětí σ y na r pro θ = 0. Protože pro velká r se napětí σ y 0 namísto σ y = σ, platí výše uvedené rovnice pouze v nejbližším okolí špice trhliny. Rovnice pro jednotlivé složky elastického napětí mohou být přepsány do tvaru: Obr. 2.5 Závislost napětí σ y na vzdálenosti od špice trhliny 16

17 ij K. fij ( ) (2.2) 2.. r Kde K.. a (3.2) Parametr K je tzv. faktor intenzity napětí [MPa]. Faktor intensity napětí K popisuje stav napjatosti na špici trhliny. Pro tělesa konečné šířky pak platí a K.. a. f (4.2) W Závislost mezi faktorem intenzity napětí K, rozměrem tělesa W a délkou trhliny a se nazývá K kalibrace. Dvě trhliny, první o velikosti 4a a druhá o velikosti a mají stejné pole napjatosti na špici trhliny, pokud první trhlina je zatížena tahovým napětím σ a druhá napětím 2.σ. V tomto případě je faktor intenzity napětí K pro obě trhliny stejný Hnací síla trhliny G Při zatěžování ideálně pružného tělesa s trhlinou je závislost mezi silou a posunutím na základě platnosti Hookova zákona přímková (viz obr. 2.6). Obr. 2.6a Závislost síla - posunutí tělesa s trhlinou pro přírůstek délky trhliny při konstantní síle (měkký způsob zatěžování). 17

18 Obr. 2.6b Závislost síla - posunutí tělesa s trhlinou pro přírůstek délky trhliny při konstantním posunutí (tvrdý způsob zatěžování). Sklon přímky je možno definovat zavedením tzv. poddajnosti C, která je definována jako posunutí odpovídající jednotce síly. Jedná se tedy o převrácenou hodnotu tuhosti tělesa. Obecně je tedy možno psát U C. F (5.2) V důsledku změny délky trhliny a o δa na a + δa při konstantní síle nastane uvolnění elastické energie de Poněvadž 1 de. F1. U (6.2) 2 dc U F1.. da (7.2) da dc de 1. F da (8.2) 2 da a rychlost uvolňování energie, tj. hnací síla trhliny je rovna de da F konst. Pro těleso o tloušťce B pak platí G dc F1. da (9.2) 18

19 ( G) 2 1 F 1 dc.. (10.2) 2 B da F konst. Rovněž pro případ tvrdého způsobu zatěžování (konstantní poloha upínacích čelistí U = konst.) vede změna délky trhliny o δa k uvolnění elastické energie de vzhledem k tomu, že v tomto případě je 1 de. U1. df (11.2) 2 U du 0 dc. F1.. df F (12.2) 1 de da 1 2 dc. G F1 (13.2) 2 da U konst. Hnací síla trhliny je tedy pro oba případy zatěžování stejná. Irwin odvodil z napětí a posunutí na čele trhliny vztah mezi hnací silou trhliny G a faktorem intenzity napětí K pro stav rovinného napětí ve tvaru Pro stav rovinné deformace pak platí 2 K G (14.2) E 2 K G 1 2. (15.2) E Odpor proti růstu trhliny R K růstu trhliny dojde při splnění podmínky G R (16.2) Pro případ ideálně křehkého materiálu a pro případy, kdy je možno hovořit o stavu rovinné deformace je možno pokládat odpor proti růstu trhliny za konstantní (viz obr. 2.7). Hnací síla trhliny lineárně vzrůstá s délkou trhliny (viz rovnice (14), (15)). Je -li napětí na úrovni 1 k náhlému nestabilnímu růstu trhliny nedojde neboť pro trhlinu o délce a 0 je při tomto napětí hnací síla trhliny G menší než odpor proti růstu trhliny R. K náhlému nestabilnímu růstu trhliny dojde až při napětí 2 kdy hnací síla trhliny dosáhne úrovně odporu proti růstu trhliny R. 19

20 Obr. 2.7 Závislost odporu proti růstu trhliny R na délce trhliny a pro křehký materiál a pro stav rovinné deformace. Pro případy rovinné napjatosti případně větší plastické deformace na špici trhliny roste odpor proti růstu trhliny s délkou trhliny (viz obr. 2.8). Obr. 2.8 Závislost odporu proti růstu trhliny R na délce trhliny a pro stav rovinné napjatosti a pro případy větší plastické deformace na špici trhliny. Ke stabilnímu růstu tvárné trhliny dojde v případě, když hnací síla trhliny dosáhne prahové hodnoty. Při napětí 2 dojde ke stabilnímu růstu trhliny, neboť G = R a současně 20

21 dg dr (17.2) da da V okamžiku, kdy se přímka hnací síly trhliny stane tečnou ke křivce odporu proti růstu trhliny R dojde k náhlému nestabilnímu růstu trhliny, neboť dg dr (18.2) da da Plastická zóna na špici trhliny Rovnice (2) vychází z předpokladu lineární závislosti mezi napětím a deformací. Ve skutečnosti dochází na špici trhliny k plastické deformaci, která má za následek pokles napětí na úroveň meze kluzu R p,0,2 (viz obr. 2.9). Obr. 2.9 Velikost plastické zóny v rovině trhliny vycházející z předpokladu lineární závislosti mezi napětím a deformací Velikost plastické zóny r p * v rovině trhliny pro stav rovinné napjatosti je pak možno vyjádřit vztahem 21

22 r * p K. a (19.2) 2 2 I ( R ) 2. R p0, 2 p0,2 Pro stav rovinné deformace dostáváme z elastického rozdělení napětí před čelem trhliny velikost plastické zóny v rovině trhliny ve tvaru K 2..( R 2 * I 2 r p.(1 2. ) (20.2) 2 p0, 2 ) Tento odhad velikosti plastické zóny není úplně korektní. Vlivem plastické deformace materiálu v oblasti kolem špice trhliny dochází k přerozdělení napětí (viz obr. 2.10). Obr Velikost plastické deformace v rovině trhliny s uvážením redistribuce napětí v důsledku plastické deformace Velikost plastické zóny v rovině trhliny je v tomto případě pro stav rovinné napjatosti rovna r p 2 K I (21.2) 2.( R ) p0, 2 a pro stav rovinné deformace 22

23 r p K (22.2) 2 ) 2 I 6..( Rp0, 2 Doposud bylo pro jednoduchost předpokládáno, že plastická zóna má kruhový tvar. Přesnější vyjádření tvaru plastické zóny je možno získat analýzou podmínek počátku plastické deformace pro úhly θ 0. Pro počátek plastické deformace je použito buď Treska kritérium (k plastické deformaci dochází tehdy, když τ max. = R p,0,2 /2), nebo Von Mises kritérium, které definuje počátek plastické deformace vztahem (σ 1 σ 2 ) 2 + (σ 2 σ 3 ) 2 + (σ 3 σ 1 ) 2 = 2. R p,0,2 (23.2) kde σ 1, σ 2, σ 3 jsou hlavní normálová napětí. Jak bylo uvedeno výše velikost plastické zóny závisí na stavu napjatosti. Na povrchu tělesa je vždy stav rovinné napjatosti a směrem ke středu tělesa velikost plastické zóny klesá z velikosti odpovídající stavu rovinné napjatosti k velikosti odpovídající stavu rovinné deformace (viz obr. 2.11) Obr Tvar plastické zóny v tělese s trhlinou 23

