Počítačový model plazmatu. Vojtěch Hrubý listopad 2007
|
|
- Irena Slavíková
- před 9 lety
- Počet zobrazení:
Transkript
1 Počítačový model plazmatu Vojtěch Hrubý listopad 2007
2 Situace Zajímá nás, co se děje v okolí kovové sondy ponořené do plazmatu. Na válcovou sondu přivedeme napětí U Očekáváme, že se okolo sondy vytvoří prostorový náboj, který ji odstíní. Proč na počítači? Langmuirova teorie bez srážek Rozšíření o srážky je složité počítačový model to umožňuje za,,rozumnou cenu``
3 Parametry modelu Nízkoteplotní elektropozitivní argonové plazma při tlaku 133 Pa Koncentrace nabitých částic: m -3 Dimenze: 2D prostorově 3D rychlostně Pracovní oblast: Kruh s průměrem 1 cm Válcová kovová sonda na potenciálu 10 V uprostřed prac. obl. Metoda: Částicový model s kombinací molekulární dynamiky a metody Monte Carlo
4 Blokové schéma modelu Rozehrání částic na počátku Změna polohy částic Srážkové procesy Výpočet potenciálu Průběžné statistické vyhodnocení Změna rychlosti částic Molekulární dyn. Monte Carlo Ostatní Celkové vyhodnocení a ukončení
5 Rozehrání počátečního stavu částic Modelujeme pouze pohyb nabitých částic. Neutrální pozadí je simulováno srážkovými procesy. Všechna data o částicích jsou uložena v jednorozměrných polích, každá částice má svůj index. Pole mají větší délku, než je počet částic na počátku, aby mohla pojmout případné větší množství částic při fluktuacích. Polohu rozehráváme s rovnoměrným rozdělením Rychlosti rozehráváme s Maxwellovým rozdělením (nicméně model lze snadno upravit i pro jiná rozdělení)
6 Molekulární dynamika Pohyb nabitých částic je modelován metodou molekulární dynamiky (tedy deterministicky v rámci chyby metody). Používáme algoritmus 2. řádu (Verlet), protože síly nezávisí na rychlostech. Potenciál elektrického pole získáme řešením Laplaceovy rovnice x, y = x, y 0 S dimenzí výrazně roste náročnost řešení Lap. rovnice 1D Thomasova metoda 2D superrelaxační metoda (náš případ) 3D metoda konečných prvků (COMSOL)
7 Slabiny molekulární dynamiky Potřebujeme časový krok Δt= s kvůli rychlému pohybu elektronů. S tímto krokem by však výpočet trval neúměrně dlouho kvůli pomalému pohybu iontů. Pro ionty proto používáme větší krok Δt= s. V každé iteraci však pohneme současně elektrony i ionty s různými kroky. Mají výsledky smysl? Časový průběh ne, ustálený stav ano. Nefyzikální ohřev díky přítomnosti vnějších polí a proměnnému počtu částic nelze posoudit.
8 Modelování srážek metodou Monte Carlo Srážky nabitých částic s neutrálními jsou náhodné, jejich pravděpodobnost je určena účinnými průřezy závislými na energii. Srážky elektron neutrál: pružná srážka excitace ionizace Srážky iont neutrál: charge transfer pružný rozptyl
9 Účinné průřezy srážek elektron - neutrál Data: Bogaerts, A., Gijbels, R., IEEE Trans. Plasma Science, 27 (1999) 1406.
10 Realizace programu Jazyk C: nízká režie velmi dobrá přenositelnost široká podpora na v různých OS a na různém HW v možnost komunikace s balíky MATLAB a COMSOL Modularizace: možnost využít některé celky ve více modelech Nevýhody: nepřehlednost datových struktur
11 Optimalizace V nejdůležitější oblasti (blízko sondy) je nejmenší množství částic na mezikruží, tj. výsledky znehodnoceny šumem. Řešení: Statistické váhy částic, tj. částice v blízkosti sondy nechť mají menší statistickou váhu, ale úměrně se musí zvýšit jejich koncentrace. Horší vyhodnocování výsledků (nutno zvážit, které jevy jsou statistickými vahami ovlivněny).
12 Výsledky výpočtu Na následujících stranách jsou výsledky modelu Průběh potenciálu v závislosti na poloze v ustáleném stavu Úhlové rozdělení elektronů dopadajících na sondu Energetické rozdělení elektronů dopadajících na sondu Energetické rozdělení elektronů v plazmatu
13
14 Koncentrace částic v závislosti na vzdálenosti od sondy
15 Rozdělení energie elektronů v nenarušeném plazmatu
16 Rozdělení energie elektronů dopadajících na sondu
17 Úhlové rozdělení elektronů dopadajících na sondu
Vojtěch Hrubý: Esej pro předmět Seminář EVF
Vojtěch Hrubý: Esej pro předmět Seminář EVF Plazma Pod pojmem plazma většinou myslíme plynné prostředí, které se skládá z neutrálních částic, iontů a elektronů. Poměr množství neutrálních a nabitých částic
Obr. 141: První tři Bernsteinovy iontové módy. Na vodorovné ose je bezrozměrný vlnový vektor a na svislé ose reálná část bezrozměrné frekvence.
