Od zlatého řezu přes kvazikrystaly až po velký třesk

Rozměr: px
Začít zobrazení ze stránky:

Download "Od zlatého řezu přes kvazikrystaly až po velký třesk"

Transkript

1 Od zlatého řezu přes kvazikrystaly až po velký třesk aneb o jednom z nejpodivuhodnějších čísel na světě, o nejslavnější posloupnosti vůbec a jak obojí souvisí s moderní fyzikou Fyzikální čtvrtky, ČVUT FEL Ing. Martin Žáček, Ph.D.

2 Od zlatého řezu přes kvazikrystaly až po velký třesk Členění přednášky: Úvod, teoretické a historické souvislosti:. ukázka dvou geometrických konstrukcí zlatého řezu, 2. historické poznámky, 3. některé pozoruhodné vlastnosti zlatého čísla, 4. fibonacciho posloupnost a vztah k zlatému číslu, Aplikace: 5. příroda, 6. kvazikrystaly, 7. Vesmír, 8. závěr.

3 Úvod: co je zlatý řez? Jazykem přirozeným: Zlatý řez je poměr délek úseků na úsečce takový, že větší úsek ke kratšímu se má jako celá úsečka k delšímu úseku. Jazykem matematickým: a a b ; a, b ; a, b 0. b a a a b 2 2,, 0,,2 5, 2 Definujme a vyřešme předchozí rovnici vzhledem k φ : b S ohledem na podmínky položme 5, φ se nazývá zlatý řez nebo také zlaté číslo.

4 Lze zlatý řez zkonstruovat geometricky? Pro další výklad předběhneme a uvedeme jednu vlastnost φ: 5 2. Ověříme výpočtem: Q.E.D.

5 Lze zlatý řez zkonstruovat geometricky? Matematicky přesnější tvrzení: Lze číslo φ najít za pomocí pravítka a kružítka? Odpověď: lze a a a b b a b

6 Lze zlatý řez zkonstruovat geometricky? Kontrukce metodou origami : Metoda: překládání papíru jako simulace pravítka a kružítka. Použité pomůcky: list papíru formátu A3, nůžky. Teoretický rozbor: viz předchozí slajd. Výsledek měření: a b m a délka žlutého a červeného úsek na přeponě trojúhelníku b délka červeného úseku na přeponě trojúhelníku 297 mm 83 mm a,623 0,04 b Závěr: Odchylka od tabulkové hodnoty je o 0,004 9 větší, což je o 0,3%, chybový interval má pološířku 0,87%, naměřená hodnota tedy leží uvnitř chybového intervalu a tedy se shoduje s hodnotou tabulkovou.

7 Historické poznámky První přesnou definici zlatého řezu podal kolem roku 300 př. n. l. Euklides, objevuje se v jeho Základech. Od té doby se zlatým řezem zaobírali nejvýznačnější vědci (Leonard Pisánský, Johaness Kepler, Roger Penrose, ), zlatý řez však zasahoval daleko za hranice matematiky, zabývali se jím biologové, výtvarníci, psychologové, hudebníci, historikové, architekti a i mystikové. Zlatý řez tak pravděpodobně inspiroval myslitele všech oborů víc než jakékoliv jiné číslo. Matematici používají pro zlaté číslo symbol τ z řeckého τομν (řez, díl). Poč. 20. stol Mark Barr označil φ, podle Feidia, velkého řeckého sochaře, žijícího zhruba od r. 490 do r. 430 př. n. l. Název zlatý pravděpodobně zavedl Martin Ohm, v roce 835 ve druhém vydání své knihy Die Reine Elementar-Mathematik. φ bylo předmětem rozsáhlého historického výzkumu (Roger Herz- Fischler: Mathematical History of the Golden Number).

8 Všední i pozoruhodné zajímavosti o zlatém čísle. φ je iracionální číslo (důkaz lze převést na důkaz iracionality 5) 2. φ je z hlediska aproximace nejiracionálnější číslo (viz dále), 3. φ je algebraické číslo (je totiž řešením algebraické rovnice).

9 Všední i pozoruhodné zajímavosti o zlatém čísle. φ je iracionální číslo. Říká se, že řecký matematik Hippasos z Metapontu v 5. století př. n. l. zjistit, že zlaté číslo je iracionální číslo. To bylo v rozporu s představou Pythagorejců a tehdejším filosofickým názorem, že svět je postaven na arithmos, tj. na vlastnostech celých čísel. Poznámka: historicky však takovéto legendy nepůsobí příliš věrohodně.

10 Všední i pozoruhodné zajímavosti o zlatém čísle 2. φ je z hlediska aproximace nejiracionálnější číslo. Napíšeme-li totiž φ ve tvaru řetězového zlomku, obdržíme.... Skutečně, všimněte si, že jmenovatel hlavního zlomku se rovná celému výrazu vpravo a tedy i zlatému číslu vlevo, tj. což je ale jinak zapsaná výchozí rovnice, z níž jsme číslo φ odvodili. Koeficienty jsou všechny rovny, kromě toho, že tento vzorec dává číslu φ zajímavé a výsadní postavení, říká nám také, že φ je nejhůře aproximovatelné iracionální číslo číslem racionálním.,

11 Všední i pozoruhodné zajímavosti o zlatém čísle Porovnejme aproximace zlatého čísla a např. čísla π ; chyba 23% 3 ; chyba 7,2% 2 5 ; chyba 3,0% 3 8 ; chyba,% 5 3 ; chyba 0,4% ; chyba 0,04% ; chyba 0,0026% ; chyba 0, % ; chyba 0, % 3302

12 Všední i pozoruhodné zajímavosti o zlatém čísle Vyjádření pomocí odmocnin Zlaté číslo lze například vyjádřit pomocí odmocnin:.... Opravdu, převedeme-li jedničku doleva a umocníme-li rovnici, máme 2..., kde vpravo je opět týž výraz. Porovnáním dostaneme 2 2 ; 0, Což je původní rovnice.

13 Všední i pozoruhodné zajímavosti o zlatém čísle Další zajímavé vztahy: Zkusme vyjádřit mocniny zlatého čísla: ( ) (2 ) atd. Obecný vzorec pak bude n a n jsou členy Fibonacciho posloupnosti. a n =,, 2, 3, 5, 8, 3, 2, 34, 55, 89, Platí vztah an an, kde an2 an an; a, a2. lim n a a n n (všiml si ho r. 6 Johannes Kepler).. (má svůj vlastní vědecký časopis, Fibonacci Quaterly.)

14 Odbočka k Fibonacciho posloupnosti Leonardo Pisánský, známý pod jménem Leonardo Fibonacci, cca Liber Abaci (Kniha o abaku). V knize se objevuje tato úloha: Jeden muž umístil pár králíků do prostoru obehnaného ze všech stran zdí. Kolik párů králíků vznikne z tohoto páru, předpokládáme-li, že každý pár zplodí každý měsíc nový pár, který začne plodit potomky druhý měsíc po narození? Řešení: Počty králíků po měsících jsou:,, 2, 3, 5, 8, 3, 2, 34, Název Fibonacciho posloupnost zavedl až v 9. století francouzský matematik Edouard Lucas (842-89). Existuje mnoho úloh, při jejímž řešení se uplatní Fibonacciho posloupnost.