24 2.3.5 Lomová houževnatost Předmět Speciální zkušební metody Trhlina se stane nestabilní v okamžiku, kdy faktor intenzity napětí dosáhne své kritické hodnoty K C. Mají-li být splněny předpoklady lineární lomové mechaniky, musí být v okamžiku lomu velikost plastické zóny na špici trhliny malá ( 2% velikosti tloušťky tělesa). Kritická hodnota faktoru intenzity napětí K C závisí na tloušťce tělesa S rostoucí tloušťkou tělesa klesá a při dostatečně velkých tloušťkách tělesa se blíží k limitní hodnotě označované K IC lomová houževnatost při rovinné deformaci (viz obr. 2.12). Obr Vliv tloušťky tělesa na lomovou houževnatost K C Hodnotu K C je možno považovat za K C = K IC je-li splněna podmínka Lomová houževnatost materiálu závisí na: 1) teplotě 2) rychlosti deformace 3) agresivitě prostředí. Čím nižší je mez kluzu R p0,2 materiálu, tím vyšší je jeho lomová houževnatost. S klesající teplotou lomová houževnatost ocelí s BCC mřížkou klesá ,5 KC B (24.2) Rp0,2

25 2.4 Elasto-plastická lomová mechanika Pro stanovení lomové houževnatosti houževnatých materiálů nelze většinou (s vyjímkou velmi nízkých teplot resp. vysokých rychlostí deformace) použít lineární lomovou mechaniku a nelze tedy stanovit platné hodnoty K IC. K popisu lomového chování materiálů, u kterých před porušením dochází k časově nezávislé plastické deformaci se používá elastoplastická lomová mechanika. Při zatěžování tělesa se líce trhliny před lomem oddalují a dochází k otupování původně ostrého špice trhliny (viz obr. 2.13). Obr Otupování původně ostré trhliny v průběhu zatěžování tělesa z houževnatého materiálu. Velikost rozevření trhliny roste úměrně s houževnatostí materiálu. K vyjádření lomové houževnatosti v oblasti elasto-plastické lomové mechaniky jsou v současné době používány dva parametry : 1. Rozevření špice trhliny (CTOD-crack tip opening displacement) 2. J-integrál Oba tyto parametry popisují podmínky u čela trhliny v elasto-plastickém materiálu a mohou být použity jako kritéria lomu. Lomová houževnatost je vyjadřována pomocí kritického rozevření trhliny c a kritické hodnoty J-integrálu J c. 25

26 2.4.1 Rozevření špice trhliny (CTOD) Princip této koncepce vychází z předpokladu, že k nestabilnímu růstu trhliny dojde v okamžiku, kdy rozevření trhliny na její špici dosáhne (při zvolené teplotě, tloušťce tělesa a rychlosti zatěžování) kritické hodnoty c. Hodnotu CTOD v oblasti lineární lomové mechaniky je možno vyjádřit vztahem 2 K... (25.2) m Rp0, 2 E kde m je bezrozměrná konstanta rovná přibližně m = 1,0 pro stav rovinné napjatosti a m = 2,0 pro stav rovinné deformace. Koncepce rozevření trhliny je však určena především pro případy, kdy na špici trhliny nejsou splněny podmínky lineární lomové mechaniky (SSY small scale yielding). V oblasti elastoplastické lomové mechaniky je možno rozevření trhliny vyjádřit vztahem kde 2 1 Vp. rp W a 2 le pl. K (26.2) 2. E. R r p0,2 p W a a V p r p je plastická složka rozevření vrubu měřená sponovým snímačem v ose zatěžování je rotační faktor, jehož hodnota závisí na typu zkušebního tělesa. Faktor intenzity napětí odpovídající kritické velikosti c může být vyjádřen ve tvaru J- integrál K 2. E. R c (27.2) 1 p0,2 c. 2 Potenciální energie tělesa s trhlinou je obecně dána rozdílem práce vnějších sil působících na těleso a elastické deformační energie tělesa. Rice prokázal, že J-integrál vyjadřuje změnu potenciální energie tělesa v závislosti na délce trhliny a (viz obr ). 26

27 Obr Změna potenciální energie při změně délky trhliny o da du J (28.2) da Tento vztah je formálně stejný jako vztah pro hnací sílu trhliny G (rychlost uvolňování elastické energie), (viz rovnice (9). V oblasti platnosti lineární lomové mechaniky je možno hodnotu J integrálu vyjádřit vztahem J 2 K (29.2) E pro stav rovinné napjatosti a vztahem J K (30.2) E pro stav rovinné deformace. Vztah mezi J integrálem a rozevřením trhliny je pak možno popsat rovnicí J m. R. e (31.2) kde pro stav rovinné napjatosti je m = 1 a pro stav rovinné deformace 1 < m < Stabilní růst trhliny při jednosměrném zatížení Předchozí kapitoly byly věnovány podmínkám iniciace nestabilního lomu v podmínkách lineární a elasto-plastické lomové mechaniky. U materiálu s vysokou houževnatostí nedochází k náhlému nestabilnímu lomu, avšak k iniciaci a růstu tvárné trhliny. 27

28 Lomové chování je v tomto případě charakterizováno J- R křivkou (závislost J-a) resp. δ R křivkou (viz obr. 2.15) Obr J R křivka stanovená metodou více těles Shrnutí pojmů: Po prostudování kapitoly by vám měly být jasné následující pojmy: Lineární lomová mechanika. Elasto-plastická lomová mechanika. Mód zatěžování tělesa s trhlinou I, II, III. Hnací síla trhliny. Plastická zóna. Stav rovinné napjatosti. Stav rovinné deformace. Lomová houževnatost K IC. Rozevření trhliny δ. J integrál. J R křivka. 28

29 Otázky 1) Na čem je založena lineární lomová mechanika? 2) Pro jaké materiály se používá elasto-plastická lomová mechanika? 3) Který z módů zatěžování je pro praxi nejdůležitější? 4) Co vyjadřuje faktor intenzity napětí K? 5) Co rozumíme pod pojmem hnací síla trhliny? 6) Co rozumíme pod pojmem odpor proti růstu trhliny R? 7) Kdy dojde k náhlému nestabilnímu růstu trhliny? 8) Na čem závisí velikost plastické zóny? 9) Na čem závisí lomová houževnatost materiálu K IC? 10) Jaké znáte parametry vyjadřující lomovou houževnatost materiálu v oblasti elasto-plastické lomové mechaniky? 11) Co to je J R křivka? Úlohy k řešení Vypočtěte kritickou délku trhliny a c nekonečně široké desky zatížené tahovým napětím σ = 100 MPa a vyrobené z materiálu o lomové houževnatosti K C = 60 MPa.m 1/2. Vypočtěte kritické napětí pro vznik náhlého nestabilního lomu nekonečně široké desky s trhlinou o délce 2a = 20 mm vyrobené z materiálu o lomové houževnatosti K C = 80 MPa.m 1/2. Vypočtěte velikost plastické zóny pro případ rovinné napjatosti a rovinné deformace pro faktor intenzity napětí K I = 60 MPa.m 1/2 a mez kluzu materiálu R p,0,2 = 900 MPa pro případ, kdy přerozdělení napětí v oblasti kolem špice trhliny. 29

30 Použitá literatura [1] BROEK, David: Elementary engineering fracture mechanics. 3 rd revised edition 1982, 2 nd printing 1983, Martinus Nijhaff Publishers, The Hague, ISBN [2] VLK, Miloš-FLORIAN, Zdeněk: Mezní stavy a spolehlivost. VÚT Brno, Fakulta strojního inženýrství, Ústav mechaniky těles, mechatroniky a biomechaniky, Brno [3] HOLZMANN, Miroslav- KLESNIL, Mirko: Křehký a únavový lom materiálů a konstrukcí. 1. vydání. Praha, SNTL, s. [4] KUNZ, Jiří: Aplikovaná mechanika kontinua II. Základy lomové mechaniky. 1. vydání. Praha, ČVUT Praha, 1991, 110s. 30

SPECIÁLNÍ ZKUŠEBNÍ METODY učební text

SPECIÁLNÍ ZKUŠEBNÍ METODY učební text Vysoká škola báňská Technická univerzita Ostrava SPECIÁLNÍ ZKUŠEBNÍ METODY učební text prof. Ing. Karel Matocha, CSc. Ing. Petr Jonšta, Ph.D. Ostrava 2013 Recenze: Ing. Ladislav Kander, Ph.D. Název: Autor:

Více

Houževnatost. i. Základní pojmy (tranzitní lomové chování ocelí, teplotní závislost pevnostních vlastností, fraktografie)

Houževnatost. i. Základní pojmy (tranzitní lomové chování ocelí, teplotní závislost pevnostních vlastností, fraktografie) Houževnatost i. Základní pojmy (tranzitní lomové chování ocelí, teplotní závislost pevnostních vlastností, fraktografie) ii. (Empirické) zkoušky houževnatosti (Charpy, TNDT) iii. Lineárně-elastická elastická

Více

Test A 100 [%] 1. Čím je charakteristická plastická deformace? - Je to deformace nevratná.

