ÚLOHA 18 Imunochemická detekce a kvantifikace heat shock proteinu Hsp70 ve vzorcích rostlin metodou Western blot

Rozměr: px
Začít zobrazení ze stránky:

Download "ÚLOHA 18 Imunochemická detekce a kvantifikace heat shock proteinu Hsp70 ve vzorcích rostlin metodou Western blot"

Transkript

1 ÚLOHA 18 Imunochemická detekce a kvantifikace heat shock proteinu Hsp70 ve vzorcích rostlin metodou Western blot Teoretický úvod Živé organismy jsou schopny potlačit nebo zastavit syntézu řady proteinů a naopak syntetizovat nové proteiny jako odpověď k abiotickému environmentálnímu stresu. Organismy vystavené vysokým neletálním teplotám, tj. teplotám, které jsou pro daný organismus nad prahem jeho optima, spouští de novo syntézu charakteristických proteinů, tzv. heat shock proteinů (Hsps). Dochází k fyziologické odpovědi na teplotní stres, označované jako heat shock odpověď (HSR), která je jednou z nejvíce evolučně konzervovaných biochemických drah v přírodě. HSR vede k ochraně buněk před poškozením, k obnově normálních buněčných a fyziologických aktivit a k dosažení vyšší úrovně termotolerance. V živých systémech se většina Hsps nachází konstitutivně, avšak působením stresových faktorů a během různých vývojových stádií organismu dochází k jejich intenzivní expresi. Zvýšenou produkci Hsps vyvolávají environmentální (stresové) podmínky (např. působení vysoké teploty, inkorporace těžkými kovy a analogy aminokyselin, hodnota extracelulárního ph, dále pak působení detergentů, peroxidu vodíku a močoviny), patofyziologické podmínky (virální nebo bakteriální infekce, intracelulární hladina vápníku a hodnota intracelulárního ph) a nestresové podmínky (diferenciace a vývoj, stádia buněčného cyklu). Hsps mají hlavní funkci jako molekulární chaperony, dokáží rozpoznat proteiny, které jsou v nestabilním, inaktivním stavu a interagovat s nimi. Molekulární chaperony jsou definovány jako rodina strukturně nepříbuzných celulárních proteinů, které se účastní translokace, skládání, uspořádání a degradace proteinů, a to zejména stabilizací částečně nesložených forem, avšak netvoří složky jejich finálních struktur. Chaperony se účastní skládání nově syntetizovaných proteinů a udržují proteiny v jejich funkční konformaci. Chaperony neobsahují informaci pro správné složení, ale spíše ochraňují proteiny před jejich agregací. Hsps jsou klasifikovány podle molekulové hmotnosti do pěti hlavních rodin : nízkomolekulární malé Hsp (shsp), Hsp60, Hsp70, Hsp90, Hsp100. U eukaryot jsou jednotlivé rodiny dále rozlišovány na podrodiny a skupiny lišící se inducibilitou, intracelulární lokalizací a funkcí. Nízkomolekulární Hsps (shsp) jsou ve srovnání s ostatními rodinami nejméně konzervované. Proteiny této rodiny se odlišují zejména ve své velikosti (15-30 kda) a v aminokyselinovém složení. Hlavní funkcí shsp je stabilizace a ochrana denaturovaných proteinů proti nepřirozeným agregacím. Pravděpodobným mechanismem jsou hydrofobní interakce, které způsobují velkou kapacitu shsps pro vazbu na denaturované proteiny. shsps nejsou schopny znovusložení denaturovaného proteinu, pouze usnadňují následné znovusložení pomocí ATP-dependentních chaperonů jako je např. DnaK systém. Syntéza shsp u eukaryot i prokaryot probíhá v odpovědi na teplotní a jiný environmentální stres, u některých organismů dochází k produkci v určitých vývojových stádiích. Při odpovědi na stres dochází ke sjednocování shsp a tvoří se větší struktury, tzv. heat shock granule (HSG). Tyto struktury byly detekovány u rostlin i savců. Hsp60 proteiny/chaperoniny (57-60 kda) se vyskytují v cytosolu bakterií (GroEL proteiny), u eukaryot v matrix mitochondrií a ve stromatu chloroplastů. Pod pojmem chaperonin rozumíme označení třídy molekulárních chaperonů, které jsou evolučně homologní s GroEL Escherichia coli. Chaperoniny jsou rozděleny do dvou podrodin : 1. podrodina GroE

2 chaperoniny lokalizovány v bakteriích, mitochondriích a chloroplastech eukaryot, 2. podrodina CCT chaperoniny lokalizovány u Archaea a v cytosolu eukaryot. Významná role chaperoninů byla popsána při tvorbě nově syntetizované nebo translokované nativní fromy proteinů. Dále byla prokázána účast při tvorbě konečné struktury enzymu RUBISCO (EC ). CCT chaperoniny se podílí na skládání tubulinu a aktinu, u E. coli byl popsán vliv na zvýšení salinitní a osmotické tolerance. Hsp90 rodina (80-94 kda) se podílí na správném skládání proteinů, má důležitou roli v signální transdukční síti, při kontrole buněčného cyklu a degradaci proteinů. Byla popsána interakce s 26S proteasomy, Hsp90 mají zásadní význam v jejich kompletování a údržbě. Hsp90 společně s Hsp70 působí jako multichaperonové systémy a kooperují s řadou kochaperonů jako je Hsp interagující protein (Hip) a Hsp70/Hsp90 organizující protein (Hop). Exprese rodiny Hsp90 je konstitutivní u většiny organismů a je zvyšována odpovědí na stres. Hsp90 mají důležitou roli v regulaci určitých transkripčních faktorů a proteinkinas, byla popsána interakce s kaseinkinasou II (EC ), eif-2α kinasou, se steroidními receptory, onkogenními tyrosinkinasami, kalmodulinem, aktinem a tubulinem. Analýza kaseinkinasy II provedená in vitro prokázala chaperonovou funkci Hsp90. Hsp100/Clp ( kda) je velká rodina chaperonů s vysoce konzervovanými proteiny s ATPasovou aktivitou. Výskyt byl popsán u prokaryot (Clp) i eukaryot. Proteiny Hsp100 rodiny byly poprvé popsány jako složky bakteriálního Clp proteasového systému, který je tvořen ATPasovou/chaperonovou jednotkou (ClpA a ClpX) a proteolytickou jednotkou ClpP. Hlavní funkcí Hsp100/Clp je disagregace a/nebo degradace proteinů. Proteinové agregáty jsou rozpuštěny a mohou být dále znovu správně poskládány za účasti Hsp70. Asociace Hsp100 s Clp vede k úplné degradaci vybraných proteinů nebo proteiny nejsou složeny a jsou uvolněny. Hsp70/DnaK (69-71 kda) jsou považovány za jedny z nejvýznamnějších proteinů indukovaných teplotním stresem. Hsp70 proteiny mají dvě hlavní funkční domény. N-terminální doména (~40kDa) váže ATP a hydrolyzuje ho na ADP. C-terminální doména (~25 kda) zodpovídá za vazbu substrátových proteinů a polypeptidů. Domény odděluje krátká spojující sekvence, která je náchylná na štěpení proteasou. Hsp70 mají významnou funkci v ochraně proteinů před agregací, podílí se na skládání proteinů a při tvorbě jejich nativní konformace. Dále se účastní proteinového importu, translokačních procesů a usnadňují proteolytickou degradaci tak, že nestabilní proteiny nasměrují do lysosomů nebo proteasomu. U řady proteinů z rodiny Hsp70 bylo popsáno zapojení v importu a translokaci proteinů do chloroplastů a mitochondrií. Metoda otisků (z angl. blotting) je analytická metoda, která umožňuje přenos molekul z mobilní fáze (např. agarózový nebo polyakrylamidový gel, ale také běžný roztok) do pevné fáze, na kterou jsou fixovány. Tuto pevnou fázi může představovat např. nitrocelulozová membrána. Přenos lze uskutečnit běžnou difúzí přiložením membrány na gel, což připomíná odsávání skvrn pomocí savého papíru a odtud také název blotting, pomocí jednosměrného proudu (electroblotting) nebo filtrací roztoku přes membránu (dot blotting) pomocí speciálních zařízení. Molekuly přenesené a fixované na pevné fázi se zviditelňují přímo po fixaci různými barevnými reakcemi, autoradiografií nebo reakcí se specifickými protilátkami (immunoblotting). Otiskové metody se používají především pro přenos molekul DNA, RNA, proteinů a glykoproteinů po jejich předcházející separaci elektroforézou nebo izoelektrickou fokusací na gelových nosičích. Na druhé straně nacházejí stále více uplatnění imunodotovací techniky (DIBA - dot immunobindig assay), kdy jsou na membránách imobilizovány čisté antigeny,