15 Jedna úloha z optiky: Kolika možnými cestami cest může projít paprsek, prodělá-li n vnitřních reflexí?

16 Odbočka k Fibonacciho posloupnosti Lichý součet součinů sousedních Fibonacciho čísel dá druhou mocninu. Například = 9

17 Odbočka k Fibonacciho posloupnosti Přímý vzorec pro k-tý člen Fibonacciho posloupnosti: n n n an V polovině 9. století znovuobjevil Jacques Philippe Marie Binet, v 8. století již znali Leonard Euler a Abraham de Moivre. n 2 perličky na závěr k Fibonacciho posloupnosti: Součet libovolných deseti po sobě jdoucích členů je dělitelný jedenácti. 666 číslic má Fibonacciho číslo (zjistil Clifford A. Pickover, všechna čísla s nějakým vztahem k 666 nazývá apokalyptická).

18 Zlatý řez a geometrie Zlatý obdélník b a b Kde. a b b b a-b

19 Zlatý řez a geometrie Zlatý trojúhelník, zlatý gnómon a pentagram Zlatý trojúhelník Po stranách zlaté gnómony Nekonečná posloupnost pentagramů

20 Všední i pozoruhodné zajímavosti o zlatém řezu Platónská tělesa a jejich vztah ke zlatému řezu Do pravidelného dvacetistěnu lze vepsat tři navzájem kolmé zlaté obdélníky.

21 Zlatý řez Trochu záhadologie: Souvislost zlatého řezu s egyptskými pyramidami? Řada autorů tvrdí, že základem rozměrů Velké pyramidy je zlatý řez. Mohli znát Egypťané zlatý řez? Je krajně nepravděpodobné, že by zlatý řez a jeho vlastnosti objevili starověcí Babyloňané nebo Egypťané, tento úkol zůstal na řeckých matematicích. (Mario Livio: Zlatý řez, Argo/Dokořán, český překlad 2006)

22 Zlatý řez, příroda a umění Salvador Dalí Poslední večeře formát 05,5 67,75 palců je s chybou 0,84% zlatý obdélník

23 Zlatý řez, příroda a umění Filotaxe (z řeckého uspořádání listů) Termín zavedl v roce 754 Charles Bonnet, Listy na stonku se řadí určitým schématem, nejsou přesně nad sebou, aby si nestínily. Fylotaktický poměr: počet listů na jednu otočku spirály. Odpozorované poměry: ½, /3, 2/5, 3/8, Systematický výzkum filotaxe prováděl poprvé Leonardo da Vinci, Johannes Kepler první intuitivně objevil vztah mezi filotaxí a Fibonacciho čísly. Ananas: každý dílek je součástí tří spirál, 8 řad s mírným sklonem, 3 strmějších řad a 2 velmi příkrých řad. Čísla vpravo propojuje tzv. genetická spirála. Důležitým znakem je úhel mezi sousedními listy. 837 bratři Bravaisové zjistili, že je to 37, ,5 Tzv. zlatý úhel.

24 Zlatý řez, příroda a umění Filotaxe Slunečnice: Nejobvyklejší vzor: 34 spirál v jednom směru a 55 spirál v druhém směru. Byly však nalezeny i poměry 89/55, 44/89 a dokonce 233/44. Podobně se řadí okvětní lístky růží apod. Proč zrovna 37,5? Přelomové práce pojaté geometricky: pupeny jsou seskupeny nejefektivněji, jsou-li odděleny zlatým úhlem. Pokud by poměr byl racionální číslo, listy by se řadily paprskovitě. Zlatý řez mezi všemi ostatními iracionálními čísly proto, protože má od racionálních čísel nejdál. Tým fyziků N. Riviera ukáza ve studii uveřejněné v r. 984 v Journal de Physique matematický algoritmus, který ukázal, že v případě zlatého úhlu, vznikají struktury podobné slunečnicím a požadavky na homogenitu a soběpodobnost počet možných struktur razantně omezují.

25 Zlatý řez, příroda a umění Zlatá spirála Měkýši: jak rostou, vytvářejí si další větší komůrky ve schránce, staré uzavřou a nepoužívají.

26 Zlatý řez, příroda a umění Spirálová struktura galaxií Proč si galaxie udrží spirálový tvar, když v různých vzdálenostech od jádra rotují různou rychlostí? Denzitní vlny, podobné vlnám v hustém dálničním provozu. Spirálová galaxie M5

27 Zlatý řez, dláždění, kvazikrystaly Dláždění v rovině Rovinu lze periodicky pokrýt pouze dlaždicemi s tříčetnou, čtyřčetnou a šestičetnou symetrií. Alhambra,Granada

28 Zlatý řez, dláždění, kvazikrystaly Dláždění v rovině Pětiúhelník se na periodické dláždění nehodí. Avšak: 974 Roger Penrose objevil dvě základní sady dlaždic, které pokryjí rovinu a zároveň budou vykazovat pětičetnou symetrii. Jak je to možné? Penroseovy dlaždice: šipka a drak. Penrose a Conway ukázali, že dlaždice pokryjí rovinu neperiodicky a to nekonečně mnoha způsoby. Přitom počet draků je,68 větší než počet šipek.

29 Zlatý řez, dláždění, kvazikrystaly Dláždění v rovině Další pár penroseových dlaždic: Tlustý a tenký kosočtverec. Na velkých plochách se podobně blíží poměr tlustých a tenkých kosočtverců číslu,68.

30 Zlatý řez, dláždění, kvazikrystaly Dláždění v rovině Penroseovo dláždění vykazující symetrii vůči otočení:

31 Zlatý řez, dláždění, kvazikrystaly Kvazikrystaly Trojrozměrná analogie: Robert Ammann nalezl tzv. Ammannovy romboedry. Jejich stěny jsou přitom shodné s Penroseovými dlaždicemi. 984 překvapivý objev: Dany Schectman se spolupracovníky zjistil, že krystaly hliníko-manganové slitiny vykazují pětičetnou symetrii. Pro krystalografy to byl šok! Bourá se tím tradiční rozdělení krystalické a amorfní látky. Kvazikrystaly: nejsou ani amorfní ani periodické, mají však těsné uspořádání jako dosavadní známé krystaly. Předefinování krystalu: krystal je jakákoli pevná látka, jejíž difrakční diagram je bodový.

32 Zlatý řez, dláždění, kvazikrystaly Kvazikrystaly Další práce (Sergej E. Burkov z Landauova institutu teoretické fyziky,, Petra Gummeltová z Greifswaldu) vedly na teorii překrývajících se desetiúhelníků. Steinhardt a Čong: experimentální výzkum a koncept kvazielementární buňky. Kvazielementární buňka: shluk atomů, vytvářející kvaziperiodickou strukturu. Model kvazikrystalu Ag-Al.