Test A 100 [%] 1. Čím je charakteristická plastická deformace? - Je to deformace nevratná. Test A 1. Čím je charakteristická plastická deformace? - Je to deformace nevratná. 2. Co je to µ? - Poissonův poměr µ poměr poměrného příčného zkrácení k poměrnému podélnému prodloužení v oblasti pružných

Více

České vysoké učení technické v Praze, Fakulta strojní. Pevnost a životnost Jur II. Pevnost a životnost. Jur II

České vysoké učení technické v Praze, Fakulta strojní. Pevnost a životnost Jur II. Pevnost a životnost. Jur II České vysoké učení technické v Praze, Fakulta strojní 1/13 Pevnost a životnost Jur II Milan Růžička, Josef Jurenka, Zbyněk Hrubý Poděkování: Děkuji prof. Ing. Jiřímu Kunzovi, CSc za laskavé svolení s využitím

Více

8. Základy lomové mechaniky. Únava a lomová mechanika Pavel Hutař, Luboš Náhlík

8. Základy lomové mechaniky. Únava a lomová mechanika Pavel Hutař, Luboš Náhlík Únava a lomová mechanika Koncentrace napětí nesingulární koncentrátor napětí singulární koncentrátor napětí 1 σ = σ + a r 2 σ max = σ 1 + 2( / ) r 0 ; σ max Nekonečný pás s eliptickým otvorem [Pook 2000]

Více

Pevnost a životnost Jur III

Pevnost a životnost Jur III 1/48 Pevnost a životnost Jur III Milan Růžička, Josef Jurenka, Zbyněk Hrubý Poděkování: Děkuji prof. Ing. Jiřímu Kunzovi, CSc za laskavé svolení s využitím některých obrázků z jeho knihy Aplikovaná lomová

Více

12. Únavové šíření trhliny. Únava a lomová mechanika Pavel Hutař, Luboš Náhlík

12. Únavové šíření trhliny. Únava a lomová mechanika Pavel Hutař, Luboš Náhlík Únava a lomová mechanika Proces únavového porušení Iniciace únavové trhliny v krystalu Cu (60 000 cyklů při 20 C) (převzato z [Suresh 2006]) Proces únavového porušení Jednotlivé stádia únavového poškození:

Více

Pevnost a životnost Jur III

Pevnost a životnost Jur III 1/48 Pevnost a životnost Jur III Milan Růžička, Josef Jurenka, Zbyněk Hrubý Poděkování: Děkuji prof. Ing. Jiřímu Kunzovi, CSc za laskavé svolení s využitím některých obrázků z jeho knihy Aplikovaná lomová

Více

ZKOUŠKY MECHANICKÝCH. Mechanické zkoušky statické a dynamické

ZKOUŠKY MECHANICKÝCH. Mechanické zkoušky statické a dynamické ZKOUŠKY MECHANICKÝCH VLASTNOSTÍ MATERIÁLŮ Mechanické zkoušky statické a dynamické Úvod Vlastnosti materiálu, lze rozdělit na: fyzikální a fyzikálně-chemické; mechanické; technologické. I. Mechanické vlastnosti

Více

Houževnatost. i. Základní pojmy (tranzitní lomové chování ocelí, teplotní závislost pevnostních vlastností, fraktografie) ii.

Houževnatost. i. Základní pojmy (tranzitní lomové chování ocelí, teplotní závislost pevnostních vlastností, fraktografie) ii. Henry Kaiser, Hoover Dam 1 Henry Kaiser, 2 Houževnatost i. Základní pojmy (tranzitní lomové chování ocelí, teplotní závislost pevnostních vlastností, fraktografie) ii. (Empirické) zkoušky houževnatosti

Více

Únava materiálu. únavového zatěžování. 1) Úvod. 2) Základní charakteristiky. 3) Křivka únavového života. 4) Etapy únavového života

Únava materiálu. únavového zatěžování. 1) Úvod. 2) Základní charakteristiky. 3) Křivka únavového života. 4) Etapy únavového života Únava materiálu 1) Úvod 2) Základní charakteristiky únavového zatěžování 3) Křivka únavového života 4) Etapy únavového života 5) Klíčové vlivy na únavový život 1 Degradace vlastností materiálu za provozu

Více

5. Únava Zatížení při únavě, Wöhlerův přístup a lomová mechanika, únosnost, vliv vrubů, kumulace poškození, přístup podle Eurokódu.

5. Únava Zatížení při únavě, Wöhlerův přístup a lomová mechanika, únosnost, vliv vrubů, kumulace poškození, přístup podle Eurokódu. 5. Únava Zatížení při únavě, Wöhlerův přístup a lomová mechanika, únosnost, vliv vrubů, kumulace poškození, přístup podle Eurokódu. K poškození únavou dochází při zatížení výrazně proměnném s časem. spolehlivost

Více

Zkouška rázem v ohybu. Autor cvičení: prof. RNDr. B. Vlach, CSc; Ing. Petr Langer. Jméno: St. skupina: Datum cvičení:

Zkouška rázem v ohybu. Autor cvičení: prof. RNDr. B. Vlach, CSc; Ing. Petr Langer. Jméno: St. skupina: Datum cvičení: BUM - 6 Zkouška rázem v ohybu Autor cvičení: prof. RNDr. B. Vlach, CSc; Ing. Petr Langer Jméno: St. skupina: Datum cvičení: Úvodní přednáška: 1) Vysvětlete pojem houževnatost. 2) Popište princip zkoušky

Více

Houževnatost. i. Základní pojmy (tranzitní lomové chování ocelí, teplotní závislost pevnostních vlastností, fraktografie)

Houževnatost. i. Základní pojmy (tranzitní lomové chování ocelí, teplotní závislost pevnostních vlastností, fraktografie) Houževnatost i. Základní pojmy (tranzitní lomové chování ocelí, teplotní závislost pevnostních vlastností, fraktografie) ii. (Empirické) zkoušky houževnatosti (Charpy, TNDT) iii. Lineárně-elastická elastická

Více

Nelineární problémy a MKP

Nelineární problémy a MKP Nelineární problémy a MKP Základní druhy nelinearit v mechanice tuhých těles: 1. materiálová (plasticita, viskoelasticita, viskoplasticita,...) 2. geometrická (velké posuvy a natočení, stabilita konstrukcí)

Více

Mechanické vlastnosti technických materiálů a jejich měření. Metody charakterizace nanomateriálů 1

Mechanické vlastnosti technických materiálů a jejich měření. Metody charakterizace nanomateriálů 1 Mechanické vlastnosti technických materiálů a jejich měření Metody charakterizace nanomateriálů 1 Základní rozdělení vlastností ZMV Přednáška č. 1 Nejobvyklejší dělení vlastností materiálů v technické

Více

Nauka o materiálu. Přednáška č.5 Základy lomové mechaniky

Nauka o materiálu. Přednáška č.5 Základy lomové mechaniky Nauka o materiálu Přednáška č.5 Základy lomové mechaniky Způsoby stanovení napjatosti a deformace Využívají se tři přístupy: 1. Analytický - jen jednoduché geometrie těles - vždy za jistých zjednodušujících

