Přednáška 4. Úvod do fyziky plazmatu : základní charakteristiky plazmatu, plazma v elektrickém vf plazma. Doutnavý výboj : oblasti výboje
|
|
- Eva Macháčková
- před 7 lety
- Počet zobrazení:
Transkript
1 Přednáška 4 Úvod do fyziky plazmatu : základní charakteristiky plazmatu, plazma v elektrickém vf plazma. Doutnavý výboj : oblasti výboje
2 Jak nahradit ohřev při vypařování Co třeba bombardovat ve vakuu povrch zdroje částic nějakými těžkými atomy? Asi, se jim podaří vyrazit z povrchu zdroje částic nějaké. Ty poletí až na substrát, kde vytvoří vrstvu. Jak urychlit a řídit tok těžkých atomů? Těžko! Ale, umíme ovládat let nabitých částic elektronů a iontů! To je ono projektily budou těžké ionty. Stačí argon hmotnost 40 amu.
3 Kde získat ionty? Kde v plynu za nízkého tlaku získat ionty? Snadno, pomocí elektronů a jejich srážek s neutrálními atomy v elektrické nebo elektromagnetickém poli. Co vznikne prostředí nazývané PLAZMA
4 Úvod do fyziky plazmatu velmi zjednodušené a zaměřené zejména na aplikace vytváření povlaků a nanotechnologie
5 Jak dlouho známé plazma? Počátky lze najít u Empedoklése (430 př. n.l.) čtyři živly: země, voda, vzduch, oheň* Crookes (1879) prostředí vytvořené elektrickým výbojem je čtvrtým stavem hmoty Langmuir (1923) prostředí tvořené elektrony, ionty, neutrály (atomy i molekuly) = plazma * není plazma jen excitované stavy, hoření zejména reakce singletního stavu molekuly O 2 (běžný je její tripletní stav)
6 Plazma kolem nás asi 99% hmoty ve vesmíru je v plazmatickém stavu plazma aplikace ve zdrojích světla, materiálovém inženýrství (elektronika, odolné povlaky,...)
7 Základní rozdělení horká plazma teploty všech částic jsou srovnatelné typické pro hvězdy (a částečně pro atmosférický obloukový plazmový výboj) studená plazma teplota elektronů mnohem větší než teplota iontů a neutrálních částic tímto druhem plazmatu se budeme dále zabývat
8 Energie částic střední kinetická energie částice je dána známým vztahem e = 3/2 kt (viz kinetická teorie plynů) přesně lze o T jako o teplotě mluvit pouze v termodynamické rovnováze, při Te >> Ta,i je T kinetická teplota částic, pro každý druh jiná míra energie částic je dána faktorem kt, kt T 1 T K 1 JK T K K ev K ev K Energie 1.5 ev odpovídá cca o C
9 Typické energie částic výboje za nízkých tlaků T e = K T a = T i = K obloukový atmosférický výboj T e = K T a = T i = K
10 Stavy částic stavba atomu Jak vypadá atom jednoduchý model atomu vodíku hranice kontinua e e 2 e 1 2. e 12 g 2 g 1 1. základní hladina e ij excitační energie pro přechod elektronu z hladiny i na j e ij ionizační energie pro i-tou hladinu g i statistická váha i-té hladiny
11 Stavy částic Metastabilní stavy vybuzený elektron v atomu spontánně přechází na nižší hladinu za dobu kolem 10-8 s a vyzáří při tom foton v některých stavech jsou optické přechody vyzáření fotonu zakázány, viz. kvantová mechanika, a tedy pravděpodobnost přechodu je nízká a doba existence takového stavu může být kolem 10-3 s, to jsou m.s. jsou důležitým úložištěm energie v plazmatu
12 Částice v plazmatu foton nemá vnitřní strukturu, energie e = hn elektron nemá vnitřní strukturu, energie volného el. je e = ½ m e v 2 atom (molekula) má vnitřní strukturu excitované stavy, u molekul rotační a vibrační stavy kladný iont i vícekrát ionizovaný, stavba jako atomy a molekuly záporný iont zachycený elektron, má jen základní hladinu a hranici kontinua, ele. afinita
13 Ionizační a excitační energie Atom.č. Prvek Exc. en. e 12 Ionizač. en e 1 1 H 10.2 ev 13.6 ev 2 He C N Ar
14 Ionizace molekul elektrony Molekula H 2 Ionizační en ev N O NO CH CH
15 A co disociace molekul Molekula Dis. en. tepelná dopadem el. H ev 8.8 ev N O NO 6.48 přes 10 ev tepelná energie není zcela ekvivalentní s procesem srážky s elektronem
16 Srážky nejjednodušší případy pro popis plazmatu lze použít tyto procesy srážek s elektrony A(m) + e C nm,f mn A + + e + e - ionizace atomů srážkami s zpětně tříčásticová rekombinace A(m) + e S m,o m A(n) + e excitace a deexcitace atomů srážkou s elektronem
17 Srážky nejjednodušší případy pro popis plazmatu lze použít tyto procesy srážek s fotony A(m) + hn mn (1-l mn )A mn,a mn A(n) zářivá excitace atomů a spontánní deexcitace A(m) + hn (1-l m )R m,r m A + + e foto ionizace a zářivá rekombinace atomů tedy z plazmatu vychází záření, a opačně (součastně) plazma záření i absorbuje