Mikronestability 33 m Re( ) ( m1) m1,,3, (5.18) ci Imaginární část frekvence, která je zodpovědná za útlum, razantně roste, pokud se vlny nešíří kolmo na magnetické pole. Útlum také roste s číslem módu
BAKALÁŘSKÁ PRÁCE. Studium interakce plazma-pevná látka postupy počítačové fyziky
Univerzita Karlova v Praze Matematicko-fyzikální fakulta BAKALÁŘSKÁ PRÁCE Vojtěch Hrubý Studium interakce plazma-pevná látka postupy počítačové fyziky Katedra fyziky povrchů a plazmatu Vedoucí práce: Prof.
Přednáška 4. Úvod do fyziky plazmatu : základní charakteristiky plazmatu, plazma v elektrickém vf plazma. Doutnavý výboj : oblasti výboje
Přednáška 4 Úvod do fyziky plazmatu : základní charakteristiky plazmatu, plazma v elektrickém vf plazma. Doutnavý výboj : oblasti výboje Jak nahradit ohřev při vypařování Co třeba bombardovat ve vakuu
Základní experiment fyziky plazmatu
Základní experiment fyziky plazmatu D. Vašíček 1, R. Skoupý 2, J. Šupík 3, M. Kubič 4 1 Gymnázium Velké Meziříčí, david.vasicek@centrum.cz 2 Gymnázium Ostrava-Hrabůvka příspěvková organizace, jansupik@gmail.com
DOUTNAVÝ VÝBOJ. Další technologie využívající doutnavý výboj
DOUTNAVÝ VÝBOJ Další technologie využívající doutnavý výboj Plazma doutnavého výboje je využíváno v technologiích depozice povlaků nebo modifikace povrchů. Jedná se zejména o : - depozici povlaků magnetronovým
Metoda Monte Carlo, simulované žíhání
co byste měli umět po dnešní lekci: integrovat pomocí metody Monte Carlo modelovat jednoduché mnočásticové systémy (Brownův pohyb,...) nalézt globální minimum pomocí simulovaného žíhání Určení čísla metodou
Spojitý popis plazmatu, magnetohydrodynamika
Spojitý popis plazmatu, magnetohydrodynamika Spojitý popis plazmatu V mnoha případech nepotřebujeme znát detailně popis plazmatu, dalším možným popisem plazmatu je tzv. spojitý (fluidní), tj. makroskopický
Úvod do fyziky plazmatu
Úvod do fyziky plazmatu Lenka Zajíčková, Ústav fyz. elektroniky Doporučená literatura: J. A. Bittencourt, Fundamentals of Plasma Physics, 2003 (3. vydání) ISBN 85-900100-3-1 Navazující a související přednášky:
Anomální doutnavý výboj
Anomální doutnavý výboj Výboje v plynech ve vakuu Základní procesy ve výboji Odprašování dopadající kladné ionty vyrážejí z katody částice, tím dochází k úbytku hmoty katody a zmenšování rozměrů. Odprašování
Úvod do fyziky plazmatu
Úvod do fyziky plazmatu Plazma Velmi často se o plazmatu mluví jako o čtvrtém skupenství hmoty Název plazma pro ionizovaný plyn poprvé použil Irwing Langmuir (1881 1957) v roce 1928, protože mu chováním
ATOMOVÁ SPEKTROMETRIE
ATOMOVÁ SPEKTROMETRIE doc. Ing. David MILDE, Ph.D. tel.: 585634443 E-mail: david.milde@upol.cz (c) -017 Doporučená literatura Černohorský T., Jandera P.: Atomová spektrometrie. Univerzita Pardubice 1997.
Univerzita Karlova v Praze Matematicko-fyzikální fakulta
Univerzita Karlova v Praze Matematicko-fyzikální fakulta DIPLOMOVÁ PRÁCE Vojtěch Hrubý Studium interakce plazma-pevná látka pomocí hybridního modelování Katedra fyziky povrchů a plazmatu Vedoucí diplomové
BAKALÁŘSKÁ PRÁCE. Tomáš Ibehej Selfkonzistentní a neselfkonzistentní částicové modelování v sondové diagnostice plazmatu
Univerzita Karlova v Praze Matematicko-fyzikální fakulta BAKALÁŘSKÁ PRÁCE Tomáš Ibehej Selfkonzistentní a neselfkonzistentní částicové modelování v sondové diagnostice plazmatu Katedra fyziky povrchů a
Plazmové metody. Základní vlastnosti a parametry plazmatu
Plazmové metody Základní vlastnosti a parametry plazmatu Atom je základní částice běžné hmoty. Částice, kterou již chemickými prostředky dále nelze dělit a která definuje vlastnosti daného chemického prvku.
