Bezkontextové jazyky. Bezkontextové jazyky 1 p.1/39

Rozměr: px
Začít zobrazení ze stránky:

Download "Bezkontextové jazyky. Bezkontextové jazyky 1 p.1/39"

Transkript

1 Bezkontextové jazyky Bezkontextové jazyky 1 p.1/39

2 Jazyky typu 2 Definice 4.1 Gramatika G = (N, Σ, P, S) si nazývá bezkontextovou gramatikou, jestliže všechna pravidla z P mají tvar A α, A N, α (N Σ) Lemma 4.1 Každý regulární jazyk je jazykem bezkontextovým. Proč studujeme bezkontextové jazyky? Příklad 4.1 Jazyk L = {a n b n n 0}, jak víme, není jazykem regulárním, je však jazykem bezkontextovým: L = L(G) kde G = ({S}, {a, b}, {S asb, S ε}, S) Bezkontextové jazyky 1 p.2/39

3 Příklad bezkontextové gramatiky Pro účely demonstrace vysvětlovaných pojmů budeme v následujících příkladech používat následující gramatiku. Příklad 4.2 Gramatika G = ({S,A, B}, {a, b, c}, P,S), kde P obsahuje pravidla S AB A aab ab B bbc bc generuje bezkontextový jazyk L(G) = {a m b m+n c n n 1,m 1} Bezkontextové jazyky 1 p.3/39

4 Derivační strom Důležitým prostředkem pro grafické vyjádření struktury věty (její derivace) je strom, který se nazývá derivačním nebo syntaktickým stromem. Definice 4.2 Necht δ je věta nebo větná forma generovaná v gramatice G = (N, Σ, P, S) a necht S = v 0 v 1... v k = δ její derivace v G. Derivační strom příslušející této derivaci je vrcholově ohodnocený strom s těmito vlastnostmi: 1. Vrcholy derivačního stromu jsou ohodnoceny symboly z množiny N Σ; kořen stromu je označen výchozím symbolem S. 2. Přímé derivaci v i 1 v i, i = 0,1,...,k kde v i 1 = µaλ, µ, λ (N Σ), A N v i = µαλ A α, α = X 1... X n je pravidlo z P, odpovídá právě n hran (A, X j ),j = 1,...,n vycházejících z uzlu A, jež jsou uspořádány zleva doprava v pořadí (A, X 1 ), (A, X 2 ),...,(A, X n ). 3. Ohodnocení koncových uzlů derivačního stromu vytváří zleva doprava větnou formu nebo větu δ (plyne z 1. a 2.). Bezkontextové jazyky 1 p.4/39

5 Příklad derivačního stromu Příklad 4.3 derivací: V gramatice z příkladu 4.2 můžeme generovat řetězec aabbbbcc např. S AB aabb aabbbc aabbbcc aabbbbcc Derivační strom odpovídající této derivaci vypadá takto (po stranách jsou uvedena použitá pravidla): S S AB A aab a A b b B c B bbc A ab a A b b B c B bc Bezkontextové jazyky 1 p.5/39

6 Levá a pravá derivace Ukažme si i jiné derivace věty aabbbbcc, které se liší v pořadí, v němž byly vybírány nonterminály pro přímé derivace. 1. S AB aabb aabbb aabbbbc aabbbbcc 2. S AB AbBc Abbcc aabbbc aabbbbcc Definice 4.3 Necht S α 1 α 2... α n = α je derivace větné formy α. Jestliže byl v každém řetězci α i, i = 1,...,n 1 přepsán nejlevější (nejpravější) nonterminál, pak tuto derivaci nazýváme levou (pravou) derivací větné formy α. Výše uvedené příklady derivací představují levou (1.) a pravou (2.) derivaci. Lemma 4.2 Je-li S α 0 α 1... α n w levá, resp. pravá derivace věty w, pak každá z větných forem α i, i = 1, 2,...,n 1 má tvar: x i A i β i kde x i Σ,A i N, β i (N Σ) resp. γ i B i y i kde y i Σ, B i N, γ i (N Σ) t.j. větné formy levé, resp. pravé derivace mají terminální prefixy, resp. sufixy. Bezkontextové jazyky 1 p.6/39

7 Fráze větné formy Definice 4.4 Necht G = (N, Σ, P, S) je gramatika a necht řetězec λ = αβγ je větná forma. Podřetězec β se nazývá frází větné formy vzhledem k nonterminálu A z N, jestliže platí: S αaγ A + β Podřetězec β je jednoduchou frází větné formy, jestliže platí: S αaγ A β Nejlevější jednoduchá fráze se nazývá l-frází. Bezkontextové jazyky 1 p.7/39

8 Příklad 4.4 V gramatice z příkladu 4.1 nalezněte fráze věty aabbbbcc. Nejdříve vytvořme libovolnou derivaci této věty (Příklad 4.2). Na základě této derivace získáme následující fráze k příslušným nonterminálům: Fráze aabbbbcc S aabb A 1 ab A 2 bbcc B 1 bc B 2 Nonterminál Fráze ab a bc jsou jednoduché, ab je l-fráze. Bezkontextové jazyky 1 p.8/39

9 Vztah fráze a derivačního stromu Podstrom derivačního stromu odpovídá frázi příslušné větné formy. Fráze je tvořena koncovými uzly podstromu. Jednoduchá fráze odpovídá podstromu, jenž je výsledkem přímé derivace A β, a jeho hloubka je rovna jedné. Situaci ilustruje následující obrázek. S A α β γ Bezkontextové jazyky 1 p.9/39

10 Příklad 4.5 Podstromy derivačního stromu věty aabbbbcc (příklad 4.3) jsou následující stromy odpovídající též frázím z předchozího příkladu. A B S a A b b B c a b b c A B a A b b B c a b b c S a A b b B c A B a b b c a A b b B c Bezkontextové jazyky 1 p.10/39

11 Víceznačnost gramatik Definice 4.5 Necht G je gramatika. Říkáme, že věta w generovaná gramatikou G je víceznačná, existují-li alespoň dva různé derivační stromy s koncovými uzly tvořícími větu w. Gramatika G je víceznačná, pokud generuje alespoň jednu víceznačnou větu. V opačném případě mluvíme o jednoznačné gramatice. Jazyky, které lze generovat víceznačnou gramatikou, ale které nelze generovat jednoznačnou gramatikou, se nazývají jazyky s inherentní víceznačností. Problém víceznačnosti gramatik je nerozhodnutelný, tj. neexistuje algoritmus, který by byl schopen v konečném čase rozhodnout, zda daná gramatika je nebo není víceznačná. Víceznačnost gramatiky je pokládána za negativní rys (vede k větám, které mají několik interpretací). Na druhé straně může být víceznačná gramatika jednodušší než odpovídající jednoznačná gramatika. Bezkontextové jazyky 1 p.11/39

12 Víceznačnost gramatik Příklad 4.6 pravidel Uvažujme gramatiku G = ({E}, {+,,,/, (, ),P, E), kde P je množina E E + E E E E E E/E ( E ) i Jazyk L(G) je tvořen aritmetickými výrazy s binárními operacemi. Gramatika G je na rozdíl od gramatiky z příkladu 4.2 víceznačná. Vezměme například větu i + i i a uvažujme všechny možné derivační stromy. E E E + E E * E i E * E E + E i i Není jasné, zda první operací bude násobení (derivační strom vlevo), nebo sčítání (derivační strom vpravo). i i i Bezkontextové jazyky 1 p.12/39

13 Příklad 4.7 Jednoznačnou gramatikou generující tentýž jazyk je gramatika G = ({E,T, F }, {+,,,/,(, ), i},p, E) s množinou přepisovacích pravidel P definovanou následujícím způsobem: E T E + T E T T F T F T/F F ( E ) i Bezkontextové jazyky 1 p.13/39

14 Transformace bezkontextových gramatik Bezkontextové jazyky 1 p.14/39

15 Ekvivalentní gramatiky Definice 4.6 Necht G 1 a G 2 jsou gramatiky libovolného typu Chomského klasifikace. G 1 a G 2 jsou ekvivalentní, pokud L(G 1 ) = L(G 2 ). Věta 4.1 Necht G = (N, Σ,P, S) je gramatika, A αbβ, B N, α, β (N Σ) je pravidlo z P a necht B γ 1 γ 2... γ n jsou všechna B-pravidla z P. Pak gramatika G = (N, Σ, P, S) kde P = P \ {A αbβ} {A αγ 1 β, A αγ 2 β,...,a αγ n β} je ekvivalentní s gramatikou G. Důkaz. Na cvičení. Bezkontextové jazyky 1 p.15/39

