Fyzikální praktikum FJFI ČVUT v Praze
|
|
- Otakar Vávra
- před 6 lety
- Počet zobrazení:
Transkript
1 Fyzikální praktikum FJFI ČVUT v Praze Úloha 6: Kalibrace teploměru, skupenské teplo Datum měření: Skupina: 8, čtvrtek 7:30 Vypracoval: Tadeáš Kmenta Klasifikace: Část I Kalibrace rtuťového teploměru plynovým teploměrem 1 Zadání 1. Ocejchujte rtuťový teploměr pomocí plynového teploměru a nakreslete příslušný graf. 2. Vypočítejte součinitele rozpínavosti plynů γ. 2 Pomůcky Plynový teploměr na stojanu, hliníková nádoba s dvojitou stěnou na vaření vody, elektrická topná spirála, hliníková nádoba na drcení ledu, rtuťový teploměr, led, voda na dolévání, skleněná kádinka, barometr. 3 Teoretický úvod Plynový teploměr, zobrazený na obrázku 1, je tvořen skleněnou baňkou (B), umístěnou v prostoru, jehož teplotu měříme, a která je spojená kapilárou (K) s jedním ramenem rtuťového manometru (M). Obrázek 1: Plynový teploměr [1]. B skleněná baňka, K kapilára, V ventil, H hrot, M manometr, h rozdíl hladin Označíme-li tlak v teploměru při teplotě 0 jako p 0 a při teplotě 100 jako p 100, bude tlaku p při izochorickém ději odpovídat teplota t dána vztahem t = 100 p p 0 p 100 p 0. (1) Počáteční tlak p 0 volíme rovný atmosférickému tlaku b. Všechny tlaky měříme výškou rtuťového sloupce h, pro které platí vztah 1
2 p = hρg + p 0, (2) kde g je gravitační zrychlení a ρ hustota kapaliny, v našem případě rtuti ρ Hg = kgm 3 [1]. Vztah (1) lze tedy v závislosti na výšce hladince, kdy h 0 = 0, vyjádřit rovnicí h t = t v, (3) h 100 kde h 100 odpovídá teplotě 100 a teplota varu t v je při atmosférickém tlaku b dána rovnicí t v = (b 760) (b 760) 2 [, Torr]. (4) Pro výpočet součinitele rozpínavosti plynů γ z Gay-Lussacova zákona plyne vztah γ = p p 0 p 0 t = hρg bt, (5) kde p 0 je tlak plynu při teplotě 0, p tlak plynu při izochorickém ději při teplotě t, b je atmosférický tlak, h výška hladiny, g gravitační zrychlení a ρ hustota kapaliny rtuti. 4 Postup měření Baňku plynového teploměru jsme ponořili do nádoby se směsí rozdrceného ledu a vody, dosáhli jsme nejmenší teploty 4, při níž jsme provedli vyrovnání tlaků otevřením ventilu. Poté jsme ventil zavřeli a vybrali led, takže zbyla pouze voda, kterou jsme zahřívali a pro různé teploty vody t i odečítali na rtuťovém teploměru rozdíly výšek hladin tak, že hladinu rtuti v uzavřeném rameni manometru jsme pomocí zvyšování výšky trubice otevřené části manometru drželi na hrotu a odečítali výšku v otevřeném rameni. Vodu jsme zahřívali do 90. Následně jsme za pomocí asistenta snížili posuvné rameno manometru až na doraz, v nádobě ponechali okolo 3 cm vody a nasadili na ní válcový plechový nástavec. Baňku plynového teploměru a rtuťový teploměr jsme umístili tak, aby je zahřívala pára vařící se vody. Aparaturu jsme pořádně utěsnili a po ustálení teploty odečetli údaje obou teploměrů. 5 Naměřené hodnoty Ve výpočtech uvažujeme gravitační konstantu g = 9.81 ms 2. Naměřený atmosférický tlak p 0 = b = kpa = Torr. Hustota rtuti ρ Hg = kgm 3. Teplota varu dle vzorce (4) je t v = V tabulce číslo 1 jsou uvedené naměřené hodnoty rozdílu výšek hladin h v závislosti na teplotě t naměřené rtuťovým teploměrem a vypočtené teploty t p, coby teploty naměřené plynovým teploměrem, pomocí vzorce 3, kdy jsme hodnotu h 100 získali lineární regresí naměřených hodnot viz. obr. 2 a tlak v plynovém teploměru p vypočtený vzorcem (2). t ± 0.5 [ ] h ± 0.05 [cm] t p [ ] σ tp [ ] p ± 1 [Torr] Tabulka 1: Naměřené rozdíly výšek hladin v závislosti na teplotě Na obrázku 2 je znázorněna lineární závislost rozdílu výšek hladin h na teplotě t. 2
3 Obrázek 2: Rozdíl výšek hladin v závislosti na teplotě. Z lineární regrese je hodnota rozdílu výšky hladin při 100 rovna h 100 = ± 1.32 cm. Při měření teploty v páře, jsme pro 96 naměřené rtuťovým teploměrem změřili rozdíl výšek hladin u plynového teploměr h = 10.3 cm, což odpovídá teplotě měřené plynovým teploměrem t p = (50.5 ± 3.1). Při měření muselo dojít k hrubé chybě a nejsme schopni určit výšku hladiny h 100 za pomocí baňky v páře a nelze závislost kalibraci teploměrů. Grafickým zpracováním teplot naměřené rtuťovým teploměrem a vypočtených teplot plynovým teploměrem skrze h 100 získané z lineární regrese rozdílu výšek hladin tak obdržíme stejný tvar grafu zobrazeného na obrázku 2. 6 Diskuse Součinitel rozpínavosti plynů γ je podle vzorce (5) roven γ = (2. 81 ± 0. 22) 10 3 K 1. Při měření se nám nepovedlo připravit lázeň, která by měla počáteční teplotu 0. Naše lázeň měla počáteční teplotu 4, což ovlivnilo přesnost měření. Pravděpodobně vlivem špatného odečtu ze stupnice jsme naměřili nesmyslnou hodnotu rozdílu hladin v manometru a nebyli jsme schopni určit správnou hodnotu hladiny h 100 a ocejchovat rtuťový teploměr. Pro výpočet teplot naměřených plynovým teploměrem a tlaků uvnitř teploměru jsme použili hladinu h 100 získanou lineárním fitem naměřených rozdílů hladin a teplot rtuťovým teploměrem. Součinitel rozpínavosti plynů jsme poté určili na hodnotu γ = (2.81 ± 0.22) 10 3 K 1. 7 Závěr Z důvodu špatného změření výšky rozdílu hladin při báni v páře jsme nebyli schopni ocejchovat rtuťový teploměr. Určili jsme součinitel rozpínavosti plynů γ. 8 Reference [1] Návod Kalibrace teploměru, skupenské teplo. Citace Oct-12.pdf 3
