Závislost odporu termistoru na teplotě

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Závislost odporu termistoru na teplotě"

Transkript

1 Fyzikální praktikum pro JCH, Bc Jméno a příjmení: Zuzana Dočekalová Datum: Spolupracovník: Aneta Sajdová Obor: Jaderně chemické inženýrství Číslo studenta: 5 (středa 9:30) Ročník: II. Číslo úlohy: 1 Hodnocení: Název úlohy: Úvod Kalibrace rtuťového teploměru plynovým teploměrem, Závislost odporu termistoru na teplotě Rtuťové teploměry na trhu a použití jsou pomalu nahrazovány digitálními teploměry, nutnost kalibrace však zůstává. Pokud je odezva přístroje lineární, kalibrace je jednoduchá pomocí ledové lázně o teplotě přesně 0 C a parní lázně o teplotě přesně 100 C, z definice Celsiovy stupnice (za normálního tlaku). V případě nelineární závislosti se kalibrace může zdát složitější. Termistol je polovodičová součástka, hojně užívaná v průmyslu. Využívá se vlastnosti, že jeho odpor klesá s rostoucí teplotou. Úkoly: Kalibrace rtuťového teploměru plynovým teploměrem: 1. Ocejchujte rtuťový teploměr pomocí plynového teploměru a nakreslete příslušný graf. 2. Vypočítejte součinitele rozpínavosti plynů γ a proveďte kontrolu pomocí teploty absolutní nuly. Závislost odporu termistoru na teplotě: 1. V domácí přípravě nakreslete závislost R = R(T) a ln R = f(1/t) v intervalu teplot 293;343 K. Předpokládejte B = 2500 K a R = 0,1Ω. 2. V domácí přípravě odvoďte závislost teplotního součinitele odporu a na teplotě T pro termistor a pro rezistor z kovového materiálu. Teplotní součinitel odporu α je definován vztahem: α= 1 R dr dt. (1) Závislost odporu termistoru na teplotě je dána vztahem (4), odpor rezistoru z kovového materiálu lineárně vzrůstá s teplotou. Porovnejte oba výsledky. 3. Pomocí PC změřte teplotní závislost odporu daného termistoru v oboru od asi 20 C (pokojová teplota) do 60 C (viz pokyny pro měření). Nezapomeňte převést C na Kelviny. 4. Z naměřených hodnot sestrojte graf, ve kterém na vodorovnou osu vynesete hodnoty 1/T a na svislou ln R. Proč je to výhodné? Rozsah obou os volte tak, abyste mohli extrapolovat do bodu, který odpovídá teplotě 0 C (viz úkol č. 5). 5. Odpor termistoru při 0 C odečtěte z grafu, který jste kreslili v úkolu č. 4. Tuto hodnotu získejte prostřednictvím grafické extrapolace ručně, bez pomoci PC. (Je nutno použít extrapolaci, protože pro teplotu 0 C jste odpor termistoru neměřili.) 6. Vypočítejte hodnoty konstant B a R. Za tím účelem vyberte z dat poblíž začátku měření hodnotu teploty T1 a příslušnou hodnotu odporu R1 a obdobně z konce měření hodnoty T2 a R2. Každá z dvojic [T1; R1],[T2; R2] by měla splňovat rovnice R1 = R(T1) a R2 = R(T2). Tyto dvě rovnice tvoří soustavu dvou rovnic pro dvě neznámé B a R, které z nich můžete vypočítat. Jaký je význam konstant R a B? 7. Pomocí B a R (vypočtených v úkolu č. 6) určete, jaký odpor bude mít termistor při teplotě 0 C (jde o početní extrapolaci). 8. Hodnoty odporu termistoru při teplotě 0 C získané podle bodů 5 a 7 vzájemně porovnejte.

2 Teorie: Kalibrace teploměru: Plynový teploměr je baňka spolená kapilárou s rtuťovým manometrem, v níž se rozpíná plyn v závislosti na teplotě okolního prostředí. Obrázek 1: Plynový teploměr. Zachováme-li izochorické podmínky, pro teplotu [t] = C platí: t=100 p p o p 100 p o, kde p je tlak při teplotě t, p o je tlak při teplotě t = 0 C a p 100 je tlak při teplotě t = 100 C. Jestliže p = hρg a h o položíme rovno 0, dostaneme: kde indexy odpovídají indexům u tlaků. Pro součinitel rozpínavosti plynů γ platí podle Gay-Lussaca: t=100 h h 100, (2) γ= p p o = h p o t b t, (3) kde b je barometrický tlak a h je rozdíl výšek sloupce rtuti v manometru při rozdílu teplot t. Odpor termistoru: Termistor je polovodičová součástka, jejíž odpor R klesá se vzrůstající teplotou podle vztahu: B T R T =R e, (4) kde B je teplotní citlivost termistoru, kterou lze považovat za konstantu, R je konstanta a T je absolutní teplota.

3 Postup a měření: Kalibrace teploměru Úkol 1: Baňku plynového teploměru jsme umístily do ledové lázně, vyrovnaly jsme tlak s okolím poznačily jsme si nulovou úroveň výšky rtuťového sloupce manometru. Na topné spirále jsme baňku zahřívaly na vodní lázni a kalibrovaným teploměrem jsme měřily teplotu lázně. Po určitých časových intervalech jsme topnou spirálu vypnuly, nechaly jsme ustavit rovnováhu a změřily jsme výšku sloupce rtuti v manometru, přičemž jsme dbaly, aby v druhém rameni byla rtuť stále v těsném kontaktu se skleněným zobáčkem. Naměřené hodnoty jsou v tabulce 1, podle které jsem vynesla kalibrační graf (graf 1). t [ C] měř. 4,3 22,7 36,3 44,7 55, ,4 85,9 97,8 h [cm] 0 5,08 8,43 10,66 13,44 14,65 18,55 21,15 24,36 t [ C] kalib. 0 20,85 34,61 43,76 55,17 60,14 76,15 86, Tabulka 1: Kalibrace rtuťového teploměru plynovým. V tabulce1 teplota označená měř. je změřená rtuťovým teploměrem a teplota označená kalib. je vypočtená podle vztahu (2) f(x) = 1,06x - 3,91 80 t [ C] kalib t [ C] kalib. Lineární regrese pro t [ C] kalib t [ C] měř. Graf 1: Kalibrační graf rtuťového teploměru závislost změřené teploty na vypočtené. Úkol 2: Měření probíhalo za tlaku b = 74,52 cm Hg sloupce. Pomocí vzorce (3) jsem spočítala součinitel rozpínavosti γ = (3,27 ± 0,03) 10-3 K -1. Tato hodnota je o hodně nižší než tabulková γ = 3, K -1. Vysvětlení uvedu v diskuzi.

4 Postup a měření: Odpor termistoru Úkol 1: Pro B = 2500 K a R = 0,1 Ω jsem podle vztahu (4) do grafu 2 vykreslila závislost R = f (T) a do grafu 3 závislost ln R = f (1/T), pro teplotu z intervalu 293; R[Ω] T[K] Graf 2: Závislost odporu R na teplotě T. R [Ω] 6,5 6,3 6,1 5,9 5,7 5,5 5,3 5,1 4,9 4,7 4,5 2,8 2,9 3 3,1 3,2 3,3 3,4 3,5 1/T [0,001/K] Graf 3: Závislost logaritmu odporu lnr na reciproké hodnotě teploty 1/T. Úkol 2: Podle vztahu (1) jsem odvodila součinitel odporu α pro termistor: α= 1 R d B B T R dt e R = B T 2 R e T. (5) Pro rezistor z kovového materiálu odpor roste lineárně s teplotou, tedy platí: R T =K T R o, kde K a R o jsou konstanty, pak podle (1) je pro takový rezistor součinitel odporu α vyjádřen vztahem: α= 1 R d dt K T R o = K R. (6) Ze vztahů (5) a (6) vidíme, že zatímco součinitel odporu pro termistor je funkcí teploty T, součinitel odporu kovového rezistoru na teplotě T nezávisí.