2. Statistický popis plazmatu
Statistický popis plazmatu 60 Statistický popis plazmatu Při popisu typického plazmatu je technicky nemožné popsat trajektorie všech částic Jen v řídkém plazmatu mezihvězdného prostoru nalezneme miliony
ATOMOVÁ SPEKTROMETRIE
ATOMOVÁ SPEKTROMETRIE Atomová spektrometrie valenčních e - 1. OES (AES). AAS 3. AFS 1 Atomová spektra čárová spektra Tok záření P - množství zářivé energie (Q E ) přenesené od zdroje za jednotku času.
DOUTNAVÝ VÝBOJ. 1. Vlastnosti doutnavého výboje 2. Aplikace v oboru plazmové nitridace
DOUTNAVÝ VÝBOJ 1. Vlastnosti doutnavého výboje 2. Aplikace v oboru plazmové nitridace Doutnavý výboj Připomeneme si voltampérovou charakteristiku výboje v plynech : Doutnavý výboj Připomeneme si, jaké
VYUŽITÍ PRAVDĚPODOBNOSTNÍ METODY MONTE CARLO V SOUDNÍM INŽENÝRSTVÍ
VYUŽITÍ PRAVDĚPODOBNOSTNÍ METODY MONTE CARLO V SOUDNÍM INŽENÝRSTVÍ Michal Kořenář 1 Abstrakt Rozvoj výpočetní techniky v poslední době umožnil také rozvoj výpočetních metod, které nejsou založeny na bázi
Petr Zikán. Studentský seminář, Březen 2011
Sondová měření v plazmatu Petr Zikán Studentský seminář, Březen 2011 Přehled prezentace 1 Child-Langmuirův zákon Přehled prezentace 1 Child-Langmuirův zákon 2 Sheath a pre-sheath Přehled prezentace 1 Child-Langmuirův
Plazma v technologiích
Plazma v technologiích Mezi moderními strojírenskými technologiemi se stále častěji prosazují metody využívající různé formy plazmatu. Plazma je plynné prostředí skládající se z poměrně volných částic,
Charakteristika a mrtvá doba Geiger-Müllerova počítače
Charakteristika a mrtvá doba Geiger-Müllerova počítače Úkol : 1. Proměřte charakteristiku Geiger-Müllerova počítače. K jednotlivým naměřeným hodnotám určete střední kvadratickou chybu a vyznačte ji do
Elektřina a magnetizmus - elektrické napětí a elektrický proud
DUM Základy přírodních věd DUM III/2-T3-03 Téma: Elektrické napětí a elektrický proud Střední škola Rok: 2012 2013 Varianta: A Zpracoval: Mgr. Pavel Hrubý a Mgr. Josef Kormaník VÝKLAD Elektřina a magnetizmus
Reakční kinetika. Nauka zabývající se rychlostí chemických reakcí a ovlivněním rychlosti těchto reakcí
Nauka zabývající se rychlostí chemických reakcí a ovlivněním rychlosti těchto reakcí Vymezení pojmů : chemická reakce je děj, při kterém zanikají výchozí látky a vznikají látky nové reakční mechanismus
Hmotnostní spektrometrie
Hmotnostní spektrometrie Princip: 1. Ze vzorku jsou tvořeny ionty na úrovni molekul, nebo jejich zlomků (fragmentů), nebo až volných atomů dodáváním energie, např. uvolnění atomů ze vzorku nebo přímo rozštěpení
Modelování plazmatu. Katedra fyziky, Západočeská univerzita v Plzni, 2018
Modelování plazmatu Přednášky k předmětu KFY/MPPL Tomáš Kozák Katedra fyziky, Západočeská univerzita v Plzni, 2018 Obsah 1 Úvod do modelování plazmatu 2 Řešení Boltzmannovy rovnice pro elektrony 1 Úvod
Studium kladného sloupce doutnavého výboje pomocí elektrostatických sond: jednoduchá sonda
1 Úvod Studium kladného sloupce doutnavého výboje pomocí elektrostatických sond: jednoduchá sonda V této úloze se zaměříme na měření parametrů kladného sloupce doutnavého výboje, proto je vhodné se na
Pravděpodobnostní charakter jaderných procesů
Pravděpodobnostní charakter jaderných procesů Při převážné většině jaderných pokusů je jaderné záření registrováno jako proud nabitých částic respektive kvant γ, které vznikají v důsledku rozpadu atomových
Pozitron teoretická předpověď
Pozitron teoretická předpověď Diracova rovnice: αp c mc x, t snaha popsat relativisticky pohyb elektronu x, t ˆ i t řešení s negativní energií vakuum je Diracovo moře elektronů pozitrony díry ve vaku Paul
Monte Carlo. Simulační metoda založená na užití stochastických procesů a generace náhodných čísel.