3 které pak mohou sloužit ke screeningovému průkazu protilátek v analyzovaných vzorcích. Tyto techniky našly uplatnění např. v diagnostice specifických IgE, autoprotilátek, infekční sérologii apod. Na membrány mohou však být navázány také specifické protilátky, které pak slouží naopak k průkazu antigenů v analyzovaných vzorcích. Výhodou těchto technik je jejich jednoduchost, dobrá reprodukovatelnost, malá spotřeba vzorku a poměrně vysoká citlivost. Např. dolní hranice stanovitelnosti imunoglobulinů pomocí těchto technik je 1-5 ng. Význam DIBA vzrůstá v poslední době také s rozvojem techniky biočipů, která umožňuje současnou detekci a semikvantifikaci desítek analytů v mikrolitrových objemech jednoho vzorku. Přenos fragmentů DNA z agarózového gelu na nitrocelulózovou membránu popsal poprvé roku 1975 E. M. Southern. Odtud dostala tato technika název Southern blot. V roce 1977 tuto metodu vylepšili použitím diazobenzylmethylovaného papíru J. C. Alvine a kol. Tato varianta, umožňující přenos RNA, dostala název Northern blot. Roku 1979 J. Renart a kol. a H. Towbin a kol. obě metody adaptovali na analýzu proteinů (immunoblotting). A v roce 1981 W. N. Burnette použil na detekci imobilizovaných antigenů specifické protilátky a radioaktivně značený protein A ve funkci druhého ligandu. Tato metoda dostala název Western blot, přestože jako předchozí varianty nemá se zeměpisnými stranami co do činění. Otiskové metody obecně zahrnují tyto kroky: 1. Zkoumaná směs antigenů se rozdělí pomocí jednorozměrné případně dvourozměrné elektroforézy na agarózovém nebo polyakrylamidovém gelu nebo se purifikované antigeny případně protilátky naředí na vhodnou koncentraci ve vhodném pufru. 2. Pomocí vhodné blotovací aparatury se přenesou antigeny z gelu na membránu (matrici). 3. Po imobilizaci antigenů se membrána inkubuje s blokujícím agens, čímž se vysytí (zablokují) nespecifická vazebná místa, aby v následných krocích nedocházelo k nespecifickým interakcím mezi detekční sondou a matricí. Detekčními sondami mohou být protilátky, specifické vazebné proteiny nebo jiné ligandy. 4. Posledním krokem je vizualizace použitím detekční sondy (např. autoradiograficky, barevnou reakcí, fluorescenčně apod.), která může mít také několik kroků. Membrány používané pro blotting jsou celulosová, nitrocelulosová, PVDF, celulosaacetátová, polyethansulfonová a nylonová. Unikátní vlastnosti mikroporézního povrchu membrány jsou : (a) vysoká vazebná kapacita (b) krátkodobé nebo dlouhodobé skladování imobilizovaných molekul (c) nedochází k interferencím při detekci (d) reprodukovatelnost detekce Pro přenos proteinů na membránu byla vypracována řada technik. V praxi se setkáme s metodou Western blotting, kdy jsou proteiny imobilizovány na membránu pomocí jednosměrného elektrického proudu následně po elektroforetické separaci v gelu. Difuzní blottingu: Jedná se o prostou difuzi v tanku s přenosovým pufrem, která trvá cca hodin, což představuje velkou nevýhodu. Další nevýhodou je difuze do stran, která může způsobit zhoršení rozlišení vlastní elektroforetické separace. Kapilární blottingu: V tomto uspořádání je blotovací membrána umístěna na povrchu gelu, který leží na porézní podložce v nádobě s přenosovým pufrem. Na ní je pak vrstva vlhkého

4 filtračního papíru a řada vrstev suchých filtračních papírů. Celá jednotka je zatížena. Suchý papír nasává kapilárními silami pufr, vzorek je tak tažen z gelu na membránu. Trvá zhruba 12 hodin. Vakuový blottingu: Obdobné uspořádání jako u kapilárního blottingu, místo kapilárních sil je vzorek tažen vakuem. Výhodou jsou ostřejší pásy (potlačení difuze) a doba trvání cca 30 min. Elektroblotting: Jedná se o nejrychlejší a nejúčinnější metodu. Hnací silou je síla elektrického pole. Existují dva možné způsoby uspořádání : tankový (tank, wet) a polosuchý (semi-dry) blotting. Při tankové variantě se do speciální kazety skládá následující vrstva (sendvič) : porézní houbička, filtrační papír, gel, membrána, filtrační papír, porézní houbička. Poté se kazeta vloží do blotovací komůrky naplněné přenosovým pufrem. Přenos proteinů na membránu probíhá při konstantním proudu, jehož hodnota závisí na ploše membrány (0,8 ma cm -2 ). Doba blotování je 2 hodiny. Při uspořádání semi-dry se používají plošné grafitové elektrody. Na tyto elektrody se naskládá několik vrstev filtračního papíru nasyceného blotovacím pufrem, gel, blotovací membrána, opět filtrační papíry a nahoru se položí druhá elektroda. Hlavními výhodami polosuchého blottingu v porovnání s tankovým jsou: 1. Homogenní elektrické pole 2. Možnost vyššího napěťového gradientu 3. Menší spotřeba přenosového pufru 4. Možnost simultánního přenosu z několika gelů Pro kontrolu přenosu proteinů na membránu se používají činidla Ponceau S, Amidočerň 10B a Fast Green, která lze buď jednoduše vymýt destilovanou vodou nebo se používá odbarvovací roztok. Pro blotovací metody je nutné dodržet několik zásad: 1. Pufry by neměly obsahovat více než 0,05% detergentu (detergenty inhibují vazbu proteinů na membránu). 2. Při volbě množství nanášeného vzorku je nutné nepřekročit vazebnou kapacitu membrány (pro PVDF membránu je max. vazebná kapacita pro antigen 170 μg cm -2 ). 3. Velké částice nebo vysoká viskozita mohou způsobit zanesení membrány. Před aplikací takového vzorku je nutná centrifugace (nanášení pouze supernatantu), případně snížení viskozity zředěním vzorku vhodným pufrem. 4. PVDF membrána musí být před použitím správně ošetřena (na povrch membrány je nanesen methanol na 15 s, poté je membrána opatrně ponořena na 2 min do vody a 5 min do vhodného pufru). Proteiny fixované na membráně metodou Western blotting, případně dot/slot blotting mohou být detekovány imunochemicky (immunoblotting). Podstatou všech imunochemických metod je interakce mezi antigenem a protilátkou in vitro. V imunochemii se setkáváme s pojmem polyklonální protilátky a monoklonální protilátky. Polyklonální protilátky můžeme stručně charakterizovat jako směs protilátek různé afinity a specifity, které jsou vytvořeny v organismu po vpravení cizorodého imunogenu. Nehomogennost takto připravených protilátek je způsobena jednak existencí řady determinantních míst na molekule antigenu

5 (proti každé determinantě se tvoří specifické Ig, které pak neinteragují s jinými determinantami) a jednak složitostí imunitního systému (na každou determinantu reaguje více mateřských buněk lymfocytů). Kromě toho má protilátková odpověď každého jedince do značné míry individuální charakter. Naproti tomu monoklonální protilátky představují chemické individuum. Všechny molekuly produkovaných Ig jsou naprosto identické, vykazují shodnou afinitu i specifitu při interakci s antigenem. Zatímco polyklonální protilátky se připravují poměrně jednoduchou procedurou imunizace zvířete (injekční vpravení antigenu, izolování krevního séra - antiséra, popřípadě imunoglobulinové frakce), zahrnuje příprava monoklonálních protilátek vedle imunizace i vysoce náročnou technologii přípravy a selekce tzv. hybridomů. Slezinné buňky imunizovaného zvířete (produkují protilátky) se in vitro fúzují s nádorovými buňkami (mají výjimečnou schopnost se dělit). Vyselektovaná hybridomová buňka (má vlastnosti obou mateřských buněk) je pak základem pro homogenní klon buněk použitelných k produkci homogenních protilátek. V případě polyklonálních protilátek se většinou nepracuje s izolovanými imunoglobuliny proti antigenu použitému k imunizaci, ale s celým krevním sérem (směs spousty imunoglobulinů a dalších bílkovin), popř. s IgG-frakcí (i v ní představují IgG reagující se zmíněným antigenem jen malou část ze všech přítomných IgG). Imunochemické metody využívají interakce antigenu se specifickými protilátkami in vitro za tvorby imunokomplexu antigen-protilátka. Imunochemická detekce proteinu na membráně se provádí pomocí série dvou protilátek. První protilátka reaguje imunochemicky s detekovaným proteinem za tvorby komplexu. Takto vytvořený komplex je rozpoznán druhou protilátkou značenou detekovatelnou sondou (např. vázaná alkalická fosfatasa, atom izotopu atd.). Klasický Western blot versus rychlá imunodetekce na přístroji SNAP id. Příprava vzorku 45 min 2 h Elektroforéza Přenos na membránu Blokování membrány Imunochemické reakce Detekce 0,5 1 h 1 2,5 h 1 h 3 h 15 min SNAP i.d. System 30 min Výhody oproti klasické metodě Western blot Rychlost Kompatibilita se standardními pufry a blokovacími roztoky Zpracování až šesti membrán zároveň Možnost recyklace protilátek Nízká interference signálu pozadí Nevýhody Nutná optimalizace podmínek před zahájením vlastního experimentu Nižší citlivost nutno použít koncentrovanější roztoky protilátek Cena příslušenství