18 Příklad účinného průřezu
19 Srážet se mohou i těžké částice A(m) + B(1) A(n) + B(1) excitace a deexcitace A(m) + B A + + B + e ionizace a tříčásticová rekombinace A(m) + B(1) A(1) + B + + e ionizace a tříčásticová rekombinac, pokud je A(m) metastabilní stav, tak se nazývá Penningova ionizace A(m) + B (AB) + + e molekulární iont
20 Srážky s ionty další důležité srážky jsou ty s přenosem náboje mezi iontem a neutrálním atomem - symetrický přenos náboje A + + A(s) A(f) + A + - symetrický přenos náboje AB + e A - + B vznik záporných iontů e + A + B A - + B vznik záporných iontů reálně pro popis výboje nutno cca 200 až 300 rovnic včetně všech účinných průřezů (proměnné)
21 1 I úměrné U 2 oblast nasycení - všechny el. vzniklé fotoemisí dorazí na anodu (fotoemise z kosm. záření) 3 emise viditelného světla velice malá začíná ionizace - základ udržení výboje je fotoemise 4 růst I vliv sekundárních elektronů z katody po dopadu iontů Výboj za nízkého tlaku mějme takový systém a vhodný tlak I ~ V zvyšujme napětí a měřme proud + - Discharge Current (*10-10 A) e*u i = - ga s ioniza tion e ne rgy 4 U d - s e conda ry e le ctrons e mis s ion from e le ctrode Ar - Ar + Ionizační srážková kaskáda ev Discharge voltage (V)
22 Townsendovo kritérium průrazu plynu z VA charakteristiky je vidět, že výbojový proud prudce roste při napětích na průrazným kdy se začne uplatňovat ionizace, dále lze snadno odvodit, že výbojový proud I je úměrný podílu exp(ad)/(1 g(exp(ad) 1)). Kdy bude tedy proud maximální? a je koef. ionizace počet ionizací na jednotku dráhy letu el., d vzdálenost elektrod g je koeficient sekundární emise elektronů << 1
23 Townsendovo kritérium průrazu plynu podmínku pro max. proud 1 g(exp(ad) 1) = 0 lze přepsat na tvar g*exp(ad) = 1 tedy jeden primární elektron vytvoří jeden sekundární elektron, který převezme jeho funkci výboj se udrží samostatný bez nutnosti fotoemise (vnější zdroj elektronů z kosmického záření)
24 Paschenův zákon po dalších úpravách lze odvodit vztah U pr = funkce(pd) tedy průrazné napětí pro vznik samostatného výboje je závislé pouze na součinu tlaku a vzdálenosti katody a anody existuje minimum funkce experimentálně prokázáno roku
25 Co použít jiné než DC napájení lze, pak Paschenův zákon přejde do tvaru U pr = f(pd, fd) kde f je frekvence AC zdroje typicky pro součin pd = 1 Torr cm je závislost RF výboje
26 Oblasti 1 jako DC 2 klesá počet iontů dopadajících na elektrody vlivem oscilace el. pole, proto méně sek. el. 3 oscilace el. pole drží mezi elektrodami ionty i elektrony průrazné napětí rychle klesá 4 vliv fázového zpoždění způsobí nárůst průrazného napětí
27 Charakteristika DC výboje Obvyklý režim výboje pro materiálové aplikace
28 DC doutnavý výboj Long tube n e >= n i n e = n i typical values about cm -3 n e << n i
29 DC doutnavý výboj Pro využití ve zdrojích světla emise v UV oblasti
30 DC doutnavý výboj Pro využití v oblasti materiálových technologií
31 Literatura
Plazma. magnetosféra komety. zbytky po výbuchu supernovy. formování hvězdy. slunce
magnetosféra komety zbytky po výbuchu supernovy formování hvězdy slunce blesk polární záře sluneční vítr - plazma je označována jako čtvrté skupenství hmoty - plazma je plyn s významným množstvím iontů
VícePlazmové metody. Základní vlastnosti a parametry plazmatu
Plazmové metody Základní vlastnosti a parametry plazmatu Atom je základní částice běžné hmoty. Částice, kterou již chemickými prostředky dále nelze dělit a která definuje vlastnosti daného chemického prvku.
VícePlazma v technologiích
Plazma v technologiích Mezi moderními strojírenskými technologiemi se stále častěji prosazují metody využívající různé formy plazmatu. Plazma je plynné prostředí skládající se z poměrně volných částic,
VíceÚvod do laserové techniky KFE FJFI ČVUT Praha Michal Němec, 2014. Plynové lasery. Plynové lasery většinou pracují v kontinuálním režimu.
Aktivní prostředí v plynné fázi. Plynové lasery Inverze populace hladin je vytvářena mezi energetickými hladinami některé ze složek plynu - atomy, ionty nebo molekuly atomární, iontové, molekulární lasery.