Monte Carlo Simulační metoda založená na užití stochastických procesů a generace náhodných čísel. Typy MC simulací a) MC integrace b) Geometrické MC c) Termodynamické MC d) Modelování vývoje na strukturální
Relativní chybu veličiny τ lze určit pomocí relativní chyby τ 1. Zanedbáme-li chybu jmenovatele ve vzorci (2), platí *1+:
Pracovní úkol 1. Změřte charakteristiku Geigerova-Müllerova detektoru pro záření gamma a u jednotlivých měření stanovte chybu a vyznačte ji do grafu. Určete délku a sklon plata v charakteristice detektoru
Princip metody Transport částic Monte Carlo v praxi. Metoda Monte Carlo. pro transport částic. Václav Hanus. Koncepce informatické fyziky, FJFI ČVUT
pro transport částic Koncepce informatické fyziky, FJFI ČVUT Obsah Princip metody 1 Princip metody Náhodná procházka 2 3 Kódy pro MC Příklady použití Princip metody Náhodná procházka Příroda má náhodný
V nejnižším energetickém stavu valenční elektrony úplně obsazují všechny hladiny ve valenčním pásu, nemohou zprostředkovat vedení proudu.
POLOVODIČE Vlastní polovodiče Podle typu nosiče náboje dělíme polovodiče na vlastní (intrinsické) a příměsové. Příměsové polovodiče mohou být dopované typu N (majoritními nosiči volného náboje jsou elektrony)
Dělení a svařování svazkem plazmatu
Dělení a svařování svazkem plazmatu RNDr. Libor Mrňa, Ph.D. Osnova: Fyzikální podstat plazmatu Zdroje průmyslového plazmatu Dělení materiálu plazmou Svařování plazmovým svazkem Mikroplazma Co je to plazma?
Využití plazmových metod ve strojírenství. Metody depozice povlaků a tenkých vrstev
Využití plazmových metod ve strojírenství Metody depozice povlaků a tenkých vrstev Metody depozice povlaků Využití plazmatu pro depozice (nanášení) povlaků a tenkých vrstev je moderní a stále častěji aplikovaná
Plazma. magnetosféra komety. zbytky po výbuchu supernovy. formování hvězdy. slunce
magnetosféra komety zbytky po výbuchu supernovy formování hvězdy slunce blesk polární záře sluneční vítr - plazma je označována jako čtvrté skupenství hmoty - plazma je plyn s významným množstvím iontů
Předmluva 9 Obsah knihy 9 Typografické konvence 10 Informace o autorovi 10 Poděkování 10
Obsah Předmluva 9 Obsah knihy 9 Typografické konvence 10 Informace o autorovi 10 Poděkování 10 KAPITOLA 1 Úvod 11 Dostupná rozšíření Matlabu 13 Alternativa zdarma GNU Octave 13 KAPITOLA 2 Popis prostředí
plazmatu s pevnými látkami
Univerzita Karlova v Praze Matematicko-fyzikální fakulta BAKALÁŘSKÁ PRÁCE Štěpán Roučka Počítačové modelování interakce nízkoteplotního plazmatu s pevnými látkami Katedra elektroniky a vakuové fyziky Vedoucí
ELEKTRICKÝ PROUD ELEKTRICKÝ ODPOR (REZISTANCE) REZISTIVITA
ELEKTRICKÝ PROD ELEKTRICKÝ ODPOR (REZISTANCE) REZISTIVITA 1 ELEKTRICKÝ PROD Jevem Elektrický proud nazveme usměrněný pohyb elektrických nábojů. Např.:- proud vodivostních elektronů v kovech - pohyb nabitých
Měření hmoty Higgsova bosonu podle doby letu tau leptonu
Měření hmoty Higgsova bosonu podle doby letu tau leptonu Jana Nováková, Tomáš Davídek UČJF Higgs -> tau tau na LHC v oblasti malých hmot Higgse dává významný příspěvek měřitelné v oblasti m H [115, 140]
Základy molekulové fyziky a termodynamiky
Základy molekulové fyziky a termodynamiky Molekulová fyzika je částí fyziky, která zkoumá vlastnosti látek na základě jejich vnitřní struktury, pohybu a vzájemného silového působení částic, z nichž jsou
0.0001 0.001 0.01 0.1 1 10 100 1000 10000. Čas (s) Model časového průběhu sorpce vyplývá z 2. Fickova zákona a je popsán následující rovnicí
Program Sorpce1.m psaný v prostředí Matlabu slouží k vyhlazování naměřených sorpčních křivek a výpočtu difuzních koeficientů. Kromě standardního Matlabu vyžaduje ještě Matlab Signal Processing Toolbox
Zada ní 1. Semina rní pra ce z pr edme tu Matematický software (KI/MSW)
Zada ní. Semina rní pra ce z pr edme tu Matematický software (KI/MSW) Datum zadání: 5.. 06 Podmínky vypracování: - Seminární práce se skládá z programové části (kódy v Matlabu) a textové části (protokol
STEJNOSMĚRNÝ PROUD Samostatný výboj TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY.