5 Úkol 3: Pomocí počítače jsme měřily závislost odporu na teplotě pomocí kalibračního rezistoru R N = (329,6 ± 0,1) Ω. Termistor byl s kalibračním rezistorem zapojen v sérii, proto pro odpor termistoru R platí: R= U T U N R N, kde U T je napětí na termistoru a U N je napětí na kalibračním rezistoru. Naměřená data a vypočtené hodnoty odporu R jsou v tabulce 2. t[s] U T [V] T [K] U [V] N R [Ω] t[s] U T [V] T [K] U N [V] R [Ω] t[s] U T [V] T [K] U N [V] R [Ω] 0 0,98 295,2 0,45 721, ,87 305,0 0,57 507, ,72 318,4 0,70 339, ,98 295,2 0,45 713, ,86 305,4 0,57 501, ,72 318,8 0,70 337, ,98 295,2 0,45 710, ,86 305,8 0,58 492, ,72 319,0 0,70 337, ,98 295,2 0,45 710, ,85 306,2 0,58 487, ,71 319,4 0,71 327, ,98 295,2 0,45 710, ,85 306,6 0,58 483, ,71 319,6 0,71 330, ,98 295,2 0,45 710, ,85 307,0 0,58 480, ,71 320,0 0,71 327, ,98 295,2 0,45 710, ,84 307,5 0,59 473, ,70 320,3 0,72 323, ,98 295,3 0,45 710, ,83 307,9 0,60 461, ,70 320,6 0,72 320, ,98 295,3 0,45 710, ,83 308,3 0,60 458, ,70 320,9 0,72 318, ,98 295,4 0,45 718, ,82 308,7 0,60 451, ,69 321,2 0,73 313, ,98 295,6 0,46 702, ,82 309,1 0,61 445, ,69 321,5 0,73 313, ,97 295,7 0,46 698, ,82 309,5 0,61 441, ,69 321,7 0,73 309, ,97 296,0 0,46 698, ,81 310,0 0,62 432, ,69 322,0 0,73 309, ,97 296,2 0,46 686, ,80 310,4 0,62 430, ,69 322,3 0,73 309, ,96 296,5 0,46 682, ,80 310,7 0,63 423, ,68 322,5 0,74 305, ,96 296,8 0,47 676, ,79 311,1 0,63 418, ,68 322,8 0,74 302, ,96 297,1 0,47 664, ,79 311,5 0,63 414, ,68 323,1 0,74 300, ,95 297,4 0,48 654, ,79 311,9 0,64 408, ,68 323,4 0,75 298, ,95 297,7 0,48 650, ,78 312,2 0,64 406, ,67 323,7 0,75 296, ,94 298,0 0,48 640, ,78 312,6 0,65 400, ,67 323,9 0,75 291, ,94 298,4 0,49 630, ,77 313,0 0,65 394, ,67 324,2 0,75 291, ,93 298,8 0,49 620, ,77 313,3 0,65 391, ,67 324,5 0,75 291, ,93 299,1 0,49 620, ,77 313,7 0,65 391, ,66 324,7 0,76 288, ,93 299,5 0,50 611, ,77 314,0 0,66 386, ,66 324,9 0,76 285, ,92 299,9 0,50 601, ,76 314,3 0,66 380, ,66 325,2 0,76 283, ,92 300,2 0,51 593, ,76 314,7 0,67 377, ,65 325,4 0,76 281, ,91 300,7 0,51 583, ,76 315,0 0,67 375, ,65 325,7 0,77 279, ,91 301,1 0,52 574, ,75 315,4 0,67 367, ,65 325,9 0,77 279, ,91 301,5 0,53 568, ,75 315,7 0,67 367, ,65 326,2 0,77 277, ,90 301,9 0,53 560, ,75 316,0 0,68 364, ,65 326,4 0,77 275, ,89 302,3 0,54 548, ,74 316,4 0,68 359, ,65 326,6 0,77 275, ,89 302,8 0,54 545, ,74 316,7 0,68 356, ,64 326,9 0,77 273, ,89 303,2 0,55 535, ,74 317,1 0,69 354, ,64 327,1 0,78 271, ,88 303,7 0,55 527, ,73 317,4 0,69 351, ,64 327,4 0,78 268, ,88 304,1 0,56 519, ,73 317,7 0,69 346, ,64 327,6 0,78 268, ,87 304,5 0,56 512, ,73 318,1 0,70 344, ,63 327,8 0,78 266, ,63 328,0 0,79 264, ,63 328,3 0,79 261,93 Tabulka 2: Naměřená data závislosti odporu termistoru na teplotě a vypočtené hodnoty odporu R.

6 Úkol 4: Z hodnot uvedených v tabulce 2 jsem sestrojila graf 4. 7,5 f(x) = 2,92x - 3,35 7 6,5 6 Lineární regrese pro ln R [-] T = 273,15 K 5, ,1 3,2 3,3 3,4 3,5 3,6 3,7 1 /T [0,0 0 1 /K ] Graf 4: Závislost logaritmu odporu rezistoru lnr na reciproké hodnotě absolutní teploty T s extrapolovanou hodnotou pro T = 273,15 K. Do grafu 4 jsem vynášela závislost ln R = f (1/T). Toto je výhodné, protože složitá závislost R = f (T) v grafu 2 přejde na lineární závislost (obecně graf 3). Z grafu 4 vidíme, že naměřená data s tímto předpokladem korespondují. Úkol 5: Extrapolací z grafu 4 jsem pro 1 T = 1 273,15 =3, K 1 odečetla hodnotu ln R = 7,35 ± 0,01, odkud odpor termistoru při T = 0 C je R o = (1560 ± 20) Ω. Úkol 6: Ze začátku a konce měření jsem vybrala vždy 20 dvojic [R;T]. Vztah (4) jsem zapsala jako soustavu dvou rovnic o dvou neznámých s řešením: B= T 1 T 2 T 2 T 1 ln R 1 R 2 R = R 1 e B T 1, kde za [R 1 ;T 1 ] jsem dosazovala dvojice ze začátku měření a za [R 2 ;T 2 ] jsem dosazovala dvojice z konce měření. Statistickým zpracováním jsem určila B = (2900 ± 40) K a R = (0,038 ± 0,004) Ω. Vzhledem k tomu, že argument exponenciely ve vztahu (4) bude vždy kladný a s teplotou jdoucí k nekonečnu jde exponent do nuly, tedy exponenciela jde k číslu 1, je R teoretická hodnota odporu při nekonečné teplotě. Konstanta B není v celém rozsahu teplot konstantou, ale závisí především na materiálu. Určuje především rychlost růstu odporu s klesající teplotou. Pro T mnohem větší než B se odpor mění hodně, pro T mnohem menší se odpor s teplotou téměř nemění. Úkol 7: Pomocí dvaceti dvojic [B;R ] jsem pro každou dvojici vypočetla odpor termistoru a tyto výsledky jsem statisticky zpracovala. Určila jsem tak, že odpor při teplotě T = 273,15 K má hodnotu R o = (1560 ± 30) Ω.