33 Zlatý řez, volnější souvislost s kosmologií Roger Penrose (Oxford) a Paul Steinhardt (Princeton) učinili významné práce v oboru kvazikrstalů a přitom jsou oba výzmamní astrofyzici. Je zde nějaká souvislost? Roger Penrose: studoval matematiku, algebraickou geometrii, věnoval se ale také relativistické fyzice, v obecné teorii objevil teoreticky singulární struktury, které mají v reálném světě podobu černých děr. Paul Steinhardt: Jedním z klíčových postav inflačního modelu, vytvořeného Alanem Guthem z MIT, 200 přišel se svým týmem s ekpyrotickým modelem velkého třesku. Otázka, kterou si položil Mario Livio ve své knize o zlatém řezu: Proč se dva vynikající kosmologové rozhodli, že se budou zabývat zábavnou matematikou a studovat kvazikrystaly? Livio se jich jednoduše zeptal a odpovědi nejsou nezajímave:

34 Zlatý řez, volnější souvislost s kosmologií Odpověď Penroseho: Nevím, zda na to mám nějakou hlubokou odpověď, jak víte, matematika je něco, co většina matematiků dělá pro potěšení. Od dětství se bavím vzájemným spojováním různých tvarů; některé mé práce na dlaždicích tak předcházely tomu, co jsem dělal v kosmologii. Tehdy ale byla moje aktivita v zábavné matematice minimálně zčásti motivována kosmologickým výzkumem. Přemýšlel jsem o velkoprostorových strukturách vesmíru a hledal jsem modely hraček s jednoduchými základními pravidly, které by přitom mohly vytvořit komplikované struktury na velkých plochách. Livio: Jenomže co Vás vlastně přimělo, abyste na tomto problému dál pracoval? Penrose: Jak víte, vždycky jsem se zajímal o geometrii a ten problém mě zkrátka zaujal. A kromě toho, tušil jsem, že takové struktury se mohly v přírodě vyskytovat, nebylo mi ale jasné, jak by je příroda mohla sestavit známým způsobem růstu krystalů, který má lokální povahu. Úplně jasné mi to není pořád. Odpověď Steinhardta: Dobrá otázka! Jako vysokoškolá jsem opravdu nevěděl, co vlastně chci dělat. Na postgraduálním studiu jsem hledal nějakou duševní úlevu od namáhavého studia fyziky elementárních částic a našel jsem ji v oblasti uspořádání a symetrie pevných látek. Jakmile jsem narazil na problém kvaziperiodických krystalů, nemohl jsem mu odolat a už pořád jsem se k němu vracel.

35 Na závěr: co se nestihlo Zlatý řez a hudba, fraktální struktury, pyramidologie a mnoho mýtů kolem zlatého řezu, spousta zajímavých historických souvislostí, konstrukce pravítkem a kružítkem, Fibonacciho posloupnost a finanční trhy, aplikace v numerických metodách a mnoho dalšího.

36 Literatura Mario Livio: Zlatý řez. New York 2002, český překlad Argo/Dokořán 2006 Karel Čupr: Matematické zábavy a hry, Praha, ČSAV 953 Vlasta Chmelíková: Zlatý řez. Bákalářská práce, MFF UK, 2006, katedra didaktiky matematiky Adam Spencer: Kniha čísel, Albatros, Praha 2005, Magická čísla a bludné hvězdy, Roger Penrose: Shadows of the Mind, Oxford University Press 995, Použité zkratky: Q.E.D. quod erat demonstrandum (což jsme měli dokázat)

P E N R O S E O V A T E S E L A C E

P E N R O S E O V A T E S E L A C E P E N R O S E O V A T E S E L A C E Dominik Rejthar FA CVUT Semestrální práce Deskriptivní geometrie 2017/2018 Obsah 4 Teselace obecně 5 Penroseova teselace 8 Geometrický postup 13 Příklad použití Penroseovy

Více

Svět očima matematiky

Svět očima matematiky S matematikou MF seminář a 200/20 fyzikou v Temešváru - úvod 2. 6.. 205 Svět očima matematiky aneb jemný úvod do aritmetiky a algebry totuto prezentaci najdete zde: http://fyzika.feld.cvut.cz/~zacek/,

Více

2.8.6 Čísla iracionální, čísla reálná

2.8.6 Čísla iracionální, čísla reálná .8.6 Čísla iracionální, čísla reálná Předpoklady: 0080 Př. : Doplň tabulku (všechny sloupce je možné vypočítat bez kalkulačky). 00 x 0 0,0004 00 900,69 6 8 x 0,09 0, x 0 0,0004 00 x 0 0,0 0 6 6 900 0 00

Více

1, φ = 1+ 5 ZLATÉ ČÍSLO

1, φ = 1+ 5 ZLATÉ ČÍSLO φ = + 5,68 034 ZLATÉ ČÍSLO Staří Řekové znali toto číslo vzhledem k jeho spojitosti s pravidelnými pětiúhelníky a dvanáctistěny studovanými eukleidovskou geometrií. Je úzce spojené s řadou Fibonacciho

Více

Zlatý řez nejen v matematice

Zlatý řez nejen v matematice Zlatý řez nejen v matematice Zlaté číslo a jeho vlastnosti In: Vlasta Chmelíková author): Zlatý řez nejen v matematice Czech) Praha: Katedra didaktiky matematiky MFF UK, 009 pp 7 Persistent URL: http://dmlcz/dmlcz/40079

Více

HL Academy - Chata Lopata Emu (Brkos 2012) Řetězové zlomky / 27

HL Academy - Chata Lopata Emu (Brkos 2012) Řetězové zlomky / 27 Řetězové zlomky HL Academy - Chata Lopata 2012 13.2. 18.2.2012 Emu (Brkos 2012) Řetězové zlomky 13.2. 18.2.2012 1 / 27 Obsah 1 Úvod 2 Základní pojmy 3 Konečné řetězové zlomky Sblížené zlomky Euklidův algoritmus

Více

Umění vidět v matematice

Umění vidět v matematice Umění vidět v matematice Mgr. Jiří Kulička, Ph.D. Dopravní Fakulta Jana Pernera Katedra Informatiky v dopravě Oddělení aplikované matematiky jiri.kulicka@upce.cz Toto není univerzitní přednáška zjednodušení

Více

Fibonacciho čísla na střední škole

Fibonacciho čísla na střední škole Fibonacciho čísla na střední škole Martina Jarošová Abstract In this contribution we introduce some interesting facts about Fibonacci nunbers We will prove some identities using different proof methods

Více

MATURITNÍ TÉMATA Z MATEMATIKY

MATURITNÍ TÉMATA Z MATEMATIKY MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické

Více

3.2 OBJEMY A POVRCHY TĚLES

3.2 OBJEMY A POVRCHY TĚLES . OBJEMY A POVRCHY TĚLES Krychle, kvádr, hranol Dochované matematické texty ze starého Egypta obsahují několik úloh na výpočet objemu čtverhranných obilnic tvaru krychle; lze předpokládat, že stejným způsobem

Více

Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014. 1. Obor reálných čísel

Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014. 1. Obor reálných čísel Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014 1. Obor reálných čísel - obor přirozených, celých, racionálních a reálných čísel - vlastnosti operací (sčítání, odčítání, násobení, dělení) -