STEJNOSMĚRNÝ PROUD Samostatný výboj TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY. Plyny jsou tvořeny elektricky neutrálními molekulami. Proto jsou za
Elektrický proud 2. Zápisy do sešitu
Elektrický proud 2 Zápisy do sešitu Směr elektrického proudu v obvodu 1/2 V různých materiálech vedou elektrický proud různé částice: kovy volné elektrony kapaliny (roztoky) ionty plyny kladné ionty a
Plazmové svařování a dělení materiálu. Jaromír Moravec
Plazmové svařování a dělení materiálu Jaromír Moravec 1 Definice plazmatu Definice plazmatu je následující: Plazma je kvazineutrální soubor částic s volnými nosiči nábojů, který vykazuje kolektivní chování.
Definice spojité náhodné veličiny zjednodušená verze
Definice spojité náhodné veličiny zjednodušená verze Náhodná veličina X se nazývá spojitá, jestliže existuje nezáporná funkce f : R R taková, že pro každé a, b R { }, a < b, platí P(a < X < b) = b a f
Kovy - model volných elektronů
Kovy - model volných elektronů Kovová vazba 1. Preferuje ji většina prvků vyskytujících se v přírodě. Kov je tvořen kladně nabitými ionty (s konfigurací vzácného plynu) a relativně velmi volnými elektrony.
Úloha 1: Vypočtěte hustotu uhlíku (diamant), křemíku, germania a α-sn (šedý cín) z mřížkové konstanty a hmotnosti jednoho atomu.
Úloha : Vypočtěte hustotu uhlíku (diamant), křemíku, germania a α-sn (šedý cín) z mřížkové konstanty a hmotnosti jednoho atomu. Všechny zadané prvky mají krystalovou strukturu kub. diamantu. (http://en.wikipedia.org/wiki/diamond_cubic),
Výukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.5.00/34.0996
Výukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.5.00/34.0996 Šablona: III/2 č. materiálu: VY_32_INOVACE_FYZ60 Jméno autora: Třída/ročník: Mgr. Alena Krejčíková
Opakování: shrnutí základních poznatků o struktuře atomu
11. Polovodiče Polovodiče jsou krystalické nebo amorfní látky, jejichž elektrická vodivost leží mezi elektrickou vodivostí kovů a izolantů a závisí na teplotě nebo dopadajícím optickém záření. Elektrické
2. Prostudovat charakter interakcí různých částic v hadronovém kalorimetru
Pracovní úkol: 1. Seznámit se s interaktivní verzí simulace 2. Prostudovat charakter interakcí různých částic v hadronovém kalorimetru 3. Kvantitativně srovnat energetické ztráty v kalorimetru pro různé
Kapitoly z fyzikální chemie KFC/KFCH. I. Základní pojmy FCH a kinetická teorie plynů
Kapitoly z fyzikální chemie KFC/KFCH I. Základní pojmy FCH a kinetická teorie plynů RNDr. Karel Berka, Ph.D. Univerzita Palackého v Olomouci Zkouška a doporučená literatura Ústní kolokvium Doporučená literatura
U N I V E R Z I T A K A R L O V A V P R A Z E. Matematicko - fyzikální fakulta
U N I V E R Z I T A K A R L O V A V P R A Z E Matematicko - fyzikální fakulta Autor: Mgr. Petr Bartoš Školitel: prof. RNDr. Rudolf Hrach, DrSc. 2006 Na tomto místě chci poděkovat mému školiteli, panu
III. STRUKTURA A VLASTNOSTI PLYNŮ
III. STRUKTURA A VLASTNOSTI PLYNŮ 3.1 Ideální plyn a) ideální plyn model, předpoklady: 1. rozměry molekul malé (ve srovnání se střední vzdáleností molekul). molekuly na sebe navzálem silově nepůsobí (mimo
Vazby v pevných látkách
Vazby v pevných látkách Hlavní body 1. Tvorba pevných látek 2. Van der Waalsova vazba elektrostatická interakce indukovaných dipólů 3. Iontová vazba elektrostatická interakce iontů 4. Kovalentní vazba
Základy vakuové techniky
Základy vakuové techniky Střední rychlost plynů Rychlost molekuly v p = (2 k N A ) * (T/M 0 ), N A = 6. 10 23 molekul na mol (Avogadrova konstanta), k = 1,38. 10-23 J/K.. Boltzmannova konstanta, T.. absolutní
Ionizační manometry. Při ionizaci plynu o koncentraci n nejsou ionizovány všechny molekuly, ale jenom část z nich n i = γn ; γ < 1.