6 Materiál a chemikálie 1. Rostlinný materiál : 3 genotypy Solanum spp. 2. Standard Hsp70 z hovězího mozku příprava: k 10 μl zamraženého Hsp70 přidat 190 μl R roztoku (výsledná koncentrace 0,2 μg/μl), nechat inkubovat 5 min při 100 C a do jamky aplikovat 5 μl (1 μg). 3. Roztoky pro přípravu gelů - akrylamid-n,n -methylenbisakrylamid: 30 % (w/v) akrylamidu, 0,8 % bisakrylamidu (w/v) ve vodě - pufr do zaostřovacího gelu (stacking gel buffer): 0,5 M Tris/HCl, ph 6,8 - pufr do dělícího gelu (running gel buffer): 1,5 M Tris/HCl, ph 8,8 - N,N -tetrametylendiamin (TEMED) - 10 % (w/v) persíran amonný (APS) ((NH 4 ) 2 S 2 O 8 ) - 10% (w/v) SDS - vodou nasycený n-butanol 4. Elektrodový pufr: 0,025 mol.l -1 Tris, 0,192 mol.l -1 glycin, 0,1% (w/v) SDS, ph 8,3 5. Pufr na přípravu vzorků: 0,125 M Tris/HCl, 4% (w/v) SDS, 20% v/v glycerol, 5% merkaptoethanol, 0,02% (w/v) bromfenolová modř, ph 6,8) 6. Barvící roztok s Ponceau S: 0,2% (w/v) Ponceau S v 10% (v/v) kys. octové 7. Blotovací pufr: 0,025 mol.l -1 Tris, 0,192 mol.l -1 glycin, 20% (v/v) methanol, ph 8,3 příprava: 3,025g Tris a 14,41 g glycinu, rozpustíme v 200 ml vody, přidáme 200 ml methanolu, zkontrolujeme ph a doplníme vodou do 1 l, uchovávat při 4 C. 8. Pracovní pufr pro imunodetekci TBS: 20 mm Tris, 500 mm NaCl, ph 7,5 příprava: 4,84 g Tris, 58,44 g NaCl rozpustit v 1 l, upravit ph na 7,5 a doplnit do 2 l vodou 9. Tween-20 TBS (TTBS) příprava: 0,15 ml Tween-20 do 300 ml TBS 10. 0,5% nízkotučné mléko v Tween-20 TBS (TTBS) příprava: 0,5 g sušeného nízkotučného mléka do 100 ml TTBS 11. Barvící roztok s NBT-BCIP příprava: 75 μl komerčního roztoku NBT-BCIP smíchat s 5 ml barvícího pufru 12. Primární protilátka: monoklonální myší protilátka anti-hsp70 (ředění 1:500) 13. Sekundární anti-myší protilátka značená alkalickou fosfatasou (ředění 1:500) příprava: 3 l sek. Ab do 1,5 ml 0,5% nízkotučného mléka v TTBS 14. Sekundární anti-myší protilátka značená peroxidasou (ředění 1:1000) příprava: 1,5 l sek. Ab do 1,5 ml 0,5% nízkotučného mléka v TTBS 14. Luminol příprava : roztok A smíchat s roztokem B v poměru 1:1, 0,5 ml roztoku A + 0,5 ml roztoku B 15. Barvící pufr (staining buffer) : 0,1M Tris, 0,1 M NaCl, 0,005 M MgCl 2, ph 9,5 16. Kádinky, teflonová míchadla, automatické pipety, ependorfky, ledová lázeň, mikrocentrifuga, vyhřívací box do 100 C, Hamiltonova pipeta (50 μl), nalévací stojánek,

7 elektroforetická komůrka, skla pro elektroforézu, mezerníky (spacery), hřebínek, střička s destilovanou vodou, střička s lihem, třepačka, zdroj pro elektroforézu, blotovací aparatura, misky na barvení, nůžky, misky pro imunodetekci. UPOZORNĚNÍ Akrylamid a N,N - methylenbisakrylamid jsou neurotoxické látky. S jejich roztokem vždy pracujeme s největší opatrností a v gumových rukavicích. Postup 1. Příprava listových disků Připravíme si šest Petriho misek, na jejichž dno dáme 3 vrstvy buničiny a 1 kolečko filtračního papíru. Do každé Petriho misky napipetujeme 7,5 ml destilované vody. Ze 4. pravých listů rostlin vyřízneme korkovrtem disky o průměru 12 mm a do Petriho misky vložíme 16 listových disků. Tři Petriho misky budou sloužit jako kontrola, další tři Petriho misky dáme do inkubátoru vyhřátého na 40 C a inkubujeme po dobu 2 h. Poté umístíme misky do fytotronu (20/18 C s 12-ti hodinovou fotoperiodou) a další den provedeme odběr vzorků pro extrakci. 2. Příprava rostlinných extraktů Extrakce bude provedena v poměru 1:2 (w:v) v R roztoku. Všechny listové disky v Petriho miskách postupně zvážíme. Zapíšeme si jejich hmotnost a vypočítáme si potřebný objem R roztoku pro extrakci. Poté provedeme homogenizaci v třecí misce na ledové lázni s přídavkem mořského písku a příslušného objemu R roztoku. Extrakt centrifugujeme po dobu 10 minut při g a teplotě 4 C. Odebereme supernatant do předem připravených a popsaných eppendorfek. Vzorky inkubujeme 5 minut v termobloku při 100 C. Do jamek aplikujeme vždy 18 μl vzorku. 3. SDS-PAGE elektroforéza Malá (bez zářezu) i velká sklíčka (se zářezem) důkladně odmastíme lihem. Připravíme skla k nalévání gelu : na rovné podložce přiložíme malé sklíčko na zářezovou stranu velkého sklíčka,tak, aby mezi nimi vznikl prostor pro gel a umístíme do stojánku pro nalévání gelu. Je třeba zkontrolovat, zda gumové podložky ve stojánku dobře těsní (hrozí vytečení gelu). Mezi skla vložíme hřebínek a na sklo si fixou označíme vzdálenost 1 cm od konce zubů hřebínku. Poté hřebínek odstraníme. Přichystáme si dvě označené kádinky na přípravu zaostřovacího a dělícího gelu. Podle následující tabulky napipetujeme jednotlivé roztoky (složky gelu) do příslušných kádinek. Rozpis je uveden pro 2 gely a 0,75 mm skla. Tabulka : Složení dělícího a zaostřovacího gelu. Objemy jsou uvedeny v ml. Typ gelu AA/BIS 30%/0,8% Tris HCl 1,5 mol l - Tris HCl 0,5 mol l - H 2 O SDS TEMED Start 10% APS 1 1 Dělící 7% 2,3 2,5-5,1 0,1 0,01 0,1 Zaostřovací 0,65-1,25 3,05 0,05 0,01 0,1 4%