Více

PŘEDNÁŠKA 2 POSLOUPNOSTI

PŘEDNÁŠKA 2 POSLOUPNOSTI PŘEDNÁŠKA 2 POSLOUPNOSTI 2.1 Zobrazení 2 Definice 1. Uvažujme libovolné neprázdné množiny A, B. Zobrazení množiny A do množiny B je definováno jako množina F uspořádaných dvojic (x, y A B, kde ke každému

Více

GYMNÁZIUM CHEB SEMINÁRNÍ PRÁCE

GYMNÁZIUM CHEB SEMINÁRNÍ PRÁCE GYMNÁZIUM CHEB SEMINÁRNÍ PRÁCE Pravidelná tělesa Cheb, 2006 Lukáš Louda,7.B 0 Prohlášení Prohlašuji, že jsem seminární práci na téma: Pravidelná tělesa vypracoval zcela sám za použití pramenů uvedených

Více

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,

Více

POSLOUPNOSTI A ŘADY INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

POSLOUPNOSTI A ŘADY INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ POSLOUPNOSTI A ŘADY Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu

Více

Figurální čísla, Pascalův trojúhelník, aritmetické posloupnost vyšších řádů

Figurální čísla, Pascalův trojúhelník, aritmetické posloupnost vyšších řádů Figurální čísla, Pascalův trojúhelník, aritmetické posloupnost vyšších řádů Jaroslav Zhouf, PedF UK, Praha Úvod Pascalův trojúhelník je schéma přirozených čísel, která má své využití např. v binomické

Více

Gymnázium Česká a Olympijských nadějí, České Budějovice, Česká 64, 37021

Gymnázium Česká a Olympijských nadějí, České Budějovice, Česká 64, 37021 Maturitní témata MATEMATIKA 1. Funkce a jejich základní vlastnosti. Definice funkce, def. obor a obor hodnot funkce, funkce sudá, lichá, monotónnost funkce, funkce omezená, lokální a globální extrémy funkce,

Více

Maturitní témata profilová část

Maturitní témata profilová část Seznam témat Výroková logika, úsudky a operace s množinami Základní pojmy výrokové logiky, logické spojky a kvantifikátory, složené výroky (konjunkce, disjunkce, implikace, ekvivalence), pravdivostní tabulky,

Více

Matice v matice a Fibonacciova posloupnost

Matice v matice a Fibonacciova posloupnost Letní škola matematiky a fyziky 18 1 Matice v matice a Fibonacciova posloupnost Hana Turčinová 1 Matice bez šroubů Slovo matice je v českém jazyce takzvané homonymum - má různé významy Běžný smrtelník

Více

Ludolfovo číslo přepočítá z diskrétního do Euklidova prostoru - 1

Ludolfovo číslo přepočítá z diskrétního do Euklidova prostoru - 1 Ludolfovo číslo přepočítá z diskrétního do Euklidova prostoru - 1 Bohumír Tichánek 7 Práce zdůvodňuje způsob využití Ludolfova čísla při převodu bodu, a to z diskrétního do Euklidova prostoru. Tím se bod

Více

pro bakalářské studijní programy fyzika, informatika a matematika 2018, varianta A

pro bakalářské studijní programy fyzika, informatika a matematika 2018, varianta A Přijímací zkouška na MFF UK pro bakalářské studijní programy fyzika, informatika a matematika 2018, varianta A U každé z deseti úloh je nabízeno pět odpovědí: a, b, c, d, e. Vaším úkolem je u každé úlohy

Více

Pythagorova věta a pythagorejské trojúhelníky-ondřej Zeman Asi 600 př.n.l

Pythagorova věta a pythagorejské trojúhelníky-ondřej Zeman Asi 600 př.n.l Pythagorova věta a pythagorejské trojúhelníky-ondřej Zeman Asi 600 př.n.l Baudhayana (kolem 800 př.n.l) Pythagoras ze Sámu (asi 580 př.n.l asi 500 př.n.l) Motivace: Tato věta mě zaujala, protože se o ní

Více

Matematika 1 Jiˇr ı Fiˇser 19. z aˇr ı 2016 Jiˇr ı Fiˇser (KMA, PˇrF UP Olomouc) KMA MAT1 19. z aˇr ı / 19

Matematika 1 Jiˇr ı Fiˇser 19. z aˇr ı 2016 Jiˇr ı Fiˇser (KMA, PˇrF UP Olomouc) KMA MAT1 19. z aˇr ı / 19 Matematika 1 Jiří Fišer 19. září 2016 Jiří Fišer (KMA, PřF UP Olomouc) KMA MAT1 19. září 2016 1 / 19 Zimní semestr KMA MAT1 1 Úprava algebraických výrazů. Číselné obory. 2 Kombinatorika, základy teorie

Více

POSLOUPNOSTI A ŘADY INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky

POSLOUPNOSTI A ŘADY INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky POSLOUPNOSTI A ŘADY Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu

Více

ZŠ ÚnO, Bratří Čapků 1332

ZŠ ÚnO, Bratří Čapků 1332 Úvodní obrazovka Menu (vlevo nahoře) Návrat na hlavní stránku Obsah Výsledky Poznámky Záložky edunet Konec Matematika 1 (pro 12-16 let) LangMaster Obsah (střední část) výběr tématu - dvojklikem v seznamu

Více

Křivky kolem nás. Webinář. 20. dubna 2016

Křivky kolem nás. Webinář. 20. dubna 2016 Křivky kolem nás Webinář 20. dubna 2016 Přístup k funkcím Funkce (zobrazení) Předpis, který přiřazuje jedné hodnotě x hodnotu y = f (x). Je to množina F uspořádaných dvojic (x, y) takových, že pokud (x,

Více

Otázky z kapitoly Posloupnosti

Otázky z kapitoly Posloupnosti Otázky z kapitoly Posloupnosti 8. září 08 Obsah Aritmetická posloupnost (8 otázek). Obtížnost (0 otázek)........................................ Obtížnost (0 otázek).......................................

Více

Historie matematiky a informatiky

Historie matematiky a informatiky Historie matematiky a informatiky 2018 Doc. RNDr. Alena Šolcová, Ph.D. Katedra aplikované matematiky FIT ČVUT v Praze 22. 2. 2018 Alena Šolcová, FIT ČVUT v Praze 1 Pýthagorás ze Samu, 6. stol. př. n. l.