7 Diskuze: Z grafu 1 a jeho regresní rovnice vidíme, že obě stupnice se víceméně překrývají. Poměrné velký je v regresní rovnici koeficient b, což je dáno tím, že teplotu v kalibrovaném teploměru se nám ledovou lázní nepodařilo dostat níže než na 4,3 C, jak je vidět z tabulky 1. Stejně tak parní lázní jsme nedocílily teploty 100 C. Součinitel rozpínavosti plynů mi vyšel γ = (3,27 ± 0,03) 10-3 K -1, což je o hodně nižší než tabulková γ = 3, K -1. Hodnotu s největší pravděpodobností zkreslovala netěsnost aparatury. Závislost odporu termistoru na teplotě námi změřená dobře odpovídá aplikované teorii, jak je vidět z porovnání grafu 3 a grafu 4. Pomocí grafické a početní extrapolace jsem z naměřených dat určila hodnotu odporu při teplotě t = 0 C. Porovnání je v tabulce 3. R o [Ω] grafická R o [Ω] početní 1560 ± ± 30 Tabulka 3: Porovnání výsledků grafické a početní extrapolace. Z tabulky 3 je vidět výborná shoda výsledků z dvou různých postupů. Postupy se liší chybou měření, zdá se, že grafická extrapolace je přesnější. To může být dáno přímočarostí extrapolace přímo z grafu, zatímco početní vyžadovala výpočet konstant a tedy nutně i zavlečení další chyby. Na druhou stranu relativní chyba měření je srovnatelná a proto bych se klonila spíše k názoru, že i přesnosti obou měření jsou srovnatelné. Závěr: Pomocí plynového teploměru jsme zkalibrovaly rtuťový teploměr, závislost je v grafu 1. Naměřené hodnoty jsme použily k výpočtu součinitele rozpínavosti plynů γ = (3,27 ± 0,03) 10-3 K -1, což jsem porovnala s tabulkovou hodnotou γ = 3, K -1. Pomocí počítače jsme změřily závislost odporu termistoru na teplotě a potvrdily jsme předpokládanou teoretickou závislost vyjádřenou vztahem (4). Grafickou extrapolací jsem určila R o = (1560 ± 20) Ω. Z naměřených dat jsem vypočetla konstanty B = (2900 ± 40) K a R = (0,038 ± 0,004) Ω, pomocí kterých jsem vypočítala R o = (1560 ± 30) Ω. Hodnoty z obou typů extrapolace jsem porovnala v tabulce 3. Zdroje: [1] Kolektiv katedry fyziky, Úlohy fyzikálních praktik Kalibrace rtuťového teploměru plynovým teploměrem, [cit ] URL: [2] Kolektiv katedry fyziky, Úlohy fyzikálních praktik Závislost odporu termistoru na teplotě, [cit ] URL: [3] OTIPKA, ŠMAJSTRLA, Pravděpodobnost a statistika, [cit ] URL:

pv = nrt. Lord Celsius udržoval konstantní tlak plynu v uzavřené soustavě. Potom můžeme napsat T, tedy V = C(t t0) = Ct Ct0, (1)

pv = nrt. Lord Celsius udržoval konstantní tlak plynu v uzavřené soustavě. Potom můžeme napsat T, tedy V = C(t t0) = Ct Ct0, (1) 17. ročník, úloha I. E... absolutní nula (8 bodů; průměr 4,03; řešilo 40 studentů) S experimentálním vybavením dostupným v době Lorda Celsia změřte teplotu absolutní nuly (v Celsiově stupnici). Poradíme

Více

Laboratorní práce č. 1: Určení voltampérových charakteristik spotřebičů

Laboratorní práce č. 1: Určení voltampérových charakteristik spotřebičů Přírodní vědy moderně a interaktivně FYZIKA 5. ročník šestiletého a 3. ročník čtyřletého studia Laboratorní práce č. 1: Určení voltampérových charakteristik spotřebičů G Gymnázium Hranice Přírodní vědy

Více

Termistor. Teorie: Termistor je polovodičová součástka, jejíž odpor závisí na teplotě přibližně podle vzorce

Termistor. Teorie: Termistor je polovodičová součástka, jejíž odpor závisí na teplotě přibližně podle vzorce ermistor Pomůcky: Systém ISES, moduly: teploměr, ohmmetr, termistor, 2 spojovací vodiče, stojan s držáky, azbestová síťka, kádinka, voda, kahan, zápalky, soubor: termistor.imc. Úkoly: ) Proměřit závislost

Více

3. Změřte závislost proudu a výkonu na velikosti kapacity zařazené do sériového RLC obvodu.

3. Změřte závislost proudu a výkonu na velikosti kapacity zařazené do sériového RLC obvodu. Pracovní úkoly. Změřte účiník: a) rezistoru, b) kondenzátoru C = 0 µf) c) cívky. Určete chybu měření. Diskutujte shodu výsledků s teoretickými hodnotami pro ideální prvky. Pro cívku vypočtěte indukčnost

Více

Protokol o měření. Jak ho správně zpracovat

Protokol o měření. Jak ho správně zpracovat Protokol o měření Jak ho správně zpracovat OBSAH Co je to protokol? Forma a struktura Jednotlivé části protokolu Příklady Další tipy pro zpracování Co je to protokol o měření? Jedná se o záznam praktického

Více

základní vzdělávání druhý stupeň

základní vzdělávání druhý stupeň Název projektu Život jako leporelo Registrační číslo CZ.1.07/1.4.00/21.3763 Autor Pavel Broža Datum 5. ledna. 2014 Ročník 8. a 9. Vzdělávací oblast Člověk a příroda Vzdělávací obor Fyzika Tematický okruh

Více

Poř. č. Příjmení a jméno Třída Skupina Školní rok 2 BARTEK Tomáš S3 1 2009/10

Poř. č. Příjmení a jméno Třída Skupina Školní rok 2 BARTEK Tomáš S3 1 2009/10 Vyšší odborná škola a Střední průmyslová škola elektrotechnická Božetěchova 3, Olomouc Laboratoře elektrotechnických měření Název úlohy MĚŘENÍ CHARAKTERISTIK REZONANČNÍCH OBVODŮ Číslo úlohy 301-3R Zadání

Více

Laboratorní práce č. 2: Určení měrné tepelné kapacity látky

Laboratorní práce č. 2: Určení měrné tepelné kapacity látky Přírodní vědy moderně a interaktivně FYZIKA 4. ročník šestiletého a 2. ročník čtyřletého studia Laboratorní práce č. 2: Určení měrné tepelné kapacity látky Přírodní vědy moderně a interaktivně FYZIKA

Více

Laboratorní práce č. 1: Měření délky

Laboratorní práce č. 1: Měření délky Přírodní vědy moderně a interaktivně FYZIKA 3. ročník šestiletého a 1. ročník čtyřletého studia Laboratorní práce č. 1: Měření délky G Gymnázium Hranice Přírodní vědy moderně a interaktivně FYZIKA 3.