VíceÚvod do fyziky plazmatu
Úvod do fyziky plazmatu Lenka Zajíčková, Ústav fyz. elektroniky Doporučená literatura: J. A. Bittencourt, Fundamentals of Plasma Physics, 2003 (3. vydání) ISBN 85-900100-3-1 Navazující a související přednášky:
VícePlazmové metody. Elektrické výboje v plynech
Plazmové metody Elektrické výboje v plynech Plazmové metody aplikované v technice velkou většinou používají jako zdroje plazmatu elektrické výboje v plynech. Výboje rozdělujeme podle doby trvání na - ustálené
VíceZÁŘENÍ V ASTROFYZICE
ZÁŘENÍ V ASTROFYZICE Plazmový vesmír Uvádí se, že 99 % veškeré hmoty ve vesmíru je v plazmovém skupenství (hvězdy, mlhoviny, ) I na Zemi se vyskytuje plazma, např. v podobě blesků, polárních září Ve sluneční
VíceDOUTNAVÝ VÝBOJ. 1. Vlastnosti doutnavého výboje 2. Aplikace v oboru plazmové nitridace
DOUTNAVÝ VÝBOJ 1. Vlastnosti doutnavého výboje 2. Aplikace v oboru plazmové nitridace Doutnavý výboj Připomeneme si voltampérovou charakteristiku výboje v plynech : Doutnavý výboj Připomeneme si, jaké
VíceCharakteristika a mrtvá doba Geiger-Müllerova počítače
Charakteristika a mrtvá doba Geiger-Müllerova počítače Úkol : 1. Proměřte charakteristiku Geiger-Müllerova počítače. K jednotlivým naměřeným hodnotám určete střední kvadratickou chybu a vyznačte ji do
Více1. Paschenův zákon. p = A exp Bp )
Odvození Paschenova zákona 1. Paschenův zákon Při působení elektrického pole na zředěný plyn dochází k urychlování náhodných elektronů v plynu do takových energií, že při srážkách urychlených elektronů
VíceSTEJNOSMĚRNÝ PROUD Nesamostatný výboj TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY.
STEJNOSMĚRNÝ PROUD Nesamostatný výboj TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY. Plyny jsou tvořeny elektricky neutrálními molekulami. Proto jsou za
VícePočítačový model plazmatu. Vojtěch Hrubý listopad 2007
Počítačový model plazmatu Vojtěch Hrubý listopad 2007 Situace Zajímá nás, co se děje v okolí kovové sondy ponořené do plazmatu. Na válcovou sondu přivedeme napětí U Očekáváme, že se okolo sondy vytvoří
VíceDOUTNAVÝ VÝBOJ. Další technologie využívající doutnavý výboj
DOUTNAVÝ VÝBOJ Další technologie využívající doutnavý výboj Plazma doutnavého výboje je využíváno v technologiích depozice povlaků nebo modifikace povrchů. Jedná se zejména o : - depozici povlaků magnetronovým
VíceVyužití plazmových metod ve strojírenství. Metody depozice povlaků a tenkých vrstev
Využití plazmových metod ve strojírenství Metody depozice povlaků a tenkých vrstev Metody depozice povlaků Využití plazmatu pro depozice (nanášení) povlaků a tenkých vrstev je moderní a stále častěji aplikovaná
VícePlazmové metody. Co je to plazma? Jak se uplatňuj. ují plazmové metody v technice?
Plazmové metody Co je to plazma? Jak se uplatňuj ují plazmové metody v technice? Co je to plazma? Plazma je látkové skupenství hmoty, ČTVRTÉ skupenství a vykazuje určité specifické vlastnosti. (správně
Více16. Franck Hertzův experiment
16. Franck Hertzův experiment Zatímco zahřáté těleso vysílá spojité spektrum elektromagnetického záření, mají např. zahřáté páry kovů nebo plyny, v nichž probíhá elektrický výboj, spektrum čárové. V uvedených
VíceVEDENÍ ELEKTRICKÉHO PROUDU V PLYNU, SAMOSTATNÝ A NESAMOSTATNÝ VÝBOJ
Škola: Autor: DUM: Vzdělávací obor: Tematický okruh: Téma: Masarykovo gymnázium Vsetín Mgr. Jitka Novosadová MGV_F_SS_2S2_D19_Z_ELMAG_Vedeni_elektrickeho_proudu_v_ plynech_samostatny_a_nesamostatny_vyboj_pl
VíceATOMOVÁ SPEKTROMETRIE
ATOMOVÁ SPEKTROMETRIE Atomová spektrometrie valenčních e - 1. OES (AES). AAS 3. AFS 1 Atomová spektra čárová spektra Tok záření P - množství zářivé energie (Q E ) přenesené od zdroje za jednotku času.
VíceIonizační manometry. Při ionizaci plynu o koncentraci n nejsou ionizovány všechny molekuly, ale jenom část z nich n i = γn ; γ < 1.