Více

Wöhlerova křivka (uhlíkové oceli výrazná mez únavy)

Wöhlerova křivka (uhlíkové oceli výrazná mez únavy) Únava 1. Úvod Mezním stavem únava je definován stav, kdy v důsledku působení časově proměnných zatížení dojde k poruše funkční způsobilosti konstrukce či jejího elementu. Charakteristické pro tento proces

Více

OVMT Mechanické zkoušky

OVMT Mechanické zkoušky Mechanické zkoušky Mechanickými zkouškami zjišťujeme chování materiálu za působení vnějších sil, tzn., že zkoumáme jeho mechanické vlastnosti. Některé mechanické vlastnosti materiálu vyjadřují jeho odpor

Více

Části a mechanismy strojů 1 KKS/CMS1

Části a mechanismy strojů 1 KKS/CMS1 Katedra konstruování strojů Fakulta strojní Části a mechanismy strojů 1 KKS/CMS1 Podklady k přednáškám část A4 Prof. Ing. Stanislav Hosnedl, CSc. a kol. Tato prezentace je spolufinancována Evropským sociálním

Více

Střední průmyslová škola strojírenská a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191

Střední průmyslová škola strojírenská a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191 Název školy Název projektu Registrační číslo projektu Autor Název šablony Střední průmyslová škola strojírenská a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191 Modernizace výuky

Více

Vlastnosti a zkoušení materiálů. Přednáška č.9 Plasticita a creep

Vlastnosti a zkoušení materiálů. Přednáška č.9 Plasticita a creep Vlastnosti a zkoušení materiálů Přednáška č.9 Plasticita a creep Vliv teploty na chování materiálu 1. Teplotní roztažnost L = L α T ( x) dl 2. Závislost modulu pružnosti na teplotě: Modul pružnosti při

Více

Jméno: St. skupina: Datum cvičení: Autor cvičení: Doc. Ing. Stanislav Věchet, CSc., Ing. Petr Liškutín, Ing. Martin Petrenec,

Jméno: St. skupina: Datum cvičení: Autor cvičení: Doc. Ing. Stanislav Věchet, CSc., Ing. Petr Liškutín, Ing. Martin Petrenec, BUM - 7 Únava materiálu Jméno: St. skupina: Datum cvičení: Autor cvičení: Doc. Ing. Stanislav Věchet, CSc., Ing. Petr Liškutín, Ing. Martin Petrenec, Úkoly k řešení 1. Vysvětlete stručně co je únava materiálu.

Více

b) Křehká pevnost 2. Podmínka max τ v Heigově diagramu a) Křehké pevnosti

b) Křehká pevnost 2. Podmínka max τ v Heigově diagramu a) Křehké pevnosti 1. Podmínka max τ a MOS v Mohrově rovině a) Plasticity ϭ K = ϭ 1 + ϭ 3 b) Křehké pevnosti (ϭ 1 κ R * ϭ 3 ) = ϭ Rt Ϭ red = max (ϭ 1, ϭ 1 - κ R * ϭ 3 ) MOS : max (ϭ 1, ϭ 1 - κ R * ϭ 3 ) = ϭ Rt a) Plasticita

Více

2. Mezní stavy. MS porušení

2. Mezní stavy. MS porušení p02 1 2. Mezní stavy V kapitole 6. Zatížení tělesa jsou mezi různými zatěžovacími stavy zavedeny stavy přechodové a mezní jako stavy, v nichž je částečně nebo úplně a dočasně nebo trvale znemožněna funkce

Více

OVMT Mechanické zkoušky

OVMT Mechanické zkoušky Mechanické zkoušky Mechanickými zkouškami zjišťujeme chování materiálu za působení vnějších sil, tzn., že zkoumáme jeho mechanické vlastnosti. Některé mechanické vlastnosti materiálu vyjadřují jeho odpor

Více

Ing. Jan BRANDA PRUŽNOST A PEVNOST

Ing. Jan BRANDA PRUŽNOST A PEVNOST Ing. Jan BRANDA PRUŽNOST A PEVNOST Výukový text pro učební obor Technik plynových zařízení Vzdělávací oblast RVP Plynová zařízení a Tepelná technika (mechanika) Pardubice 013 Použitá literatura: Technická

Více

Porušení hornin. J. Pruška MH 7. přednáška 1

Porušení hornin. J. Pruška MH 7. přednáška 1 Porušení hornin Předpoklady pro popis mechanických vlastností hornin napjatost masivu je včase a prostoru proměnná nespojitosti jsou určeny pevnostními charakteristikami prostředí horniny ovlivňuje rychlost

Více

NAUKA O MATERIÁLU I. Zkoušky mechanické. Přednáška č. 04: Zkoušení materiálových vlastností I

NAUKA O MATERIÁLU I. Zkoušky mechanické. Přednáška č. 04: Zkoušení materiálových vlastností I NAUKA O MATERIÁLU I Přednáška č. 04: Zkoušení materiálových vlastností I Zkoušky mechanické Autor přednášky: Ing. Daniela ODEHNALOVÁ Pracoviště: TUL FS, Katedra materiálu ZKOUŠENÍ mechanických vlastností

Více

PROBLEMATICKÉ SVAROVÉ SPOJE MODIFIKOVANÝCH ŽÁROPEVNÝCH OCELÍ

PROBLEMATICKÉ SVAROVÉ SPOJE MODIFIKOVANÝCH ŽÁROPEVNÝCH OCELÍ PROBLEMATICKÉ SVAROVÉ SPOJE MODIFIKOVANÝCH ŽÁROPEVNÝCH OCELÍ doc. Ing. Petr Mohyla, Ph.D. Fakulta strojní, VŠB TU Ostrava 1. Úvod Snižování spotřeby fosilních paliv a snižování škodlivých emisí vede k

Více

MECHANIKA PODZEMNÍCH KONSTRUKCÍ PODMÍNKY PLASTICITY A PORUŠENÍ

MECHANIKA PODZEMNÍCH KONSTRUKCÍ PODMÍNKY PLASTICITY A PORUŠENÍ STUDIJNÍ PODPORY PRO KOMBINOVANOU FORMU STUDIA NAVAZUJÍCÍHO MAGISTERSKÉHO PROGRAMU STAVEBNÍ INŽENÝRSTVÍ -GEOTECHNIKA A PODZEMNÍ STAVITELSTVÍ MECHANIKA PODZEMNÍCH KONSTRUKCÍ PODMÍNKY PLASTICITY A PORUŠENÍ

Více

- 120 - VLIV REAKTOROVÉHO PROSTŘEDl' NA ZKŘEHNUTI' Cr-Mo-V OCELI

- 120 - VLIV REAKTOROVÉHO PROSTŘEDl' NA ZKŘEHNUTI' Cr-Mo-V OCELI - 120 - VLIV REAKTOROVÉHO PROSTŘEDl' NA ZKŘEHNUTI' Cr-Mo-V OCELI Ing. K. Šplíchal, Ing. R. Axamit^RNDr. J. Otruba, Prof. Ing. J. Koutský, DrSc, ÚJV Řež 1. Úvod Rozvoj trhlin za účasti koroze v materiálech

Více

NAUKA O MATERIÁLU I. Přednáška č. 03: Vlastnosti materiálu II (vlastnosti mechanické a technologické, odolnost proti opotřebení)

NAUKA O MATERIÁLU I. Přednáška č. 03: Vlastnosti materiálu II (vlastnosti mechanické a technologické, odolnost proti opotřebení) NAUKA O MATERIÁLU I Přednáška č. 03: Vlastnosti materiálu II (vlastnosti mechanické a technologické, odolnost proti opotřebení) Autor přednášky: Ing. Daniela Odehnalová Pracoviště: TUL FS, Katedra materiálu