Více

2.1 Empirická teplota

2.1 Empirická teplota Přednáška 2 Teplota a její měření Termika zkoumá tepelné vlastnosti látek a soustav těles, jevy spojené s tepelnou výměnou, chování soustav při tepelné výměně, změny skupenství látek, atd. 2.1 Empirická

Více

Laboratorní práce č. 4: Určení elektrického odporu

Laboratorní práce č. 4: Určení elektrického odporu Přírodní vědy moderně a interaktivně FYZIKA. ročník šestiletého studia Laboratorní práce č. 4: Určení elektrického odporu G Gymnázium Hranice Přírodní vědy moderně a interaktivně FYZIKA. ročník šestiletého

Více

PRAKTIKUM I. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. úloha č. 10 Název: Rychlost šíření zvuku. Pracoval: Jakub Michálek

PRAKTIKUM I. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. úloha č. 10 Název: Rychlost šíření zvuku. Pracoval: Jakub Michálek Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM I. úloha č. 10 Název: Rychlost šíření zvuku Pracoval: Jakub Michálek stud. skup. 15 dne: 20. března 2009 Odevzdal dne: Možný

Více

PRAKTIKUM II Elektřina a magnetismus

PRAKTIKUM II Elektřina a magnetismus Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM II Elektřina a magnetismus Úloha č.: XI Název: Charakteristiky diody Pracoval: Pavel Brožek stud. skup. 12 dne 9.1.2009 Odevzdal

Více

2.POPIS MĚŘENÉHO PŘEDMĚTU Měřený předmětem jsou v tomto případě polovodičové diody, jejich údaje jsou uvedeny v tabulce:

2.POPIS MĚŘENÉHO PŘEDMĚTU Měřený předmětem jsou v tomto případě polovodičové diody, jejich údaje jsou uvedeny v tabulce: REDL 3.EB 8 1/14 1.ZADÁNÍ a) Změřte voltampérovou charakteristiku polovodičových diod pomocí voltmetru a ampérmetru v propustném i závěrném směru. b) Sestrojte grafy =f(). c) Graficko početní metodou určete

Více

Fyzikální veličiny a jednotky, přímá a nepřímá metoda měření

Fyzikální veličiny a jednotky, přímá a nepřímá metoda měření I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Laboratorní práce č. 2 Fyzikální veličiny a jednotky,

Více

ODPOR TERMISTORU. Pomůcky: Postup: Jaroslav Reichl, 2011

ODPOR TERMISTORU. Pomůcky: Postup: Jaroslav Reichl, 2011 ODPOR TERMISTORU Pomůcky: voltmetr DVP-BTA, ampérmetr DCP-BTA, teplotní čidlo STS-BTA, LabQuest, zdroj napětí, termistor, reostat, horká voda, led (resp. ledová tříšť), svíčka, sirky, program LoggerPro

Více

FYZIKA II. Petr Praus 6. Přednáška elektrický proud

FYZIKA II. Petr Praus 6. Přednáška elektrický proud FYZIKA II Petr Praus 6. Přednáška elektrický proud Osnova přednášky Elektrický proud proudová hustota Elektrický odpor a Ohmův zákon měrná vodivost driftová rychlost Pohyblivost nosičů náboje teplotní

Více

Laboratorní práce č. 3: Určení voltampérové charakteristiky polovodičové diody

Laboratorní práce č. 3: Určení voltampérové charakteristiky polovodičové diody Přírodní vědy moderně a interaktivně FYZIKA 2. ročník šestiletého studia Laboratorní práce č. 3: Určení voltampérové charakteristiky polovodičové diody G Gymnázium Hranice Přírodní vědy moderně a interaktivně

Více

Laboratorní práce č. 2: Určení povrchového napětí kapaliny

Laboratorní práce č. 2: Určení povrchového napětí kapaliny Přírodní vědy moderně a interaktivně SEMINÁŘ FYZIKY Laboratorní práce č. 2: Určení povrchového napětí kapaliny G Gymnázium Hranice Přírodní vědy moderně a interaktivně SEMINÁŘ FYZIKY G Gymnázium Hranice

Více

5. Stejným postupem změřte objem hadičky spojující byretu s měřeným prostorem. Tuto hodnotu odečtěte od výsledku podle bodu 4.

5. Stejným postupem změřte objem hadičky spojující byretu s měřeným prostorem. Tuto hodnotu odečtěte od výsledku podle bodu 4. FYZIKÁLNÍ PRAKTIKUM I FJFI ČVUT v Praze Úloha #4 Poissonova konstanta a měření dutých objemů Datum měření: 6.12.2013 Skupina: 7 Jméno: David Roesel Kroužek: ZS 5 Spolupracovala: Tereza Schönfeldová Klasifikace:

Více

pracovní list studenta

pracovní list studenta Výstup RVP: Klíčová slova: pracovní list studenta Elektrická energie Vojtěch Beneš žák měří vybrané fyzikální veličiny vhodnými metodami, zpracuje a vyhodnotí výsledky měření, aplikuje s porozuměním termodynamické

Více

Mˇeˇren ı vlastn ı indukˇcnosti Ondˇrej ˇ Sika

Mˇeˇren ı vlastn ı indukˇcnosti Ondˇrej ˇ Sika Obsah 1 Zadání 3 2 Teoretický úvod 3 2.1 Indukčnost.................................. 3 2.2 Indukčnost cívky.............................. 3 2.3 Vlastní indukčnost............................. 3 2.4 Statická

Více

PRAKTIKUM... Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Odevzdal dne: Seznam použité literatury 0 1. Celkem max.

PRAKTIKUM... Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Odevzdal dne: Seznam použité literatury 0 1. Celkem max. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM... Úloha č. Název: Pracoval: stud. skup. dne Odevzdal dne: Možný počet bodů Udělený počet bodů Práce při měření 0 5 Teoretická

Více

2.POPIS MĚŘENÉHO PŘEDMĚTU Měřeným předmětem je v tomto případě zenerova dioda její hodnoty jsou uvedeny v tabulce:

2.POPIS MĚŘENÉHO PŘEDMĚTU Měřeným předmětem je v tomto případě zenerova dioda její hodnoty jsou uvedeny v tabulce: REDL 3.EB 9 1/11 1.ZADÁNÍ a) Změřte voltampérovou charakteristiku zenerovy diody v propustném i závěrném směru. Charakteristiky znázorněte graficky. b) Vypočtěte a graficky znázorněte statický odpor diody

Více

Derivační spektrofotometrie a rozklad absorpčního spektra

Derivační spektrofotometrie a rozklad absorpčního spektra Derivační spektrofotometrie a rozklad absorpčního spektra Teorie: Derivační spektrofotometrie, využívající derivace absorpční křivky, je obecně používanou metodou pro zvýraznění detailů průběhu záznamu,

Více

Zákony ideálního plynu

Zákony ideálního plynu 5.2Zákony ideálního plynu 5.1.1 Ideální plyn 5.1.2 Avogadrův zákon 5.1.3 Normální podmínky 5.1.4 Boyleův-Mariottův zákon Izoterma 5.1.5 Gay-Lussacův zákon 5.1.6 Charlesův zákon 5.1.7 Poissonův zákon 5.1.8

Více

1. Stanovte a graficky znázorněte charakteristiky vakuové diody (EZ 81) a Zenerovy diody (KZ 703).

1. Stanovte a graficky znázorněte charakteristiky vakuové diody (EZ 81) a Zenerovy diody (KZ 703). 1 Pracovní úkoly 1. Stanovte a graficky znázorněte charakteristiky vakuové diody (EZ 81) a Zenerovy diody (KZ 703). 2. Určete dynamický vnitřní odpor Zenerovy diody v propustném směru při proudu 200 ma

Více

Elektronické praktikum EPR1

Elektronické praktikum EPR1 Elektronické praktikum EPR1 Úloha číslo 2 název Vlastnosti polovodičových prvků Vypracoval Pavel Pokorný PINF Datum měření 11. 11. 2008 vypracování protokolu 23. 11. 2008 Zadání 1. Seznamte se s funkcí

Více

Stabiliz atory napˇet ı v nap ajec ıch zdroj ıch - mˇeˇren ı z akladn ıch parametr u Ondˇrej ˇ Sika

Stabiliz atory napˇet ı v nap ajec ıch zdroj ıch - mˇeˇren ı z akladn ıch parametr u Ondˇrej ˇ Sika - měření základních parametrů Obsah 1 Zadání 4 2 Teoretický úvod 4 2.1 Stabilizátor................................ 4 2.2 Druhy stabilizátorů............................ 4 2.2.1 Parametrické stabilizátory....................