Více

Fakulta informačních technologií

Fakulta informačních technologií České vysoké učení technické v Praze Fakulta informačních technologií Historie matematiky a informatiky Zlatý řez Jaroslav Hrách Obsah 1 Úvod 1 2 Historie 2 3 Zlatý řez v matematice 4 3.1 Výpočet zlatého

Více

----- Studijní obory. z matematiky. z matematiky. * Aplikovaná matematika * Matematické metody v ekonomice

----- Studijní obory. z matematiky. z matematiky. * Aplikovaná matematika * Matematické metody v ekonomice Minimum Maximum Minimum Maximum Studijní obory z matematiky z matematiky z matematiky z matematiky * Aplikovaná matematika * Matematické metody v ekonomice * Obecná matematika Navazující magisterský studijní

Více

ZŠ ÚnO, Bratří Čapků 1332

ZŠ ÚnO, Bratří Čapků 1332 Úvodní obrazovka Menu Návrat na hlavní stránku Obsah Výsledky Poznámky Záložky edunet Konec Matematika 2 (pro 9-12 let) LangMaster Obsah (střední část) výběr tématu - dvojklikem v seznamu témat (horní

Více

Aplikovaná numerická matematika

Aplikovaná numerická matematika Aplikovaná numerická matematika 6. Metoda nejmenších čtverců doc. Ing. Róbert Lórencz, CSc. České vysoké učení technické v Praze Fakulta informačních technologií Katedra počítačových systémů Příprava studijních

Více

Řešení. Označme po řadě F (z) Odtud plyne, že

Řešení. Označme po řadě F (z) Odtud plyne, že Úloha Nechť ~ R(, ) a Y = Jinak řečeno, Y je odmocnina čísla vybraného zcela náhodně z intervalu (, ) Popište rozdělení veličiny Y a určete jeho modus, medián, střední hodnotu a rozptyl Řešení Označme

Více

becvar

becvar Jindřich Bečvář Katedra didaktiky matematiky, Matematicko-fyzikální fakulta UK, Praha Banská Bystrica, 11. října 2016 becvar@karlin.mff.cuni.cz www.karlin.mff.cuni.cz/ becvar www.karlin.mff.cuni.cz/katedry/kdm

Více

CZ 1.07/1.1.32/02.0006

CZ 1.07/1.1.32/02.0006 PO ŠKOLE DO ŠKOLY CZ 1.07/1.1.32/02.0006 Číslo projektu: CZ.1.07/1.1.32/02.0006 Název projektu: Po škole do školy Příjemce grantu: Gymnázium, Kladno Název výstupu: Prohlubující semináře Matematika (MI

Více

Matematická analýza I

Matematická analýza I Matematická analýza I Cvičení 1 (4. 10. 2016) Definice absolutní hodnoty. Řešení nerovnic s absolutními hodnotami. Geometrická interpretace řešení nerovnice x + 1 < 3. Komplexní čísla a operace s nimi,

Více

Přijímací zkouška na MFF UK v Praze

Přijímací zkouška na MFF UK v Praze Přijímací zkouška na MFF UK v Praze pro bakalářské studijní programy fyzika, informatika a matematika 2016, varianta A U každé z deseti úloh je nabízeno pět odpovědí: a, b, c, d, e. Vaším úkolem je u každé

Více

Úlohy k přednášce NMAG 101 a 120: Lineární algebra a geometrie 1 a 2,

Úlohy k přednášce NMAG 101 a 120: Lineární algebra a geometrie 1 a 2, Úlohy k přednášce NMAG a : Lineární algebra a geometrie a Verze ze dne. května Toto je seznam přímočarých příkladů k přednášce. Úlohy z tohoto seznamu je nezbytně nutné umět řešit. Podobné typy úloh se

Více

Posloupnosti a řady. a n+1 = a n + 4, a 1 = 5 a n+1 = a n + 5, a 1 = 5. a n+1 = a n+1 = n + 1 n a n, a 1 = 1 2

Posloupnosti a řady. a n+1 = a n + 4, a 1 = 5 a n+1 = a n + 5, a 1 = 5. a n+1 = a n+1 = n + 1 n a n, a 1 = 1 2 Vlastnosti posloupností 90000680 (level ): Je dána posloupnost (an + b), ve které platí, že a = a a 4 = 8. Potom: Posloupnosti a řady 900006807 (level ): Které z čísel 5, 5, 8, 47 není členem posloupnosti

Více

2.1 Pokyny k otevřeným úlohám. Výsledky pište čitelně do vyznačených bílých polí. 2.2 Pokyny k uzavřeným úlohám

2.1 Pokyny k otevřeným úlohám. Výsledky pište čitelně do vyznačených bílých polí. 2.2 Pokyny k uzavřeným úlohám MATEMATIKA+ DIDAKTICKÝ TEST Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % 1 Základní informace k zadání zkoušky Didaktický test obsahuje 23 úloh. Časový limit pro řešení didaktického testu

Více

Matematika PRŮŘEZOVÁ TÉMATA

Matematika PRŮŘEZOVÁ TÉMATA Matematika ročník TÉMA 1-4 Operace s čísly a - provádí aritmetické operace v množině reálných čísel - používá různé zápisy reálného čísla - používá absolutní hodnotu, zapíše a znázorní interval, provádí

Více

Přijímací zkouška na MFF UK v Praze

Přijímací zkouška na MFF UK v Praze Přijímací zkouška na MFF UK v Praze pro bakalářské studijní programy fyzika, informatika a matematika 017, varianta A U každé z deseti úloh je nabízeno pět odpovědí: a, b, c, d, e. Vaším úkolem je u každé

Více

Racionální čísla. teorie řešené úlohy cvičení tipy k maturitě výsledky. Víš, že. Naučíš se

Racionální čísla. teorie řešené úlohy cvičení tipy k maturitě výsledky. Víš, že. Naučíš se teorie řešené úlohy cvičení tipy k maturitě výsledky Víš, že racionální v matematice znamená poměrový nebo podílový, zatímco v běžné řeči ho užíváme spíše ve významu rozumový? zlomky používali již staří

Více

Požadavky k opravným zkouškám z matematiky školní rok 2014-2015

Požadavky k opravným zkouškám z matematiky školní rok 2014-2015 Požadavky k opravným zkouškám z matematiky školní rok 2014-2015 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,

Více

CVIČNÝ TEST 22. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15

CVIČNÝ TEST 22. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15 CVIČNÝ TEST 22 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15 I. CVIČNÝ TEST VÝCHOZÍ TEXT K ÚLOZE 1 Kontroloři Státní zemědělské a potravinářské inspekce

Více

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy:

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy: Opakování středoškolské matematiky Slovo úvodem: Tato pomůcka je určena zejména těm studentům presenčního i kombinovaného studia na VŠFS, kteří na středních školách neprošli dostatečnou průpravou z matematiky

Více

Úlohy klauzurní části školního kola kategorie A

Úlohy klauzurní části školního kola kategorie A 63 ročník matematické olympiády Úlohy klauzurní části školního kola kategorie 1 Dokažte, že pro každé celé číslo n 3 je n-místné číslo s dekadickým zápisem druhou mocninou některého celého čísla 1 1 8

Více

Historie matematiky a informatiky 2 8. přednáška

Historie matematiky a informatiky 2 8. přednáška Historie matematiky a informatiky 2 8. přednáška Doc. RNDr. Alena Šolcová, Ph. D., KAM, FIT ČVUT v Praze 12. listopadu 2013 Evropský sociální fond Investujeme do vaší budoucnosti Alena Šolcová Čísla speciálních

Více

Matematická analýza III.