8 Polymerace gelu je vždy zahájena přídavkem roztoku persíranu amonného. Připravený dělící gel po promíchání (cca 5-10 s) rychle přeneseme pomocí Pasteurovy pipety do prostoru mezi skla. V roztoku mezi skly se nesmí objevit vzduchové bubliny. Gel naléváme až po značku na skle (1 cm pod hřebínek). Gel opatrně převrstvíme n-butanolem. Po minutách polymerace při laboratorní teplotě odstraníme n-butanol pomocí filtračního papíru (nedotýkat se povrchu připraveného gelu) a povrch gelu propláchneme destilovanou vodou a opět vysušíme pomocí filtračního papíru. Po nastartování polymerizace přídavkem roztoku APS do kádinky, obsahující komponenty pro zaostřovací gel, přeneseme připravenou směs pomocí Pasteurovy pipety do prostoru mezi skla na již zpolymerovaný dělící gel až po okraj skla. Mezi skla vložíme hřebínek pro vytvoření požadovaného množství jamek. Pod zuby hřebínku se nesmí dostat vzduchové bubliny. Pokud se tak stane, rychle hřebínek vyjmeme a znovu vsuneme. Pozor, roztok se stává silně viskózní během několika minut. Poté necháme gel polymerovat 30 minut. Skla s připraveným gelem vložíme do elektroforetické komůrky. Fixou si označíme zuby hřebínku. Nalijeme připravený elektrodový pufr nejprve do prostoru mezi skly a poté do zbývajícího prostoru okolo. Pod elektrodovým pufrem opatrně vyjmeme hřebínek a pomocí Pasteurovy pipety jamky důkladně proplácheneme. Do jamek aplikujeme připravené vzorky (18 μl) a standard (5 μl) dle uvedeného schématu. Pozor, vzorky neaplikujeme do krajních jamek, dochází zde k deformacím drah seprovaných proteinů. Elektroforetickou komůrku uzavřeme víkem, vložíme do chladničky a připojíme ke zdroji. Je nutné dbát na správnou orientaci víka a elektrod. Dělení probíhá při konstantním napětí. Na zdroji nastavíme 120 V. Jakmile zóna bromfenolové modři doputuje na rozhraní zaostřovacího a dělícího gelu (cca 10 min), nastavíme zdroj na 180 V. Po doputování zóny bromfenolové modři (čelo dělících se látek) téměř na úroveň dolního okraje skla vypneme zdroj napětí. Odstraníme víko a vylijeme pufr. Pomocí plastové špachtle oddělíme od gelu skla, oddělíme a vyhodíme zaostřovací gel. Odkrojíme levý dolní roh gelu (pro orientaci ve vzorcích při vyhodnocování gelu). Schéma : Aplikace vzorků do jamek. Standard Hsp 70 Kontrola S. lycopersicum cv. Amateur Teplotní stres S. lycopersicum cv. Amateur Kontrola S. chmielewskii Teplotní Kontrola stres S. S. habrochaites chmielewskii Teplotní stres S. habrochaites 5 μl 18 μl 18 μl 18 μl 18 μl 18 μl 18 μl 4. Tank blotting Připravíme si blotovací membránu (nitrocelulosová), 2 ks silných filtračních papírů stejné velikosti jako jsou rozměry gelu (8,4 x 4,2 cm). Pozor, nedotýkat se membrány bez rukavic. Membránu, gel, filtrační papíry a porézní houbičky ponoříme na 5 minut do blotovacího pufru. Do blotovací kazety skládáme směrem od černé desky kazety k průsvitné straně kazety následovně jednotlivé vrstvy : Porézní houbička - filtrační papír - gel - membrána - filtrační papír* - porézní houbička * je nutné odstranit vzduchové bubliny mezi gelem a membránou pomocí skleněné tyčinky

9 Kazetu uzavřeme a vložíme do blotovací komůrky. Černá strana kazety směřuje vždy k černé straně blotovací komůrky (katoda (-)). Blotovací komůrku naplníme blotovacím pufrem, uzavřeme víkem (nutno dbát na správnou orientaci elektrod) a vložíme do chladničky (nutné chlazení). Před připojením ke zdroji je nutné vypočítat na základě velikosti membrány proud, který se na zdroji nastaví dle následujícího vzorce : Plocha gelu x počet gelů x 0,8 ma cm -2 Po 2 hodinách ukončíme blotování. Blotovací pufr slijeme zpět do zásobní lahve a vyjmeme blotovací kazetu. Pro ověření přenosu proteinů na membránu použijeme činidlo Ponceau S. Do misky vložíme membránu a přidáme 5 ml činidla Ponceau S. Po 5 min inkubaci se na membráně vizualizují přenesené proteiny. Činidlo poté vymyjeme destilovanou vodou. 5. Rychlá imunodetekce na přístroji SNAP id. SNAP id. položíme na rovnou plochu pracovního stolu. Připojíme hadici přívodu vakua k zadní části přístroje s použitím plastové spojovací trubičky, která se zaklapne do otvoru v zadní části. Připojíme druhý konec hadice ke zdroji vakua, použijeme 1 l odsávací láhev a filtr pro ochranu zdroje vakua před kapalinami a kontaminací. Při zapojování dbáme na dostatek prostoru pro hadice, aby nedošlo k jejich ohýbání případně zaškrcení. Před zahájením skládání držáku blotu pro dvě membrány si předem připravíme protilátky, blokovací roztok a promývací roztok. Otevřeme víko držáku blotu, nedotýkáme se bílého vniřního povrchu. Navlhčíme bílý vnitřní povrch držáku deionizovanou vodou, až změní barvu na šedou. Přebytečnou vodu odstraníme blotovacím válečkem pro zamezení posunů blotovací membrány v držáku. Vložíme navlhčenou membránu na střed komůrky držáku stranou s proteiny směrem dolů. Jemným přejetím válečkem odstraníme veškeré vzduchové bubliny mezi blotovací membránou a povrchem komůrky držáku. Na membránu položíme spacer (není třeba vlhčit) tak, aby kompletně pokrýval celou blokovací membránu a znovu jemným pohybem přejedeme válečkem pro zajištění dokonalého kontaktu spaceru a membrány. Pokud spacer nepokrývá celou plochu blokovací membrány, po vyvolání membrány mohou být pozorovány tmavé čáry v místech polohy okraje spaceru na membráně. Uzavřeme víko držáku blotu a pevně držák zespodu zmáčkneme pro dokonalé uzavření držáku. Otevřeme víko přístroje a vložíme držák do komory přístroje komůrkou směrem vzhůru tak, aby držák zapadl v těle přístroje. Zavřeme víko přístroje. Do každé komůrky držáku blotu pro dvě membrány nalijeme vždy 15 ml 0,5% roztoku nízkotučného mléka v roztoku Tween-20 v TBS (TTBS) a ihned zapneme přívod vakua otočením přepínače vakua příslušného držáku. (každý přepínač reguluje nezávisle vakuum pro příslušný držák). Při použití systému SNAP id. není nutná inkubace s blokovacím roztokem. Po úplném vyprázdnění komůrky držáku (10-20 sekund) vypneme zdroj vakua otočením přepínače. Do každé komůrky aplikujeme 1,5 ml primární monoklonální myší anti-hsp70 protilátky ředěné 1:500 v 0,5% mléku s TTBS. Roztok protilátky musí rovnoměrně pokrýt celý povrch komůrky! Se zdrojem vakua stále odpojeným provedeme inkubaci s primární protilátkou 10 minut při laboratorní teplotě. Roztok bude absorbován do povrchu držáku blotu a povrch se může jevit zdánlivě jako suchý. Dobu inkubace je možno prodloužit, ale může to vést ke zvýšení signálu pozadí. Po uplynutí 10 min zapojíme zdroj vakua a vyčkáme sekund pro dokonalé odstranění roztoku protilátky z komůrky držáku. Se zdrojem vakua stále připojeným, promyjeme každou komůrku 15 ml promývacího roztoku Tween-20 v TBS. Pro optimální promytí opakujeme nejméně třikrát. Každý promývací