16 Příklad 4.8 Gramatiky s pravidly E E E + T T T T F F F (E) i E + T resp. E E + T F E + F T T T F F F (E) i E T * F jsou ekvivalentní. E + T * F Bezkontextové jazyky 1 p.16/39

17 Nedostupné a zbytečné symboly Definice 4.7 Necht G = (N, Σ, P, S) je gramatika a X N Σ symbol. Říkáme, že symbol X je nedostupný v G, jestliže v G neexistuje derivace S αxβ pro nějaké α, β (N Σ). Symbol X nazýváme zbytečný v G, jestliže v G neexistuje derivace tvaru S αxβ zxy pro nějaké α, β (N Σ) a zxy Σ. Příklad 4.9 Uvažujme gramatiku G = ({S, A, B}, {a, b}, P, S) s pravidly: S SB a A b B Ba Symboly A, B,b jsou zbytečné. Symboly A, b jsou nedostupné. Poznámka 4.1 G = ({S}, {a}, {S a},s) je ekvivalentní s G. Bezkontextové jazyky 1 p.17/39

18 Nonterminály generující terminální řetězce Algoritmus 4.1 Výpočet množiny nonterminálů generujících terminální řetězce Vstup: Gramatika G = (N, Σ, P, S). Výstup: Množina N t = {A A + w, w Σ }. Metoda: Počítáme množiny N 0, N 1, N 2,... rekurentně takto: 1. N 0 :=,i = 1 2. N i := {A A α je v P a α (N i 1 Σ) } 3. Je-li N i N i 1, i := i + 1 a vrat se k (2). Je-li N i = N i 1, polož N t = N i a skonči. Bezkontextové jazyky 1 p.18/39

19 Dostupné symboly Algoritmus 4.2 Výpočet množiny dostupných symbolů Vstup: Gramatika G = (N, Σ, P, S). Výstup: Množina V = {X S αxβ,α, β (N Σ) }. Metoda: 1. V 0 := {S},i = 1 2. V i := {X A αxβ je v P a A V i 1 } V i 1 3. Je-li V i V i 1, i := i + 1 a vrat se k (2). Je-li V i = V i 1, polož V = V i a skonči. Bezkontextové jazyky 1 p.19/39

20 Odstranění zbytečných symbolů Algoritmus 4.3 Odstranění zbytečných symbolů Vstup: Gramatika G = (N, Σ, P, S). Výstup: Gramatika G = (N,Σ, P,S) bez zbytečných symbolů, L(G) = L(G ). Metoda: 1. Aplikací algoritmu 4.1 na G vypočti množinu N t. 2. Polož G = (N t {S},Σ, P, S), kde P = {A α (A α) P A N t α (N t Σ) }. 3. Aplikací algoritmu 4.2 na G vypočti množinu V. 4. Výslednou gramatiku G sestroj takto: (a) (b) N = N t V Σ = Σ V (c) P = {A α (A α) P A N α V } Poznámka: Sjednocení N t {S} v bodě 2 řeší případ, kdy L(G) = a N t =, ovšem gramatika musí mít svůj startovací symbol. Bezkontextové jazyky 1 p.20/39

21 Příklad 4.10 Uvažujme gramatiku G = ({S, A, B}, {a, b}, {S a, S A, A AB,B b}, S). 1. N 0 =, N 1 = {S,B}, N 2 = N 1 = N t = {S,B} 2. G = ({S, B}, {a, b}, {S a, B b}, S) 3. V 0 = {S}, V 1 = {S, a}, V 2 = V 1 = V = {S, a} 4. G = ({S}, {a}, {S a}, S). Poznámka 4.2 Pořadí kroků 2. a 4. je významné. Bezkontextové jazyky 1 p.21/39

22 Odstranění ε-pravidel Definice 4.8 G je gramatikou bez ε-pravidel, jestliže neobsahuje žádné ε-pravidlo (pravidlo tvaru A ε), nebo, pokud ε L(G), potom obsahuje jediné ε-pravidlo S ε a S se pak nevyskytuje na pravé straně žádného přepisovacího pravidla. Algoritmus 4.4 Transformace na gramatiku bez ε-pravidel Vstup: Gramatika G = (N, Σ, P, S). Výstup: Gramatika G = (N,Σ, P,S ) bez ε-pravidel ekvivalentní s G. Metoda: 1. Vypočítej množinu N ε = {A A + ε} 2. Každé pravidlo z P, které není ε-pravidlem, uvažuj ve tvaru A α 0 B 1 α 1 B 2...B k α k, kde B i N ε, α i (N \ N ε Σ) pro i = 1,...,k Toto pravidlo nahrad množinou pravidel, které vzniknou všemi možnými substitucemi B i B i a B i ε pro i = 1,...,k (to jest substitucemi, kdy nonterminály z N ε jsou alternativně ponechávány a vypouštěny). Počet těchto substitucí (nových pravidel) je zřejmě 2 k. 3. Všechna ε-pravidla vypust. 4. Pokud S N ε, pak N = N {S }, kde S je nový nonterminální symbol, a přidej pravidla S ε S, v opačném případě N = N, S = S Bezkontextové jazyky 1 p.22/39

23 Příklad 4.11 Uvažujme gramatiku G = ({A, B,C}, {a, b, c},p, A) s pravidly: A AbAcBC ε a B b ε C c ε 1. N ε = {A, B,C} 2. A AbAcBC A bacbc A Ab cbc A b cbc. A bc A a B b C c 3. A ε A A A je nový startovací symbol. Bezkontextové jazyky 1 p.23/39

24 Odstranění jednoduchých pravidel Definice 4.9 Pravidlo tvaru A B, kde A, B N nazýváme jednoduché pravidlo. Algoritmus 4.5 Transformace na gramatiku bez jednoduchých pravidel Vstup: Gramatika G = (N, Σ, P, S) bez ε-pravidel. Výstup: Gramatika G = (N, Σ, P, S) bez jednoduchých pravidel ekvivalentní s G. Metoda: 1. Pro všechny A N vypočítej množinu N A = {B A B}, polož P :=. 2. Necht B α, α / N je pravidlo z P. Potom k P přidej nová pravidla A i α pro všechny A i, kde B N Ai. 3. Výsledná množina pravidel P tvoří všechna pravidla gramatiky G (neobsahuje jednoduchá pravidla). N A1 N A2 N A3 N Ak B B Nová pravidla: A 1 α A 3 α Bezkontextové jazyky 1 p.24/39

25 Příklad 4.12 Uvažujme gramatiku G = ({E, T,F }, {i,+,, (,)}, P, E) s pravidly: E E + T T T T F F F (E) i 1. Nalezneme množiny N A pro všechny A N: N E = {E, T, F } N T = {T, F } N F = {F } 2. Doplňujeme nová pravidla a vypouštíme jednoduchá pravidla: E E + T T F (E) i T T F (E) i F (E) i Bezkontextové jazyky 1 p.25/39

26 Cyklus Definice 4.10 Necht G = (N, Σ, P, S) je gramatika, A N. Gramatika G obsahuje cyklus, jestliže A + A. Věta 4.2 Jestliže gramatika G = (N, Σ, P, S) obsahuje cyklus v nonterminálu A, A N a jestliže existuje derivace S αaβ + w, w Σ, α, β (N Σ) pak G je víceznačná. Důkaz. Existuje-li derivace S αaβ + w pak vzhledem k existenci cyklu A + existuje i derivace S αaβ αγ 1 β αγ 2 β... αaβ + w Těmto derivacím přísluší různé derivační stromy. Bezkontextové jazyky 1 p.26/39

27 Zdroje cyklu Jednoduchá pravidla (tvaru A B), např. A B C A v důsledku pravidel A B, B C, C A ε-pravidla, např. A AB A v důsledku pravidla B ε Bezkontextové jazyky 1 p.27/39