Matematická analýza III. 1. - limita, spojitost Miroslav Hušek, Lucie Loukotová UJEP 2010 Úvod Co bychom měli znát limity posloupností v R základní vlastnosti funkcí jedné proměnné (definiční obor, monotónnost, omezenost,... )

Více

1.3. Číselné množiny. Cíle. Průvodce studiem. Výklad

1.3. Číselné množiny. Cíle. Průvodce studiem. Výklad 1.3. Cíle Cílem kapitoly je seznámení čtenáře s axiomy číselných oborů a jejich podmnožin (intervalů) a zavedení nových pojmů, které nejsou náplní středoškolských osnov. Průvodce studiem Vývoj matematiky

Více

South Bohemia Mathematical Letters Volume 23, (2015), No. 1, DĚLENÍ KRUHU NA OBLASTI ÚVOD

South Bohemia Mathematical Letters Volume 23, (2015), No. 1, DĚLENÍ KRUHU NA OBLASTI ÚVOD South Bohemia Mathematical Letters Volume 23, (2015), No. 1, 113-122. DĚLENÍ KRUHU NA OBLASTI MAREK VEJSADA ABSTRAKT. V textu se zabývám řešením následujícího problému: Zvolíme na kružnici určitý počet

Více

Těleso racionálních funkcí

Těleso racionálních funkcí Těleso racionálních funkcí Poznámka. V minulém semestru jsme libovolnému oboru integrity sestrojili podílové těleso. Pro libovolné těleso R je okruh polynomů R[x] oborem integrity, máme tedy podílové těleso

Více

Tematický plán Obor: Informační technologie. Vyučující: Ing. Joanna Paździorová

Tematický plán Obor: Informační technologie. Vyučující: Ing. Joanna Paździorová Tematický plán Vyučující: Ing. Joanna Paździorová 1. r o č n í k 5 h o d i n t ý d n ě, c e l k e m 1 7 0 h o d i n Téma- Tematický celek Z á ř í 1. Opakování a prohloubení učiva základní školy 18 1.1.

Více

ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ

ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ Parametrické vyjádření přímky v rovině Máme přímku p v rovině určenou body A, B. Sestrojíme vektor u = B A. Pro bod B tím pádem platí: B = A + u. Je zřejmé,

Více

Maturitní otázky z předmětu MATEMATIKA

Maturitní otázky z předmětu MATEMATIKA Wichterlovo gymnázium, Ostrava-Poruba, příspěvková organizace Maturitní otázky z předmětu MATEMATIKA 1. Výrazy a jejich úpravy vzorce (a+b)2,(a+b)3,a2-b2,a3+b3, dělení mnohočlenů, mocniny, odmocniny, vlastnosti

Více

Matematika 2 Úvod ZS09. KMA, PřF UP Olomouc. Jiří Fišer (KMA, PřF UP Olomouc) KMA MA2AA ZS09 1 / 25

Matematika 2 Úvod ZS09. KMA, PřF UP Olomouc. Jiří Fišer (KMA, PřF UP Olomouc) KMA MA2AA ZS09 1 / 25 Matematika 2 Úvod Jiří Fišer KMA, PřF UP Olomouc ZS09 Jiří Fišer (KMA, PřF UP Olomouc) KMA MA2AA ZS09 1 / 25 Studijní materiály web předmětu: aix-slx.upol.cz/ fiser St. Trávníček: Matematická analýza kag.upol.cz/travnicek/1-matan.

Více

Základy aritmetiky a algebry II

Základy aritmetiky a algebry II Osnova předmětu Základy aritmetiky a algebry II 1. Lineární rovnice, řešení v tělesech Q, R, C, Z p, počet řešení v okruhu Z n, n N \ P. Grafické řešení, lineární nerovnice. 2. Kvadratická rovnice. Didaktický

Více

Zlatý řez nejen v matematice

Zlatý řez nejen v matematice Zlatý řez nejen v matematice Užití zlatého řezu v 21. století In: Vlasta Chmelíková (author): Zlatý řez nejen v matematice. (Czech). Praha: Katedra didaktiky matematiky MFF UK, 2009. pp. 145--148. Persistent

Více

REÁLNÁ FUNKCE JEDNÉ PROMĚNNÉ

REÁLNÁ FUNKCE JEDNÉ PROMĚNNÉ REÁLNÁ FUNKCE JEDNÉ PROMĚNNÉ 5 přednáška S funkcemi se setkáváme na každém kroku ve všech přírodních vědách ale i v každodenním životě Každá situace kdy jsou nějaký jev nebo veličina jednoznačně určeny

Více

Necht L je lineární prostor nad R. Operaci : L L R nazýváme

Necht L je lineární prostor nad R. Operaci : L L R nazýváme Skalární součin axiomatická definice odvození velikosti vektorů a úhlu mezi vektory geometrická interpretace ortogonalita vlastnosti ortonormálních bázi [1] Definice skalárního součinu Necht L je lineární

Více

Cvičné texty ke státní maturitě z matematiky

Cvičné texty ke státní maturitě z matematiky Cvičné texty ke státní maturitě z matematiky Pracovní listy s postupy řešení Brno 2010 RNDr. Rudolf Schwarz, CSc. Státní maturita z matematiky Obsah Obsah NIŽŠÍ úroveň obtížnosti 4 MAGZD10C0K01 říjen 2010..........................

Více

ZŠ ÚnO, Bratří Čapků 1332

ZŠ ÚnO, Bratří Čapků 1332 Úvodní obrazovka Menu (vlevo nahoře) Návrat na hlavní stránku Obsah Výsledky Poznámky Záložky edunet Konec Matematika 2 (pro 12-16 let) LangMaster Obsah (střední část) výběr tématu - dvojklikem v seznamu

Více

1.4.6 Stavba matematiky, důkazy

1.4.6 Stavba matematiky, důkazy 1.4.6 tavba matematiky, důkazy Předpoklady: 1401, 1404 Pedagogická poznámka: Tato hodina se velmi liší od většiny ostatních neboť jde v podstatě o přednášku. Také ji neprobíráme v prvním ročníku, ale přednáším

Více

Matematika NÁRODNÍ SROVNÁVACÍ ZKOUŠKY DUBNA 2017

Matematika NÁRODNÍ SROVNÁVACÍ ZKOUŠKY DUBNA 2017 NÁRODNÍ SROVNÁVACÍ ZKOUŠKY Matematika T DUBNA 07 : 9. dubna 07 D : 830 P P P : 30 M. M. : 30 : 8,8 M. :, % S : -7,5 M. P : -,5 :,4 Zopakujte si základní informace ke zkoušce: n Test obsahuje 30 úloh a

Více

3. Reálná čísla. většinou racionálních čísel. V analytických úvahách, které praktickým výpočtům

3. Reálná čísla. většinou racionálních čísel. V analytických úvahách, které praktickým výpočtům RACIONÁLNÍ A IRACIONÁLNÍ ČÍSLA Význačnými množinami jsou číselné množiny K nejvýznamnějším patří množina reálných čísel, obsahující jako podmnožiny množiny přirozených, celých, racionálních a iracionálních

Více

Základy matematické analýzy

Základy matematické analýzy Základy matematické analýzy Spojitost funkce Ing. Tomáš Kalvoda, Ph.D. 1, Ing. Daniel Vašata 2 1 tomas.kalvoda@fit.cvut.cz 2 daniel.vasata@fit.cvut.cz Katedra aplikované matematiky Fakulta informačních