10 krok by měl trvat nejméně 20 s. Po posledním promývání a úplném odsátí promývací roztoku odpojíme zdroj vakua. Do jedné komůrky aplikujeme 1,5 ml roztoku sekundární anti-myší protilátky značené alkalickou fosfatasou ředěné 1:500 v 0,5% mléku s TTBS, do druhé komůrky aplikujeme 1,5 ml sekundární anti-myší protilátky značené peroxidasou ředěné 1:1000 v 0,5% mléku s TTBS. Roztok protilátky musí rovnoměrně pokrýt celý povrch komůrky! Se zdrojem vakua stále odpojeným, inkubujeme s primární protilátkou 10 min při laboratorní teplotě. Roztok bude absorbován do povrchu držáku blotu a povrch se může jevit zdánlivě jako suchý. Dobu inkubace je možno prodloužit, ale může to vést ke zvýšení signálu pozadí. Po uplynutí 10 min zapojíme zdroj vakua a počkáme s pro dokonalé odstranění roztoku protilátky z komůrky držáku. Je nutné si poznačit, která membrána byla inkubována s kterou sekundární protilátkou kvůli následné detekci! Se zdrojem vakua stále připojeným, promyjeme každou komůrku 15 ml promývacího roztoku TTBS. Pro optimální promytí opakujeme nejméně třikrát. Každý promývací krok by měl trvat nejméně 20 s. Po posledním promývání a úplném odsátí promývací roztoku odpojíme zdroj vakua. Vyjmeme držák blotu z přístroje, položíme na pracovní plochu komůrkou dolů a otevřeme víko držáku. Pinzetou opatrně odstraníme spacer. Vyjmeme membránu a pokračujeme v postupu vizualizace proteinů zvolenou metodou. Držák blotu recyklujeme do odpadu pro plasty a vyčistíme přístroj propláchnutím deionizovanou vodou. Pro detekci barevného produktu použijeme chromogenní substrát NBT-BCIP (nitrotetrazoliová modř ve spojení s 5-bromo-4-chloro-3-indolyl-fosfátem) pro sekundární protilátku značenou alkalickou fosfatasou. Připravíme si 5 ml barvícího roztoku : 75 μl komerčního roztoku NBT-BCIP smícháme s 5 ml barvícího pufru. Inkubujeme maximálně 10 minut do vyvinutí tmavě fialového zbarvení. Membránu vyfotíme a vyhodnotíme v dokumentačním systému Biospectrum 410 vybaveným citlivou chlazenou CCD kamerou a napojeným na počítač s programem VisionWorks pro sběr a analýzu získaných obrazových dat. Pro chemiluminiscenční detekci přeneseme membránu na skleněnou desku a připravíme si roztok komerčního luminolu smícháním 0,5 ml roztoku A s 0,5 ml roztoku B. Pozor, pro každý roztok použijeme čistou špičku, aby nedošlo ke kontaminaci a možnému znehodnocení roztoku. Připraveným roztokem lehce převrstvíme membránu a inkubujeme 5 minut ve tmě v komoře dokumentačního zařízení. Mezitím vedoucí cvičení vysvětlí nastavení jednotlivých parametrů programu VisionWorks pro mód Western blot. Po ukončení inkubace odsajeme nadbytečný roztok luminolu. Spustíme expozici po dobu 1 min, poté membránu vyfotíme a vyhodnotíme. Vyhodnocení 1. Membránu s detekovanými proteiny vyfotíme v dokumentačním systému Biospectrum Sestrojíme graf závislosti intenzity signálu na typu vzorku. 3. Porovnáme použité metody detekce z hlediska citlivosti, reprodukovatelnosti experimentu apod. 4. Na základě doporučené literatury se pokusíme zdůvodnit, proč se jednotlivé genotypy Solanum spp. lišily v zastoupení Hsp70 po vystavení teplotnímu stresu. Literatura B. T. Kurien & R. H. Scofield (2009) Protein blotting and detection, Methods in Molecular Biology 536.

PROTOKOL WESTERN BLOT

PROTOKOL WESTERN BLOT WESTERN BLOT 1. PŘÍPRAVA ELEKTROFORETICKÉ APARATURY Saponátem a vodou se důkladně umyjí skla, plastové vložky a hřebínek, poté se důkladně opláchnou deionizovanou/destilovanou vodou a etanolem a nechají

Více

Western blotting. 10% APS 20,28 µl 40,56 µl 81,12 µl 20,28 µl 40,56 µl 81,12 µl

Western blotting. 10% APS 20,28 µl 40,56 µl 81,12 µl 20,28 µl 40,56 µl 81,12 µl Western blotting 1. Příprava gelu složení aparatury hustotu gelu volit podle velikosti proteinů příprava rozdělovacího gelu: 10% 12% počet gelů 1 2 4 1 2 4 objem 6 ml 12 ml 24 ml 6 ml 12 ml 24 ml 40% akrylamid

Více

SDS-PAGE elektroforéza

SDS-PAGE elektroforéza SDS-PAGE elektroforéza Příprava gelu... 1 Recept na 0.75 mm gel (1 gel/2 gely)... 2 Recept na 1.5 mm gel (1 gel/2 gely)... 2 Příprava vzorku... 3 Elektroforéza... 3 Barvení gelů Blue Silver... 4 Chemikálie

Více

S filtračními papíry a membránou je nutno manipulovat pinzetou s tupým koncem.

S filtračními papíry a membránou je nutno manipulovat pinzetou s tupým koncem. Western Blotting Příprava blotovacího sendviče... 1 Blotování... 2 Kontrola přenesení proteinů na membránu... 2 Blokování membrány... 2 Aplikace protilátek... 2 Vizualizace... 3 Vyvolání filmu... 4 Chemikálie

Více

Sraz studentů v 8:00 před laboratoří A5/108, s sebou plášť a přezutí PRINCIP. Polyakrylamidová gelová elektroforéza v přítomnosti SDS (SDS-PAGE)

Sraz studentů v 8:00 před laboratoří A5/108, s sebou plášť a přezutí PRINCIP. Polyakrylamidová gelová elektroforéza v přítomnosti SDS (SDS-PAGE) PRINCIP Sraz studentů v 8:00 před laboratoří A5/108, s sebou plášť a přezutí Polyakrylamidová gelová elektroforéza v přítomnosti SDS (SDS-PAGE) SDS-PAGE slouží k separaci proteinů na základě jejich molekulové

Více

Inovace bakalářského studijního oboru Aplikovaná chemie CZ.1.07/2.2.00/

Inovace bakalářského studijního oboru Aplikovaná chemie CZ.1.07/2.2.00/ Dělení bílkovin pomocí diskontinuální elektroforézy v polyakrylamidovém gelu (PAGE) Při elektroforéze dochází k pohybu (migraci) iontů v elektrickém poli. Elektroforetické metody se tedy používají k separaci

Více

SDS polyakrylamidová gelová elektroforéza (SDS PAGE)

SDS polyakrylamidová gelová elektroforéza (SDS PAGE) SDS polyakrylamidová gelová elektroforéza (SDS PAGE) Princip SDS polyakrylamidová gelová elektroforéza slouží k separaci proteinů na základě jejich velikosti (molekulové hmotnosti). Zahřátím vzorku za

Více

Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti ELEKTROMIGRAČNÍ METODY

Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti ELEKTROMIGRAČNÍ METODY Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti ELEKTROMIGRAČNÍ METODY ELEKTROFORÉZA K čemu to je? kritérium čistoty preparátu stanovení molekulové hmotnosti makromolekul stanovení izoelektrického

Více

Elektroforéza v přítomnosti SDS SDS PAGE

Elektroforéza v přítomnosti SDS SDS PAGE Elektroforéza v přítomnosti SDS SDS PAGE Elektroforéza v přítomnosti SDS SDS PAGE je jednoduchá, rychlá a reprodukovatelná metoda pro kvalifikovanou charakterizaci a srovnání bílkovin.tato metoda separuje

Více

Imunochemické metody. na principu vazby antigenu a protilátky

Imunochemické metody. na principu vazby antigenu a protilátky Imunochemické metody na principu vazby antigenu a protilátky ANTIGEN (Ag) specifická látka (struktura) vyvolávající imunitní reakci a schopná vazby na protilátku PROTILÁTKA (Ab antibody) molekula bílkoviny

Více

Detekce aryluhlovodíkového receptoru (AhR) v nádorových buněčných liních HepG2, Huh-7, MCF-7 a HeLa

Detekce aryluhlovodíkového receptoru (AhR) v nádorových buněčných liních HepG2, Huh-7, MCF-7 a HeLa Detekce aryluhlovodíkového receptoru (AhR) v nádorových buněčných liních HepG2, Huh-7, MCF-7 a HeLa OBSAH I. TEORETICKÁ ČÁST...3 BUNĚČNÉ SYSTÉMY...3 JADERNÉ RECEPTORY A XENORECEPTORY...4 PROTEINY...5 ELEKTROFORETICKÉ

Více

Obsah Protein Gel Electrophoresis Kitu a jeho skladování

Obsah Protein Gel Electrophoresis Kitu a jeho skladování Obsah Protein Gel Electrophoresis Kitu a jeho skladování Protein Gel Electrophoresis Kit obsahuje veškerý potřebný materiál provádění vertikální polyakrilamidové gelové elektroforézy. Experiment provádějí

Více

Protokoly Transformace plasmidu do elektrokompetentních buněk BL21 Pracovní postup:

Protokoly Transformace plasmidu do elektrokompetentních buněk BL21 Pracovní postup: Protokoly Pracovní potřeby, pufry a chemikálie jsou uvedeny na konci protokolu. Pracovní postupy jsou odvozeny od těchto kitů: Champion pet160 Directional TOPO Expression Kit with Lumio Technology (Invitrogen)

Více

WESTERN BLOT. Velikost signálu je vyhodnocována srovnáním s naneseným proteinovým markerem, což je komerčně dostupná směs proteinů o známé velikosti.