28 Vlastní gramatika Definice 4.11 Gramatika bez zbytečných symbolů, ε-pravidel a bez cyklů se nazývá vlastní gramatikou. Věta 4.3 Každá bezkontextová gramatika má ekvivalentní vlastní gramatiku. Důkaz. Aplikací algoritmů 4.3 a 4.4 odstraníme zbytečné symboly a ε-pravidla. Jestliže po této transformaci existuje v G derivace A A, tj. cyklus, pak jeho příčinou mohou být pouze jednoduchá pravidla a ty lze odstranit aplikací algoritmu 4.5. Bezkontextové jazyky 1 p.28/39

29 Odstranění levé rekurze Základem algoritmu je odstranění přímé levé rekurze, tj. levě rekurzivních pravidel, podle následující transformace: Věta 4.4 Necht gramatika G má levě rekurzivní pravidla v nonterminálu A a necht A Aα 1 Aα 2... Aα m β 1 β 2... β n jsou všechna její A-pravidla, přičemž řetězce β i nezačínají symbolem A. Pak gramatika G, ve které budou tato pravidla nahrazena pravidly: A β 1 β 2... β n β 1 A β 2 A... β n A A α 1 α 2... α 1 A α 2 A... α m A kde A je nový nonterminál, je ekvivalentní s G. Bezkontextové jazyky 1 p.29/39

30 Důkaz. Uvedená transformace nahrazuje pravidla rekurzivní zleva pravidly, které jsou rekurzivní zprava. Označíme-li jazyky L 1 = {β 1, β 2,...,β n } a L 2 = {α 1, α 2,...,α m }, vidíme, že v G lze z nonterminálu A derivovat řetězce tvořící jazyk L 1 L 2. Právě tyto řetězce můžeme však derivovat z A také v gramatice G. Efekt popisované transformace ilustruje následující obrázek. A A A α i1 β j A A α i2 α ik A A α i3 α ik-1 A A α ik α i2 A β j α i1 Bezkontextové jazyky 1 p.30/39

31 Příklad 4.13 Uvažujme gramatiku G = ({E, T,F }, {i,+,, (,)}, P, E) s pravidly: E E + T T T T F F F ( E ) i E E + T T E T TE α 1 = +T, β 1 = T E +T + TE T T F F T F FT α 1 = F,β 1 = F T F FT F ( E ) i Bezkontextové jazyky 1 p.31/39

32 Odstranění nepřímé levé rekurze Odstranění nepřímé levé rekurze spočívá v opakovaném aplikování transformace podle věty 4.1 a transformačních vzorců pro odstranění přímé levé rekurze (věta 4.4). Příklad 4.14 S AB A BS b B SA a Uvažujme gramatiku G = ({S, A, B}, {a,b}, P, S) s pravidly: Na pravidlo B SA aplikujeme dvakrát větu 4.1: B ABA B BSBA bba Na všechna B-pravidla B BSBA bba a aplikujme transformaci věty 4.4: B bba a bbab ab B SBA SBAB Bezkontextové jazyky 1 p.32/39

33 Normální formy bezkontextových gramatik Bezkontextové jazyky 1 p.33/39

34 Chomského normální forma (CNF) Definice 4.12 Bezkontextová gramatika G = (N, Σ, P, S) je v Chomského normální formě, má-li každé pravidlo z P jeden z těchto tvarů: 1. A BC, kde A, B,C N 2. A a, kde a Σ 3. je-li ε L(G), pak S ε je jediné ε-pravidlo a S se nevyskytuje na pravé straně žádného přepisovacího pravidla. Problém: Necht G = (N, Σ, P, S) je bezkontextová gramatika v CNF a necht w L(G) a S p G w. Jaká je délka řetězce w? Řešení: Označme w = n. Zřejmě platí p = n + (n 1) = 2n 1 w = p Bezkontextové jazyky 1 p.34/39

35 Věta 4.5 Necht G je bezkontextová gramatika. Pak existuje gramatika G v Chomského normální formě taková, že L(G ) = L(G). Důkaz. (Hlavní myšlenka) Gramatiku G převedeme na ekvivalentní vlastní gramatiku bez jednoduchých pravidel. 1. Pravidla tvaru (1), (2) a (3) ponecháme. 2. Pravidla tvaru A X 1 X 2... X n, kde X i (N Σ) pro i = 1,...,n, n > 2, transformujeme na A X 1 X 2 X 3... X n, kde X 2 X 3...X n je nový nonterminál a X 1 je nový nonterminál pokud X 1 Σ, nebo X 1 = X 1 v opačném případě. 3. Pravidla tvaru A X 1 X 2 transformujeme na pravidla A X 1X 2, kde X i je nový nonterminál pokud X i Σ, nebo X i = X i v opačném případě pro i {1,2} 4. Pro nové nonterminály tvaru X 1 X 2...X n, n 2, zavedeme pravidla X 1 X 2...X n X 1 X 2...X n pro n > 2 a X 1 X 2 X 1X 2 pro n = 2, kde X 2...X n je nový nonterminál a X i je nový nonterminál pokud X i Σ, nebo X i = X i v opačném případě pro i {1,2}. 5. Pro nové nonterminály tvaru X i, kde X i Σ přidáme pravidla tvaru X i X i. Bezkontextové jazyky 1 p.35/39

36 Příklad 4.15 Uvažujme gramatiku G = ({A, B}, {a,b, c}, P, A) s pravidly: A BAB Ba bc B AB a BBB Po aplikaci transformací (1.)-(4.) získáme CNF ve tvaru: A B AB Ba b c B AB a B BB AB AB BB BB a a b b c c Bezkontextové jazyky 1 p.36/39

37 Greibachové normální forma (GNF) Definice 4.13 Bezkontextová gramatika G = (N, Σ, P, S) je v Greibachové normální formě, je-li G gramatikou bez ε-pravidel a každé pravidlo z P (vyjma případného pravidla S ε) má tvar: A aα, kde a Σ, α N Lemma 4.3 Necht G = (N, Σ, P, S) je bezkontextová gramatika bez levé rekurze. Pak na N existuje lineární uspořádání takové, že je-li A Bα pravidlo z P, pak A B. Důkaz. Definujme relaci R na N: R = {(A, B) A Bα,A, B N, α (N Σ) } Lze ukázat, že R je částečné uspořádání. Každé částečné uspořádání lze rozšířit na lineární uspořádání. Bezkontextové jazyky 1 p.37/39

38 Věta 4.6 Ke každé bezkontextové gramatice existuje Greibachové normální forma této gramatiky. Důkaz. (Hlavní myšlenka) Nalezení GNF gramatiky G předpokládá: 1. Odstranění levé rekurze a ε-pravidel. 2. Nalezení lineárního uspořádání na množině nonterminálů. 3. Aplikace substitucí v pořadí opačném k danému uspořádání tak, aby všechna pravidla byla tvaru A aβ, A N, a Σ, β (N Σ). 4. Převod všech pravidel A aβ, A N, β (N Σ) na pravidla tvaru A aα, A N, a Σ, α N. Bezkontextové jazyky 1 p.38/39

39 Příklad 4.16 Uvažujme gramatiku, jež vznikne odstraněním levé rekurze z typické gramatiky pro aritmetický výraz G = ({E,T, F }, {i,+,, (,)}, P, E) s pravidly: E T TE E +T + TE T F FT T F FT F ( E ) i Nalezneme lineární uspořádání: E E T T F E ( E ) i ( E ) T it ( E ) E ie ( E ) T E it E E +T + TE T ( E ) i ( E ) T it T F FT F i ( E ) Přidáno pravidlo ) ). Bezkontextové jazyky 1 p.39/39

Bezkontextové jazyky 2/3. Bezkontextové jazyky 2 p.1/27

Bezkontextové jazyky 2/3. Bezkontextové jazyky 2 p.1/27 Bezkontextové jazyky 2/3 Bezkontextové jazyky 2 p.1/27 Transformace bezkontextových gramatik Bezkontextové jazyky 2 p.2/27 Ekvivalentní gramatiky Definice 6.1 Necht G 1 a G 2 jsou gramatiky libovolného

Více

Jednoznačné a nejednoznačné gramatiky

Jednoznačné a nejednoznačné gramatiky BI-AAG (2011/2012) J. Holub: 11. Bezkontextové gramatiky p. 2/36 Jednoznačné a nejednoznačné gramatiky BI-AAG (2011/2012) J. Holub: 11. Bezkontextové gramatiky p. 4/36 Automaty a gramatiky(bi-aag) 11.