Více

Kritéria porušení laminy

Kritéria porušení laminy Kap. 4 Kritéria porušení laminy Inormační a vzdělávací centrum kompozitních technologií & Ústav mechaniky, biomechaniky a mechatroniky S ČVU v Praze.. 007-6.. 007 Úvod omové procesy vyvolané v jednosměrovém

Více

Filosofie konstruování a dimenzování mechanických částí vozidel z hlediska jejich funkce a provozního zatěžování

Filosofie konstruování a dimenzování mechanických částí vozidel z hlediska jejich funkce a provozního zatěžování Filosofie konstruování a dimenzování mechanických částí vozidel z hlediska jejich funkce a provozního zatěžování doc. Ing. Miloslav Kepka, CSc. ZČU v Plzni, Fakulta strojní, Katedra konstruování strojů

Více

NEKONVENČNÍ VLASTNOSTI OCELI 15NiCuMoNb5 (WB 36) UNCONVENTIONAL PROPERTIES OF 15NiCuMoNb (WB 36) GRADE STEEL. Ladislav Kander Karel Matocha

NEKONVENČNÍ VLASTNOSTI OCELI 15NiCuMoNb5 (WB 36) UNCONVENTIONAL PROPERTIES OF 15NiCuMoNb (WB 36) GRADE STEEL. Ladislav Kander Karel Matocha NEKONVENČNÍ VLASTNOSTI OCELI 15NiCuMoNb5 (WB 36) UNCONVENTIONAL PROPERTIES OF 15NiCuMoNb (WB 36) GRADE STEEL Ladislav Kander Karel Matocha VÍTKOVICE Výzkum a vývoj, spol s r.o., Pohraniční 31, 706 02 Ostrava

Více

ÚVOD DO PROBLEMATIKY LOMOVÉ MECHANIKY KVAZIKŘEHKÝCH MATERIÁLŮ. Zbyněk Keršner Ústav stavební mechaniky FAST VUT v Brně

ÚVOD DO PROBLEMATIKY LOMOVÉ MECHANIKY KVAZIKŘEHKÝCH MATERIÁLŮ. Zbyněk Keršner Ústav stavební mechaniky FAST VUT v Brně ÚVOD DO PROBLEMATIKY LOMOVÉ MECHANIKY KVAZIKŘEHKÝCH MATERIÁLŮ Zbyněk Keršner Ústav stavební mechaniky FAST VUT v Brně 1 Motivace: trhliny v betonu mikrostruktura Vyhojování trhlin konstrukce Pražec po

Více

Vlastnosti a zkoušení materiálů. Přednáška č.4 Úvod do pružnosti a pevnosti

Vlastnosti a zkoušení materiálů. Přednáška č.4 Úvod do pružnosti a pevnosti Vlastnosti a zkoušení materiálů Přednáška č.4 Úvod do pružnosti a pevnosti Teoretická a skutečná pevnost kovů Trvalá deformace polykrystalů začíná při vyšším napětí než u monokrystalů, tj. hodnota meze

Více

Provozní pevnost a životnost dopravní techniky. - úvod do předmětu

Provozní pevnost a životnost dopravní techniky. - úvod do předmětu Provozní pevnost a životnost dopravní techniky - úvod do předmětu doc. Ing. Miloslav Kepka, CSc. ZČU v Plzni, Fakulta strojní, Katedra konstruování strojů Provozní pevnost a životnost dopravní techniky

Více

KONSTITUČNÍ VZTAHY. 1. Tahová zkouška

KONSTITUČNÍ VZTAHY. 1. Tahová zkouška 1. Tahová zkouška Tahová zkouška se provádí dle ČSN EN ISO 6892-1 (aktualizována v roce 2010) Je nejčastější mechanickou zkouškou kovových materiálů. Zkoušky se realizují na trhacích strojích, kde se zkušební

Více

Doc. Ing. Jiří Kunz, CSc., Prof. Ing. Ivan Nedbal, CSc., Ing. Jan Siegl, CSc. Katedra materiálů FJFI ČVUT v Praze, Trojanova 13, Praha 2

Doc. Ing. Jiří Kunz, CSc., Prof. Ing. Ivan Nedbal, CSc., Ing. Jan Siegl, CSc. Katedra materiálů FJFI ČVUT v Praze, Trojanova 13, Praha 2 KUNZ, J. - NEDBAL, I. - SIEGL, J.: Vliv vodního prostředí a zvýšené teploty na únavové porušování austenitické oceli. In: Degradácia vlastností konštrukčných materiálov (VIII. celoštátna konferencia so

Více

DESTRUKTIVNÍ ZKOUŠKY SVARŮ I.

DESTRUKTIVNÍ ZKOUŠKY SVARŮ I. DESTRUKTIVNÍ ZKOUŠKY SVARŮ I. Mgr. Ladislav Blahuta Střední škola, Havířov-Šumbark, Sýkorova 1/613, příspěvková organizace Tento výukový materiál byl zpracován v rámci akce EU peníze středním školám -

Více

Reologické modely technických materiálů při prostém tahu a tlaku

Reologické modely technických materiálů při prostém tahu a tlaku . lekce Reologické modely technických materiálů při prostém tahu a tlaku Obsah. Základní pojmy Vnitřní síly napětí. Základní reologické modely technických materiálů 3.3 Elementární reologické modely creepu

Více

Nauka o materiálu. Přednáška č.4 Úvod do pružnosti a pevnosti

Nauka o materiálu. Přednáška č.4 Úvod do pružnosti a pevnosti Nauka o materiálu Přednáška č.4 Úvod do pružnosti a pevnosti Teoretická a skutečná pevnost kovů Trvalá deformace polykrystalů začíná při vyšším napětí než u monokrystalů, tj. hodnota meze kluzu R e, odpovídající

Více

Plastická deformace a pevnost

Plastická deformace a pevnost Plastická deformace a pevnost Anelasticita vnitřní útlum Tahová zkouška (kovy, plasty, keramiky, kompozity) Fyzikální podstata pevnosti - dislokace (monokrystal polykrystal) - mez kluzu nízkouhlíkových

Více

Fakulta strojního inženýrství VUT v Brně Ústav konstruování. KONSTRUOVÁNÍ STROJŮ strojní součásti. Přednáška 2

Fakulta strojního inženýrství VUT v Brně Ústav konstruování. KONSTRUOVÁNÍ STROJŮ strojní součásti. Přednáška 2 Fakulta strojního inženýrství VUT v Brně Ústav konstruování KONSTRUOVÁNÍ STROJŮ strojní součásti Přednáška 2 Porušování při cyklickém zatěžování All machine and structural designs are problems in fatigue

Více

Téma: Dynamiky - Základní vztahy kmitání

Téma: Dynamiky - Základní vztahy kmitání Počítačová podpora statických výpočtů Téma: Dynamiky - Základní vztahy kmitání 1) Vlastnosti materiálů při dynamickém namáháni ) Základní vztahy teorie kmitání s jedním stupněm volnosti Katedra konstrukcí

Více

LETECKÉ MATERIÁLY. Úvod do předmětu

LETECKÉ MATERIÁLY. Úvod do předmětu LETECKÉ MATERIÁLY Úvod do předmětu Historický vývoj leteckých konstrukčních materiálů Uplatnění konstrukčních materiálů souvisí s pevnostními koncepcemi leteckých konstrukcí Pevnostní koncepce leteckých

Více

OTÁZKY K PROCVIČOVÁNÍ PRUŽNOST A PLASTICITA II - DD6

OTÁZKY K PROCVIČOVÁNÍ PRUŽNOST A PLASTICITA II - DD6 OTÁZKY K PROCVIČOVÁNÍ PRUŽNOST A PLASTICITA II - DD6 POSUZOVÁNÍ KONSTRUKCÍ PODLE EUROKÓDŮ 1. Jaké mezní stavy rozlišujeme při posuzování konstrukcí podle EN? 2. Jaké problémy řeší mezní stav únosnosti

Více

A mez úměrnosti B mez pružnosti C mez kluzu (plasticity) P vznik krčku na zkušebním vzorku, smluvní mez pevnosti σ p D přetržení zkušebního vzorku

A mez úměrnosti B mez pružnosti C mez kluzu (plasticity) P vznik krčku na zkušebním vzorku, smluvní mez pevnosti σ p D přetržení zkušebního vzorku 1. Úlohy a cíle teorie plasticity chopnost tuhých těles deformovat se působením vnějších sil a po odnětí těchto sil nabývat původního tvaru a rozměrů se nazývá pružnost. 1.1 Plasticita, pracovní diagram

Více

Zde je uveden abecední seznam důležitých pojmů interaktivního učebního textu

Zde je uveden abecední seznam důležitých pojmů interaktivního učebního textu index 1 Rejstřík Zde je uveden abecední seznam důležitých pojmů interaktivního učebního textu Pružnost a pevnost. U každého termínu je uvedeno označení kapitoly a čísla obrazovek, na nichž lze pojem nalézt.