Více

Název: Měření paralelního rezonančního LC obvodu

Název: Měření paralelního rezonančního LC obvodu Název: Měření paralelního rezonančního LC obvodu Autor: Mgr. Lucia Klimková Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy Předmět (mezipředmětové vztahy) : Fyzika (Matematika) Tematický celek:

Více

Cvičení: APLIKOVANÁ BIOKLIMATOLOGIE. Ing. Petr Hlavinka, Ph.D. Dveře č. N5068 (tel.: 3090) phlavinka@centrum.cz

Cvičení: APLIKOVANÁ BIOKLIMATOLOGIE. Ing. Petr Hlavinka, Ph.D. Dveře č. N5068 (tel.: 3090) phlavinka@centrum.cz Cvičení: APLIKOVANÁ BIOKLIMATOLOGIE Ing. Petr Hlavinka, Ph.D. Dveře č. N5068 (tel.: 3090) phlavinka@centrum.cz Zápočet: -Docházka na cvičení (max. 2 absence) -Vyřešit 3 samostatné úkoly Meteorologická

Více

M. Odstrčil, T. Odstrčil FJFI - ČVUT, Břehová 7, 115 19 Praha 1 michal@qmail.com, tom@cbox.cz. Abstrakt

M. Odstrčil, T. Odstrčil FJFI - ČVUT, Břehová 7, 115 19 Praha 1 michal@qmail.com, tom@cbox.cz. Abstrakt Supravodiče M. Odstrčil, T. Odstrčil FJFI - ČVUT, Břehová 7, 115 19 Praha 1 michal@qmail.com, tom@cbox.cz Abstrakt V článku je popsán náš experiment, jehož cílem bylo určit kritickou teplotu vysokoteplotních

Více

1. Určete závislost povrchového napětí σ na objemové koncentraci c roztoku etylalkoholu ve vodě odtrhávací metodou.

1. Určete závislost povrchového napětí σ na objemové koncentraci c roztoku etylalkoholu ve vodě odtrhávací metodou. 1 Pracovní úkoly 1. Určete závislost povrchového napětí σ na objemové koncentraci c roztoku etylalkoholu ve vodě odtrhávací metodou. 2. Sestrojte graf této závislosti. 2 Teoretický úvod 2.1 Povrchové napětí

Více

Měření závislosti statistických dat

Měření závislosti statistických dat 5.1 Měření závislosti statistických dat Každý pořádný astronom je schopen vám předpovědět, kde se bude nacházet daná hvězda půl hodiny před půlnocí. Ne každý je však téhož schopen předpovědět v případě

Více

2. MĚŘENÍ TEPLOTY TERMOČLÁNKY

2. MĚŘENÍ TEPLOTY TERMOČLÁNKY 2. MĚŘENÍ TEPLOTY TERMOČLÁNKY Otázky k úloze (domácí příprava): Jaká je teplota kompenzačního spoje ( studeného konce ), na kterou koriguje kompenzační krabice? Dá se to zjistit jednoduchým měřením? Čemu

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

Teplotní roztažnost. Teorie. Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti

Teplotní roztažnost. Teorie. Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Teplotní roztažnost Teorie Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Teplotní roztažnost souvisí se změnou rozměru zahřívaného těles Při zahřívání se tělesa zvětšují, při ochlazování

Více

MĚŘENÍ POLOVODIČOVÝCH DIOD 201-3R

MĚŘENÍ POLOVODIČOVÝCH DIOD 201-3R Vyšší odborná škola a Střední průmyslová škola elektrotechnická Božetěchova 3, Olomouc Laboratoře elektrotechnických měření Název úlohy Číslo úlohy MĚŘENÍ POLOVODIČOVÝCH DIOD 201-3R Zadání 1. Multimetrem

Více

8 Střední hodnota a rozptyl

8 Střední hodnota a rozptyl Břetislav Fajmon, UMAT FEKT, VUT Brno Této přednášce odpovídá kapitola 10 ze skript [1]. Také je k dispozici sbírka úloh [2], kde si můžete procvičit příklady z kapitol 2, 3 a 4. K samostatnému procvičení

Více

Ing. Radovan Nečas Mgr. Miroslav Hroza

Ing. Radovan Nečas Mgr. Miroslav Hroza Výzkumný ústav stavebních hmot, a.s. Hněvkovského, č.p. 30, or. 65, 617 00 BRNO zapsaná v OR u krajského soudu v Brně, oddíl B, vložka 3470 Aktivační energie rozkladu vápenců a její souvislost s ostatními

Více

propustný směr maximální proud I F MAX [ma] 75 < 1... při I F = 10mA > 50... při I R = 1µA 60 < 0,4... při I F = 10mA > 60...

propustný směr maximální proud I F MAX [ma] 75 < 1... při I F = 10mA > 50... při I R = 1µA 60 < 0,4... při I F = 10mA > 60... Teoretický úvod Diody jsou polovodičové jednobrany s jedním přechodem PN. Dioda se vyznačuje tím, že nepropouští téměř žádný proud (je uzavřena) dokud napětí na ní nestoupne na hodnotu prahového napětí

Více

Příprava pro lektora

Příprava pro lektora Příprava pro lektora stanoviště aktivita pomůcky 1 typy oblačnosti podle manuálu Globe stanov typy mraků na obrázcích pokryvnost oblohy vytvoř model oblohy s 25% oblačností, použij modrý papír (obloha)

Více

X. Hallův jev. Michal Krištof. 2. Zjistěte závislost Hallova napětí na magnetické indukci při dvou hodnotách konstantního proudu vzorkem.

X. Hallův jev. Michal Krištof. 2. Zjistěte závislost Hallova napětí na magnetické indukci při dvou hodnotách konstantního proudu vzorkem. X. Hallův jev Michal Krištof Pracovní úkol 1. Zjistěte závislost proudu vzorkem na přiloženém napětí při nulové magnetické indukci. 2. Zjistěte závislost Hallova napětí na magnetické indukci při dvou hodnotách

Více

MATURITNÍ TÉMATA Z MATEMATIKY

MATURITNÍ TÉMATA Z MATEMATIKY MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické

Více

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1 Logistická regrese Menu: QCExpert Regrese Logistická Modul Logistická regrese umožňuje analýzu dat, kdy odezva je binární, nebo frekvenční veličina vyjádřená hodnotami 0 nebo 1, případně poměry v intervalu

Více

Hodina 50 Strana 1/14. Gymnázium Budějovická. Hodnocení akcií

Hodina 50 Strana 1/14. Gymnázium Budějovická. Hodnocení akcií Hodina 50 Strana /4 Gymnázium Budějovická Volitelný předmět Ekonomie - jednoletý BLOK ČÍSLO 8 Hodnocení akcií Předpokládaný počet : 9 hodin Použitá literatura : František Egermayer, Jan Kožíšek Statistická

Více

6. Vnitřní odpor zdroje, volt-ampérová charakteristika žárovky

6. Vnitřní odpor zdroje, volt-ampérová charakteristika žárovky 6. Vnitřní odpor zdroje, volt-ampérová charakteristika žárovky Úkoly měření: 1. Sestrojte obvod pro určení vnitřního odporu zdroje. 2. Určete elektromotorické napětí zdroje a hodnotu vnitřního odporu zdroje

Více

vzorek1 0.0033390 0.0047277 0.0062653 0.0077811 0.0090141... vzorek 30 0.0056775 0.0058778 0.0066916 0.0076192 0.0087291

vzorek1 0.0033390 0.0047277 0.0062653 0.0077811 0.0090141... vzorek 30 0.0056775 0.0058778 0.0066916 0.0076192 0.0087291 Vzorová úloha 4.16 Postup vícerozměrné kalibrace Postup vícerozměrné kalibrace ukážeme na úloze C4.10 Vícerozměrný kalibrační model kvality bezolovnatého benzinu. Dle následujících kroků na základě naměřených

Více

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0.