Více

Mgr. Tomáš Kotler. I. Cvičný test 2 II. Autorské řešení 7 III. Klíč 15 IV. Záznamový list 17

Mgr. Tomáš Kotler. I. Cvičný test 2 II. Autorské řešení 7 III. Klíč 15 IV. Záznamový list 17 Mgr. Tomáš Kotler I. Cvičný test 2 II. Autorské řešení 7 III. Klíč 15 IV. Záznamový list 17 VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 1 Je dán rovinný obrazec, v obrázku vyznačený barevnou výplní, který představuje

Více

Matematický KLOKAN kategorie Kadet

Matematický KLOKAN kategorie Kadet Matematický KLOKAN 2009 www.matematickyklokan.net kategorie Kadet Úlohy za body. Hodnota kterého z výrazů je sudé číslo? (A) 2009 (B) 2 + 0 + 0 + 9 (C) 200 9 (D) 200 9 (E) 200 + 9 2. Hvězda na obrázku

Více

Maturitní témata z matematiky

Maturitní témata z matematiky Maturitní témata z matematiky G y m n á z i u m J i h l a v a Výroky, množiny jednoduché výroky, pravdivostní hodnoty výroků, negace operace s výroky, složené výroky, tabulky pravdivostních hodnot důkazy

Více

Komplexní analýza. Laplaceova transformace. Martin Bohata. Katedra matematiky FEL ČVUT v Praze

Komplexní analýza. Laplaceova transformace. Martin Bohata. Katedra matematiky FEL ČVUT v Praze Komplexní analýza Laplaceova transformace Martin Bohata Katedra matematiky FEL ČVUT v Praze bohata@math.feld.cvut.cz Martin Bohata Komplexní analýza Laplaceova transformace 1 / 18 Definice Definice Laplaceovou

Více

B) výchovné a vzdělávací strategie jsou totožné se strategiemi vyučovacího předmětu Matematika.

B) výchovné a vzdělávací strategie jsou totožné se strategiemi vyučovacího předmětu Matematika. 4.8.3. Cvičení z matematiky Předmět Cvičení z matematiky je vyučován v sextě a v septimě jako volitelný předmět. Vzdělávací obsah vyučovacího předmětu Cvičení z matematiky vychází ze vzdělávací oblasti

Více

6 Skalární součin. u v = (u 1 v 1 ) 2 +(u 2 v 2 ) 2 +(u 3 v 3 ) 2

6 Skalární součin. u v = (u 1 v 1 ) 2 +(u 2 v 2 ) 2 +(u 3 v 3 ) 2 6 Skalární součin Skalární součin 1 je operace, která dvěma vektorům (je to tedy binární operace) přiřazuje skalár (v našem případě jde o reálné číslo, obecně se jedná o prvek nějakého tělesa T ). Dovoluje

Více

MATEMATIKA 5. TŘÍDA. C) Tabulky, grafy, diagramy 1 - Tabulky, doplnění řady čísel podle závislosti 2 - Grafy, jízní řády 3 - Magické čtverce

MATEMATIKA 5. TŘÍDA. C) Tabulky, grafy, diagramy 1 - Tabulky, doplnění řady čísel podle závislosti 2 - Grafy, jízní řády 3 - Magické čtverce MATEMATIKA 5. TŘÍDA 1 - Přirozená čísla a číslo nula a číselná osa, porovnávání b zaokrouhlování c zápis čísla v desítkové soustavě d součet, rozdíl e násobek, činitel, součin f dělení, dělení se zbytkem

Více

Matematika - Historie - 1

Matematika - Historie - 1 Matematika - Historie - 1 Vybrali jsme zajímavé jevy z historie matematiky a sestavili z nich jeden test. Doufáme, že se podaří splnit hned několik cílů. Test vás potěší, překvapí a poučí. Odpovědi hledejte

Více

řešeny numericky 6 Obyčejné diferenciální rovnice řešeny numericky

řešeny numericky 6 Obyčejné diferenciální rovnice řešeny numericky řešeny numericky řešeny numericky Břetislav Fajmon, UMAT FEKT, VUT Brno Na minulé přednášce jsme viděli některé klasické metody a přístupy pro řešení diferenciálních rovnic: stručně řečeno, rovnice obsahující

Více

4.3.4 Základní goniometrické vzorce I

4.3.4 Základní goniometrické vzorce I .. Základní goniometrické vzorce I Předpoklady: 0 Dva vzorce, oba známe už z prváku. Pro každé R platí: + =. Důkaz: Použijeme definici obou funkcí v jednotkové kružnici: T sin() T 0 - cos() S 0 R - Obě

Více

Zavedení a vlastnosti reálných čísel

Zavedení a vlastnosti reálných čísel Zavedení a vlastnosti reálných čísel jsou základním kamenem matematické analýzy. Konstrukce reálných čísel sice není náplní matematické analýzy, ale množina reálných čísel R je pro matematickou analýzu

Více

Riemannova hypotéza Martin Havlík 2. A

Riemannova hypotéza Martin Havlík 2. A Riemannova hypotéza Martin Havlík 2. A Motivace: Motivace mého projektu je jednoduchá, pochopit matematiky označovaný nejtěžší a nejdůležitější problém současné matematiky. Cíle: Dokázání téhle hypotézy

Více

Metoda řezu a projekce jako model kvazikrystalu. 14. května 2010

Metoda řezu a projekce jako model kvazikrystalu. 14. května 2010 Metoda řezu a projekce jako model kvazikrystalu Zuzana Masáková 14. května 2010 Vlastnosti požadované od Σ R d Delonovská vlastnost: r, R, 0 < r R < + : (i) B(x, r) Σ = {x} pro x Σ; (ii) B(x, R) Σ pro

Více

Mgr. Tomáš Kotler. I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17

Mgr. Tomáš Kotler. I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 Mgr. Tomáš Kotler I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 1 bod 1 Určete průsečík P[x, y] grafů funkcí f: y = x + 2 a g: y = x 1 2, které jsou definovány na množině reálných

Více

Gymnázium Jiřího Ortena, Kutná Hora

Gymnázium Jiřího Ortena, Kutná Hora Předmět: Náplň: Třída: Počet hodin: Pomůcky: Cvičení z matematiky algebra (CZMa) Systematizace a prohloubení učiva matematiky: Číselné obory, Algebraické výrazy, Rovnice, Funkce, Posloupnosti, Diferenciální

Více

Co Fibonacci ani Ludolf netušili. aneb

Co Fibonacci ani Ludolf netušili. aneb Co Fibonacci ani Ludolf netušili aneb Jak souvisí čísla Fibonacciho s číslem π Doc. RNDr. Emil Calda, CSc. Kurz vznikl v rámci projektu Rozvoj systému vzdělávacích příležitostí pro nadané žáky a studenty

Více

Příklad. Řešte v : takže rovnice v zadání má v tomto případě jedno řešení. Pro má rovnice tvar

Příklad. Řešte v : takže rovnice v zadání má v tomto případě jedno řešení. Pro má rovnice tvar Řešte v : má rovnice tvar takže rovnice v zadání má v tomto případě jedno řešení. Pro má rovnice tvar takže rovnice v zadání má v tomto případě opět jedno řešení. Sjednocením obou případů dostaneme úplné

Více

Definice (Racionální mocnina). Buď,. Nechť, kde a a čísla jsou nesoudělná. Pak: 1. je-li a sudé, (nebo) 2. je-li liché, klademe

Definice (Racionální mocnina). Buď,. Nechť, kde a a čísla jsou nesoudělná. Pak: 1. je-li a sudé, (nebo) 2. je-li liché, klademe Úvodní opakování. Mocnina a logaritmus Definice ( -tá mocnina). Pro každé klademe a dále pro každé, definujeme indukcí Dále pro všechna klademe a pro Později budeme dokazovat následující větu: Věta (O

Více

Fibonacciho posloupnost

Fibonacciho posloupnost UNIVERZITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDECKÁ FAKULTA Katedra matematické analýzy a aplikací matematiky BAKALÁŘSKÁ PRÁCE Fibonacciho posloupnost Vedoucí bakalářské práce: RNDr. Martina Pavlačková, Ph.D.