Ionizační manometry Princip: ionizace molekul a měření počtu nabitých částic Rozdělení podle způsobu ionizace: Manometry se žhavenou katodou Manometry se studenou katodou Manometry s radioaktivním zářičem
VícePravděpodobnostní charakter jaderných procesů
Pravděpodobnostní charakter jaderných procesů Při převážné většině jaderných pokusů je jaderné záření registrováno jako proud nabitých částic respektive kvant γ, které vznikají v důsledku rozpadu atomových
VíceIONTOVÉ ZDROJE. Účel. Požadavky. Elektronové zdroje. Iontové zdroje. Princip:
Účel IONTOVÉ ZDROJE vyrobit svazek částic vytvarovat ho a dopravit do urychlovací komory předurychlit ho (10 kev) Požadavky intenzita svazku malá emitance svazku trvanlivost zdroje stabilita zdroje minimální
VíceOpakování: shrnutí základních poznatků o struktuře atomu
11. Polovodiče Polovodiče jsou krystalické nebo amorfní látky, jejichž elektrická vodivost leží mezi elektrickou vodivostí kovů a izolantů a závisí na teplotě nebo dopadajícím optickém záření. Elektrické
VíceStudium fotoelektrického jevu
Studium fotoelektrického jevu Úkol : 1. Změřte voltampérovou charakteristiku přiložené fotonky 2. Zpracováním výsledků měření určete hodnotu Planckovy konstanty Pomůcky : - Ampérmetr TESLA BM 518 - Školní
VíceATOMOVÁ SPEKTROMETRIE
ATOMOVÁ SPEKTROMETRIE doc. Ing. David MILDE, Ph.D. tel.: 585634443 E-mail: david.milde@upol.cz (c) -017 Doporučená literatura Černohorský T., Jandera P.: Atomová spektrometrie. Univerzita Pardubice 1997.
VíceIntegrovaná střední škola, Hlaváčkovo nám. 673, Slaný
Označení materiálu: VY_32_INOVACE_STEIV_FYZIKA2_12 Název materiálu: Elektrický proud v plynech. Tematická oblast: Fyzika 2.ročník Anotace: Prezentace slouží k výkladu elektrického proudu v plynech. Očekávaný
VíceVEDENÍ ELEKTRICKÉHO PROUDU V LÁTKÁCH
VEDENÍ ELEKTRICKÉHO PROUDU V LÁTKÁCH Jan Hruška TV-FYZ Ahoj, tak jsme tady znovu a pokusíme se Vám vysvětlit problematiku vedení elektrického proudu v látkách. Co je to vlastně elektrický proud? Na to
VíceVojtěch Hrubý: Esej pro předmět Seminář EVF
Vojtěch Hrubý: Esej pro předmět Seminář EVF Plazma Pod pojmem plazma většinou myslíme plynné prostředí, které se skládá z neutrálních částic, iontů a elektronů. Poměr množství neutrálních a nabitých částic
VíceZákladní experiment fyziky plazmatu
Základní experiment fyziky plazmatu D. Vašíček 1, R. Skoupý 2, J. Šupík 3, M. Kubič 4 1 Gymnázium Velké Meziříčí, david.vasicek@centrum.cz 2 Gymnázium Ostrava-Hrabůvka příspěvková organizace, jansupik@gmail.com
VíceZdroje optického záření
Metody optické spektroskopie v biofyzice Zdroje optického záření / 1 Zdroje optického záření tepelné výbojky polovodičové lasery synchrotronové záření Obvykle se charakterizují zářivostí (zářivý výkon
Více13. Spektroskopie základní pojmy
základní pojmy Spektroskopicky významné OPTICKÉ JEVY absorpce absorpční spektrometrie emise emisní spektrometrie rozptyl rozptylové metody Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti
VíceZáklady vakuové techniky
Základy vakuové techniky Střední rychlost plynů Rychlost molekuly v p = (2 k N A ) * (T/M 0 ), N A = 6. 10 23 molekul na mol (Avogadrova konstanta), k = 1,38. 10-23 J/K.. Boltzmannova konstanta, T.. absolutní
VíceEmise vyvolaná působením fotonů nebo částic
Emise vyvolaná působením fotonů nebo částic PES (fotoelektronová spektroskopie) XPS (rentgenová fotoelektronová spektroskopie), ESCA (elektronová spektroskopie pro chemickou analýzu) UPS (ultrafialová
VíceABSORPČNÍ A EMISNÍ SPEKTRÁLNÍ METODY
ABSORPČNÍ A EMISNÍ SPEKTRÁLNÍ METODY 1 Fyzikální základy spektrálních metod Monochromatický zářivý tok 0 (W, rozměr m 2.kg.s -3 ): Absorbován ABS Propuštěn Odražen zpět r Rozptýlen s Bilance toků 0 = +
VíceTECHNIKA VYSOKÝCH NAPĚŤÍ. Elektrická pevnost
TECHNIKA VYSOKÝCH NAPĚŤÍ Elektrická pevnost Izolační systémy Izolant Rozdělení izolantů podle skupenství Plynné (gas) Kapalné (liquid) Pevné (solid) Rozdělení izolantů podle obnovení izolačních schopností
VíceSTEJNOSMĚRNÝ PROUD Samostatný výboj TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY.