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0. Nalezněte definiční obor funkce Diferenciální počet f = ln arcsin + Definiční obor funkce f je určen vztahy Z těchto nerovností plyne < + ln arcsin + je tedy D f =, Určete definiční obor funkce arcsin

Více

SNÍMAČE PRO MĚŘENÍ TEPLOTY

SNÍMAČE PRO MĚŘENÍ TEPLOTY SNÍMAČE PRO MĚŘENÍ TEPLOTY 10.1. Kontaktní snímače teploty 10.2. Bezkontaktní snímače teploty 10.1. KONTAKTNÍ SNÍMAČE TEPLOTY Experimentální metody přednáška 10 snímač je připevněn na měřený objekt 10.1.1.

Více

F-1 Fyzika hravě. (Anotace k sadě 20 materiálů) ROVNOVÁŽNÁ POLOHA ZAPOJENÍ REZISTORŮ JEDNODUCHÝ ELEKTRICKÝ OBVOD

F-1 Fyzika hravě. (Anotace k sadě 20 materiálů) ROVNOVÁŽNÁ POLOHA ZAPOJENÍ REZISTORŮ JEDNODUCHÝ ELEKTRICKÝ OBVOD F-1 Fyzika hravě ( k sadě 20 materiálů) Poř. 1. F-1_01 KLID a POHYB 2. F-1_02 ROVNOVÁŽNÁ POLOHA Prezentace obsahuje látku 1 vyučovací hodiny. materiál slouží k opakování látky na téma relativnost klidu

Více

Základní pojmy a jednotky

Základní pojmy a jednotky Základní pojmy a jednotky Tlak: p = F S [N. m 2 ] [kg. m. s 2. m 2 ] [kg. m 1. s 2 ] [Pa] (1) Hydrostatický tlak: p = h. ρ. g [m. kg. m 3. m. s 2 ] [kg. m 1. s 2 ] [Pa] (2) Převody jednotek tlaku: Bar

Více

10. Předpovídání - aplikace regresní úlohy

10. Předpovídání - aplikace regresní úlohy 10. Předpovídání - aplikace regresní úlohy Regresní úloha (analýza) je označení pro statistickou metodu, pomocí nichž odhadujeme hodnotu náhodné veličiny (tzv. závislé proměnné, cílové proměnné, regresandu

Více

MĚŘ, POČÍTEJ A MĚŘ ZNOVU

MĚŘ, POČÍTEJ A MĚŘ ZNOVU MĚŘ, POČÍTEJ A MĚŘ ZNOVU Václav Piskač Gymnázium tř.kpt.jaroše, Brno Abstrakt: Příspěvek ukazuje možnost, jak ve vyučovací hodině propojit fyzikální experiment a početní úlohu způsobem, který výrazně zvyšuje

Více

Stanovení BMI a optimální energetické spotřeby CAL

Stanovení BMI a optimální energetické spotřeby CAL 2014/15 Stanovení BMI a optimální energetické spotřeby CAL Teoretický úvod Index tělesné hmotnosti, obvykle označovaný zkratkou BMI (z anglického body mass index) je číslo používané jako indikátor podváhy,

Více

Biostatistika Cvičení 7

Biostatistika Cvičení 7 TEST Z TEORIE 1. Střední hodnota pevně zvolené náhodné veličiny je a) náhodná veličina, b) konstanta, c) náhodný jev, d) výběrová charakteristika. 2. Výběrový průměr je a) náhodná veličina, b) konstanta,

Více

Pracovní list č. 3 Charakteristiky variability

Pracovní list č. 3 Charakteristiky variability 1. Při zjišťování počtu nezletilých dětí ve třiceti vybraných rodinách byly získány tyto výsledky: 1, 1, 0, 2, 3, 4, 2, 2, 3, 0, 1, 2, 2, 4, 3, 3, 0, 1, 1, 1, 2, 2, 0, 2, 1, 1, 2, 3, 3, 2. Uspořádejte

Více

Měření tlaku v závislosti na nadmořské výšce KET/MNV

Měření tlaku v závislosti na nadmořské výšce KET/MNV Měření tlaku v závislosti na nadmořské výšce KET/MNV Vypracoval : Martin Dlouhý Osobní číslo : A08B0268P 1. Zadání Změřte hodnotu atmosférického tlaku v různých nadmořských výškách (v několika patrech

Více

Pedagogická fakulta v Ústí nad Labem Fyzikální praktikum k elektronice 2 Číslo úlohy : 1

Pedagogická fakulta v Ústí nad Labem Fyzikální praktikum k elektronice 2 Číslo úlohy : 1 Pedagogická fakulta v Ústí nad Labem Fyzikální praktikum k elektronice Číslo úlohy : 1 Název úlohy : Vypracoval : ročník : 3 skupina : F-Zt Vnější podmínky měření : měřeno dne : 3.. 004 teplota : C tlak

Více

Základy meteorologie - měření tlaku a teploty vzduchu (práce v terénu + laboratorní práce)

Základy meteorologie - měření tlaku a teploty vzduchu (práce v terénu + laboratorní práce) Zvyšování kvality výuky v přírodních a technických oblastech CZ.1.07/1.1.28/02.0055 Základy meteorologie - měření tlaku a teploty vzduchu (práce v terénu + laboratorní práce) Označení: EU-Inovace-F-8-12

Více

Experiment P-10 OHMŮV ZÁKON. Sledování vztahu mezi napětím a proudem procházejícím obvodem s rezistorem známého odporu.

Experiment P-10 OHMŮV ZÁKON. Sledování vztahu mezi napětím a proudem procházejícím obvodem s rezistorem známého odporu. Experiment P-10 OHMŮV ZÁKON CÍL EXPERIMENTU Sledování vztahu mezi napětím a proudem procházejícím obvodem s rezistorem známého odporu. MODULY A SENZORY PC + program NeuLog TM USB modul USB 200 senzor napětí

Více

Kompenzovaný vstupní dělič Analogový nízkofrekvenční milivoltmetr

Kompenzovaný vstupní dělič Analogový nízkofrekvenční milivoltmetr Kompenzovaný vstupní dělič Analogový nízkofrekvenční milivoltmetr. Zadání: A. Na předloženém kompenzovaném vstupní děliči k nf milivoltmetru se vstupní impedancí Z vst = MΩ 25 pf, pro dělící poměry :2,

Více

PRŮVZDUŠNOST STAVEBNÍCH VÝROBKŮ

PRŮVZDUŠNOST STAVEBNÍCH VÝROBKŮ PRŮVZDUŠNOST STAVEBNÍCH VÝROBKŮ Ing. Jindřich Mrlík O netěsnosti a průvzdušnosti stavebních výrobků ze zkušební laboratoře; klasifikační kriteria průvzdušnosti oken a dveří, vrat a lehkých obvodových plášťů;

Více

PROTOKOL O PROVEDENÍ LABORATORNÍ PRÁCE

PROTOKOL O PROVEDENÍ LABORATORNÍ PRÁCE PROTOKOL O PROVEDENÍ LABORATORNÍ PRÁCE Jméno: Třída: Úloha: F-VI-1 Izotermický děj Spolupracovník: Hodnocení: Datum měření: Úkol: Experimentálně ověřte platnost Boyle-Mariottova zákona. Pomůcky: Teorie:

Více

Měření délky, určení objemu tělesa a jeho hustoty

Měření délky, určení objemu tělesa a jeho hustoty Úloha č. 1a Měření délky, určení objemu tělesa a jeho hustoty Úkoly měření: 1. Seznámení se s měřicími přístroji posuvné měřítko, mikrometr, laboratorní váhy. 2. Opakovaně (10x) změřte rozměry dvou zadaných