4 Část II Měření měrného skupenského tepla varu vody 1 Zadání 1. Určete tepelnou kapacitu kalorimetru (Dewarovy nádoby), který použijete při určování měrného skupenského tepla varu vody. Při měřené tepelné kapacity kalorimetru sestrojte z naměřených hodnot graf závislosti teploty lázně na čase. Posuďte, zda tento postup je pro daný kalorimetr nutný. 2. Určete měrné skupenské teplo varu vody s ohledem na množství předčasně zkondenzované páry m v. 2 Pomůcky Kotlík na výrobu páry, kahan, Bunsenův stojan, jíma předčasně zkondenzované páry, kalorimetr (termoska), dva teploměry, technické váhy se sadou závaží, kádinky, stopky, digitální váhy. 3 Teoretický úvod Měrná tepelná kapacita c je množství tepla, jímž se ohřeje 1 kg látky o 1 K. Měrné skupenské teplo varu l v je množství tepla, které musíme dodat jednotce hmotnosti vroucí kapaliny, aby se zcela změnila v nasycenou páru téže teploty. Měrné skupenské teplo kondenzace l k je množství tepla, které uvolní jednotka hmotnosti páry za rovnovážných podmínek, změní-li se v kapalinu téže teploty a je rovno měrnému skupenskému teplu varu l v. Máme-li určit měrné skupenské teplo varu kalorimetrické kapaliny, je jednodušší určovat měrné skupenské teplo kondenzace. Pro dokonale tepelně izolovaný kalorimetr od okolí platí pro měrné skupenské teplo varu vody l v vztah l v = (m kc + κ)(t t 0 ) mc(v t) m m v, (6) kde m je rozdíl hmotností kapaliny v kalorimetru před a na konci měření, m v je hmotnost předčasně zkondenzované pára na vnitřních stěnách trubičky, kterou vedeme páru do kalorimetru, m k hmotnost kalorimetrické kapaliny, v je teplota varu kapaliny při daném barometrickém tlaku dána vzorcem (4), t 0 je počáteční teplota kalorimetru, t je výsledná teplota kalorimetru, c je měrná tepelná kapacita vody a kde κ je měrná tepelná kapacita kalorimetru a určíme ji tak, že do kalorimetru, ve kterém je voda o hmotnosti m k a tepelné kapacitě c a teplotě t 0 přidáme vodu o hmotnosti m k a teplotě t. Ustálí-li se teplota v kalorimetru na hodnotě t, dostáváme z kalorimetrické rovnice pro tepelnou kapacitu kalorimetru vztah κ = m k c(t t ) m k c(t t 0 ). (7) t t 0 4 Postup měření Nejprve nalijeme do kalorimetru, representován termoskou, studenou vodu o hmotnosti m k a teplotě t 0 a 5 minut odečítáme rtuťovým teploměrem v 30 sekundových intervalech teplotu lázně v kalorimetru. Poté do kalorimetru přidáme teplou vodu o hmotností m k a teplotě t a 5 minut o 30 vteřinových intervalech odečítáme teplotu v kalorimetru. Poté nalijeme do kotlíku vodu a začneme ji ohřívat. Při mírném varu pět minut vedeme vzniklou páru z kotlíku trubičkou přes jímač předčasně zkondenzované páry do vody ve směšovacím kalorimetru, kde kondenzuje, a v závislosti na čase zapisujeme teplotu v kalorimetru. Následně pět minut necháme odkapávat předčasně zkondenzovanou páru do kádinky. Změříme hmotnost kalorimetru se zkondenzovanou párou a hmotnost předčasně zkondenzované páry v kádince m v. 4
5 5 Naměřené hodnoty Měrná tepelná kapacita vody c = Jkg 1 K 1. Naměřený atmosférický tlak p 0 = b = kpa = Torr. Teplota varu dle vzorce (4) je v = Na obrázku 3 je znázorněna závislost teploty v kalorimetru na čase, kdy po pěti minutách, byla přidána teplá voda. Obrázek 3: Závislost teploty v kalorimetru na čase V tabulce 2 jsou uvedeny naměřené hodnoty použité ve výpočtech tepelné kapacity kalorimetru m k ± 0.02 [g] m k ± 0.02 [g] t 0 ± 0.05 [ ] t ±0.05 [ ] t ± 0.05 [ ] Tabulka 2: Hodnoty pro kapacitu kalorimetru Kapacita kalorimetru podle vzorce (7) je κ = (83.1 ± 6.9) JK 1. V tabulce 3 jsou uvedeny naměřené hodnoty použité ve výpočtech měrného skupenské tepla varu vody m k ± 0.02 [g] m ± 0.02 [g] m v ± [g] t 0 ± 0.05 [ ] t [ ] * Tabulka 3: Hodnoty pro kapacitu kalorimetru, * - odhad hodnoty (zapomněli jsme změřit). Při měření jsme zapomněli změřit teplotu v kalorimetru v závislosti na čase. V tabulce je uvedená námi odhadovaná hodnota, která v kalorimetru po pěti minutách byla. Měrné skupenské teplo varu vody je l v = (1521 ± 56) kjkg 1. 6 Diskuse Měřením jsme určili kapacitu kalorimetru na hodnotu κ = (83.1 ± 6.9) JK 1 a měrné skupenské teplo varu vody na hodnotu l v = (1521 ± 56) kjkg 1. Nutno podotknout, že jsme zapomněli změřit teplotu vody v kalorimetru po pěti minutách a tak je tato hodnota spíše odhadem než měřením. Tabulková hodnota [2] měrného skupenského tepla varu vody činí l v = 2260 kjkg 1, tudíž náš odhad pravděpodobně není správný. Ve zpracování protokolu jsme dále mnoho vzorců z návodu [1] poupravili, jelikož byly chybné a celkově je návod k úloze zastaralý a nezmiňuje správný postup měření úlohy. 5