WESTERN BLOT. Velikost signálu je vyhodnocována srovnáním s naneseným proteinovým markerem, což je komerčně dostupná směs proteinů o známé velikosti. WESTERN BLOT Western blot je metoda používaná pro kvalitativní nebo semikvantitativní detekci určitého proteinu ve vzorku. Metoda je tvořena třemi základními kroky: 1. elektroforetickou separací proteinů,

Více

Návod a protokol k praktickým cvičením z lékařské biochemie

Návod a protokol k praktickým cvičením z lékařské biochemie Datum... Jméno... Kroužek... Návod a protokol k praktickým cvičením z lékařské biochemie Téma: Vybrané imunochemické metody 1. Úloha Imunoprecipitační křivka lidského albuminu a stanovení Princip: koncentrace

Více

TECHNICKÁ SPECIFIKACE Vybavení genetické laboratoře pro projekt EXTEMIT-K část B

TECHNICKÁ SPECIFIKACE Vybavení genetické laboratoře pro projekt EXTEMIT-K část B TECHNICKÁ SPECIFIKACE Vybavení genetické laboratoře pro projekt EXTEMIT-K část B OBSAH Sestava pro vertikální elektroforézu... 2 Jednotka pro elektroforézu... 3 Termocykler... 4 Elektrický zdroj pro elektroforézu...

Více

1. Metodika. Protokol č. F1-4 Metodika: Srovnávací analýza efektivity přípravy rekombinantního proteinu ve fermentoru

1. Metodika. Protokol č. F1-4 Metodika: Srovnávací analýza efektivity přípravy rekombinantního proteinu ve fermentoru Protokol č.: F1-4 Datum: 20.12.2010 Metodika: analýza efektivity přípravy výběr z výsledků ze zkušebních provozů výroby antigenů. Vypracoval: Ing. Václav Filištein, Mgr. Tereza Chrudimská, Spolupracující

Více

Obr. 1. Schematické znázornění 2D-PAGE (převzato z Lodish, H. a kol.: Molecular Cell Biology, 3. vyd., Freeman 1996)

Obr. 1. Schematické znázornění 2D-PAGE (převzato z Lodish, H. a kol.: Molecular Cell Biology, 3. vyd., Freeman 1996) Dvourozměrná elektroforéza (2D-PAGE) 2D-PAGE je vysoce efektivní separační metodou umožňující rozdělení komplikovaných směsí stovek různých bílkovin a představuje základní nástroj v novém rozvíjejícím

Více

ELEKTROFORETICKÉ METODY

ELEKTROFORETICKÉ METODY ELEKTROFORETICKÉ METODY ELEKTROFORETICKÁ SEPARACE AMINOKYSELIN NA PAPÍROVÉM NOSIČI Aminokyseliny lze rozdělit elektroforézou na papíře. Protože molekulová hmotnost jednotlivých aminokyselin není příliš

Více

ELFO: DNA testovaných vzorků společně se značeným velikostním markerem je separovaná standardně použitím agarosové elektroforézy.

ELFO: DNA testovaných vzorků společně se značeným velikostním markerem je separovaná standardně použitím agarosové elektroforézy. SOUTHERNOVA HYBRIDIZACE Existuje celá řada protokolů pro Southernovu hybridizaci. Tyto protokoly se do značné míry totožné co se týče úvodních fází, jako je příprava vzorků elektroforetickou separací,

Více

Hybridizace nukleových kyselin

Hybridizace nukleových kyselin Hybridizace nukleových kyselin Tvorba dvouřetězcových hybridů za dvou jednořetězcových a komplementárních molekul Založena na schopnosti denaturace a renaturace DNA. Denaturace DNA oddělení komplementárních

Více

Elektromigrační metody

Elektromigrační metody Elektromigrační metody Princip: molekuly nesoucí náboj se pohybují ve stejnosměrném elektrickém Arne Tiselius rozdělil proteiny krevního séra na základě jejich rozdílných rychlostí pohybu v elektrickém

Více

Univerzita Palackého Přírodovědecká fakulta Katedra biochemie Experimentální metody studia obranné reakce rostlin (KBC/EMORR)

Univerzita Palackého Přírodovědecká fakulta Katedra biochemie Experimentální metody studia obranné reakce rostlin (KBC/EMORR) Univerzita Palackého Přírodovědecká fakulta Katedra biochemie Experimentální metody studia obranné reakce rostlin (KBC/EMORR) FRVŠ projekt 2043/2011/G4 1. PŘÍPRAVA ROSTLINNÉHO MATERIÁLU 1.1. Teoretický

Více

IMUNOANALÝZA elektroforetické separační metody. 3. ročník Klinická biologie a chemie

IMUNOANALÝZA elektroforetické separační metody. 3. ročník Klinická biologie a chemie IMUNOANALÝZA elektroforetické separační metody 3. ročník Klinická biologie a chemie Princip elektroforézy I. Separační metoda využívající různé pohyblivosti různých iontů (složek směsi) ve stejnosměrném

Více

Struktura a funkce biomakromolekul KBC/BPOL

Struktura a funkce biomakromolekul KBC/BPOL Struktura a funkce biomakromolekul KBC/BPOL 2. Posttranslační modifikace a skládání proteinů Ivo Frébort Biosyntéza proteinů Kovalentní modifikace proteinů Modifikace proteinu může nastat předtím než je

Více

Polymorfismus délky restrikčních fragmentů (RFLP)

Polymorfismus délky restrikčních fragmentů (RFLP) ÚSTAV LÉKAŘSKÉ BIOCHEMIE A LABORATORNÍ DIAGNOSTIKY 1. LF UK Polymorfismus délky restrikčních fragmentů (RFLP) Praktické cvičení z lékařské biochemie Všeobecné lékařství Martin Vejražka 2017/18 Obsah POLYMORFISMUS

Více

IMUNOELEKTROFORETICKÉ METODY

IMUNOELEKTROFORETICKÉ METODY IMUNOELEKTROFORETICKÉ METODY Imunoelektroforetické metody kombinace metod elektroforetických + imunodifúzních gel: agarozový (1-2 %) agarový gel pufry: 0,025 M ph 8-9 veronalový borátový Tris-barbitalový

Více

Bakteriální bioluminiscenční test. Stanovení účinnosti čištění odpadních vod pomocí bakteriálního bioluminiscenčního testu

Bakteriální bioluminiscenční test. Stanovení účinnosti čištění odpadních vod pomocí bakteriálního bioluminiscenčního testu Bakteriální bioluminiscenční test Stanovení účinnosti čištění odpadních vod pomocí bakteriálního bioluminiscenčního testu BBTT Cíl: Stanovit účinek odpadních vod na bakterie Vibrio fischeri. Principem

Více

Metody práce s proteinovými komplexy

Metody práce s proteinovými komplexy Metody práce s proteinovými komplexy Zora Nováková, Zdeněk Hodný Proteinové komplexy tvořeny dvěma a více proteiny spojenými nekovalentními vazbami Van der Waalsovy síly vodíkové můstky hydrofobní interakce

Více

Struktura a funkce biomakromolekul KBC/BPOL

Struktura a funkce biomakromolekul KBC/BPOL Struktura a funkce biomakromolekul KBC/BPOL 2. Posttranslační modifikace a skládání proteinů Ivo Frébort Biosyntéza proteinů Kovalentní modifikace proteinů Modifikace proteinu může nastat předtím než je

Více

Izolace RNA. doc. RNDr. Jan Vondráček, PhD..