Více

Mechanika kontinua. Mechanika elastických těles Mechanika kapalin

Mechanika kontinua. Mechanika elastických těles Mechanika kapalin Mechanika kontinua Mechanika elastických těles Mechanika kapalin Mechanika kontinua Mechanika elastických těles Mechanika kapalin a plynů Kinematika tekutin Hydrostatika Hydrodynamika Kontinuum Pro vyšetřování

Více

VÝZKUM MECHANICKÝCH VLASTNOSTÍ SVAROVÝCH SPOJŮ MODIFIKOVANÝCH ŽÁROPEVNÝCH OCELÍ T24 A P92. Ing. Petr Mohyla, Ph.D.

VÝZKUM MECHANICKÝCH VLASTNOSTÍ SVAROVÝCH SPOJŮ MODIFIKOVANÝCH ŽÁROPEVNÝCH OCELÍ T24 A P92. Ing. Petr Mohyla, Ph.D. VÝZKUM MECHANICKÝCH VLASTNOSTÍ SVAROVÝCH SPOJŮ MODIFIKOVANÝCH ŽÁROPEVNÝCH OCELÍ T24 A P92 Ing. Petr Mohyla, Ph.D. Úvod Od konce osmdesátých let 20. století probíhá v celosvětovém měřítku intenzivní vývoj

Více

Obecný Hookeův zákon a rovinná napjatost

Obecný Hookeův zákon a rovinná napjatost Obecný Hookeův zákon a rovinná napjatost Základní rovnice popisující napěťově-deformační chování materiálu při jednoosém namáhání jsou Hookeův zákon a Poissonův zákon. σ = E ε odtud lze vyjádřit také poměrnou

Více

Zkoušky rázem. Vliv deformační rychlosti

Zkoušky rázem. Vliv deformační rychlosti Zkoušky rázem V provozu působí často na strojní součásti síla, která se cyklicky mění, popř. Její působení je dynamického charakteru. Rázové působení síly je velmi nebezpečné, neboť to může iniciovat náhlou

Více

Nejpoužívanější podmínky plasticity

Nejpoužívanější podmínky plasticity Nejpoužívanější podmínky plasticity Materiály bez vnitřního tření (např. kovy): Trescova Misesova Materiály s vnitřním třením (beton, horniny, zeminy): Mohrova-Coulombova, Rankinova Druckerova-Pragerova

Více

Pojednání ke státní doktorské zkoušce. Hodnocení mechanických vlastností slitin na bázi Al a Mg s využitím metody AE

Pojednání ke státní doktorské zkoušce. Hodnocení mechanických vlastností slitin na bázi Al a Mg s využitím metody AE Pojednání ke státní doktorské zkoušce Hodnocení mechanických vlastností slitin na bázi Al a Mg s využitím metody AE autor: Ing. školitel: doc. Ing. Pavel MAZAL CSc. 2 /18 OBSAH Úvod Vymezení řešení problematiky

Více

6. Viskoelasticita materiálů

6. Viskoelasticita materiálů 6. Viskoelasticita materiálů Viskoelasticita materiálů souvisí se schopností materiálů tlumit mechanické vibrace. Uvažujme harmonické dynamické namáhání (tzn. střídavě v tahu a tlaku) materiálu v oblasti

Více

OTÁZKY VSTUPNÍHO TESTU PP I LS 2010/2011

OTÁZKY VSTUPNÍHO TESTU PP I LS 2010/2011 OTÁZKY VSTUPNÍHO TESTU PP I LS 010/011 Pomocí Thumovy definice, s využitím vrubové citlivosti q je definován vztah mezi součiniteli vrubu a tvaru jako: Součinitel tvaru α je podle obrázku definován jako:

Více

Historie velkých havárií - vývoj v oblasti zkoušení materiálů a studia mezních stavů

Historie velkých havárií - vývoj v oblasti zkoušení materiálů a studia mezních stavů Historie velkých havárií - vývoj v oblasti zkoušení materiálů a studia mezních stavů Motto: No man is civilised or mentally adult until he realises that the past, the present, and the future are indivisible.

Více

18MTY 1. Ing. Jaroslav Valach, Ph.D.

18MTY 1. Ing. Jaroslav Valach, Ph.D. 18MTY 1. Ing. Jaroslav Valach, Ph.D. valach@fd.cvut.cz Informace o předmětu http://mech.fd.cvut.cz/education/bachelor/18mty Popis předmětu Témata přednášek Pokyny k provádění cvičení Informace ke zkoušce

Více

ZÁKLADNÍ PŘÍPADY NAMÁHÁNÍ

ZÁKLADNÍ PŘÍPADY NAMÁHÁNÍ 7. cvičení ZÁKLADNÍ PŘÍPADY NAMÁHÁNÍ V této kapitole se probírají výpočty únosnosti průřezů (neboli posouzení prvků na prostou pevnost). K porušení materiálu v tlačených částech průřezu dochází: mezní

Více

Zkoušky vlastností technických materiálů

Zkoušky vlastností technických materiálů Zkoušky vlastností technických materiálů Stálé zvyšování výkonu strojů a snižování jejich hmotnosti klade vysoké požadavky na jakost hutního materiálu. Se zvyšováním nároků na materiál je nerozlučně spjato

Více

Cvičení 1. Napjatost v bodě tělesa Hlavní napětí Mezní podmínky ve víceosé napjatosti

Cvičení 1. Napjatost v bodě tělesa Hlavní napětí Mezní podmínky ve víceosé napjatosti Cvičení 1 Napjatost v bodě tělesa Hlavní napětí Mezní podmínky ve víceosé napjatosti Napjatost v bodě tělesa Napjatost (napěťový stav) v bodě tělesa je množinou obecných napětí ve všech řezech, které lze

Více

Nejpoužívanější podmínky plasticity

Nejpoužívanější podmínky plasticity Nejpoužívanější podmínky plasticity Materiály bez vnitřního tření (např. kovy): Trescova Misesova Materiály s vnitřním třením (beton, horniny, zeminy): Mohrova-Coulombova, Rankinova Druckerova-Pragerova

Více

Přetváření a porušování materiálů

Přetváření a porušování materiálů Přetváření a porušování materiálů Přetváření a porušování materiálů 1. Viskoelasticita 2. Plasticita 3. Lomová mechanika 4. Mechanika poškození Přetváření a porušování materiálů 2. Plasticita 2.1 Konstitutivní

Více

7 Lineární elasticita

7 Lineární elasticita 7 Lineární elasticita Elasticita je schopnost materiálu pružně se deformovat. Deformace ideálně elastických látek je okamžitá (časově nezávislá) a dokonale vratná. Působí-li na infinitezimální objemový