6 7 Závěr Určili jsme tepelnou kapacitu kalorimetru a odhadli měrné skupenské teplo kondenzace vody, které odpovídá měrnému skupenskému teplu varu vody a následně odhad porovnali s tabulkovou hodnotou. 8 Reference [1] Návod Kalibrace teploměru, skupenské teplo. Citace le.php/110/mod_resource/content/5/teplomer Oct-12.pdf [2] Matematické, fyzikální a chemické tabulky & vzorce pro střední školy str. 219; nakl. Prometheus, 2011, Dotisk 1. vydání 6
Fyzikální praktikum 1
Fyzikální praktikum 1 FJFI ČVUT v Praze Úloha: č. 5 - Kalibrace teploměru, skupenské teplo Jméno: Ondřej Finke Datum měření: 6.10.2014 Kruh: FE Skupina: 4 Klasifikace: 1. Pracovní úkoly 1.1 - Kalibrace
Kalibrace teploměru, skupenské teplo Abstrakt: V této úloze se studenti seznámí s metodou kalibrace teploměru a na základě svých
Úloha 6 02PRA1 Fyzikální praktikum 1 Kalibrace teploměru, skupenské teplo Abstrakt: V této úloze se studenti seznámí s metodou kalibrace teploměru a na základě svých měření i ověří Gay-Lussacův zákon.
FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE. Úloha 5: Kalibrace rtuťového teploměru plynovým teploměrem
FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE Úloha 5: Kalibrace rtuťového teploměru plynovým teploměrem Měření měrného skupenského tepla varu vody Datum měření: 30. 10. 2009 Jméno: Jiří Slabý Pracovní skupina:
Úloha 5: Kalibrace rtuťového teploměru plynovým varu vody
Úloha 5: Kalibrace rtuťového teploměru plynovým teploměrem, měření měrného skupenského tepla varu vody FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE Datum měření: 9.11.2009 Jméno: František Batysta Pracovní skupina:
Měření měrné telené kapacity pevných látek
Měření měrné telené kapacity pevných látek Úkol :. Určete tepelnou kapacitu kalorimetru.. Určete měrnou tepelnou kapacitu daných těles. 3. Naměřené hodnoty porovnejte s hodnotami uvedených v tabulkách
Laboratorní práce č. 2: Určení měrné tepelné kapacity látky
Přírodní vědy moderně a interaktivně FYZIKA 4. ročník šestiletého a 2. ročník čtyřletého studia Laboratorní práce č. 2: Určení měrné tepelné kapacity látky Přírodní vědy moderně a interaktivně FYZIKA
Závislost odporu termistoru na teplotě
Fyzikální praktikum pro JCH, Bc Jméno a příjmení: Zuzana Dočekalová Datum: 21.4.2010 Spolupracovník: Aneta Sajdová Obor: Jaderně chemické inženýrství Číslo studenta: 5 (středa 9:30) Ročník: II. Číslo úlohy:
Kalorimetrická měření I
KATEDRA EXPERIMENTÁLNÍ FYZIKY PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITY PALACKÉHO V OLOMOUCI FYZIKÁLNÍ PRAKTIKUM Z MOLEKULOVÉ FYZIKY A TERMODYNAMIKY Kalorimetrická měření I Úvod Teplo Teplo Q je určeno energií,
Měření měrného skupenského tepla tání ledu
KATEDRA EXPERIMENTÁLNÍ FYZIKY PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITY PALACKÉHO V OLOMOUCI FYZIKÁLNÍ PRAKTIKUM Z MOLEKULOVÉ FYZIKY A TERMODYNAMIKY Měření měrného skupenského tepla tání ledu Úvod Tání, měrné
Fyzikální praktikum FJFI ČVUT v Praze
Fyzikální praktikum FJFI ČVUT v Praze Úloha 4: Cavendishův experiment Datum měření: 3. 1. 015 Skupina: 8, čtvrtek 7:30 Vypracoval: Tadeáš Kmenta Klasifikace: 1 Zadání 1. DÚ: V přípravě odvoďte vztah pro
Fyzikální praktikum FJFI ČVUT v Praze
Fyzikální praktikum FJFI ČVUT v Praze Úloha 5: Měření Poissonovy konstanty a dutých objemů Datum měření: 10. 12. 2015 Skupina: 8, čtvrtek 7:30 Vypracoval: Tadeáš Kmenta Klasifikace: Část I Měření Poissonovy
Fyzikální praktikum FJFI ČVUT v Praze
Fyzikální praktikum FJFI ČVUT v Praze Úloha 9: Rozšíření rozsahu miliampérmetru a voltmetru. Cejchování kompenzátorem. Datum měření: 15. 10. 2015 Skupina: 8, čtvrtek 7:30 Vypracoval: Tadeáš Kmenta Klasifikace:
Měření měrné tepelné kapacity látek kalorimetrem
Měření měrné tepelné kapacity látek kalorimetrem Problém A. Změření kapacity kalorimetru (tzv. vodní hodnota) pomocí elektrického ohřevu s měřeným příkonem. B. Změření měrné tepelné kapacity hliníku směšovací
FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE. Měření Poissonovy konstanty vzduchu. Abstrakt
FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE Úloha 4: Měření dutých objemů vážením a kompresí plynu Datum měření: 23. 10. 2009 Měření Poissonovy konstanty vzduchu Jméno: Jiří Slabý Pracovní skupina: 1 Ročník
Praktikum I Mechanika a molekulová fyzika
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK Praktikum I Mechanika a molekulová fyzika Úloha č. XIV Název: Studium teplotní závislosti povrchového napětí Pracoval: Matyáš Řehák
PRAKTIKUM... Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Odevzdal dne: Seznam použité literatury 0 1. Celkem max.