Více

Bezkontextové jazyky. Bezkontextové jazyky 1 p.1/31

Bezkontextové jazyky. Bezkontextové jazyky 1 p.1/31 Bezkontextové jazyky Bezkontextové jazyky 1 p.1/31 Jazyky typu 2 Definice 4.1 Gramatika G = (N, Σ, P, S) si nazývá bezkontextovou gramatikou, jestliže všechna pravidla z P mají tvar A α, A N, α (N Σ) Lemma

Více

Formální jazyky a gramatiky Teorie programovacích jazyků

Formální jazyky a gramatiky Teorie programovacích jazyků Formální jazyky a gramatiky Teorie programovacích jazyků doc. Ing. Jiří Rybička, Dr. ústav informatiky PEF MENDELU v Brně rybicka@mendelu.cz Připomenutí základních pojmů ABECEDA jazyk je libovolná podmnožina

Více

Automaty a gramatiky(bi-aag) Motivace. 1. Základní pojmy. 2 domácí úkoly po 6 bodech 3 testy za bodů celkem 40 bodů

Automaty a gramatiky(bi-aag) Motivace. 1. Základní pojmy. 2 domácí úkoly po 6 bodech 3 testy za bodů celkem 40 bodů BI-AAG (2011/2012) J. Holub: 1. Základní pojmy p. 2/29 Hodnocení předmětu BI-AAG (2011/2012) J. Holub: 1. Základní pojmy p. 4/29 Automaty a gramatiky(bi-aag) 1. Základní pojmy Jan Holub Katedra teoretické

Více

doplněk, zřetězení, Kleeneho operaci a reverzi. Ukážeme ještě další operace s jazyky, na které je

doplněk, zřetězení, Kleeneho operaci a reverzi. Ukážeme ještě další operace s jazyky, na které je 28 [181105-1236 ] 2.7 Další uzávěrové vlastnosti třídy regulárních jazyků Z předchozích přednášek víme, že třída regulárních jazyků je uzavřena na sjednocení, průnik, doplněk, zřetězení, Kleeneho operaci

Více

Vlastnosti Derivační strom Metody Metoda shora dolů Metoda zdola nahoru Pomocné množiny. Syntaktická analýza. Metody a nástroje syntaktické analýzy

Vlastnosti Derivační strom Metody Metoda shora dolů Metoda zdola nahoru Pomocné množiny. Syntaktická analýza. Metody a nástroje syntaktické analýzy Metody a nástroje syntaktické analýzy Šárka Vavrečková Ústav informatiky, FPF SU Opava sarka.vavreckova@fpf.slu.cz Poslední aktualizace: 14. října 2011 Vlastnosti syntaktické analýzy Úkoly syntaktické

Více

Turingovy stroje. Teoretická informatika Tomáš Foltýnek

Turingovy stroje. Teoretická informatika Tomáš Foltýnek Turingovy stroje Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz Teoretická informatika strana 2 Opakování z minulé přednášky Jaké znáte algebraické struktury s jednou operací? Co je to okruh,

Více

/1: Teoretická informatika(ti) přednáška 4

/1: Teoretická informatika(ti) přednáška 4 456-330/1: Teoretická informatika(ti) přednáška 4 prof. RNDr Petr Jančar, CSc. katedra informatiky FI VŠB-TUO www.cs.vsb.cz/jancar LS 2009/2010 Petr Jančar (FI VŠB-TU) Teoretická informatika(ti) LS 2009/2010

Více

Teoretická informatika - Úkol č.1

Teoretická informatika - Úkol č.1 Teoretická informatika - Úkol č.1 Lukáš Sztefek, xsztef01 18. října 2012 Příklad 1 (a) Gramatika G 1 je čtveřice G 1 = (N, Σ, P, S) kde, N je konečná množina nonterminálních symbolů N = {A, B, C} Σ je

Více

Vztah jazyků Chomskeho hierarchie a jazyků TS

Vztah jazyků Chomskeho hierarchie a jazyků TS Vztah jazyků Chomskeho hierarchie a jazyků TS Jan Konečný; (přednáší Lukáš Havrlant) 15. října 2013 Jan Konečný; (přednáší Lukáš Havrlant) Chomskeho hierarchie a jazyky TS 15. října 2013 1 / 23 Rychlé

Více

Kapitola 6. LL gramatiky. 6.1 Definice LL(k) gramatik. Definice 6.3. Necht G = (N, Σ, P, S) je CFG, k 1 je celé číslo.

Kapitola 6. LL gramatiky. 6.1 Definice LL(k) gramatik. Definice 6.3. Necht G = (N, Σ, P, S) je CFG, k 1 je celé číslo. Kapitola 6 LL gramatiky 6.1 Definice LL(k) gramatik Definice 6.1. Necht G = (N, Σ, P, S) je CFG, k 1 je celé číslo. Definujme funkci FIRST G k : (N Σ) + P({w Σ w k}) předpisem FIRST G k (α) = {w Σ (α w

Více

UČEBNÍ TEXTY VYSOKÝCH ŠKOL. Prof. RNDr. Milan Češka, CSc. Gramatiky a jazyky

UČEBNÍ TEXTY VYSOKÝCH ŠKOL. Prof. RNDr. Milan Češka, CSc. Gramatiky a jazyky UČEBNÍ TEXTY VYSOKÝCH ŠKOL Vysoké učení technické v Brně Fakulta elektrotechniky a informatiky Prof. RNDr. Milan Češka, CSc. Gramatiky a jazyky Tato skripta jsou určena pro kurs Základy matematické informatiky

Více

Automaty a gramatiky

Automaty a gramatiky Automaty a gramatiky Roman Barták, KTIML bartak@ktiml.mff.cuni.cz http://ktiml.mff.cuni.cz/~bartak Co bylo minule Úvod do formálních gramatik produkční systémy generativní gramatika G=(V N,V T,,P) G =

Více

Vysoké učení technické v Brně Fakulta informačních technologií. Gramatiky nad volnými grupami Petr Blatný

Vysoké učení technické v Brně Fakulta informačních technologií. Gramatiky nad volnými grupami Petr Blatný Vysoké učení technické v Brně Fakulta informačních technologií Gramatiky nad volnými grupami 2005 Petr Blatný Abstrakt Tento dokument zavádí pojmy bezkontextové gramatiky nad volnou grupou a E0L gramatiky

Více

Bezkontextové gramatiky nad volnými grupami

Bezkontextové gramatiky nad volnými grupami Vysoké učení technické v Brně Fakulta informačních technologií Bezkontextové gramatiky nad volnými grupami 2004 Radek Bidlo Abstrakt Tento dokument zavádí pojem bezkontextové gramatiky nad volnou grupou

Více

PROGRAMOVACÍ JAZYKY A PŘEKLADAČE LL SYNTAKTICKÁ ANALÝZA DOKONČENÍ, IMPLEMENTACE.

PROGRAMOVACÍ JAZYKY A PŘEKLADAČE LL SYNTAKTICKÁ ANALÝZA DOKONČENÍ, IMPLEMENTACE. PROGRAMOVACÍ JAZYKY A PŘEKLADAČE LL SYNAKICKÁ ANALÝZA DOKONČENÍ, IMPLEMENACE. VLASNOSI LL GRAMAIK A JAZYKŮ. 2011 Jan Janoušek BI-PJP Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Gramatika

Více

2 Formální jazyky a gramatiky

2 Formální jazyky a gramatiky 2 Formální jazyky a gramatiky 2.1 Úvod Teorie formálních gramatik a jazyků je důležitou součástí informatiky. Její využití je hlavně v oblasti tvorby překladačů, kompilátorů. Vznik teorie se datuje přibližně

Více

Teoretická informatika TIN 2013/2014

Teoretická informatika TIN 2013/2014 Teoretická informatika TIN 2013/2014 prof. RNDr. Milan Češka, CSc. ceska@fit.vutbr.cz doc.ing. Tomáš Vojnar, Ph.D. vojnar@fit.vutbr.cz sazba Ing. A. Smrčka, Ing. P. Erlebach, Ing. P. Novosad Vysoké učení