STEJNOSMĚRNÝ PROUD Samostatný výboj TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY. Plyny jsou tvořeny elektricky neutrálními molekulami. Proto jsou za
VíceJ = S A.T 2. exp(-eφ / kt)
Vakuové součástky typy a využití Obrazovky: - osciloskopické - televizní + monitory Elektronky: - vysokofrekvenční (do 1 GHz, 1MW) - mikrovlnné elektronky ( až do 20 GHz, 10 MW) - akustické zesilovače
VíceStudium kladného sloupce doutnavého výboje pomocí elektrostatických sond: jednoduchá sonda
1 Úvod Studium kladného sloupce doutnavého výboje pomocí elektrostatických sond: jednoduchá sonda V této úloze se zaměříme na měření parametrů kladného sloupce doutnavého výboje, proto je vhodné se na
VíceOddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM IV Úloha č.: A 16 Název: Měření resonančního a ionizačního potenciálu rtuti, Franckův-Hertzův pokus Vypracoval: Martin Dlask
VíceZáklady molekulové fyziky a termodynamiky
Základy molekulové fyziky a termodynamiky Molekulová fyzika je částí fyziky, která zkoumá vlastnosti látek na základě jejich vnitřní struktury, pohybu a vzájemného silového působení částic, z nichž jsou
VícePlazmová depozice tenkých vrstev oxidu zinečnatého
Plazmová depozice tenkých vrstev oxidu zinečnatého Bariérový pochodňový výboj za atmosférického tlaku Štěpán Kment Doc. Dr. Ing. Petr Klusoň Mgr. Zdeněk Hubička Ph.D. Obsah prezentace Úvod do problematiky
VíceELEKTRICKÝ PROUD V KAPALINÁCH, PLYNECH A POLOVODIČÍCH
Škola: Autor: DUM: Vzdělávací obor: Tematický okruh: Téma: Masarykovo gymnázium Vsetín Mgr. Jitka Novosadová MGV_F_SS_3S3_D14_Z_OPAK_E_Elektricky_proud_v_kapalinach _plynech_a_polovodicich_t Člověk a příroda
VícePříklady Kosmické záření
Příklady Kosmické záření Kosmické částice 1. Jakou kinetickou energii získá proton při pádu z nekonečné výšky na Zem? Poloměr Zeměje R Z =637810 3 maklidováenergieprotonuje m p c 2 =938.3MeV. 2. Kosmickékvantum
VíceVybrané technologie povrchových úprav. Základy vakuové techniky Doc. Ing. Karel Daďourek 2006
Vybrané technologie povrchových úprav Základy vakuové techniky Doc. Ing. Karel Daďourek 2006 Střední rychlost plynů Rychlost molekuly v p = (2 k N A ) * (T/M 0 ), N A = 6. 10 23 molekul na mol (Avogadrova
VíceReferát z atomové a jaderné fyziky. Detekce ionizujícího záření (principy, technická realizace)
Referát z atomové a jaderné fyziky Detekce ionizujícího záření (principy, technická realizace) Měřicí a výpočetní technika Šimek Pavel 5.7. 2002 Při všech aplikacích ionizujícího záření je informace o
VíceÚvod do fyziky plazmatu
Úvod do fyziky plazmatu Plazma Velmi často se o plazmatu mluví jako o čtvrtém skupenství hmoty Název plazma pro ionizovaný plyn poprvé použil Irwing Langmuir (1881 1957) v roce 1928, protože mu chováním
VíceTransportní jevy v plynech Reálné plyny Fázové přechody Kapaliny
Transportní jevy v plynech Reálné plyny Fázové přechody Kapaliny Hustota toku Zatím jsme studovali pouze soustavy, které byly v rovnovážném stavu není-li soustava v silovém poli, je hustota částic stejná
VíceStručný úvod do spektroskopie
Vzdělávací soustředění studentů projekt KOSOAP Slunce, projevy sluneční aktivity a využití spektroskopie v astrofyzikálním výzkumu Stručný úvod do spektroskopie Ing. Libor Lenža, Hvězdárna Valašské Meziříčí,
VíceFyzikální metody nanášení tenkých vrstev
Fyzikální metody nanášení tenkých vrstev Vakuové napařování Příprava tenkých vrstev kovů některých dielektrik polovodičů je možné vytvořit i epitaxní vrstvy (orientované vrstvy na krystalické podložce)
VícePlazmové svařování a dělení materiálu. Jaromír Moravec
Plazmové svařování a dělení materiálu Jaromír Moravec 1 Definice plazmatu Definice plazmatu je následující: Plazma je kvazineutrální soubor částic s volnými nosiči nábojů, který vykazuje kolektivní chování.