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM... Úloha č. Název: Pracoval: stud. skup. dne Odevzdal dne: Možný počet bodů Udělený počet bodů Práce při měření 0 5 Teoretická
Kalorimetrická rovnice, skupenské přeměny
Základní škola Nový Bor, náměstí Míru 128, okres Česká Lípa, příspěvková organizace e mail: info@zsnamesti.cz; www.zsnamesti.cz; telefon: 487 722 010; fax: 487 722 378 Registrační číslo: CZ.1.07/1.4.00/21.3267
Fyzikální praktikum FJFI ČVUT v Praze
Fyzikální praktikum FJFI ČVUT v Praze Úloha 6: Geometrická optika Datum měření: 8. 4. 2016 Doba vypracovávání: 10 hodin Skupina: 1, pátek 7:30 Vypracoval: Tadeáš Kmenta Klasifikace: 1 Zadání 1. DÚ: V přípravě
12. Termomechanika par, Clausiova-Clapeyronova rovnice, parní tabulky, základni termodynamické děje v oblasti par
1/18 12. Termomechanika par, Clausiova-Clapeyronova rovnice, parní tabulky, základni termodynamické děje v oblasti par Příklad: 12.1, 12.2, 12.3, 12.4, 12.5, 12.6, 12.7, 12.8, 12.9, 12.10, 12.11, 12.12,
Termodynamika - určení měrné tepelné kapacity pevné látky
I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Laboratorní práce č. 3 Termodynamika - určení měrné
Laboratorní práce č. 2: Určení měrného skupenského tepla tání ledu
Přírodní vědy moderně a interaktivně FYZIKA 1. ročník šestiletého studia Laboratorní práce č. 2: Určení měrného skupenského tepla tání ledu ymnázium Přírodní vědy moderně a interaktivně FYZIKA 1. ročník
Fyzikální praktikum FJFI ČVUT v Praze
Fyzikální praktikum FJFI ČVUT v Praze Úloha 1: Akustika Datum měření: 4. 3. 2016 Doba vypracovávání: 10 hodin Skupina: 1, pátek 7:30 Vypracoval: Tadeáš Kmenta Klasifikace: 1 Zadání 1. DÚ: Spočítejte, jakou
FJFI ČVUT V PRAZE. Úloha 8: Závislost odporu termistoru na teplotě
ZÁKLADY FYZIKÁLNÍCH MĚŘENÍ FJFI ČVUT V PRAZE Datum měření: 29. 4. 2009 Pracovní skupina: 3, středa 5:30 Spolupracovali: Monika Donovalová, Štěpán Novotný Jméno: Jiří Slabý Ročník, kruh:. ročník, 2. kruh
Měření povrchového napětí
Měření povrchového napětí Úkol : 1. Změřte pomocí kapilární elevace povrchové napětí daných kapalin při dané teplotě. 2. Změřte pomocí kapkové metody povrchové napětí daných kapalin při dané teplotě. Pomůcky
Měření Poissonovy konstanty a dutých objemů Abstrakt: V této úloze se studenti seznámí s různými metodami
FJFI ČVUT v Praze Fyzikální praktikum I Úloha 5 Verze 171006 Měření Poissonovy konstanty a dutých objemů Abstrakt: V této úloze se studenti seznámí s různými metodami měření Poissonovy konstanty, ty použijí
Přírodní vědy aktivně a interaktivně
Přírodní vědy aktivně a interaktivně Elektronický materiál byl vytvořen v rámci projektu OP VK CZ.1.07/1.1.24/01.0040 Zvyšování kvality vzdělávání v Moravskoslezském kraji Střední průmyslová škola stavební,
Měření Poissonovy konstanty a dutých objemů Abstrakt: V této úloze se studenti seznámí s různými metodami
FJFI ČVUT v Praze Fyzikální praktikum I Úloha 5 Verze 160927 Měření Poissonovy konstanty a dutých objemů Abstrakt: V této úloze se studenti seznámí s různými metodami měření Poissonovy konstanty, ty použijí
1. Okalibrujte pomocí bodu tání ledu, bodu varu vody a bodu tuhnutí cínu:
1 Pracovní úkol 1. Okalibrujte pomocí bodu tání ledu, bodu varu vody a bodu tuhnutí cínu: (a) platinovýodporovýteploměr(určetekonstanty R 0, A, B). (b) termočlánek měď-konstantan(určete konstanty a, b,
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM I. úloha č. 4 Název: Určení závislosti povrchového napětí na koncentraci povrchově aktivní látky Pracoval: Jakub Michálek
Stanovení měrného tepla pevných látek
61 Kapitola 10 Stanovení měrného tepla pevných látek 10.1 Úvod O teple se dá říci, že souvisí s energií neuspořádaného pohybu molekul. Úhrnná pohybová energie neuspořádaného pohybu molekul, pohybu postupného,
PRAKTIKUM I. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Pracoval: Pavel Ševeček stud. skup.: F/F1X/11 dne:
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM I. Úloha č. VIII Název: Kalibrace odporového teploměru a termočlánku fázové přechody Pracoval: Pavel Ševeček stud. skup.:
Termodynamika 2. UJOP Hostivař 2014
Termodynamika 2 UJOP Hostivař 2014 Skupenské teplo tání/tuhnutí je (celkové) teplo, které přijme pevná látka při přechodu na kapalinu během tání nebo naopak Značka Veličina Lt J Nedochází při něm ke změně