Více

Lineární algebra : Násobení matic a inverzní matice

Lineární algebra : Násobení matic a inverzní matice Lineární algebra : Násobení matic a inverzní matice (8. přednáška) František Štampach, Karel Klouda frantisek.stampach@fit.cvut.cz, karel.klouda@fit.cvut.cz Katedra aplikované matematiky Fakulta informačních

Více

Z. Sawa (VŠB-TUO) Teoretická informatika 5. listopadu / 43

Z. Sawa (VŠB-TUO) Teoretická informatika 5. listopadu / 43 Zásobníkové automaty Z. Sawa (VŠB-TUO) Teoretická informatika 5. listopadu 2018 1/ 43 Zásobníkový automat Chtěli bychom rozpoznávat jazyk L = {a i b i i 1} Snažíme se navrhnout zařízení (podobné konečným

Více

Lineární algebra : Násobení matic a inverzní matice

Lineární algebra : Násobení matic a inverzní matice Lineární algebra : Násobení matic a inverzní matice (8. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 17. března 2014, 12:42 1 2 0.1 Násobení matic Definice 1. Buďte m, n, p N, A

Více

Výpočetní modely pro rozpoznávání bezkontextových jazyků zásobníkové automaty LL(k) a LR(k) analyzátory

Výpočetní modely pro rozpoznávání bezkontextových jazyků zásobníkové automaty LL(k) a LR(k) analyzátory Plán přednášky Výpočetní modely pro rozpoznávání bezkontextových jazyků zásobníkové automaty LL(k) a LR(k) analyzátory Obecný algoritmus pro parsování bezkontextových jazyků dynamické programování 1 Zásobníkový

Více

Regulární výrazy. Definice Množina regulárních výrazů nad abecedou Σ, označovaná RE(Σ), je definována induktivně takto:

Regulární výrazy. Definice Množina regulárních výrazů nad abecedou Σ, označovaná RE(Σ), je definována induktivně takto: IB102 Automaty, gramatiky a složitost, 6. 10. 2014 1/29 Regulární výrazy Definice 2.58. Množina regulárních výrazů nad abecedou Σ, označovaná RE(Σ), je definována induktivně takto: 1 ε, a a pro každé a

Více

VI. Maticový počet. VI.1. Základní operace s maticemi. Definice. Tabulku

VI. Maticový počet. VI.1. Základní operace s maticemi. Definice. Tabulku VI Maticový počet VI1 Základní operace s maticemi Definice Tabulku a 11 a 12 a 1n a 21 a 22 a 2n, a m1 a m2 a mn kde a ij R, i = 1,, m, j = 1,, n, nazýváme maticí typu m n Zkráceně zapisujeme (a ij i=1m

Více

Množinu všech slov nad abecedou Σ značíme Σ * Množinu všech neprázdných slov Σ + Jazyk nad abecedou Σ je libovolná množina slov nad Σ

Množinu všech slov nad abecedou Σ značíme Σ * Množinu všech neprázdných slov Σ + Jazyk nad abecedou Σ je libovolná množina slov nad Σ Abecedou se rozumí libovolná konečná množina Σ. Prvky abecedy nazýváme znaky (symboly) Slovo (řetězec) v nad abecedou Σ je libovolná konečná posloupnost znaků této abecedy. Prázdné posloupnosti znaků odpovídá

Více

Bezkontextové jazyky 3/3. Bezkontextové jazyky 3 p.1/27

Bezkontextové jazyky 3/3. Bezkontextové jazyky 3 p.1/27 Bezkontextové jazyky 3/3 Bezkontextové jazyky 3 p.1/27 Vlastnosti bezkontextových jazyků Bezkontextové jazyky 3 p.2/27 Pumping teorém pro BJ Věta 6.1 Necht L je bezkontextový jazyk. Pak existuje konstanta

Více

Maticí typu (m, n), kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru:

Maticí typu (m, n), kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru: 3 Maticový počet 3.1 Zavedení pojmu matice Maticí typu (m, n, kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru: a 11 a 12... a 1k... a 1n a 21 a 22...

Více

/01: Teoretická informatika(ti) přednáška 5

/01: Teoretická informatika(ti) přednáška 5 460-4005/01: Teoretická informatika(ti) přednáška 5 prof. RNDr Petr Jančar, CSc. katedra informatiky FEI VŠB-TUO www.cs.vsb.cz/jancar LS 2010/2011 Petr Jančar (FEI VŠB-TU) Teoretická informatika(ti) LS

Více

Překladač sestrojující k regulárnímu výrazu ekvivalentní konečný automat Připomeňme si jednoznačnou gramatiku G pro jazyk RV({a, b})

Překladač sestrojující k regulárnímu výrazu ekvivalentní konečný automat Připomeňme si jednoznačnou gramatiku G pro jazyk RV({a, b}) Teoretická informatika průběh výuky v semestru 1 Týden 4 Přednáška Ukázali jsme jednoduchý převod konečného automatu na bezkontextovou gramatiku, čímž jsme prokázali, že každý regulární jazyk je bezkontextovým

Více

Strukturální rozpoznávání

Strukturální rozpoznávání Strukturální rozpoznávání 1 Strukturální rozpoznávání obsah hierarchický strukturální popis systém strukturálního rozpoznávání teorie gramatik volba popisu výběr primitiv výběr gramatiky syntaktická analýza

Více

Teoretická informatika

Teoretická informatika Teoretická informatika TIN 2017/2018 prof. RNDr. Milan Češka, CSc. ceska@fit.vutbr.cz prof. Ing. Tomáš Vojnar, Ph.D. vojnar@fit.vutbr.cz sazba dr. A. Smrčka, Ing. P. Erlebach, Ing. P. Novosad Vysoké učení

Více

Bezkontextové gramatiky. Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 6. května / 49

Bezkontextové gramatiky. Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 6. května / 49 Bezkontextové gramatiky Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 6. května 2018 1/ 49 Bezkontextové gramatiky Příklad: Chtěli bychom popsat jazyk aritmetických výrazů obsahující výrazy jako například:

Více

Operace s maticemi. 19. února 2018

Operace s maticemi. 19. února 2018 Operace s maticemi Přednáška druhá 19. února 2018 Obsah 1 Operace s maticemi 2 Hodnost matice (opakování) 3 Regulární matice 4 Inverzní matice 5 Determinant matice Matice Definice (Matice). Reálná matice

Více

MATICE. a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij]

MATICE. a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij] MATICE Matice typu m/n nad tělesem T je soubor m n prvků z tělesa T uspořádaných do m řádků a n sloupců: a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij] a m1 a m2 a mn Prvek a i,j je prvek matice A na místě

Více

1 Determinanty a inverzní matice

1 Determinanty a inverzní matice Determinanty a inverzní matice Definice Necht A = (a ij ) je matice typu (n, n), n 2 Subdeterminantem A ij matice A příslušným pozici (i, j) nazýváme determinant matice, která vznikne z A vypuštěním i-tého

Více

Výroková a predikátová logika - IV

Výroková a predikátová logika - IV Výroková a predikátová logika - IV Petr Gregor KTIML MFF UK ZS 2018/2019 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - IV ZS 2018/2019 1 / 17 Tablo metoda Tablo Tablo - příklady F (((p q)

Více

Interpolace, ortogonální polynomy, Gaussova kvadratura

Interpolace, ortogonální polynomy, Gaussova kvadratura Interpolace, ortogonální polynomy, Gaussova kvadratura Petr Tichý 20. listopadu 2013 1 Úloha Lagrangeovy interpolace Dán omezený uzavřený interval [a, b] a v něm n + 1 různých bodů x 0, x 1,..., x n. Nechť

Více

Necht tedy máme přirozená čísla n, k pod pojmem systém lineárních rovnic rozumíme rovnice ve tvaru

Necht tedy máme přirozená čísla n, k pod pojmem systém lineárních rovnic rozumíme rovnice ve tvaru 2. Systémy lineárních rovnic V této kapitole se budeme zabývat soustavami lineárních rovnic s koeficienty z pole reálných případně komplexních čísel. Uvádíme podmínku pro existenci řešení systému lineárních