Více4 Přenos energie ve FS
4 Přenos energie ve FS Petr Ilík KF a CH, PřF UP Přenos energie (excitace) do C - 1-1 molekula chl je i při vysoké ozářenosti excitována max. 10x za sekundu neefektivní pro C - nténní systém s mnoha pigmenty
VíceELEKTRONOVÝ OBAL ATOMU. kladně nabitá hmota. elektron
MODELY ATOMU ELEKTRONOVÝ OBAL ATOMU Na základě experimentálních výsledků byly vytvořeny různé teorie o struktuře atomu, tzv. modely atomu. Thomsonův model: Roku 1897 se jako první pokusil o popis stavby
VíceREAKTIVNÍ MAGNETRONOVÉ NAPRAŠOV. Jan VALTER HVM Plasma s.r.o. www.hvm.cz
REAKTIVNÍ MAGNETRONOVÉ NAPRAŠOV OVÁNÍ Jan VALTER SCHEMA REAKTIVNÍHO NAPRAŠOV OVÁNÍ zdroj výboje katoda odprašovaný terč plasma inertní napouštění plynů reaktivní zdroj předpětí p o v l a k o v a n é s
VíceOPTICK SPEKTROMETRIE
OPTICK TICKÁ EMISNÍ SPEKTROMETRIE Optical Emission Spectrometry (OES) ATOMOVÁ EMISNÍ SPEKTROMETRIE (AES) (c) -2010 OES je založena na registrování fotonů vzniklých přechody valenčních e - z vyšších energetických
VícePlynové lasery pro průmyslové využití
Laserové technologie v praxi I. Přednáška č.3 Plynové lasery pro průmyslové využití Hana Chmelíčková, SLO UP a FZÚ AVČR Olomouc, 2011 Využití plynových laserů v průmyslových aplikacích Atomární - He-Ne
Více1. Zadání Pracovní úkol
1. 1. Pracovní úkol 1. Zadání 1. Změřte charakteristiky Franck-Hertzovy trubice s parami rtuti při pokojové teplotě a při dvou vyšších teplotách baňky t 1, t 2. Při nejvyšší teplotě a při teplotě pokojové
VíceMěření vakua. Vacuum Technology J.Šandera, FEEC, TU Brno 1
Měření vakua Je třeba měřit vakuum ve velkém rozsahu (10-10 až 10 5 Pa) Používají se mechanické a elektrické principy Co požadujeme po vakuometrech: - absolutní měření a nezávislost údaje na druhu plynu
VícePolovodičové diody Elektronické součástky pro FAV (KET/ESCA)
Polovodičové diody varikap, usměrňovací dioda, Zenerova dioda, lavinová dioda, tunelová dioda, průrazy diod Polovodičové diody (diode) součástky s 1 PN přechodem varikap usměrňovací dioda Zenerova dioda
VíceMODERNÍ METODY CHEMICKÉ FYZIKY I lasery a jejich použití v chemické fyzice Přednáška 5
MODERNÍ METODY CHEMICKÉ FYZIKY I lasery a jejich použití v chemické fyzice Přednáška 5 Ondřej Votava J. Heyrovský Institute of Physical Chemistry AS ČR Opakování z minula Light Amplifier by Stimulated
VíceNekovalentní interakce
Nekovalentní interakce Jan Řezáč UOCHB AV ČR 31. října 2017 Jan Řezáč (UOCHB AV ČR) Nekovalentní interakce 31. října 2017 1 / 28 Osnova 1 Teorie 2 Typy nekovalentních interakcí 3 Projevy v chemii 4 Výpočty
VíceIII. Stacionární elektrické pole, vedení el. proudu v látkách
III. Stacionární elektrické pole, vedení el. proudu v látkách Osnova: 1. Elektrický proud a jeho vlastnosti 2. Ohmův zákon 3. Kirhoffovy zákony 4. Vedení el. proudu ve vodičích 5. Vedení el. proudu v polovodičích
VíceNumerické modely klouzavých výbojů ve střídavém elektrickém poli
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta elektrotechnická Katedra elektroenergetiky Numerické modely klouzavých výbojů ve střídavém elektrickém poli Numerical Models of Surface Discharges in Alternating
VícePřednášky z lékařské biofyziky Biofyzikální ústav Lékařské fakulty Masarykovy univerzity, Brno
Přednášky z lékařské biofyziky Biofyzikální ústav Lékařské fakulty Masarykovy univerzity, Brno 1 Přednášky z lékařské biofyziky Biofyzikální ústav Lékařské fakulty Masarykovy univerzity, Brno Struktura
VíceMetody depozice povlaků - CVD
Procesy CVD, PA CVD, PE CVD Chemická metoda depozice vrstev CVD využívá pro depozici směs chemicky reaktivních plynů (např. CH 4, C 2 H 2, apod.) zahřátou na poměrně vysokou teplotu 900 1100 C. Reakční
VíceVýukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.5.00/34.0996
Výukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.5.00/34.0996 Šablona: III/2 č. materiálu: VY_32_INOVACE_FYZ60 Jméno autora: Třída/ročník: Mgr. Alena Krejčíková
Více2. Elektrotechnické materiály
. Elektrotechnické materiály Předpokladem vhodného využití elektrotechnických materiálů v konstrukci elektrotechnických součástek a zařízení je znalost jejich vlastností. Elektrické vlastnosti materiálů
VíceStruktura elektronového obalu
Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 Struktura elektronového obalu Představy o modelu atomu se vyvíjely tak, jak se zdokonalovaly možnosti vědy
VíceMgr. Ladislav Blahuta
Mgr. Ladislav Blahuta Střední škola, Havířov-Šumbark, Sýkorova 1/613, příspěvková organizace Tento výukový materiál byl zpracován v rámci akce EU peníze středním školám - OP VK 1.5. Výuková sada ZÁKLADNÍ
VíceÚvod do laserové techniky
Úvod do laserové techniky Látka jako soubor kvantových soustav Jan Šulc Katedra fyzikální elektroniky České vysoké učení technické v Praze petr.koranda@gmail.com 18. září 2018 Světlo jako elektromagnetické
VícePOKUSY VEDOUCÍ KE KVANTOVÉ MECHANICE III
POKUSY VEDOUCÍ KE KVANTOVÉ MECHANICE III FOTOELEKTRICKÝ JEV OBJEV ATOMOVÉHO JÁDRA 1911 Rutherford některé radioaktivní prvky vyzařují částice α, jde o kladné částice s nábojem 2e a hmotností 4 vodíkových
VíceSnímače, detektory, čidla 1) Principy snímání polohy, měření vzdálenosti, snímání úhlu natočení (mechanické, kontaktní/ bezkontaktní, další jiné).