1. Změřte teplotní závislost povrchového napětí destilované vody σ v rozsahu teplot od 295 do 345 K metodou bublin.
1 Pracovní úkoly 1. Změřte teplotní závislost povrchového napětí destilované vody σ v rozsahu teplot od 295 do 35 K metodou bublin. 2. Měřenou závislost znázorněte graficky. Závislost aproximujte kvadratickou
Praktikum I Mechanika a molekulová fyzika
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK Praktikum I Mechanika a molekulová fyzika Úloha č. III Název: Proudění viskózní kapaliny Pracoval: Matyáš Řehák stud.sk.: 16 dne: 20.3.2008
6. Jaký je výkon vařiče, který ohřeje 1 l vody o 40 C během 5 minut? Měrná tepelná kapacita vody je W)
TEPLO 1. Na udržení stále teploty v místnosti se za hodinu spotřebuje 4,2 10 6 J tepla. olik vody proteče radiátorem ústředního topení za hodinu, jestliže má voda při vstupu do radiátoru teplotu 80 ºC
Měření teplotní roztažnosti
KATEDRA EXPERIMENTÁLNÍ FYZIKY PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITY PALACKÉHO V OLOMOUCI FYZIKÁLNÍ PRAKTIKUM Z MOLEKULOVÉ FYZIKY A TERMODYNAMIKY Měření teplotní roztažnosti Úvod Zvyšování termodynamické teploty
Úkol č. 1: Změřte měrnou tepelnou kapacitu kovového tělíska.
Měření měrné tepelné kapacity pevných látek a kapalin Měření měrné tepelné kapacity pevných látek a kapalin Úkol č : Změřte měrnou tepelnou kapacitu kovového tělíska Pomůcky Směšovací kalorimetr s míchačkou
Fyzikální praktikum FJFI ČVUT v Praze
Fyzikální praktikum FJFI ČVUT v Praze Úloha 5: Měření teploty wolframového vlákna Datum měření: 1. 4. 2016 Doba vypracovávání: 12 hodin Skupina: 1, pátek 7:30 Vypracoval: Tadeáš Kmenta Klasifikace: 1 Zadání
HUSTOTA PEVNÝCH LÁTEK
HUSTOTA PEVNÝCH LÁTEK Hustota látek je základní informací o studované látce. V případě homogenní látky lze i odhadnout druh materiálu s pomocí známých tabulkovaných údajů (s ohledem na barvu a vzhled materiálu
PROCESY V TECHNICE BUDOV cvičení 3, 4
UNIVERZITA TOMÁŠE ATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY PROCESY V TECHNICE UDOV cvičení 3, 4 část Hana Charvátová, Dagmar Janáčová Zlín 013 Tento studijní materiál vznikl za finanční podpory Evropského
3. Měření viskozity, hustoty a povrchového napětí kapalin
Fyzikální praktikum 1 3. Měření viskozity, hustoty a povrchového napětí kapalin Jméno: Václav GLOS Datum: 12.3.2012 Obor: Astrofyzika Ročník: 1 Laboratorní podmínky: Teplota: 23,5 C Tlak: 1001,0 hpa Vlhkost:
Název: Ověření kalorimetrické rovnice, tepelná výměna
Název: Ověření kalorimetrické rovnice, tepelná výměna Autor: Mgr. Petr Majer Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy Předmět (mezipředmětové vztahy) : Fyzika (Matematika) Tematický celek:
1. Okalibrujte pomocí bodu tání ledu, bodu varu vody a bodu tuhnutí cínu:
1 Pracovní úkoly 1. Okalibrujte pomocí bodu tání ledu, bodu varu vody a bodu tuhnutí cínu: a. platinový odporový teploměr (určete konstanty R 0, A, B) b. termočlánek měď-konstantan (určete konstanty a,
Kalorimetrická rovnice
Kalorimetrická rovnice Kalorimetr je zařízení umožňující pokusně provádět tepelnou výměnu mezi tělesy a měřit potřebné tepelné veličiny skládá se ze dvou nádobek do sebe vložených mezi stěnami nádobek
T0 Teplo a jeho měření
Teplo a jeho měření 1 Teplo 2 Kalorimetrie Kalorimetr 3 Tepelná kapacita 3.1 Měrná tepelná kapacita Měrná tepelná kapacita při stálém objemu a stálém tlaku Poměr měrných tepelných kapacit 3.2 Molární tepelná
plynu, Měření Poissonovy konstanty vzduchu
Úloha 4: Měření dutých objemů vážením a kompresí plynu, Měření Poissonovy konstanty vzduchu FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE Datum měření: 2.11.2009 Jméno: František Batysta Pracovní skupina: 11 Ročník
Fyzikální praktikum FJFI ČVUT v Praze
Fyzikální praktikum FJFI ČVUT v Praze Úloha 4: Balrmerova série Datum měření: 13. 5. 016 Doba vypracovávání: 7 hodin Skupina: 1, pátek 7:30 Vypracoval: Tadeáš Kmenta Klasifikace: 1 Zadání 1. DÚ: V přípravě
Termochemie. Úkol: A. Určete změnu teploty při rozpouštění hydroxidu sodného B. Určete reakční teplo reakce zinku s roztokem měďnaté soli
1. Termochemie Úkol: Určete změnu teploty při rozpouštění hydroxidu sodného B. Určete reakční teplo reakce zinku s roztokem měďnaté soli Pomůcky : a) kádinky, teploměr, odměrný válec, váženka, váhy, kalorimetr,
d p o r o v t e p l o m ě r, t e r m o č l á n k