Více

BRNO UNIVERSITY OF TECHNOLOGY FACULTY OF INFORMATION TECHNOLOGY DEPARTMENT OF INTELLIGENT SYSTEMS MASTER S THESIS AUTHOR

BRNO UNIVERSITY OF TECHNOLOGY FACULTY OF INFORMATION TECHNOLOGY DEPARTMENT OF INTELLIGENT SYSTEMS MASTER S THESIS AUTHOR VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA INFORMAČNÍCH TECHNOLOGIÍ ÚSTAV INTELIGENTNÍCH SYSTÉMŮ FACULTY OF INFORMATION TECHNOLOGY DEPARTMENT OF INTELLIGENT SYSTEMS SYSTÉMY FORMÁLNÍCH

Více

Lineární algebra : Polynomy

Lineární algebra : Polynomy Lineární algebra : Polynomy (2. přednáška) František Štampach, Karel Klouda frantisek.stampach@fit.cvut.cz, karel.klouda@fit.cvut.cz Katedra aplikované matematiky Fakulta informačních technologií České

Více

REDUKCE VELIKOSTI GRAMATIKY V SILNÉ GREIBACHOVÉ NORMÁLNÍ FORMĚ

REDUKCE VELIKOSTI GRAMATIKY V SILNÉ GREIBACHOVÉ NORMÁLNÍ FORMĚ REDUKCE VELIKOSTI GRAMATIKY V SILNÉ GREIBACHOVÉ NORMÁLNÍ FORMĚ Jaroslav SUCHÁNEK, Mgr. (5) Dept. of Information Systems, FIT, BUT E-mail: xsucha07@stud.fit.vutbr.cz Supervised by: Dr. Dušan Kolář ABSTRACT

Více

Teoretická informatika TIN

Teoretická informatika TIN Teoretická informatika TIN Studijní opora M. Češka, T. Vojnar, A. Smrčka 20. srpna 2014 Tento učební text vznikl za podpory projektu "Zvýšení konkurenceschopnosti IT odborníků absolventů pro Evropský trh

Více

1 Báze a dimenze vektorového prostoru 1

1 Báze a dimenze vektorového prostoru 1 1 Báze a dimenze vektorového prostoru 1 Báze a dimenze vektorového prostoru 1 2 Aritmetické vektorové prostory 7 3 Eukleidovské vektorové prostory 9 Levá vnější operace Definice 5.1 Necht A B. Levou vnější

Více

(Cramerovo pravidlo, determinanty, inverzní matice)

(Cramerovo pravidlo, determinanty, inverzní matice) KMA/MAT1 Přednáška a cvičení, Lineární algebra 2 Řešení soustav lineárních rovnic se čtvercovou maticí soustavy (Cramerovo pravidlo, determinanty, inverzní matice) 16 a 21 října 2014 V dnešní přednášce

Více

Grafy. doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava. Prezentace ke dni 13.

Grafy. doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava. Prezentace ke dni 13. Grafy doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava Prezentace ke dni 13. března 2017 Jiří Dvorský (VŠB TUO) Grafy 104 / 309 Osnova přednášky Grafy

Více

Teoretická informatika

Teoretická informatika Teoretická informatika Ladislav Lhotka lhotka@cesnet.cz 2011-12 Zdroje LINZ, P. Formal Languages and Automata, Fourth Edition. Sudbury: Jones and Bartlett, 2006, 415+xiii s. ISBN 07-63-73798-4. CHYTIL,

Více

Modely Herbrandovské interpretace

Modely Herbrandovské interpretace Modely Herbrandovské interpretace Petr Štěpánek S využitím materialu Krysztofa R. Apta 2006 Logické programování 8 1 Uvedli jsme termové interpretace a termové modely pro logické programy a také nejmenší

Více

Úvod do lineární algebry

Úvod do lineární algebry Úvod do lineární algebry 1 Aritmetické vektory Definice 11 Mějme n N a utvořme kartézský součin R n R R R Každou uspořádanou n tici x 1 x 2 x, x n budeme nazývat n rozměrným aritmetickým vektorem Prvky

Více

0.1 Úvod do lineární algebry

0.1 Úvod do lineární algebry Matematika KMI/PMATE 1 01 Úvod do lineární algebry 011 Lineární rovnice o 2 neznámých Definice 011 Lineární rovnice o dvou neznámých x, y je rovnice, která může být vyjádřena ve tvaru ax + by = c, kde

Více

Matematika (CŽV Kadaň) aneb Úvod do lineární algebry Matice a soustavy rovnic

Matematika (CŽV Kadaň) aneb Úvod do lineární algebry Matice a soustavy rovnic Přednáška třetí (a pravděpodobně i čtvrtá) aneb Úvod do lineární algebry Matice a soustavy rovnic Lineární rovnice o 2 neznámých Lineární rovnice o 2 neznámých Lineární rovnice o dvou neznámých x, y je

Více

Automaty a gramatiky(bi-aag) Formální překlady. 5. Překladové konečné automaty. h(ε) = ε, h(xa) = h(x)h(a), x, x T, a T.

Automaty a gramatiky(bi-aag) Formální překlady. 5. Překladové konečné automaty. h(ε) = ε, h(xa) = h(x)h(a), x, x T, a T. BI-AAG (2011/2012) J. Holub: 5. Překladové konečné automaty p. 2/41 Formální překlady BI-AAG (2011/2012) J. Holub: 5. Překladové konečné automaty p. 4/41 Automaty a gramatiky(bi-aag) 5. Překladové konečné

Více

Symetrické a kvadratické formy

Symetrické a kvadratické formy Symetrické a kvadratické formy Aplikace: klasifikace kvadrik(r 2 ) a kvadratických ploch(r 3 ), optimalizace(mpi) BI-LIN (Symetrické a kvadratické formy) 1 / 20 V celé přednášce uvažujeme číselné těleso

Více

Formální jazyky. Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 2. března / 32

Formální jazyky. Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 2. března / 32 Formální jazyky Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 2. března 2017 1/ 32 Abeceda a slovo Definice Abeceda je libovolná neprázdná konečná množina symbolů(znaků). Poznámka: Abeceda se často

Více

Vektory a matice. Obsah. Aplikovaná matematika I. Carl Friedrich Gauss. Základní pojmy a operace

Vektory a matice. Obsah. Aplikovaná matematika I. Carl Friedrich Gauss. Základní pojmy a operace Vektory a matice Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah 1 Vektory Základní pojmy a operace Lineární závislost a nezávislost vektorů 2 Matice Základní pojmy, druhy matic Operace s maticemi

Více

AUTOMATY A GRAMATIKY. Pavel Surynek. Kontextové uzávěrové vlastnosti Turingův stroj Rekurzivně spočetné jazyky Kódování, enumerace

AUTOMATY A GRAMATIKY. Pavel Surynek. Kontextové uzávěrové vlastnosti Turingův stroj Rekurzivně spočetné jazyky Kódování, enumerace AUTOMATY A 11 GRAMATIKY Pavel Surynek Univerzita Karlova v Praze Matematicko-fyzikální fakulta Katedra teoretické informatiky a matematické logiky Kontextové uzávěrové vlastnosti Turingův stroj Rekurzivně

Více

Výroková a predikátová logika - II

Výroková a predikátová logika - II Výroková a predikátová logika - II Petr Gregor KTIML MFF UK ZS 2017/2018 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - II ZS 2017/2018 1 / 17 Předběžnosti Základní pojmy n-ární relace a funkce

Více

Regulární výrazy. M. Kot, Z. Sawa (VŠB-TU Ostrava) Úvod do teoretické informatiky 14. března / 20

Regulární výrazy. M. Kot, Z. Sawa (VŠB-TU Ostrava) Úvod do teoretické informatiky 14. března / 20 Regulární výrazy M. Kot, Z. Sawa (VŠB-TU Ostrava) Úvod do teoretické informatiky 14. března 2007 1/ 20 Regulární výrazy Jako například v aritmetice můžeme pomocí operátorů + a vytvářet výrazy jako (5+3)

Více

Lineární algebra Kapitola 1 - Základní matematické pojmy

Lineární algebra Kapitola 1 - Základní matematické pojmy Lineární algebra Kapitola 1 - Základní matematické pojmy 1.1 Relace a funkce V celém textu budeme používat následující označení pro číselné množiny: N množina všech přirozených čísel bez nuly, N={1, 2,