Více

Matematická vsuvka I. trojčlenka. http://www.matematika.cz/

Matematická vsuvka I. trojčlenka. http://www.matematika.cz/ Matematická vsuvka I. trojčlenka http://www.matematika.cz/ Trojčlenka přímá úměra Pokud platí, že čím více tím více, jedná se o přímou úměru. Čím více kopáčů bude kopat, tím více toho vykopají. Čím déle

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

Měření součinitele smykového tření dynamickou metodou

Měření součinitele smykového tření dynamickou metodou Měření součinitele smykového tření dynamickou metodou Online: http://www.sclpx.eu/lab1r.php?exp=6 Měření smykového tření na nakloněné rovině pomocí zvukové karty řešil např. Sedláček [76]. Jeho konstrukce

Více

Korelační a regresní analýza

Korelační a regresní analýza Korelační a regresní analýza Analýza závislosti v normálním rozdělení Pearsonův (výběrový) korelační koeficient: r = s XY s X s Y, kde s XY = 1 n (x n 1 i=0 i x )(y i y ), s X (s Y ) je výběrová směrodatná

Více

Číselné charakteristiky a jejich výpočet

Číselné charakteristiky a jejich výpočet Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz charakteristiky polohy charakteristiky variability charakteristiky koncetrace charakteristiky polohy charakteristiky

Více

pracovní list studenta

pracovní list studenta Výstup RVP: Klíčová slova: pracovní list studenta Dynamika Vojtěch Beneš žák měří vybrané veličiny vhodnými metodami, zpracuje a vyhodnotí výsledky měření, určí v konkrétních situacích síly působící na

Více

Statistika. Regresní a korelační analýza Úvod do problému. Roman Biskup

Statistika. Regresní a korelační analýza Úvod do problému. Roman Biskup Statistika Regresní a korelační analýza Úvod do problému Roman Biskup Jihočeská univerzita v Českých Budějovicích Ekonomická fakulta (Zemědělská fakulta) Katedra aplikované matematiky a informatiky 2008/2009

Více

Písemná práce k modulu Statistika

Písemná práce k modulu Statistika The Nottingham Trent University B.I.B.S., a. s. Brno BA (Hons) in Business Management Písemná práce k modulu Statistika Číslo zadání: 144 Autor: Zdeněk Fekar Ročník: II., 2005/2006 1 Prohlašuji, že jsem

Více

MĚŘENÍ VA CHARAKTERISTIK BIPOLÁRNÍHO TRANZISTORU

MĚŘENÍ VA CHARAKTERISTIK BIPOLÁRNÍHO TRANZISTORU Vypracoval: Petr Vavroš (vav0040) Datum Měření: 29. 10. 2009 Laboratorní úloha č. 5 MĚŘENÍ VA HARAKTERISTIK IPOLÁRNÍHO TRANZISTORU ZADÁNÍ: I. Změřte výstupní charakteristiky I f(u E ) pro I konst. bipolárního

Více

Příklad 1. Řešení 1a. Řešení 1b. Řešení 1c ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 7

Příklad 1. Řešení 1a. Řešení 1b. Řešení 1c ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 7 Příklad 1 a) Autobusy městské hromadné dopravy odjíždějí ze zastávky v pravidelných intervalech 5 minut. Cestující může přijít na zastávku v libovolném okamžiku. Určete střední hodnotu a směrodatnou odchylku

Více

A:Měření tlaku v závislosti na nadmořské výšce B:Cejchování deformačního manometru závažovou pumpou C:Diferenciální manometry KET/MNV (5.

A:Měření tlaku v závislosti na nadmořské výšce B:Cejchování deformačního manometru závažovou pumpou C:Diferenciální manometry KET/MNV (5. A:Měření tlaku v závislosti na nadmořské výšce B:Cejchování deformačního manometru závažovou pumpou C:Diferenciální manometry KET/MNV (5. cvičení) Vypracoval : Martin Dlouhý Osobní číslo : A08B0268P A:Měření

Více

Boltzmannův zákon. Termodynamika, energie Daniela Horváthová, dhorvathova@ukf.sk Mária Rakovská, mrakovska@ukf.sk. Praktický test teoretického zákona.

Boltzmannův zákon. Termodynamika, energie Daniela Horváthová, dhorvathova@ukf.sk Mária Rakovská, mrakovska@ukf.sk. Praktický test teoretického zákona. PROMOTE MSc POPIS TÉMATU FYZIKA 7 Název Tematický celek Jméno a e-mailová adresa autora Cíle Obsah Pomůcky Poznámky Boltzmannův zákon Termodynamika, energie Daniela Horváthová, dhorvathova@ukf.sk Mária

Více

7 Tenze par kapalin. Obr. 7.1 Obr. 7.2

7 Tenze par kapalin. Obr. 7.1 Obr. 7.2 7 Tenze par kapalin Tenze par (neboli tlak sytých, případně nasycených par) je tlak v jednosložkovém systému, kdy je za dané teploty v rovnováze fáze plynná s fází kapalnou nebo pevnou. Tenze par je nejvyšší

Více

ELEKTRICKÝ PROUD V KOVECH. Mgr. Jan Ptáčník - GJVJ - Fyzika - Elektřina a magnetismus - 3. ročník

ELEKTRICKÝ PROUD V KOVECH. Mgr. Jan Ptáčník - GJVJ - Fyzika - Elektřina a magnetismus - 3. ročník ELEKTRICKÝ PROUD V KOVECH Mgr. Jan Ptáčník - GJVJ - Fyzika - Elektřina a magnetismus - 3. ročník Elektrický proud Uspořádaný pohyb volných částic s nábojem Směr: od + k ( dle dohody - ve směru kladných

Více

Experimentáln. lní toků ve VK EMO. XXX. Dny radiační ochrany Liptovský Ján 10.11.-14.11.2008 Petr Okruhlica, Miroslav Mrtvý, Zdenek Kopecký. www.vf.

Experimentáln. lní toků ve VK EMO. XXX. Dny radiační ochrany Liptovský Ján 10.11.-14.11.2008 Petr Okruhlica, Miroslav Mrtvý, Zdenek Kopecký. www.vf. Experimentáln lní měření průtok toků ve VK EMO XXX. Dny radiační ochrany Liptovský Ján 10.11.-14.11.2008 Petr Okruhlica, Miroslav Mrtvý, Zdenek Kopecký Systém měření průtoku EMO Měření ve ventilačním komíně

Více

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,

Více

Test dobré shody v KONTINGENČNÍCH TABULKÁCH

Test dobré shody v KONTINGENČNÍCH TABULKÁCH Test dobré shody v KONTINGENČNÍCH TABULKÁCH Opakování: Mějme náhodné veličiny X a Y uspořádané do kontingenční tabulky. Řekli jsme, že nulovou hypotézu H 0 : veličiny X, Y jsou nezávislé zamítneme, když

Více

Praktikum z experimentálních metod biofyziky a chemické fyziky I. Vypracoval: Jana Čurdová, Martin Kříž, Vít Marek. Dne: 2.3.