Snímače, detektory, čidla 1) Principy snímání polohy, měření vzdálenosti, snímání úhlu natočení (mechanické, kontaktní/ bezkontaktní, další jiné). 2) Principy kontaktního snímání otáček, bezkontaktní snímání.
Vícetest zápočet průměr známka
Zkouškový test z FCH mikrosvěta 6. ledna 2015 VZOR/1 jméno test zápočet průměr známka Čas 90 minut. Povoleny jsou kalkulačky. Nejsou povoleny žádné písemné pomůcky. U otázek označených symbolem? uvádějte
VíceRelativní chybu veličiny τ lze určit pomocí relativní chyby τ 1. Zanedbáme-li chybu jmenovatele ve vzorci (2), platí *1+:
Pracovní úkol 1. Změřte charakteristiku Geigerova-Müllerova detektoru pro záření gamma a u jednotlivých měření stanovte chybu a vyznačte ji do grafu. Určete délku a sklon plata v charakteristice detektoru
VíceNekovalentní interakce
Nekovalentní interakce Jan Řezáč UOCHB AV ČR 3. listopadu 2016 Jan Řezáč (UOCHB AV ČR) Nekovalentní interakce 3. listopadu 2016 1 / 28 Osnova 1 Teorie 2 Typy nekovalentních interakcí 3 Projevy v chemii
VíceCharakteristiky optoelektronických součástek
FYZIKÁLNÍ PRAKTIKUM Ústav fyziky FEKT VUT BRNO Spolupracoval Jan Floryček Jméno a příjmení Jakub Dvořák Ročník 1 Měřeno dne Předn.sk.-Obor BIA 27.2.2007 Stud.skup. 13 Odevzdáno dne Příprava Opravy Učitel
VíceDOUTNAVÝ VÝBOJ. Magnetronové naprašování
DOUTNAVÝ VÝBOJ Magnetronové naprašování Efektivním způsobem jak získat částice vhodné k růstu povlaku je nahrazení teploty používané u odpařování ekvivalentem energie dodané dopadem těžkéčástice přenosem
VíceOrbitaly ve víceelektronových atomech
Orbitaly ve víceelektronových atomech Elektrony jsou přitahovány k jádru ale také se navzájem odpuzují. Repulzní síly způsobené dalšími elektrony stíní přitažlivý účinek atomového jádra. Efektivní náboj
VíceUniverzita Tomáše Bati ve Zlíně
Univerzita Tomáše Bati ve Zlíně Ústav elektrotechniky a měření Základní pojmy elektroniky Přednáška č. 1 Milan Adámek adamek@ft.utb.cz U5 A711 +420576035251 Základní pojmy elektroniky 1 Model atomu průměr
VíceElektřina: Elektrostatika: Elektrostatika: Elektrostatika: Analogie elektřiny s mechanikou: Elektrostatika: Souvislost a analogie s mechanikou.
Elektřina pro bakalářské obory Elektron ( v antice ) =?? Petr Heřman Ústav biofyziky, K.LF Elektron ( v antice ) = jantar Jak souvisí jantar s elektřinou?? Jak souvisí jantar s elektřinou: Mechanické působení
VícePSK1-14. Optické zdroje a detektory. Bohrův model atomu. Vyšší odborná škola a Střední průmyslová škola, Božetěchova 3 Ing. Marek Nožka.
PSK1-14 Název školy: Autor: Anotace: Vyšší odborná škola a Střední průmyslová škola, Božetěchova 3 Ing. Marek Nožka Optické zdroje a detektory Vzdělávací oblast: Informační a komunikační technologie Předmět:
VíceDiagnostika plazmatu. Rychlé zopakování. Optická emisní spektroskopie + odvozené metody. Hmotnostní spektroskopie. Možné aplikace
Diagnostika plazmatu Rychlé zopakování Optická emisní spektroskopie + odvozené metody Hmotnostní spektroskopie Možné aplikace Opakování Plazma je kvazineutrální plyn vykazující kolektivní chování. Je mnoho
VíceOPTICKÁ EMISNÍ SPEKTROMETRIE
OPTICKÁ EMISNÍ SPEKTROMETRIE Optical Emission Spectrometry (OES) ATOMOVÁ EMISNÍ SPEKTROMETRIE (AES) (c) -2010 OES je založena na registrování fotonů vzniklých přechody valenčních e - z vyšších energetických
VíceZáklady spektroskopických metod
Základy spektroskopických metod Metody charakterizace nanomateriálů I RNDr. Věra Vodičková, PhD. Spektroskopické metody Optické metody pro stanovení chemického složení materiálů Založeny na vzájemném působení
VíceOPTICKÁ EMISNÍ SPEKTROMETRIE
OPTICKÁ EMISNÍ SPEKTROMETRIE Optical Emission Spectrometry (OES) ATOMOVÁ EMISNÍ SPEKTROMETRIE (AES) (c) -2017 OES je založena na registrování fotonů vzniklých přechody valenčních e - z vyšších energetických
VíceAnomální doutnavý výboj
Anomální doutnavý výboj Výboje v plynech ve vakuu Základní procesy ve výboji Odprašování dopadající kladné ionty vyrážejí z katody částice, tím dochází k úbytku hmoty katody a zmenšování rozměrů. Odprašování
VíceÚvod do spektrálních metod pro analýzu léčiv
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Úvod do spektrálních metod pro analýzu léčiv Pavel Matějka, Vadym Prokopec pavel.matejka@vscht.cz pavel.matejka@gmail.com Vadym.Prokopec@vscht.cz
VíceOPTIKA Fotoelektrický jev TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY.