Více

Limita a spojitost funkce a zobrazení jedné reálné proměnné

Limita a spojitost funkce a zobrazení jedné reálné proměnné Přednáška 4 Limita a spojitost funkce a zobrazení jedné reálné proměnné V několika následujících přednáškách budeme studovat zobrazení jedné reálné proměnné f : X Y, kde X R a Y R k. Protože pro každé

Více

Formální jazyky a automaty Petr Šimeček

Formální jazyky a automaty Petr Šimeček Formální jazyky a automaty Petr Šimeček Úvod Formální jazyky a automaty jsou základním kamenem teoretické informatiky. Na počátku se zmíníme o Chomského klasifikaci gramatik, nástroje, který lze aplikovat

Více

Základy maticového počtu Matice, determinant, definitnost

Základy maticového počtu Matice, determinant, definitnost Základy maticového počtu Matice, determinant, definitnost Petr Liška Masarykova univerzita 18.9.2014 Matice a vektory Matice Matice typu m n je pravoúhlé (nebo obdélníkové) schéma, které má m řádků a n

Více

Základy teoretické informatiky Formální jazyky a automaty

Základy teoretické informatiky Formální jazyky a automaty Základy teoretické informatiky Formální jazyky a automaty Petr Osička KATEDRA INFORMATIKY UNIVERZITA PALACKÉHO V OLOMOUCI Outline Literatura Obsah J.E. Hopcroft, R. Motwani, J.D. Ullman Introduction to

Více

Operace s maticemi

Operace s maticemi Operace s maticemi Seminář druhý 17.10. 2018 Obsah 1 Operace s maticemi 2 Hodnost matice 3 Regulární matice 4 Inverzní matice Matice Definice (Matice). Reálná matice typu m n je obdélníkové schema A =

Více

15 Maticový a vektorový počet II

15 Maticový a vektorový počet II M. Rokyta, MFF UK: Aplikovaná matematika III kap. 15: Maticový a vektorový počet II 1 15 Maticový a vektorový počet II 15.1 Úvod Opakování z 1. ročníku (z kapitoly 8) Označení. Množinu všech reálných resp.

Více

Limita a spojitost funkce

Limita a spojitost funkce Přednáška 5 Limita a spojitost funkce V této přednášce se konečně dostaneme k diferenciálnímu počtu funkce jedné reálné proměnné. Diferenciální počet se v podstatě zabývá lokálním chováním funkce v daném

Více

Vlastní čísla a vlastní vektory

Vlastní čísla a vlastní vektory Vlastní čísla a vlastní vektory 1 Motivace Uvažujme lineární prostor všech vázaných vektorů v rovině, které procházejí počátkem, a lineární zobrazení tohoto prostoru do sebe(lineární transformaci, endomorfismus)

Více

Analýza Petriho sítí. Analýza Petriho sítí p.1/28

Analýza Petriho sítí. Analýza Petriho sítí p.1/28 Analýza Petriho sítí Analýza Petriho sítí p.1/28 1. Základní pojmy Základní problémy analýzy bezpečnost (safeness) omezenost (boundness) konzervativnost (conservation) živost (liveness) Definice 1: Místo

Více

0.1 Úvod do lineární algebry

0.1 Úvod do lineární algebry Matematika KMI/PMATE 1 01 Úvod do lineární algebry 011 Vektory Definice 011 Vektorem aritmetického prostorur n budeme rozumět uspořádanou n-tici reálných čísel x 1, x 2,, x n Definice 012 Definice sčítání

Více

Lineární algebra - I. část (vektory, matice a jejich využití)

Lineární algebra - I. část (vektory, matice a jejich využití) Lineární algebra - I. část (vektory, matice a jejich využití) Michal Fusek Ústav matematiky FEKT VUT, fusekmi@feec.vutbr.cz 2. přednáška z ESMAT Michal Fusek (fusekmi@feec.vutbr.cz) 1 / 40 Obsah 1 Vektory

Více

Matice. Předpokládejme, že A = (a ij ) je matice typu m n: diagonálou jsou rovny nule.

Matice. Předpokládejme, že A = (a ij ) je matice typu m n: diagonálou jsou rovny nule. Matice Definice. Maticí typu m n nazýváme obdélníkové pole, tvořené z m n reálných čísel (tzv. prvků matice), zapsaných v m řádcích a n sloupcích. Značíme např. A = (a ij ), kde i = 1,..., m, j = 1,...,

Více

IB112 Základy matematiky

IB112 Základy matematiky IB112 Základy matematiky Řešení soustavy lineárních rovnic, matice, vektory Jan Strejček IB112 Základy matematiky: Řešení soustavy lineárních rovnic, matice, vektory 2/53 Obsah Soustava lineárních rovnic

Více

Matice. Je dána matice A R m,n, pak máme zobrazení A : R n R m.

Matice. Je dána matice A R m,n, pak máme zobrazení A : R n R m. Matice lineárních zobrazení [1] Připomenutí Zobrazení A : L 1 L 2 je lineární, když A( x + y ) = A( x ) + A( y ), A(α x ) = α A( x ). Což je ekvivalentní s principem superpozice: A(α 1 x 1 + + α n x n

Více

Automaty a gramatiky. Roman Barták, KTIML. Separované gramatiky. Kontextové gramatiky. Chomského hierarchie

Automaty a gramatiky. Roman Barták, KTIML. Separované gramatiky. Kontextové gramatiky. Chomského hierarchie Chomského hierarchie Automaty a gramatiky Roman Barták, KTIML bartak@ktiml.mff.cuni.cz http://ktiml.mff.cuni.cz/~bartak gramatiky typu 0 (rekurzivně spočetné jazyky L 0 ) pravidla v obecné formě gramatiky

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA INFORMAČNÍCH TECHNOLOGIÍ ÚSTAV INFORMAČNÍCH SYSTÉMŮ FACULTY OF INFORMATION TECHNOLOGY DEPARTMENT OF INFORMATION SYSTEMS GRAMATICKÉ SYSTÉMY

Více

Základní datové struktury III: Stromy, haldy

Základní datové struktury III: Stromy, haldy Základní datové struktury III: Stromy, haldy prof. Ing. Pavel Tvrdík CSc. Katedra počítačových systémů Fakulta informačních technologií České vysoké učení technické v Praze c Pavel Tvrdík, 2010 Efektivní

Více

Číselné vektory, matice, determinanty

Číselné vektory, matice, determinanty Číselné vektory, matice, determinanty Základy vyšší matematiky LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipĺıny

Více

Úlohy nejmenších čtverců

Úlohy nejmenších čtverců Úlohy nejmenších čtverců Petr Tichý 7. listopadu 2012 1 Problémy nejmenších čtverců Ax b Řešení Ax = b nemusí existovat, a pokud existuje, nemusí být jednoznačné. Často má smysl hledat x tak, že Ax b.

Více

Automaty a gramatiky. Uzávěrové vlastnosti v kostce R J BKJ DBKJ. Roman Barták, KTIML. Kvocienty s regulárním jazykem

Automaty a gramatiky. Uzávěrové vlastnosti v kostce R J BKJ DBKJ. Roman Barták, KTIML. Kvocienty s regulárním jazykem 11 Automaty a gramatiky Roman Barták, KTIML bartak@ktiml.mff.cuni.cz http://ktiml.mff.cuni.cz/~bartak Uzávěrové vlastnosti v kostce Sjednocení Průnik Průnik s RJ Doplněk Substituce/ homomorfismus Inverzní

Více

10. Soustavy lineárních rovnic, determinanty, Cramerovo pravidlo

10. Soustavy lineárních rovnic, determinanty, Cramerovo pravidlo 0. Soustavy lineárních rovnic, determinanty, Cramerovo pravidlo (PEF PaA) Petr Gurka aktualizováno 9. prosince 202 Obsah Základní pojmy. Motivace.................................2 Aritmetický vektorový

Více

DEFINICE Z LINEÁRNÍ ALGEBRY

DEFINICE Z LINEÁRNÍ ALGEBRY DEFINICE Z LINEÁRNÍ ALGEBRY Skripta Matematické metody pro statistiku a operační výzkum (Nešetřilová, H., Šařecová, P., 2009). 1. definice Vektorovým prostorem rozumíme neprázdnou množinu prvků V, na které

Více

Pro každé formule α, β, γ, δ platí: Pro každé formule α, β, γ platí: Poznámka: Platí právě tehdy, když je tautologie.