Izolace RNA. doc. RNDr. Jan Vondráček, PhD.. Izolace RNA doc. RNDr. Jan Vondráček, PhD.. Metodiky izolace RNA celková buněčná RNA ( total RNA) zahrnuje řadu typů RNA, které se mohou lišit svými fyzikálněchemickými vlastnostmi a tedy i nároky na jejich

Více

PROTEINOVÁ DENATURUJÍCÍ ELEKTROFORÉZA (SDS PAGE)

PROTEINOVÁ DENATURUJÍCÍ ELEKTROFORÉZA (SDS PAGE) PROTEINOVÁ DENATURUJÍCÍ ELEKTROFORÉZA (SDS PAGE) Denaturující proteinová elektroforéza (SDS PAGE - SDS Protein Acrylamide Gel Electrophoresis) je metoda, která se používá k separaci proteinů podle velikosti,

Více

Antiparalelní beta list

Antiparalelní beta list Antiparalelní beta list Paralelní beta list Schematický model beta listu (stužkový) Proteiny obsahují zpětné kličky (beta kličky nebo vlásenkové ohyby). Obvykle je CO skupina i-té aminokyseliny vázána

Více

PROTOKOL NORTHERNOVA HYBRIDIZACE

PROTOKOL NORTHERNOVA HYBRIDIZACE ! NORTHERNOVA HYBRIDIZACE Vzhledem k tomu, že se při Northern hybridizaci pracuje s RNA a RNA je extrémně citlivá na působení RNáz, je zapotřebí se vyvarovat jakékoliv kontaminace RNázami. Pro snížení

Více

Inovace bakalářského studijního oboru Aplikovaná chemie CZ.1.07/2.2.00/15.0247

Inovace bakalářského studijního oboru Aplikovaná chemie CZ.1.07/2.2.00/15.0247 Papírová a tenkovrstvá chromatografie Jednou z nejrozšířenějších analytických metod je bezesporu chromatografie, umožňující účinnou separaci látek nutnou pro spolehlivou identifikaci a kvantifikaci složek

Více

Obsah. Sarkosin Charakterizace slepičích protilátek proti sarkosinu. Dagmar Uhlířová

Obsah. Sarkosin Charakterizace slepičích protilátek proti sarkosinu. Dagmar Uhlířová Investice do rozvoje vzdělávání Charakterizace slepičích protilátek proti sarkosinu Dagmar Uhlířová 7.2.2014 Reg.č.projektu: CZ.1.07/2.4.00/31.0023 NanoBioMetalNet Název projektu: Partnerská síť centra

Více

1. Příloha 1 Návod úlohy pro Pokročilé praktikum z biochemie I

1. Příloha 1 Návod úlohy pro Pokročilé praktikum z biochemie I 1. Příloha 1 Návod úlohy pro Pokročilé praktikum z biochemie I Vazba bromfenolové modři na sérový albumin Princip úlohy Albumin má unikátní vlastnost vázat menší molekuly mnoha typů. Díky struktuře, tvořené

Více

Jednotné pracovní postupy zkoušení krmiv STANOVENÍ OBSAHU DEKOCHINÁTU METODOU HPLC

Jednotné pracovní postupy zkoušení krmiv STANOVENÍ OBSAHU DEKOCHINÁTU METODOU HPLC Národní referenční laboratoř Strana 1 STANOVENÍ OBSAHU DEKOCHINÁTU METODOU HPLC 1 Rozsah a účel Tato metoda specifikuje podmínky pro stanovení dekochinátu metodou vysokoúčinné kapalinové chromatografie

Více

18. ANALÝZA POLYAMINŮ V ROSTLINNÉM MATERIÁLU METODOU HPLC S FLUORESCENČNÍ DETEKCÍ

18. ANALÝZA POLYAMINŮ V ROSTLINNÉM MATERIÁLU METODOU HPLC S FLUORESCENČNÍ DETEKCÍ 18. ANALÝZA POLYAMINŮ V ROSTLINNÉM MATERIÁLU METODOU HPLC S FLUORESCENČNÍ DETEKCÍ 1. Teoretický úvod: Polyaminy jsou nízkomolekulární polykationty vyskytující se u všech organismů včetně živočichů, rostlin,

Více

Izolace nukleových kyselin

Izolace nukleových kyselin Izolace nukleových kyselin Požadavky na izolaci nukleových kyselin V nativním stavu z přirozeného materiálu v dostatečném množství požadované čistotě. Nukleové kyseliny je třeba zbavit všech látek, které

Více

IMUNOCYTOCHEMICKÁ METODA JEJÍ PRINCIP A VYUŽITÍ V LABORATOŘI

IMUNOCYTOCHEMICKÁ METODA JEJÍ PRINCIP A VYUŽITÍ V LABORATOŘI IMUNOCYTOCHEMICKÁ METODA JEJÍ PRINCIP A VYUŽITÍ V LABORATOŘI Radka Závodská, PedF JU v Českých Budějovicích Imunocytochemická metoda - použítí protilátky k detekci antigenu v buňkách (Imunohistochemie-

Více

Vizualizace DNA ETHIDIUM BROMID. fluorescenční barva interkalační činidlo. do gelu do pufru barvení po elfu SYBR GREEN

Vizualizace DNA ETHIDIUM BROMID. fluorescenční barva interkalační činidlo. do gelu do pufru barvení po elfu SYBR GREEN ETHIDIUM BROMID fluorescenční barva interkalační činidlo do gelu do pufru barvení po elfu Vizualizace DNA SYBR GREEN Barvení proteinů Coommassie Brilliant Blue Coomassie Blue x barvení stříbrem Porovnání

Více

Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti IMUNOCHEMICKÉ METODY

Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti IMUNOCHEMICKÉ METODY Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti IMUNOCHEMICKÉ METODY ZÁKLADNÍ TERMÍNY antigen jakákoli látka, se kterou specificky reaguje protilátka imunogen látka schopná vyvolat v

Více

Studium p ítomnosti protein v bu kách (analýza proteomu)

Studium p ítomnosti protein v bu kách (analýza proteomu) Studium p ítomnosti protein v bu kách (analýza proteomu) Metody pro stanovení fyzické p ítomnosti protein : polyakrylamidová gelová elektroforéza (PAGE) westernový p enos imunoprecipitace imunohistochemie

Více

Nativní a rekombinantní Ag

Nativní a rekombinantní Ag Antigeny z hlediska diagnostiky a pro potřeby imunizace Nativní a rekombinantní Ag Ag schopna vyvolat I odpověď, komplexní, nekomplexní Ag, hapten, determinanty, nosič V laboratořích: Stanovení Ab proti:

Více

Column DNA Lego Kit UNIVERZÁLNÍ SOUPRAVY PRO RYCHLOU IZOLACI ČISTÉ DNA (Katalogové číslo D201 + D202)

Column DNA Lego Kit UNIVERZÁLNÍ SOUPRAVY PRO RYCHLOU IZOLACI ČISTÉ DNA (Katalogové číslo D201 + D202) Column DNA Lego Kit UNIVERZÁLNÍ SOUPRAVY PRO RYCHLOU IZOLACI ČISTÉ DNA (Katalogové číslo D201 + D202) Popis Column DNA Lego Kit je základ moderní stavebnicové (Lego) soupravy pro izolaci čisté DNA různého

Více

ANALÝZA MARKERŮ OXIDAČNÍHO POŠKOZENÍ DNA, PROTEINŮ A LIPIDŮ PO IN VITRO APLIKACI LÁTEK NA BUNĚČNÉ KULTURY HEL a A549

ANALÝZA MARKERŮ OXIDAČNÍHO POŠKOZENÍ DNA, PROTEINŮ A LIPIDŮ PO IN VITRO APLIKACI LÁTEK NA BUNĚČNÉ KULTURY HEL a A549 ANALÝZA MARKERŮ OXIDAČNÍHO POŠKOZENÍ DNA, PROTEINŮ A LIPIDŮ PO IN VITRO APLIKACI LÁTEK NA BUNĚČNÉ KULTURY HEL a A549 O B S A H 1. Aplikace testovaných látek na buněčné kultury 2. Oxidační poškození DNA

Více

Výzkumný ústav rostlinné výroby Praha Ruzyně

Výzkumný ústav rostlinné výroby Praha Ruzyně Výzkumný ústav rostlinné výroby Praha Ruzyně Optimalizovaná metodika PAGE pro analýzu peroxidáz v hlízách brambor (Solanum tuberosum L.) Vypracovaná jako výstup projektu 1B 44011 VÝVOJ A TESTOVÁNÍ SYSTÉMU

Více

Základy imunologických metod: interakce antigen-protilátka využití v laboratorních metodách

Základy imunologických metod: interakce antigen-protilátka využití v laboratorních metodách Základy imunologických metod: interakce antigen-protilátka využití v laboratorních metodách Obecné principy reakce antigenprotilátka 1929 Kendall a Heidelberg Precipitační reakce Oblast nadbytku protilátky

Více

Metody testování humorální imunity

Metody testování humorální imunity Metody testování humorální imunity Co je to humorální imunita? Humorální = látková Buněčné produkty Nespecifická imunita příklady:» Lysozym v slinách, slzách» Sérové proteiny (proteiny akutní fáze)» Komplementový