Ionizační manometry Princip: ionizace molekul a měření počtu nabitých částic Rozdělení podle způsobu ionizace: Manometry se žhavenou katodou Manometry se studenou katodou Manometry s radioaktivním zářičem
NUMERICKÝ MODEL NESTACIONÁRNÍHO PŘENOSU TEPLA V PALIVOVÉ TYČI JADERNÉHO REAKTORU VVER 1000 SVOČ FST 2014
NUMERICKÝ MODEL NESTACIONÁRNÍHO PŘENOSU TEPLA V PALIVOVÉ TYČI JADERNÉHO REAKTORU VVER 1000 SVOČ FST 2014 Miroslav Kabát, Západočeská univerzita v Plzni, Univerzitní 8, 306 14 Plzeň Česká republika ABSTRAKT
Stanovení měrného tepla pevných látek
61 Kapitola 10 Stanovení měrného tepla pevných látek 10.1 Úvod O teple se dá říci, že souvisí s energií neuspořádaného pohybu molekul. Úhrnná pohybová energie neuspořádaného pohybu molekul, pohybu postupného,
TECHNICKÁ UNIVERZITA V LIBERCI
TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií Základní pojmy diagnostiky a statistických metod vyhodnocení Učební text Ivan Jaksch Liberec 2012 Materiál vznikl
Vlny ve sluneční atmosféře. Petr Jelínek
Vlny ve sluneční atmosféře Petr Jelínek Obsah přednášek Slunce a sluneční koróna, ohřev sluneční koróny, sluneční erupce Plazma, vlny v plazmatu, vlny ve sluneční koróně Popis plazmatu, magnetohydrodynamika
Sluneční dynamika. Michal Švanda Astronomický ústav AV ČR Astronomický ústav UK
Sluneční dynamika Michal Švanda Astronomický ústav AV ČR Astronomický ústav UK Slunce: dynamický systém Neměnnost Slunce Iluze Slunce je proměnná hvězda Sluneční proměny Díky vývoji Dynamika hmoty Magnetická
FYZIKA II. Petr Praus 6. Přednáška elektrický proud
FYZIKA II Petr Praus 6. Přednáška elektrický proud Osnova přednášky Elektrický proud proudová hustota Elektrický odpor a Ohmův zákon měrná vodivost driftová rychlost Pohyblivost nosičů náboje teplotní
Modelování zdravotně významných částic v ovzduší v podmínkách městské zástavby
Modelování zdravotně významných částic v ovzduší v podmínkách městské zástavby Jiří Pospíšil, Miroslav Jícha pospisil.j@fme.vutbr.cz Vysoké učení technické v Brně Fakulta strojního inženýrství Energetický
METODA MONTE CARLO A PROGRAMOVACÍ JAZYK MATLAB PŘI PŘÍPRAVĚ UČITELŮ NA PEDAGOGICKÝCH FAKULTÁCH
METODA MOTE CARLO A PROGRAMOVACÍ JAZYK MATLAB PŘI PŘÍPRAVĚ UČITELŮ A PEDAGOGICKÝCH FAKULTÁCH Jiří Tesař, Petr Bartoš Pedagogická fakulta Jihočeské univerzity v Č. Budějovicích Katedra fyziky Abstrakt V
Interakce laserového impulsu s plazmatem v souvislosti s inerciální fúzí zapálenou rázovou vlnou
Interakce laserového impulsu s plazmatem v souvislosti s inerciální fúzí zapálenou rázovou vlnou Autor práce: Petr Valenta Vedoucí práce: Ing. Ondřej Klimo, Ph.D. Konzultanti: prof. Ing. Jiří Limpouch,
Referát z atomové a jaderné fyziky. Detekce ionizujícího záření (principy, technická realizace)
Referát z atomové a jaderné fyziky Detekce ionizujícího záření (principy, technická realizace) Měřicí a výpočetní technika Šimek Pavel 5.7. 2002 Při všech aplikacích ionizujícího záření je informace o
Fyzikální vzdělávání. 1. ročník. Učební obor: Kuchař číšník Kadeřník. Implementace ICT do výuky č. CZ.1.07/1.1.02/02.0012 GG OP VK
Fyzikální vzdělávání 1. ročník Učební obor: Kuchař číšník Kadeřník 1 Elektřina a magnetismus - elektrický náboj tělesa, elektrická síla, elektrické pole, kapacita vodiče - elektrický proud v látkách, zákony
ELEKTŘINA A MAGNETIZMUS Řešené úlohy a postupy: Posuvný proud a Poyntingův vektor
ELEKTŘINA A MAGNETIZMUS Řešené úlohy a postupy: Posuvný proud a Poyntingův vektor Peter Dourmashkin MIT 006, překlad: Jan Pacák (007) Obsah 10. POSUVNÝ PROUD A POYNTINGŮV VEKTOR 3 10.1 ÚKOLY 3 10. POSUVNÝ
Dyson s Coulomb gas on a circle and intermediate eigenvalue statistics
Dyson s Coulomb gas on a circle and intermediate eigenvalue statistics Rainer Scharf, Félix M. Izrailev, 1990 rešerše: Pavla Cimrová, 28. 2. 2012 1 Náhodné matice Náhodné matice v současnosti nacházejí
Mezimolekulové interakce
Mezimolekulové interakce, od teorie po interakce biomolekul s grafenem Pavel Banáš Mezimolekulové interakce slabé mezimolekulové interakce fyzikální původ mezimolekulárních interakcí poruchová teorie mezimolekulárních
Seznam otázek pro zkoušku z biofyziky oboru lékařství pro školní rok
Seznam otázek pro zkoušku z biofyziky oboru lékařství pro školní rok 2014-15 Stavba hmoty Elementární částice; Kvantové jevy, vlnové vlastnosti částic; Ionizace, excitace; Struktura el. obalu atomu; Spektrum