Pro každé formule α, β, γ, δ platí: Pro každé formule α, β, γ platí: Poznámka: Platí právě tehdy, když je tautologie. Zpracoval: hypspave@fel.cvut.cz 5. Výroková logika, formule výrokové logiky a jejich pravdivostní ohodnocení, splnitelné formule, tautologie, kontradikce, sémantický důsledek, tautologicky ekvivalentní

Více

Vlastnosti regulárních jazyků

Vlastnosti regulárních jazyků Vlastnosti regulárních jazyků Podobně jako u dalších tříd jazyků budeme nyní zkoumat následující vlastnosti regulárních jazyků: vlastnosti strukturální, vlastnosti uzávěrové a rozhodnutelné problémy pro

Více

Návrh algoritmů pro sémantické akce při výstavbě interpretu metodou rekurzivního sestupu

Návrh algoritmů pro sémantické akce při výstavbě interpretu metodou rekurzivního sestupu Mendelova zemědělská a lesnická univerzita v Brně Provozně ekonomická fakulta Návrh algoritmů pro sémantické akce při výstavbě interpretu metodou rekurzivního sestupu Diplomová práce Vedoucí práce: RNDr.

Více

Lineární algebra : Lineární prostor

Lineární algebra : Lineární prostor Lineární algebra : Lineární prostor (3. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 17. dubna 2014, 14:43 1 2 3.1 Aximotické zavedení lineárního prostoru Číselné těleso Celou lineární

Více

Úvod do informatiky. Miroslav Kolařík

Úvod do informatiky. Miroslav Kolařík Úvod do informatiky přednáška pátá Miroslav Kolařík Zpracováno dle učebního textu R. Bělohlávka: Úvod do informatiky, KMI UPOL, Olomouc 2008 a dle učebního textu R. Bělohlávka a V. Vychodila: Diskrétní

Více

α β ) právě tehdy, když pro jednotlivé hodnoty platí β1 αn βn. Danou relaci nazýváme relace

α β ) právě tehdy, když pro jednotlivé hodnoty platí β1 αn βn. Danou relaci nazýváme relace Monotónní a Lineární Funkce 1. Relace předcházení a to Uvažujme dva vektory hodnot proměnných α = α,, 1 αn ( ) a β = ( β β ) 1,, n x,, 1 xn. Říkáme, že vekto r hodnot α předchází vektor hodnot β (značíme

Více

Lineární zobrazení. 1. A(x y) = A(x) A(y) (vlastnost aditivity) 2. A(α x) = α A(x) (vlastnost homogenity)

Lineární zobrazení. 1. A(x y) = A(x) A(y) (vlastnost aditivity) 2. A(α x) = α A(x) (vlastnost homogenity) 4 Lineární zobrazení Definice: Nechť V a W jsou vektorové prostory Zobrazení A : V W (zobrazení z V do W nazýváme lineárním zobrazením, pokud pro všechna x V, y V a α R platí 1 A(x y = A(x A(y (vlastnost

Více

Hypergrafové removal lemma a Szemérediho

Hypergrafové removal lemma a Szemérediho Hypergrafové removal lemma a Szemérediho věta Zdeněk Dvořák 7. prosince 207 Hypergrafové removal lemma a jeho důsledek Definice. Dvojice (V, E) je k-uniformní hypergraf, je-li E množina neuspořádaných

Více

1. Matice a maticové operace. 1. Matice a maticové operace p. 1/35

1. Matice a maticové operace. 1. Matice a maticové operace p. 1/35 1. Matice a maticové operace 1. Matice a maticové operace p. 1/35 1. Matice a maticové operace p. 2/35 Matice a maticové operace 1. Aritmetické vektory 2. Operace s aritmetickými vektory 3. Nulový a opačný

Více

(2) [B] Nechť G je konečná grupa tvořena celočíselnými maticemi roměru 2 2 s operací násobení. Nalezněte všechny takové grupy až na izomorfizmus.

(2) [B] Nechť G je konečná grupa tvořena celočíselnými maticemi roměru 2 2 s operací násobení. Nalezněte všechny takové grupy až na izomorfizmus. (1 [B] Nechť A : R 6 R 6 je lineární zobrazební takové, že A 26 = I. Najděte lineární prostory V 1, V 2 a V 3 takové, že R 6 = V 1 V 2 V 3 dim V 1 = dim V 2 = dim V 3 AV 1 V 1, AV 2 V 2 a AV 3 V 3 (2 [B]

Více

1 Soustavy lineárních rovnic

1 Soustavy lineárních rovnic 1 Soustavy lineárních rovnic 1.1 Základní pojmy Budeme uvažovat soustavu m lineárních rovnic o n neznámých s koeficienty z tělesa T (potom hovoříme o soustavě m lineárních rovnic o n neznámých nad tělesem

Více

Základy matematické analýzy

Základy matematické analýzy Základy matematické analýzy Spojitost funkce Ing. Tomáš Kalvoda, Ph.D. 1, Ing. Daniel Vašata 2 1 tomas.kalvoda@fit.cvut.cz 2 daniel.vasata@fit.cvut.cz Katedra aplikované matematiky Fakulta informačních

Více

Stromy, haldy, prioritní fronty

Stromy, haldy, prioritní fronty Stromy, haldy, prioritní fronty prof. Ing. Pavel Tvrdík CSc. Katedra počítačů FEL České vysoké učení technické DSA, ZS 2008/9, Přednáška 6 http://service.felk.cvut.cz/courses/x36dsa/ prof. Pavel Tvrdík

Více

Kapitola 1. Úvod. 1.1 Značení. 1.2 Výroky - opakování. N... přirozená čísla (1, 2, 3,...). Q... racionální čísla ( p, kde p Z a q N) R...

Kapitola 1. Úvod. 1.1 Značení. 1.2 Výroky - opakování. N... přirozená čísla (1, 2, 3,...). Q... racionální čísla ( p, kde p Z a q N) R... Kapitola 1 Úvod 1.1 Značení N... přirozená čísla (1, 2, 3,...). Z... celá čísla ( 3, 2, 1, 0, 1, 2,...). Q... racionální čísla ( p, kde p Z a q N) q R... reálná čísla C... komplexní čísla 1.2 Výroky -

Více

Výroková a predikátová logika - V

Výroková a predikátová logika - V Výroková a predikátová logika - V Petr Gregor KTIML MFF UK ZS 2015/2016 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - V ZS 2015/2016 1 / 21 Dokazovací systémy VL Hilbertovský kalkul Hilbertovský

Více

5 Orientované grafy, Toky v sítích

5 Orientované grafy, Toky v sítích Petr Hliněný, FI MU Brno, 205 / 9 FI: IB000: Toky v sítích 5 Orientované grafy, Toky v sítích Nyní se budeme zabývat typem sít ových úloh, ve kterých není podstatná délka hran a spojení, nýbž jejich propustnost

Více

Generující kořeny cyklických kódů. Generující kořeny. Alena Gollová, TIK Generující kořeny 1/30

Generující kořeny cyklických kódů. Generující kořeny. Alena Gollová, TIK Generující kořeny 1/30 Generující kořeny cyklických kódů 6. přednáška z algebraického kódování Alena Gollová, TIK Generující kořeny 1/30 Obsah 1 Alena Gollová, TIK Generující kořeny 2/30 Hammingovy kódy Hammingovy kódy jsou

Více

PRIMITIVNÍ FUNKCE DEFINICE A MOTIVACE

PRIMITIVNÍ FUNKCE DEFINICE A MOTIVACE PIMITIVNÍ FUNKCE V předchozích částech byly zkoumány derivace funkcí a hlavním tématem byly funkce, které derivace mají. V této kapitole se budou zkoumat funkce, které naopak jsou derivacemi jiných funkcí

Více

Unární je také spojka negace. pro je operace binární - příkladem může být funkce se signaturou. Binární je velká většina logických spojek

Unární je také spojka negace. pro je operace binární - příkladem může být funkce se signaturou. Binární je velká většina logických spojek Otázka 06 - Y01MLO Zadání Predikátová logika, formule predikátové logiky, sentence, interpretace jazyka predikátové logiky, splnitelné sentence, tautologie, kontradikce, tautologicky ekvivalentní formule.

Více