Praktikum z experimentálních metod biofyziky a chemické fyziky I. Vypracoval: Jana Čurdová, Martin Kříž, Vít Marek. Dne: 2.3. Praktikum z experimentálních metod biofyziky a chemické fyziky I. Vypracoval: Jana Čurdová, Martin Kříž, Vít Marek. Dne:.3.3 Úloha: Radiometrie ultrafialového záření z umělých a přirozených světelných

Více

Jméno a příjmení. Ročník. Měřeno dne. 21.3.2012 Příprava Opravy Učitel Hodnocení

Jméno a příjmení. Ročník. Měřeno dne. 21.3.2012 Příprava Opravy Učitel Hodnocení FYZIKÁLNÍ PRAKTIKUM Ústav fyziky FEKT VUT BRNO Jméno a příjmení Vojtěch Přikryl Ročník 1 Předmět IFY Kroužek 35 ID 143762 Spolupracoval Měřeno dne Odevzdáno dne Daniel Radoš 7.3.2012 21.3.2012 Příprava

Více

5.2. Funkce, definiční obor funkce a množina hodnot funkce

5.2. Funkce, definiční obor funkce a množina hodnot funkce 5. Funkce 8. ročník 5. Funkce 5.. Opakování - Zobrazení a zápis intervalů a) uzavřený interval d) otevřený interval čísla a,b krajní body intervalu číslo a patří do intervalu (plné kolečko) číslo b patří

Více

h n i s k o v v z d á l e n o s t s p o j n ý c h č o č e k

h n i s k o v v z d á l e n o s t s p o j n ý c h č o č e k h n i s k o v v z d á l e n o s t s p o j n ý c h č o č e k Ú k o l : P o t ř e b : Změřit ohniskové vzdálenosti spojných čoček různými metodami. Viz seznam v deskách u úloh na pracovním stole. Obecná

Více

SAMOSTATNÁ STUDENTSKÁ PRÁCE ZE STATISTIKY

SAMOSTATNÁ STUDENTSKÁ PRÁCE ZE STATISTIKY SAMOSTATÁ STUDETSKÁ PRÁCE ZE STATISTIKY Váha studentů Kučerová Eliška, Pazdeříková Jana septima červen 005 Zadání: My dvě studentky jsme si vylosovaly zjistit statistickým šetřením v celém ročníku septim

Více

Národníinformačnístředisko pro podporu jakosti

Národníinformačnístředisko pro podporu jakosti Národníinformačnístředisko pro podporu jakosti OVĚŘOVÁNÍ PŘEDPOKLADU NORMALITY Doc. Ing. Eva Jarošová, CSc. Ing. Jan Král Používané metody statistické testy: Chí-kvadrát test dobré shody Kolmogorov -Smirnov

Více

Laboratorní práce č. 2: Určení měrného skupenského tepla tání ledu

Laboratorní práce č. 2: Určení měrného skupenského tepla tání ledu Přírodní vědy moderně a interaktivně FYZIKA 1. ročník šestiletého studia Laboratorní práce č. 2: Určení měrného skupenského tepla tání ledu ymnázium Přírodní vědy moderně a interaktivně FYZIKA 1. ročník

Více

MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ

MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ Má-li analytický výsledek objektivně vypovídat o chemickém složení vzorku, musí splňovat určitá kriteria: Mezinárodní metrologický slovník (VIM 3),

Více

Termodynamika. T [K ]=t [ 0 C] 273,15 T [ K ]= t [ 0 C] termodynamická teplota: Stavy hmoty. jednotka: 1 K (kelvin) = 1/273,16 část termodynamické

Termodynamika. T [K ]=t [ 0 C] 273,15 T [ K ]= t [ 0 C] termodynamická teplota: Stavy hmoty. jednotka: 1 K (kelvin) = 1/273,16 část termodynamické Termodynamika termodynamická teplota: Stavy hmoty jednotka: 1 K (kelvin) = 1/273,16 část termodynamické teploty trojného bodu vody (273,16 K = 0,01 o C). 0 o C = 273,15 K T [K ]=t [ 0 C] 273,15 T [ K ]=

Více

Pokud světlo prochází prostředím, pak v důsledku elektromagnetické interakce s částicemi obsaženými

Pokud světlo prochází prostředím, pak v důsledku elektromagnetické interakce s částicemi obsaženými 1 Pracovní úkoly 1. Změřte závislost indexu lomu vzduchu na tlaku n(). 2. Závislost n() zracujte graficky. Vyneste také závislost závislost vlnové délky sodíkové čáry na indexu lomu vzduchu λ(n). Proveďte

Více

1/6. 2. Stavová rovnice, plynová konstanta, Avogadrův zákon, kilomol plynu

1/6. 2. Stavová rovnice, plynová konstanta, Avogadrův zákon, kilomol plynu 1/6 2. Stavová rovnice, plynová konstanta, Avogadrův zákon, kilomol plynu Příklad: 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 2.10, 2.11, 2.12, 2.13, 2.14, 2.15, 2.16, 2.17, 2.18, 2.19, 2.20, 2.21, 2.22,

Více

Simulace. Simulace dat. Parametry

Simulace. Simulace dat. Parametry Simulace Simulace dat Menu: QCExpert Simulace Simulace dat Tento modul je určen pro generování pseudonáhodných dat s danými statistickými vlastnostmi. Nabízí čtyři typy rozdělení: normální, logaritmicko-normální,

Více

Elektrický proud 2. Zápisy do sešitu

Elektrický proud 2. Zápisy do sešitu Elektrický proud 2 Zápisy do sešitu Směr elektrického proudu v obvodu 1/2 V různých materiálech vedou elektrický proud různé částice: kovy volné elektrony kapaliny (roztoky) ionty plyny kladné ionty a

Více

I. diskusní fórum. Možnosti zajištění kvality stavby (diagnostická metoda infračervená termografie) VZDĚLÁVACÍ MATERIÁL O DISKUTOVANÉM TÉMATU

I. diskusní fórum. Možnosti zajištění kvality stavby (diagnostická metoda infračervená termografie) VZDĚLÁVACÍ MATERIÁL O DISKUTOVANÉM TÉMATU I. diskusní fórum K projektu Cesty na zkušenou Na téma Možnosti zajištění kvality stavby (diagnostická metoda infračervená termografie) které se konalo dne 30. září 2013 od 12:30 hodin v místnosti H108

Více

Elektrický proud v kovech Odpor vodiče, Ohmův zákon Kirchhoffovy zákony, Spojování rezistorů Práce a výkon elektrického proudu

Elektrický proud v kovech Odpor vodiče, Ohmův zákon Kirchhoffovy zákony, Spojování rezistorů Práce a výkon elektrického proudu Elektrický proud Elektrický proud v kovech Odpor vodiče, Ohmův zákon Kirchhoffovy zákony, Spojování rezistorů Práce a výkon elektrického proudu Elektrický proud v kovech Elektrický proud = usměrněný pohyb

Více

Střední průmyslová škola, Karviná. Protokol o zkoušce

Střední průmyslová škola, Karviná. Protokol o zkoušce č.1 Stanovení dusičnanů ve vodách fotometricky Předpokládaná koncentrace 5 20 mg/l navážka KNO 3 (g) Příprava kalibračního standardu Kalibrace slepý vzorek kalibrační roztok 1 kalibrační roztok 2 kalibrační

Více

Určeno studentům středního vzdělávání s maturitní zkouškou, první ročník, řazení rezistorů

Určeno studentům středního vzdělávání s maturitní zkouškou, první ročník, řazení rezistorů Určeno studentům středního vzdělávání s maturitní zkouškou, první ročník, řazení rezistorů Pracovní list - příklad vytvořil: Ing. Lubomír Kořínek Období vytvoření VM: listopad 203 Klíčová slova: rezistor,

Více

Univerzita Tomáše Bati ve Zlíně

Univerzita Tomáše Bati ve Zlíně Univrzita omáš Bati v Zlíně LABORAORNÍ CVIČENÍ Z FYZIKY II Názv úlohy: Voltampérová charaktristika polovodičové diody a žárovky Jméno: Ptr Luzar Skupina: I II/1 Datum měřní: 14.listopadu 7 Obor: Informační

Více