Více

Poruchy krystalové struktury

Poruchy krystalové struktury Tomáš Doktor K618 - Materiály 1 15. října 2013 Tomáš Doktor (18MRI1) Poruchy krystalové struktury 15. října 2013 1 / 30 Poruchy krystalové struktury nelze vytvořit ideální strukturu krystalu bez poruch

Více

5. Únava materiálu S-n přístup (Stress-life) Pavel Hutař, Luboš Náhlík

5. Únava materiálu S-n přístup (Stress-life) Pavel Hutař, Luboš Náhlík Příklad Zadání: Vytvořte přibližný S-n diagram pro ocelovou tyč a vyjádřete její rovnici. Jakou životnost můžeme očekávat při zatížení souměrně střídavým cyklem o amplitudě 100 MPa? Je dáno: Mez pevnosti

Více

LOGO. Struktura a vlastnosti pevných látek

LOGO. Struktura a vlastnosti pevných látek Struktura a vlastnosti pevných látek Rozdělení pevných látek (PL): monokrystalické krystalické Pevné látky polykrystalické amorfní Pevné látky Krystalické látky jsou charakterizovány pravidelným uspořádáním

Více

ZKOUŠKY MIKROLEGOVANÝCH OCELÍ DOMEX 700MC

ZKOUŠKY MIKROLEGOVANÝCH OCELÍ DOMEX 700MC Sborník str. 392-400 ZKOUŠKY MIKROLEGOVANÝCH OCELÍ DOMEX 700MC Antonín Kříž Výzkumné centrum kolejových vozidel, ZČU v Plzni,Univerzitní 22, 306 14, Česká republika, kriz@kmm.zcu.cz Požadavky kladené dnešními

Více

České vysoké učení technické v Praze, Fakulta strojní. Dynamická pevnost a životnost - Jur V. Dynamická pevnost a životnost. Jur V

České vysoké učení technické v Praze, Fakulta strojní. Dynamická pevnost a životnost - Jur V. Dynamická pevnost a životnost. Jur V 1/46 Dynamická pevnost a životnost Jur V Milan Růžička, Josef Jurenka, Martin Nesládek Poděkování: Děkuji prof. Ing. Jiřímu Kunzovi, CSc za laskavé svolení s využitím některých obrázků z jeho knihy Aplikovaná

Více

Experimentální zjišťování charakteristik kompozitových materiálů a dílů

Experimentální zjišťování charakteristik kompozitových materiálů a dílů Experimentální zjišťování charakteristik kompozitových materiálů a dílů Dr. Ing. Roman Růžek Výzkumný a zkušební letecký ústav, a.s. Praha 9 Letňany ruzek@vzlu.cz Základní rozdělení zkoušek pro ověření

Více

písemky (3 příklady) Výsledná známka je stanovena zkoušejícím na základě celkového počtu bodů ze semestru, ze vstupního testu a z písemky.

písemky (3 příklady) Výsledná známka je stanovena zkoušejícím na základě celkového počtu bodů ze semestru, ze vstupního testu a z písemky. POŽADAVKY KE ZKOUŠCE Z PP I Zkouška úrovně Alfa (pro zájemce o magisterské studium) Zkouška sestává ze vstupního testu (10 otázek, výběr správné odpovědi ze čtyř možností, rozsah dle sloupečku Požadavky)

Více

Vzpěr, mezní stav stability, pevnostní podmínky pro tlak, nepružný a pružný vzpěr Ing. Jaroslav Svoboda

Vzpěr, mezní stav stability, pevnostní podmínky pro tlak, nepružný a pružný vzpěr Ing. Jaroslav Svoboda Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1 Šablona: Inovace a zkvalitnění výuky prostřednictvím ICT Název: Téma: Autor: Číslo: Anotace: Mechanika, pružnost pevnost Vzpěr,

Více

Křehké materiály. Technická univerzita v Liberci Nekovové materiály, 5. MI Doc. Ing. Karel Daďourek, 2008

Křehké materiály. Technická univerzita v Liberci Nekovové materiály, 5. MI Doc. Ing. Karel Daďourek, 2008 Křehké materiály Technická univerzita v Liberci Nekovové materiály, 5. MI Doc. Ing. Karel Daďourek, 2008 Základní charakteristiky Křehký lom bez znatelné trvalé deformace Mez pevnosti má velký rozptyl

Více

3.2 Základy pevnosti materiálu. Ing. Pavel Bělov

3.2 Základy pevnosti materiálu. Ing. Pavel Bělov 3.2 Základy pevnosti materiálu Ing. Pavel Bělov 23.5.2018 Normálové napětí představuje vazbu, která brání částicím tělesa k sobě přiblížit nebo se od sebe oddálit je kolmé na rovinu řezu v případě že je

Více

1 Úvod do konstruování 3 2 Statistické zpracování dat 37 3 Volba materiálu 75 4 Analýza zatížení a napětí 119 5 Analýza deformací 185

1 Úvod do konstruování 3 2 Statistické zpracování dat 37 3 Volba materiálu 75 4 Analýza zatížení a napětí 119 5 Analýza deformací 185 Stručný obsah Předmluva xvii Část 1 Základy konstruování 2 1 Úvod do konstruování 3 2 Statistické zpracování dat 37 3 Volba materiálu 75 4 Analýza zatížení a napětí 119 5 Analýza deformací 185 Část 2 Porušování

Více

3. Mezní stav křehké pevnosti. Únava a lomová mechanika Pavel Hutař, Luboš Náhlík

3. Mezní stav křehké pevnosti. Únava a lomová mechanika Pavel Hutař, Luboš Náhlík Únava a lomová mechanika Mezní stav křehké pevnosti Při monotónním zatěžování tělesa může dojít k nepředvídanému porušení křehkým lomem. Poškození houževnaté oceli při různých způsobech namáhání Poškození

Více

Výzkumný a zkušební ústav Plzeň s.r.o. Zkušební laboratoř Tylova 1581/46, 301 00 Plzeň

Výzkumný a zkušební ústav Plzeň s.r.o. Zkušební laboratoř Tylova 1581/46, 301 00 Plzeň Pracoviště zkušební laboratoře: 1. Zkušebna Analytická chemie 2. Zkušebna Metalografie 3. Mechanická zkušebna včetně detašovaného pracoviště Orlík 266, 316 06 Plzeň 4. Dynamická zkušebna Orlík 266, 316

Více

Výzkumný a zkušební ústav Plzeň s.r.o. Zkušební laboratoř Tylova 1581/46, Jižní Předměstí, Plzeň

Výzkumný a zkušební ústav Plzeň s.r.o. Zkušební laboratoř Tylova 1581/46, Jižní Předměstí, Plzeň Pracoviště zkušební laboratoře: 1. Zkušebna metalografie Tylova 1581/46, 301 00 Plzeň 2. Mechanická zkušebna Tylova 1581/46, 301 00 Plzeň 3. Dynamická zkušebna Orlík 266/15, Bolevec, 316 00 Plzeň korespondenční

Více

Pevnost kompozitů obecné zatížení

Pevnost kompozitů obecné zatížení Pevnost kompozitů obecné zatížení Osnova Příčná pevnost v tahu Pevnost v tahu pod nenulovým úhlem proti vláknům Podélná pevnost v tlaku Příčná pevnost v tlaku Pevnost vláknových kompozitů - obecně Základní

Více

ANALÝZA NAPĚTÍ A DEFORMACÍ PRŮTOČNÉ ČOČKY KLAPKOVÉHO RYCHLOUZÁVĚRU DN5400 A POROVNÁNÍ HODNOCENÍ ÚNAVOVÉ ŽIVOTNOSTI DLE NOREM ČSN EN 13445-3 A ASME