III. Stacionární elektrické pole, vedení el. proudu v látkách
III. Stacionární elektrické pole, vedení el. proudu v látkách Osnova: 1. Elektrický proud a jeho vlastnosti 2. Ohmův zákon 3. Kirhoffovy zákony 4. Vedení el. proudu ve vodičích 5. Vedení el. proudu v polovodičích
Modelování a simulace Lukáš Otte
Modelování a simulace 2013 Lukáš Otte Význam, účel a výhody MaS Simulační modely jsou nezbytné pro: oblast vědy a výzkumu (základní i aplikovaný výzkum) analýzy složitých dyn. systémů a tech. procesů oblast
Úvod do elektrokinetiky
Úvod do elektrokinetiky Hlavní body - elektrokinetika Elektrické proudy pohyb nábojů Ohmův zákon, mikroskopický pohled Měrná vodivost σ izolanty, vodiče, polovodiče Elektrické zdroje napětí (a proudu)
Vyhodnocení 2D rychlostního pole metodou PIV programem Matlab (zpracoval Jan Kolínský, dle programu ing. Jana Novotného)
Vyhodnocení 2D rychlostního pole metodou PIV programem Matlab (zpracoval Jan Kolínský, dle programu ing. Jana Novotného) 1 Obecný popis metody Particle Image Velocimetry, nebo-li zkráceně PIV, je měřící
Rozložení náboje na tělese. Plošná hustota náboje. Tematický celek: Elektrický náboj. Úkol:
Název: Rozložení náboje na tělese. Plošná hustota náboje. Tematický celek: Elektrický náboj. Úkol: Zopakujte si, co je to zelektrování tělesa a jak k němu dochází. Sestrojte a naprogramujte robota, pomocí
Snímače, detektory, čidla 1) Principy snímání polohy, měření vzdálenosti, snímání úhlu natočení (mechanické, kontaktní/ bezkontaktní, další jiné).
Snímače, detektory, čidla 1) Principy snímání polohy, měření vzdálenosti, snímání úhlu natočení (mechanické, kontaktní/ bezkontaktní, další jiné). 2) Principy kontaktního snímání otáček, bezkontaktní snímání.
Mgr. Ladislav Blahuta
Mgr. Ladislav Blahuta Střední škola, Havířov-Šumbark, Sýkorova 1/613, příspěvková organizace Tento výukový materiál byl zpracován v rámci akce EU peníze středním školám - OP VK 1.5. Výuková sada ZÁKLADNÍ
2. FYZIKÁLNÍ ZÁKLADY ANALYTICKÉ METODY RBS
RBS Jaroslav Král, katedra fyzikální elektroniky FJFI, ČVUT. ÚVOD Spektroskopie Rutherfordova zpětného rozptylu (RBS) umožňuje stanovení složení a hloubkové struktury tenkých vrstev. Na základě energetického
Detekce interakčních sil v proudu vozidel
Detekce interakčních sil v proudu vozidel (ANEB OBECNĚJŠÍ POHLED NA POJEM VZDÁLENOSTI V MATEMATICE) Doc. Mgr. Milan Krbálek, Ph.D. Katedra matematiky Fakulta jaderná a fyzikálně inženýrská České vysoké
Šíření tepla. Obecnéprincipy
Šíření tepla Obecnéprincipy Šíření tepla Obecně: Šíření tepla je výměna tepelné energie v tělese nebo mezi tělesy, která nastává při rozdílu teplot. Těleso s vyšší teplotou má větší tepelnou energii. Šíření
Aktuální trendy v oblasti modelování
Aktuální trendy v oblasti modelování Vladimír Červenka Radomír Pukl Červenka Consulting, Praha 1 Modelování betonové a železobetonové konstrukce - tunelové (definitivní) ostění Metoda konečných prvků,
VEDENÍ ELEKTRICKÉHO PROUDU V LÁTKÁCH
VEDENÍ ELEKTRICKÉHO PROUDU V LÁTKÁCH Jan Hruška TV-FYZ Ahoj, tak jsme tady znovu a pokusíme se Vám vysvětlit problematiku vedení elektrického proudu v látkách. Co je to vlastně elektrický proud? Na to
Stavový model a Kalmanův filtr
Stavový model a Kalmanův filtr 2 prosince 23 Stav je veličina, kterou neznáme, ale chtěli bychom znát Dozvídáme se o ní zprostředkovaně prostřednictvím výstupů Příkladem může býapř nějaký zašuměný signál,
Úvod do zpracování signálů
1 / 25 Úvod do zpracování signálů Karel Horák Rozvrh přednášky: 1. Spojitý a diskrétní signál. 2. Spektrum signálu. 3. Vzorkovací věta. 4. Konvoluce signálů. 5. Korelace signálů. 2 / 25 Úvod do zpracování
Počítačová dynamika tekutin (CFD) Základní rovnice. - laminární tok -
Počítačová dynamika tekutin (CFD) Základní rovnice - laminární tok - Základní pojmy 2 Tekutina nemá vlastní tvar působením nepatrných tečných sil se částice tekutiny snadno uvedou do pohybu (výjimka některé
Vzdělávání výzkumných pracovníků v Regionálním centru pokročilých technologií a materiálů reg. č.: CZ.1.07/2.3.00/09.0042
Vzdělávání výzkumných pracovníků v Regionálním centru pokročilých technologií a materiálů reg. č.: CZ.1.07/2.3.00/09.0042 Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem
TERMODYNAMIKA Ideální plyn TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY.