OPTIKA Fotoelektrický jev TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY. Světlo jako částice Kvantová optika se zabývá kvantovými vlastnostmi optického
VíceZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA ELEKTROTECHNICKÁ. Katedra elektroenergetiky a ekologie DIPLOMOVÁ PRÁCE
ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA ELEKTROTECHNICKÁ Katedra elektroenergetiky a ekologie DIPLOMOVÁ PRÁCE Elektrická pevnost plynného izolantu s izolační bariérou v elektromagnetickém poli Lukáš Vilhelm
VíceTeplota jedna ze základních jednotek soustavy SI, vyjadřována je v Kelvinech (značka K) další používané stupnice: Celsiova, Fahrenheitova
1 Rozložení, distribuce tepla Teplota je charakteristika tepelného stavu hmoty je to stavová veličina, charakterizující termodynamickou rovnováhu systému. Teplo vyjadřuje kinetickou energii částic. Teplota
VíceLaserová technika prosince Katedra fyzikální elektroniky.
Laserová technika 1 Aktivní prostředí Šíření rezonančního záření dvouhladinovým prostředím Jan Šulc Katedra fyzikální elektroniky České vysoké učení technické jan.sulc@fjfi.cvut.cz 22. prosince 2016 Program
VíceAtomová fyzika plazmatu
Atomová fyzika plazmatu Označení nábojových stavů Stupeň ionizace 0+, 1+, +, 3+,. Z+ Atom Y YI, YII, YIII, YIV Uhlík C (Z=6) CI, CII, CIII, CIV, CV, CVI, CVII Izoelektronová C-podobný, B-p., Be-p., Li-p.,
VíceCHARAKTERIZACE MATERIÁLU II
CHARAKTERIZACE MATERIÁLU II Vyučující a zkoušející Ing. Martin Kormunda, Ph.D. - CN320 Konzultační hodiny: Po 10-12, St 13 14 nebo dle dohody Doc. RNDr. Jaroslav Pavlík, CS.c. - CN Konzultační hodiny:
VíceINOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ
INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ CZ.1.07/1.1.00/08.0010 ELEKTRICKÝ NÁBOJ Mgr. LUKÁŠ FEŘT
VíceSpektroskopické metody. převážně ve viditelné, ultrafialové a blízké infračervené oblasti
Spektroskopické metody převážně ve viditelné, ultrafialové a blízké infračervené oblasti Elektromagnetické záření Elektromagnetické záření je postupné vlnění elektromagnetického pole složeného z kombinace
VíceElektřina. Elektrostatika: Elektrostatika: Elektrostatika: Analogie elektřiny s mechanikou: Elektrostatika: Souvislost a analogie s mechanikou.
Elektrostatika: Elektřina pro bakalářské obory Souvislost a analogie s mechanikou. Elektron ( v antice ) =?? Petr Heřman Ústav biofyziky, UK.LF Elektrostatika: Souvislost a analogie s mechanikou. Elektron
VíceOptogalvanick{ spektrometrie Vítězslav Otruba
Optogalvanick{ spektrometrie Vítězslav Otruba Princip metody Optogalvanický efekt využívá kombinace excitace atomů resonančním zářením a srážkové ionizace částicemi plazmatu (plamene) k selektivní ionizaci
VíceCharakterizace výboje v atmosféře methanu a helia pomocí časově rozlišené spektrometrie s Fourierovou transformací
Diplomová práce Charakterizace výboje v atmosféře methanu a helia pomocí časově rozlišené spektrometrie s Fourierovou transformací Bc. Martin Ferus Vedoucí práce: Doc. RNDr. Svatopluk Civiš, CSc. Univerzita
VíceVýstupní práce Materiály a technologie přípravy M. Čada
Výstupní práce Makroskopická veličina charakterizující povrch z pohledu elektronických vlastností. Je to míra vazby elektronu k pevné látce a hraje důležitou roli při procesech transportu nabitých částic
VíceLuminiscence. emise světla látkou, která je způsobená: světlem (fotoluminiscence) fluorescence, fosforescence. chemicky (chemiluminiscence)
Luminiscence Luminiscence emise světla látkou, která je způsobená: světlem (fotoluminiscence) fluorescence, fosforescence chemicky (chemiluminiscence) teplem (termoluminiscence) zvukem (sonoluminiscence)
VíceBalmerova série, určení mřížkové a Rydbergovy konstanty
Balmerova série, určení mřížkové a Rydbergovy konstanty V tomto laboratorním cvičení zkoumáme spektrální čáry 1. řádu vodíku a rtuti pomocí difrakční mřížky (mřížkového spektroskopu). Známé spektrální
Více