d p o r o v t e p l o m ě r, t e r m o č l á n k Ú k o l : a) Proveďte kalibraci odporového teploměru, termočlánku a termistoru b) Určete teplotní koeficienty odporového teploměru, konstanty charakterizující
DUM č. 12 v sadě. 10. Fy-1 Učební materiály do fyziky pro 2. ročník gymnázia
projekt GML Brno Docens DUM č. 12 v sadě 10. Fy-1 Učební materiály do fyziky pro 2. ročník gymnázia Autor: Vojtěch Beneš Datum: 03.05.2014 Ročník: 1. ročník Anotace DUMu: Kapaliny, změny skupenství Materiály
Laboratorní práce č. 4: Určení hustoty látek
Přírodní vědy moderně a interaktivně FYZIKA 3. ročník šestiletého a 1. ročník čtyřletého studia Laboratorní práce č. 4: Určení hustoty látek ymnázium Přírodní vědy moderně a interaktivně FYZIKA 3. ročník
Praktikum I Mechanika a molekulová fyzika
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK Praktikum I Mechanika a molekulová fyzika Úloha č. XIX Název: Pád koule ve viskózní kapalině Pracoval: Matyáš Řehák stud.sk.: 16 dne:
Fyzikální praktikum I
Kabinet výuky obecné fyziky, UK MFF Fyzikální praktikum I Úloha č. XIX Název úlohy: Volný pád koule ve viskózní kapalině Jméno: Ondřej Skácel Obor: FOF Datum měření: 9.3.2015 Datum odevzdání:... Připomínky
Práce tepelného stroje
Fyzikální praktikum FJFI ČVUT v Praze Úloha č. 12 : Práce tepelného stroje Jméno: Ondřej Ticháček Pracovní skupina: 6 Kruh: ZS 6 Datum měření: 23.11.2012 Klasifikace: Část I Práce tepelného stroje 1 Zadání
7 Tenze par kapalin. Obr. 7.1 Obr. 7.2
7 Tenze par kapalin Tenze par (neboli tlak sytých, případně nasycených par) je tlak v jednosložkovém systému, kdy je za dané teploty v rovnováze fáze plynná s fází kapalnou nebo pevnou. Tenze par je nejvyšší
Praktikum I Mechanika a molekulová fyzika
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK Praktikum I Mechanika a molekulová fyzika Úloha č. IV Název: Určení závislosti povrchového napětí na koncentraci povrchově aktivní látky
TERMODYNAMIKA Kalorimetrie TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY.
TERMODYNAMIKA Kalorimetrie TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY. Ze zkušenosti víme, že při styku dvou různě teplých těles se jejich teploty vyrovnávají.
Změna objemu těles při zahřívání teplotní roztažnost
Změna objemu těles při zahřívání teplotní roztažnost 6. třída - Teplota Změna objemu pevných těles při zahřívání Vezmeme plastové pravítko, prkénko a dva hřebíky. Hřebíky zatlučeme do prkénka tak, aby
SEZNAM POKUSŮ TEPLO 1 NÁVODY NA POKUSY MĚŘENÍ TEPLOT. Měření teplot. Používání teploměru. (1.1.) Kalibrace teploměru. (1.2.
TEPLO TA1 419.0008 TEPLO 1 SEZNAM POKUSŮ MĚŘENÍ TEPLOT Měření teplot. Používání teploměru. (1.1.) Kalibrace teploměru. (1.2.) KALORIMETRIE Teplotní rovnováha. (2.1.) Studium kalorimetru. (2.2.) Křivka
1/6. 2. Stavová rovnice, plynová konstanta, Avogadrův zákon, kilomol plynu
1/6 2. Stavová rovnice, plynová konstanta, Avogadrův zákon, kilomol plynu Příklad: 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 2.10, 2.11, 2.12, 2.13, 2.14, 2.15, 2.16, 2.17, 2.18, 2.19, 2.20, 2.21, 2.22,
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Posuzoval:... dne:...
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK Praktikum 1 Úloha č. 10 Název: Rychlost šíření zvuku Pracoval: Jan Kotek stud.sk.: 17 dne: 2.3.2012 Odevzdal dne:... možný počet bodů
Struktura a vlastnosti kapalin
I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Laboratorní práce č. 7 Struktura a vlastnosti kapalin
ZMĚNY SKUPENSTVÍ LÁTEK
ZMĚNY SKUPENSTVÍ LÁTEK TÁNÍ A TUHNUTÍ - OSNOVA Kapilární jevy příklad Skupenské přeměny látek Tání a tuhnutí Teorie s video experimentem Příklad KAPILÁRNÍ JEVY - OPAKOVÁNÍ KAPILÁRNÍ JEVY - PŘÍKLAD Jak
Fyzikální praktikum I
Kabinet výuky obecné fyziky, UK MFF Fyzikální praktikum I Úloha č. II Název úlohy: Studium harmonických kmitů mechanického oscilátoru Jméno: Ondřej Skácel Obor: FOF Datum měření: 2.3.2015 Datum odevzdání:...
Fyzikální praktikum FJFI ČVUT v Praze
Fyzikální praktikum FJFI ČVUT v Praze Úloha 2: Hysterezní smyčka Datum měření: 11. 3. 2016 Doba vypracovávání: 10 hodin Skupina: 1, pátek 7:30 Vypracoval: Tadeáš Kmenta Klasifikace: 1 Zadání 1. DÚ: Zjistěte,
Cvičení z termomechaniky Cvičení 2. Stanovte objem nádoby, ve které je uzavřený dusík o hmotnosti 20 [kg], teplotě 15 [ C] a tlaku 10 [MPa].