TERMODYNAMIKA Ideální plyn TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY. Ideální plyn je zjednodušená představa skutečného plynu. Je dokonale stlačitelný
INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ
INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ CZ.1.07/1.1.00/08.0010 ELEKTRICKÝ NÁBOJ Mgr. LUKÁŠ FEŘT
1 Základní pojmy a vztahy
1 Pomůcky: Speciální dioda s wolframovou žhavnou katodou trvale čerpaná vakuovým systémem, regulovatelný zdroj 20 V, žhavicí transformátor, regulovatelný zdroj 600 V, voltmetr, ampérmetr, miliampérmetr,
Metody využívající rentgenové záření. Rentgenovo záření. Vznik rentgenova záření. Metody využívající RTG záření
Metody využívající rentgenové záření Rentgenovo záření Rentgenografie, RTG prášková difrakce 1 2 Rentgenovo záření Vznik rentgenova záření X-Ray Elektromagnetické záření Ionizující záření 10 nm 1 pm Využívá
Dynamika tekutin popisuje kinematiku (pohyb částice v času a prostoru) a silové působení v tekutině.
Dynamika tekutin popisuje kinematiku (pohyb částice v času a prostoru) a silové působení v tekutině. Přehled proudění Vazkost - nevazké - vazké (newtonské, nenewtonské) Stlačitelnost - nestlačitelné (kapaliny
MĚŘENÍ A MODELOVÁNÍ DYNAMICKÝCH DĚJŮ V PRUŽNÉM POTRUBÍ. Soušková H., Grobelný D.,Plešivčák P.
MĚŘENÍ A MODELOVÁNÍ DYNAMICKÝCH DĚJŮ V PRUŽNÉM POTRUBÍ Soušková H., Grobelný D.,Plešivčák P. Katedra měřicí a řídicí techniky VŠB-TU Ostrava, Fakulta elektrotechniky a informatiky Abstrakt : Příspěvek
Urychlovače částic principy standardních urychlovačů částic
Urychlovače částic principy standardních urychlovačů částic Základní info technické zařízení, které dodává kinetickou energii částicím, které je potřeba urychlit nabité částice jsou v urychlovači urychleny
PŘÍKLAD PŘECHODNÝ DĚJ DRUHÉHO ŘÁDU ŘEŠENÍ V ČASOVÉ OBLASTI A S VYUŽITÍM OPERÁTOROVÉ ANALÝZY
PŘÍKLAD PŘECHODNÝ DĚJ DRHÉHO ŘÁD ŘEŠENÍ V ČASOVÉ OBLASTI A S VYŽITÍM OPERÁTOROVÉ ANALÝZY A) Časová oblast integro-diferenciální rovnice K obvodu na obrázku je v čase t 0 napětí u b (t). t 0 připojen zdroj
1. Zadání Pracovní úkol
1. 1. Pracovní úkol 1. Zadání 1. Změřte charakteristiky Franck-Hertzovy trubice s parami rtuti při pokojové teplotě a při dvou vyšších teplotách baňky t 1, t 2. Při nejvyšší teplotě a při teplotě pokojové
Ing. Tomáš MAUDER prof. Ing. František KAVIČKA, CSc. doc. Ing. Josef ŠTĚTINA, Ph.D.
OPTIMALIZACE BRAMOVÉHO PLYNULÉHO ODLÉVÁNÍ OCELI ZA POMOCI NUMERICKÉHO MODELU TEPLOTNÍHO POLE Ing. Tomáš MAUDER prof. Ing. František KAVIČKA, CSc. doc. Ing. Josef ŠTĚTINA, Ph.D. Fakulta strojního inženýrství