ANALÝZA NAPĚTÍ A DEFORMACÍ PRŮTOČNÉ ČOČKY KLAPKOVÉHO RYCHLOUZÁVĚRU DN5400 A POROVNÁNÍ HODNOCENÍ ÚNAVOVÉ ŽIVOTNOSTI DLE NOREM ČSN EN 13445-3 A ASME 1. Úvod ANALÝZA NAPĚTÍ A DEFORMACÍ PRŮTOČNÉ ČOČKY KLAPKOVÉHO RYCHLOUZÁVĚRU DN5400 A POROVNÁNÍ HODNOCENÍ ÚNAVOVÉ ŽIVOTNOSTI DLE NOREM ČSN EN 13445-3 A ASME Michal Feilhauer, Miroslav Varner V článku se

Více

3.2 Mechanické vlastnosti

3.2 Mechanické vlastnosti 3.2 Mechanické vlastnosti Mechanickými vlastnostmi je kvantitativně hodnoceno chování materiálu za působení vnějších mechanických sil. Mezi základní mechanické vlastnosti patří pružnost, pevnost, plasticita,

Více

Hodnocení vlastností folií z polyethylenu (PE)

Hodnocení vlastností folií z polyethylenu (PE) Laboratorní cvičení z předmětu "Kontrolní a zkušební metody" Hodnocení vlastností folií z polyethylenu (PE) Zadání: Na základě výsledků tahové zkoušky podle norem ČSN EN ISO 527-1 a ČSN EN ISO 527-3 analyzujte

Více

Kumulace poškození termoplastického laminátu C/PPS při cyklickém zatížení a jeho posuzování

Kumulace poškození termoplastického laminátu C/PPS při cyklickém zatížení a jeho posuzování Kumulace poškození termoplastického laminátu C/PPS při cyklickém zatížení a jeho posuzování Jiří Minster, Martin Šperl, ÚTAM AV ČR, v. v. i., Praha Jaroslav Lukeš, FS ČVUT v Praze Motivace a obsah přednášky

Více

Co by mohl (budoucí) lékař vědět o materiálech tkáňových výztuží či náhrad. 20. března 2012

Co by mohl (budoucí) lékař vědět o materiálech tkáňových výztuží či náhrad. 20. března 2012 Prohloubení odborné spolupráce a propojení ústavů lékařské biofyziky na lékařských fakultách v České republice CZ.1.07/2.4.00/17.0058 Co by mohl (budoucí) lékař vědět o materiálech tkáňových výztuží či

Více

Hodnocení opotřebení a změn tribologických vlastností brzdových kotoučů

Hodnocení opotřebení a změn tribologických vlastností brzdových kotoučů Hodnocení opotřebení a změn tribologických vlastností brzdových kotoučů Vedoucí práce: Doc. Ing. Milan Honner, Ph.D. Konzultant: Doc. Dr. Ing. Antonín Kříž Bc. Roman Voch Obsah 1) Cíle diplomové práce

Více

Dalibor Vojtěch, Pavel Novák ml., Ústav kovových materiálů a korozního inženýrství

Dalibor Vojtěch, Pavel Novák ml., Ústav kovových materiálů a korozního inženýrství 1.5 Fyzikální degradace materiálů Dalibor Vojtěch, Pavel Novák ml., Ústav kovových materiálů a korozního inženýrství 1.5.1. Plastická deformace Při zatěžování materiálu mechanickou silou dojde k jeho deformaci,

Více

Poškození strojních součástí

Poškození strojních součástí Poškození strojních součástí Degradace strojních součástí Ve strojích při jejich provozu probíhají děje, které mají za následek změny vlastností součástí. Tyto změny jsou prvotními technickými příčinami

Více

IOK L. Rozlívka 1, M. Vlk 2, L. Kunz 3, P. Zavadilová 3. Materiál. Institut ocelových konstrukcí, s.r.o

IOK L. Rozlívka 1, M. Vlk 2, L. Kunz 3, P. Zavadilová 3. Materiál. Institut ocelových konstrukcí, s.r.o IOK ÚNAVOVÉ ZKOUŠKY PATINUJÍCÍ OCELI L. Rozlívka 1, M. Vlk 2, L. Kunz 3, P. Zavadilová 3 1 Institut ocelových konstrukcí, s.r.o 2 VUT Brno, Fakulta strojního inženýrství 3 Ústav fyziky materiálů AVČR Seminář

Více

4. Tenkostěnné za studena tvarované prvky. Návrh na únavu OK.

4. Tenkostěnné za studena tvarované prvky. Návrh na únavu OK. 4. Tenkostěnné za studena tvarované prvky. Návrh na únavu OK. Výroba, zvláštnosti návrhu, základní případy namáhání, spoje, navrhování z hlediska MSÚ a MSP. Návrh na únavu: zatížení, Wöhlerův přístup a

Více

Aktuální trendy v oblasti modelování

Aktuální trendy v oblasti modelování Aktuální trendy v oblasti modelování Vladimír Červenka Radomír Pukl Červenka Consulting, Praha 1 Modelování betonové a železobetonové konstrukce - tunelové (definitivní) ostění Metoda konečných prvků,

Více

Inovace a zkvalitnění výuky prostřednictvím ICT Kontrola a měření strojních součástí a jejich polotovarů Pevnostní zkouška statická na tah

Inovace a zkvalitnění výuky prostřednictvím ICT Kontrola a měření strojních součástí a jejich polotovarů Pevnostní zkouška statická na tah Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1 Šablona: Název: Téma: Inovace a zkvalitnění výuky prostřednictvím ICT Kontrola a měření strojních součástí a jejich polotovarů

Více

Únosnost kompozitních konstrukcí

Únosnost kompozitních konstrukcí ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta strojní Ústav letadlové techniky Únosnost kompozitních konstrukcí Optimalizační výpočet kompozitních táhel konstantního průřezu Technická zpráva Pořadové číslo:

Více

Prvky betonových konstrukcí BL01 11 přednáška

Prvky betonových konstrukcí BL01 11 přednáška Prvky betonových konstrukcí BL01 11 přednáška Mezní stavy použitelnosti (MSP) Použitelnost a trvanlivost Obecně Kombinace zatížení pro MSP Stádia působení ŽB prvků Mezní stav omezení napětí Mezní stav

Více

Nauka o materiálu. Přednáška č.2 Poruchy krystalické mřížky

Nauka o materiálu. Přednáška č.2 Poruchy krystalické mřížky Nauka o materiálu Přednáška č.2 Poruchy krystalické mřížky Opakování z minula Materiál Degradační procesy Vnitřní stavba atomy, vazby Krystalické, amorfní, semikrystalické Vlastnosti materiálů chemické,

Více

Pružnost a pevnost. zimní semestr 2013/14

Pružnost a pevnost. zimní semestr 2013/14 Pružnost a pevnost zimní semestr 2013/14 Organizace předmětu Přednášející: Prof. Milan Jirásek, B322 Konzultace: pondělí 10:00-10:45 nebo dle dohody E-mail: Milan.Jirasek@fsv.cvut.cz Webové stránky předmětu:

Více

Vysoká škola báňská-technická univerzita Ostrava Fakulta metalurgie a materiálového inženýrství Katedra materiálového inženýrství

Vysoká škola báňská-technická univerzita Ostrava Fakulta metalurgie a materiálového inženýrství Katedra materiálového inženýrství Vysoká škola báňská-technická univerzita Ostrava Fakulta metalurgie a materiálového inženýrství Katedra materiálového inženýrství Vliv dlouhodobého provozu na tranzitní teplotu FATT trubek z oceli 15 128.5

Více

Přehled modelů cyklické plasticity v MKP programech

Přehled modelů cyklické plasticity v MKP programech Přehled modelů cyklické plasticity v MKP programech Teorie plasticity Ing Josef Sedlák doc Ing Radim Halama, PhD 1 Shrnutí Aditivní pravidlo a Hookeův zákon, Podmínka plasticity Pravidlo zpevnění Pravidlo

Více