Více

DĚJINY MATEMATIKY tematické okruhy ke zkoušce

DĚJINY MATEMATIKY tematické okruhy ke zkoušce DĚJINY MATEMATIKY tematické okruhy ke zkoušce ZIMNÍ SEMESTR Pythagorejská matematika: Pýthagorova věta. Formulace. Školský důkaz, Eukleidův důkaz. Pýthagorejské trojice. Definice, popis všech pýthagorejských

Více

Státní závěrečná zkouška z oboru Matematika a její použití v přírodních vědách

Státní závěrečná zkouška z oboru Matematika a její použití v přírodních vědách Státní závěrečná zkouška z oboru Matematika a její použití v přírodních vědách Ústní zkouška z oboru Náročnost zkoušky je podtržena její ústní formou a komisionálním charakterem. Předmětem bakalářské zkoušky

Více

55. ročník matematické olympiády

55. ročník matematické olympiády . ročník matematické olympiády! " #%$'&( *$,+ 1. Najděte všechny dvojice celých čísel x a y, pro něž platí x y = 6 10.. Je dán rovnostranný trojúhelník ABC o obsahu S a jeho vnitřní bod M. Označme po řadě

Více

1 Připomenutí vybraných pojmů

1 Připomenutí vybraných pojmů 1 Připomenutí vybraných pojmů 1.1 Grupa Definice 1 ((Komutativní) grupa). Grupou (M, ) rozumíme množinu M spolu s operací na M, která má tyto vlastnosti: i) x, y M; x y M, Operace je neomezeně definovaná

Více

SBÍRKA ÚLOH I. Základní poznatky Teorie množin. Kniha Kapitola Podkapitola Opakování ze ZŠ Co se hodí si zapamatovat. Přírozená čísla.

SBÍRKA ÚLOH I. Základní poznatky Teorie množin. Kniha Kapitola Podkapitola Opakování ze ZŠ Co se hodí si zapamatovat. Přírozená čísla. Opakování ze ZŠ Co se hodí si zapamatovat Přírozená čísla Číselné obory Celá čísla Racionální čísla Reálná čísla Základní poznatky Teorie množin Výroková logika Mocniny a odmocniny Množiny Vennovy diagramy

Více

Modelové úlohy přijímacího testu z matematiky

Modelové úlohy přijímacího testu z matematiky PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITY KARLOVY V PRAZE Modelové úlohy přijímacího testu z matematiky r + s r s r s r + s 1 r2 + s 2 r 2 s 2 ( ) ( ) 1 a 2a 1 + a 3 1 + 2a + 1 ( a b 2 + ab 2 ) ( a + b + b b a

Více

Bakalářská matematika I

Bakalářská matematika I 1. Funkce Diferenciální počet Mgr. Jaroslav Drobek, Ph. D. Katedra matematiky a deskriptivní geometrie Bakalářská matematika I Některé užitečné pojmy Kartézský součin podrobnosti Definice 1.1 Nechť A,

Více

MATEMATIKA. 2Pravidla správného zápisu odpovědí. 1Základní informace k zadání zkoušky DIDAKTICKÝ TEST. Testový sešit neotvírejte, počkejte na pokyn!

MATEMATIKA. 2Pravidla správného zápisu odpovědí. 1Základní informace k zadání zkoušky DIDAKTICKÝ TEST. Testový sešit neotvírejte, počkejte na pokyn! MATEMATIKA DIDAKTICKÝ TEST Maximální bodové hodnocení: 30 bodů Pro přijetí uchazečů je rozhodné umístění v sestupném pořadí uchazečů podle dosaženého bodového hodnocení. 1Základní informace k zadání zkoušky

Více

CVIČNÝ TEST 48. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17

CVIČNÝ TEST 48. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 CVIČNÝ TEST 48 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 1 Je dán konvexní čtyřúhelník, jehož vnitřní

Více

66. ročníku MO (kategorie A, B, C)

66. ročníku MO (kategorie A, B, C) Příloha časopisu MATEMATIKA FYZIKA INFORMATIKA Ročník 25 (2016), číslo 3 Úlohy I. kola (domácí část) 66. ročníku MO (kategorie A, B, C) KATEGORIE A A I 1 Najděte všechna prvočísla p, pro něž existuje přirozené

Více

n =5, potom hledejte obecný vztah. 4.5 Mnohoúhelníky PŘÍKLAD 4.2. Kolik úhlopříček má n úhelník? Vyřešte nejprve pro Obrázek 28: Tangram

n =5, potom hledejte obecný vztah. 4.5 Mnohoúhelníky PŘÍKLAD 4.2. Kolik úhlopříček má n úhelník? Vyřešte nejprve pro Obrázek 28: Tangram 4.5 Mnohoúhelníky Obrázek 28: Tangram Mnohoúhelník můžeme charakterizovat jako část roviny ohraničenou uzavřenou lomenou čarou (tj. čarou, která se skládá z na sebe navazujících úseček). Již víme, že rozlišujeme

Více

Matematické algoritmy (11MAG) Jan Přikryl. verze: :29

Matematické algoritmy (11MAG) Jan Přikryl. verze: :29 Prvočísla, dělitelnost Matematické algoritmy (11MAG) Jan Přikryl 2. přednáška 11MAG pondělí 7. října 2013 verze: 2013-10-22 14:29 Obsah 1 Prvočísla 1 1.1 Vlastnosti prvočísel...................................

Více

Matematický ústav UK Matematicko-fyzikální fakulta

Matematický ústav UK Matematicko-fyzikální fakulta Geometrické modelování Zbyněk Šír Matematický ústav UK Matematicko-fyzikální fakulta 2. října 2018 Zbyněk Šír (MÚ UK) - Geometrické modelování 2. října 2018 1 / 15 Obsah dnešní přednášky Co je to geometrické

Více

1 Polynomiální interpolace

1 Polynomiální interpolace Polynomiální interpolace. Metoda neurčitých koeficientů Příklad.. Nalezněte polynom p co nejmenšího stupně, pro který platí p() = 0, p(2) =, p( ) = 6. Řešení. Polynom hledáme metodou neurčitých koeficientů,

Více