Příklad 1 Stanovte objem nádoby, ve které je uzavřený dusík o hmotnosti 20 [kg], teplotě 15 [ C] a tlaku 10 [MPa]. m 20[kg], t 15 [ C] 288.15 [K], p 10 [MPa] 10.10 6 [Pa], R 8314 [J. kmol 1. K 1 ] 8,314
Základní poznatky. Teplota Vnitřní energie soustavy Teplo
Molekulová fyzika a termika Základní poznatky Základní poznatky Teplota Vnitřní energie soustavy Teplo Termika = část fyziky zabývající se studiem vlastností látek a jejich změn souvisejících s teplotou
PRAKTIKUM I. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. úloha č. XXII. Název: Diferenční skenovací kalorimetrie
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM I. úloha č. XXII Název: Diferenční skenovací kalorimetrie Pracoval: Jakub Michálek stud. skup. 15 dne: 15. května 2009 Odevzdal
FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE
FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE Úloha 3. Vzduchová dráha - ZZE, srážky, impuls síly Autor David Horák Datum měření 21. 11. 2011 Kruh 1 Skupina 7 Klasifikace 1. PRACOVNÍ ÚKOLY: 1) Elastické srážky:
Teorie: Hustota tělesa
PRACOVNÍ LIST č. 1 Téma úlohy: Určení hustoty tělesa Pracoval: Třída: Datum: Spolupracovali: Teplota: Tlak: Vlhkost vzduchu: Hodnocení: Teorie: Hustota tělesa Hustota je fyzikální veličina, která vyjadřuje
Mol. fyz. a termodynamika
Molekulová fyzika pracuje na základě kinetické teorie látek a statistiky Termodynamika zkoumání tepelných jevů a strojů nezajímají nás jednotlivé částice Molekulová fyzika základem jsou: Látka kteréhokoli
Univerzita obrany. Měření na výměníku tepla K-216. Laboratorní cvičení z předmětu TERMOMECHANIKA. Protokol obsahuje 13 listů. Vypracoval: Vít Havránek
Univerzita obrany K-216 Laboratorní cvičení z předmětu TERMOMECHANIKA Měření na výměníku tepla Protokol obsahuje 13 listů Vypracoval: Vít Havránek Studijní skupina: 21-3LRT-C Datum zpracování: 7.5.2011
Měření momentu setrvačnosti
Měření momentu setrvačnosti Úkol : 1. Zjistěte pro dané těleso moment setrvačnosti, prochází-li osa těžištěm. 2. Zjistěte moment setrvačnosti daného tělesa k dané ose metodou torzních kmitů. Pomůcky :
Laboratorní úloha č. 3 Spřažená kyvadla. Max Šauer
Laboratorní úloha č. 3 Spřažená kyvadla Max Šauer 17. prosince 2003 Obsah 1 Úkol měření 2 2 Seznam použitých přístrojů a pomůcek 2 3 Výsledky měření 2 3.1 Stanovení tuhosti vazbové pružiny................
Vnitřní energie, práce, teplo.
Vnitřní energie, práce, teplo. Vnitřní energie tělesa Částice uvnitř látek mají kinetickou a potenciální energii. Je to energie uvnitř tělesa, proto ji nazýváme vnitřní energie. Značíme ji písmenkem U
PRAKTIKUM I. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Pracoval: Pavel Ševeček stud. skup.: F/F1X/11 dne:
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM I. Úloha č. VII Název: Studium kmitů vázaných oscilátorů Pracoval: Pavel Ševeček stud. skup.: F/F1X/11 dne: 27. 2. 2012 Odevzdal
Úloha č.1: Stanovení molární tepelné kapacity plynu za konstantního tlaku
Úloha č.1: Stanovení molární tepelné kapacity plynu za konstantního tlaku Teorie První termodynamický zákon je definován du dq dw (1) kde du je totální diferenciál vnitřní energie a dq a dw jsou neúplné
Termodynamika. T [K ]=t [ 0 C] 273,15 T [ K ]= t [ 0 C] termodynamická teplota: Stavy hmoty. jednotka: 1 K (kelvin) = 1/273,16 část termodynamické
Termodynamika termodynamická teplota: Stavy hmoty jednotka: 1 K (kelvin) = 1/273,16 část termodynamické teploty trojného bodu vody (273,16 K = 0,01 o C). 0 o C = 273,15 K T [K ]=t [ 0 C] 273,15 T [ K ]=
ZÁKLADNÍ ŠKOLA KOLÍN II., KMOCHOVA 943 škola s rozšířenou výukou matematiky a přírodovědných předmětů
ZÁKLADNÍ ŠKOLA KOLÍN II., KMOCHOVA 943 škola s rozšířenou výukou matematiky a přírodovědných předmětů Autor Mgr. Vladimír Hradecký Číslo materiálu 8_F_1_02 Datum vytvoření 2. 11. 2011 Druh učebního materiálu
VY_52_INOVACE_2NOV43. Autor: Mgr. Jakub Novák. Datum: 4. 10. 2012 Ročník: 7., 8.
VY_52_INOVACE_2NOV43 Autor: Mgr. Jakub Novák Datum: 4. 10. 2012 Ročník: 7., 8. Vzdělávací oblast: Člověk a příroda Vzdělávací obor: Fyzika Tematický okruh: Látky a tělesa, Mechanické vlastnosti tekutin
VY_52_INOVACE_2NOV48. Autor: Mgr. Jakub Novák. Datum: 13. 12. 2012 Ročník: 8.
VY_52_INOVACE_2NOV48 Autor: Mgr. Jakub Novák Datum: 13. 12. 2012 Ročník: 8. Vzdělávací oblast: Člověk a příroda Vzdělávací obor: Fyzika Tematický okruh: Energie Téma: Měrná tepelná kapacita Metodický list:
Univerzita obrany K-204. Laboratorní cvičení z předmětu AERODYNAMIKA. Měření rozložení součinitele tlaku c p na povrchu profilu Gö 398
Univerzita obrany K-204 Laboratorní cvičení z předmětu AERODYNAMIKA Měření rozložení součinitele tlaku c p na povrchu profilu Gö 39 Protokol obsahuje 12 listů Vypracoval: Vít Havránek Studijní skupina:
KAPALINY. Mgr. Jan Ptáčník - GJVJ - Fyzika - Termika - 2. ročník
KAPALINY Mgr. Jan Ptáčník - GJVJ - Fyzika - Termika - 2. ročník Kapaliny Krátkodosahové uspořádání molekul. Molekuly kmitají okolo rovnovážných poloh. Při zvýšení teploty se zmenšuje doba setrvání v rovnovážné
PRAKTIKUM II Elektřina a magnetismus
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM II Elektřina a magnetismus Úloha č.: VIII Název: Měření impedancí rezonanční metodou Pracoval: Pavel Brožek stud. skup. 12
VYBRANÉ STATĚ Z PROCESNÍHO INŽENÝRSTVÍ cvičení 11
UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY VYBRANÉ STATĚ Z PROCESNÍHO INŽENÝRSTVÍ cvičení 11 Termodynamika reálných plynů část 1 Hana Charvátová, Dagmar Janáčová Zlín 2013 Tento studijní
Laboratorní práce č. 2: Určení povrchového napětí kapaliny
Přírodní vědy moderně a interaktivně SEMINÁŘ FYZIKY Laboratorní práce č. 2: Určení povrchového napětí kapaliny G Gymnázium Hranice Přírodní vědy moderně a interaktivně SEMINÁŘ FYZIKY G Gymnázium Hranice
FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE. Úloha 1: Kondenzátor, mapování elektrického pole
FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE Datum měření: 5.5.2011 Jméno: Jakub Kákona Pracovní skupina: 4 Ročník a kroužek: Pa 9:30 Spolupracovníci: Jana Navrátilová Hodnocení: Úloha 1: Kondenzátor, mapování
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK FYZIKÁLNÍ PRAKTIKUM III Úloha číslo: 16 Název: Měření indexu lomu Fraunhoferovou metodou Vypracoval: Ondřej Hlaváč stud. skup.: F dne:
Termodynamika 1. UJOP Hostivař 2014
Termodynamika 1 UJOP Hostivař 2014 Termodynamika Zabývá se tepelnými ději obecně. Existují 3 termodynamické zákony: 1. Celkové množství energie (všech druhů) izolované soustavy zůstává zachováno. 2. Teplo
4. Stanovení teplotního součinitele odporu kovů
4. Stanovení teplotního součinitele odporu kovů 4.. Zadání úlohy. Změřte teplotní součinitel odporu mědi v rozmezí 20 80 C. 2. Změřte teplotní součinitel odporu platiny v rozmezí 20 80 C. 3. Vyneste graf
KLIMATIZACE A PRŮMYSLOVÁ VZDUCHOTECHNIKA VYBRANÉ PŘÍKLADY KE CVIČENÍ I.
KLIMATIZACE A PRŮMYSLOVÁ VZDUCHOTECHNIKA VYBRANÉ PŘÍKLADY KE CVIČENÍ I. Ing. Jan Schwarzer, Ph.D.. Praha 2011 Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti 1 Obsah 1 Obsah... 2 2 Označení...3
Vyhodnocení součinitele alfa z dat naměřených v reálných podmínkách při teplotách 80 C a pokojové teplotě.
oučinitel odporu Vyhodnocení součinitele alfa z dat naměřených v reálných podmínkách při teplotách 80 C a pokojové teplotě Zadání: Vypočtěte hodnotu součinitele α s platinového odporového teploměru Pt-00
FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE. Úloha 11: Termická emise elektronů
FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE Datum měření: 15.4.2011 Jméno: Jakub Kákona Pracovní skupina: 4 Ročník a kroužek: Pa 9:30 Spolupracovníci: Jana Navrátilová Hodnocení: Úloha 11: Termická emise elektronů
Úloha 4: Totální účinný průřez interakce γ záření absorpční koeficient záření gama pro některé elementy
Petra Suková, 3.ročník 1 Úloha 4: Totální účinný průřez interakce γ záření absorpční koeficient záření gama pro některé elementy 1 Zadání 1. UrčeteabsorpčníkoeficientzářenígamaproelementyFe,CdaPbvzávislostinaenergii
FYZIKÁLNÍ PRAKTIKUM Ústav fyziky FEI VUT BRNO
FYZIKÁLNÍ PRAKTIKUM Ústav fyziky FEI VUT BRNO Spolupracoval Příprava Název úlohy Šuranský Radek Opravy Jméno Ročník Škovran Jan Předn. skup. B Měřeno dne 4.03.2002 Učitel Stud. skupina 2 Kód Odevzdáno
3 pokusy z termiky. Vojtěch Jelen Fyzikální seminář LS 2014
3 pokusy z termiky Vojtěch Jelen Fyzikální seminář LS 2014 Obsah 1. Pokus online 2. Měření teploty cihly 3. Vypařování střely 1. Kalorimetrie Zabývá se měřením tepla a studuje vlastnosti látek a jejich
Vnitřní energie, práce a teplo
Vnitřní energie, práce a teplo Míček upustíme z výšky na podlahu o Míček padá zvětšuje se, zmenšuje se. Celková mechanická energie se - o Míček se od země odrazí a stoupá vzhůru zvětšuje se, zmenšuje se.
Základním praktikum z laserové techniky
Úloha: Základním praktikum z laserové techniky FJFI ČVUT v Praze #6 Nelineární transmise saturovatelných absorbérů Jméno: Ondřej Finke Datum měření: 30.3.016 Spolupracoval: Obor / Skupina: 1. Úvod Alexandr
Termomechanika cvičení
KATEDRA ENERGETICKÝCH STROJŮ A ZAŘÍZENÍ Termomechanika cvičení 1. cvičení Ing. Michal Volf / 18.02.2019 Informace o cvičení Ing. Michal Volf Email: volfm@kke.zcu.cz Konzultace: po vzájemné dohodě prezentace
Stanovení hustoty pevných a kapalných látek
55 Kapitola 9 Stanovení hustoty pevných a kapalných látek 9.1 Úvod Hustota látky ρ je hmotnost její objemové jednotky, definované vztahem: ρ = dm dv, kde dm = hmotnost objemového elementu dv. Pro homogenní