Více

METODY STUDIA PROTEINŮ

METODY STUDIA PROTEINŮ METODY STUDIA PROTEINŮ Mgr. Vlasta Němcová vlasta.furstova@tiscali.cz OBSAH PŘEDNÁŠKY 1) Stanovení koncentrace proteinu 2) Stanovení AMK sekvence proteinu Hmotnostní spektrometrie Edmanovo odbourávání

Více

bakteriemi Magnetospirillum gryphiswaldense

bakteriemi Magnetospirillum gryphiswaldense Příprava, charakterizace a porovnání nanočástic připravených tepelným rozkladem v pevné fázi a nanočástic vzniklých biomineralizací (bakteriální magnetické nanočástice) Obecný úvod Nanočástice oxidů železa

Více

MagPurix Blood DNA Extraction Kit 200

MagPurix Blood DNA Extraction Kit 200 MagPurix Blood DNA Extraction Kit 200 Kat. č. ZP02001-48 Doba zpracování: 50-60 minut pro MagPurix 12S 50-70 minut pro MagPurix 24 Použití Souprava MagPurix Blood DNA Extraction Kit 200 je určena pro izolátor

Více

Proteinový fingerprinting vaječného bílku

Proteinový fingerprinting vaječného bílku Proteinový fingerprinting vaječného bílku Proteinový fingerprinting je technika studia populací organizmů založená na izoelektrické fokuzaci (IEF). IEF spočívá v elektroforetickém dělení proteinů podle

Více

ELEKTROFORETICKÁ SEPARACE NUKLEOVÝCH KYSELIN

ELEKTROFORETICKÁ SEPARACE NUKLEOVÝCH KYSELIN ELEKTROFORETICKÁ SEPARACE NUKLEOVÝCH KYSELIN Fragmenty nukleových kyselin lze dle jejich velikosti rozdělit elektroforézou. Elektroforéza využívá rozdílné pohyblivosti jednotlivých fragmentů, danou právě

Více

IMUNOGENETIKA I. Imunologie. nauka o obraných schopnostech organismu. imunitní systém heterogenní populace buněk lymfatické tkáně lymfatické orgány

IMUNOGENETIKA I. Imunologie. nauka o obraných schopnostech organismu. imunitní systém heterogenní populace buněk lymfatické tkáně lymfatické orgány IMUNOGENETIKA I Imunologie nauka o obraných schopnostech organismu imunitní systém heterogenní populace buněk lymfatické tkáně lymfatické orgány lymfatická tkáň thymus Imunita reakce organismu proti cizorodým

Více

Specifická imunitní odpověd. Veřejné zdravotnictví

Specifická imunitní odpověd. Veřejné zdravotnictví Specifická imunitní odpověd Veřejné zdravotnictví MHC molekuly glykoproteiny exprimovány na všech jaderných buňkách (MHC I) nebo jenom na antigen prezentujících buňkách (MHC II) u lidí označovány jako

Více

IZOLACE, SEPARACE A DETEKCE PROTEINŮ I. Vlasta Němcová, Michael Jelínek, Jan Šrámek

IZOLACE, SEPARACE A DETEKCE PROTEINŮ I. Vlasta Němcová, Michael Jelínek, Jan Šrámek IZOLACE, SEPARACE A DETEKCE PROTEINŮ I Vlasta Němcová, Michael Jelínek, Jan Šrámek Studium aktinu, mikrofilamentární složky cytoskeletu pomocí dvou metod: detekce přímo v buňkách - fluorescenční barvení

Více

LABORATOŘ OBORU I. Příprava diagnostického testu na bázi lateral flow immunoassay ÚSTAV ORGANICKÉ TECHNOLOGIE (111)

LABORATOŘ OBORU I. Příprava diagnostického testu na bázi lateral flow immunoassay ÚSTAV ORGANICKÉ TECHNOLOGIE (111) LABORATOŘ OBORU I ÚSTAV ORGANICKÉ TECHNOLOGIE (111) C Příprava diagnostického testu na bázi lateral flow immunoassay Vedoucí práce: Ing. Aram Zolal Ing. Lukáš Filip Umístění práce: laboratoř S58 1. Úvod

Více

IMUNOCHEMICKÉ METODY

IMUNOCHEMICKÉ METODY IMUNOCHMICKÉ MTODY Antigeny Protilátky Imunochemické metody Kvantitativní imunoprecipitační křivka Imunoprecipitační metody Imunoanalýza Využití imunochemických metod v rychlé diagnostice Praktické úlohy

Více

Inkubace enzymů se substráty

Inkubace enzymů se substráty Inkubace enzymů se substráty Inkubace redukčních enzymů... 1 Inkubace oxidačních enzymů... 2 Extrakce látek z inkubační směsi... 2 Příprava vzorků k HPLC/UHPLC detekci... 3 Chemikálie a roztoky... 4 Substráty...

Více

ÚSTAV LÉKAŘSKÉ BIOCHEMIE A LABORATORNÍ DIAGNOSTIKY 1. LF UK. Vyšetření moči

ÚSTAV LÉKAŘSKÉ BIOCHEMIE A LABORATORNÍ DIAGNOSTIKY 1. LF UK. Vyšetření moči ÚSTAV LÉKAŘSKÉ BIOCHEMIE A LABORATORNÍ DIAGNOSTIKY 1. LF UK Vyšetření moči močový sediment, stanovení sodíku, opakování Praktické cvičení z lékařské biochemie Všeobecné lékařství Martin Vejražka, Lenka

Více

Výzkumný ústav rostlinné výroby Praha Ruzyně. Metodika byla vypracována jako výstup výzkumného záměru MZe č. 0002700602. Autor: Ing.

Výzkumný ústav rostlinné výroby Praha Ruzyně. Metodika byla vypracována jako výstup výzkumného záměru MZe č. 0002700602. Autor: Ing. Výzkumný ústav rostlinné výroby Praha Ruzyně Optimalizovaná metodika SDS-PAGE pro analýzu LMW podjednotek gluteninů pšenice Metodika byla vypracována jako výstup výzkumného záměru MZe č. 0002700602 Autor:

Více

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í LABORATORNÍ PRÁCE Č. 6 PRÁCE S PLYNY

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í LABORATORNÍ PRÁCE Č. 6 PRÁCE S PLYNY LABORATORNÍ PRÁCE Č. 6 PRÁCE S PLYNY Mezi nejrozšířenější práce s plyny v laboratoři patří příprava a důkazy oxidu uhličitého CO 2, kyslíku O 2, vodíku H 2, oxidu siřičitého SO 2 a amoniaku NH 3. Reakcí

Více

Precipitační a aglutinační reakce

Precipitační a aglutinační reakce Základy imunologických metod: Precipitační a aglutinační reakce Ústav imunologie 2.LF UK a FN Motol Metody, ve kterých se používají protilátky Neznačený antigen/protilátka Precipitace Aglutinace Značený

Více

BIOLOGICKÁ MEMBRÁNA Prokaryontní Eukaryontní KOMPARTMENTŮ

BIOLOGICKÁ MEMBRÁNA Prokaryontní Eukaryontní KOMPARTMENTŮ BIOMEMRÁNA BIOLOGICKÁ MEMBRÁNA - všechny buňky na povrchu plazmatickou membránu - Prokaryontní buňky (viry, bakterie, sinice) - Eukaryontní buňky vnitřní členění do soustavy membrán KOMPARTMENTŮ - za

Více

Jazykové gymnázium Pavla Tigrida, Ostrava-Poruba Název projektu: Podpora rozvoje praktické výchovy ve fyzice a chemii

Jazykové gymnázium Pavla Tigrida, Ostrava-Poruba Název projektu: Podpora rozvoje praktické výchovy ve fyzice a chemii Datum: Jazykové gymnázium Pavla Tigrida, Ostrava-Poruba Název projektu: Podpora rozvoje praktické výchovy ve fyzice a chemii Tlak vzduchu: Teplota vzduchu: Laboratorní cvičení č. Oddělování složek směsí

Více

HbA1c. Axis - Shield. Společnost je zapsána v obchodním rejstříku Městského soudu v Praze, odd. C vložka 1299

HbA1c. Axis - Shield. Společnost je zapsána v obchodním rejstříku Městského soudu v Praze, odd. C vložka 1299 Lékařská technika a speciální zdravotní materiál Společnost je zapsána v obchodním rejstříku Městského soudu v Praze, odd. C vložka 1299 Obchodní 110, 251 70 Praha Čestlice Tel. +420 296 328 300 Fax. +420

Více

Vybrané metody studia buněčných procesů KBB/VMSBP STUDIUM PROTEINOVÝCH INTERAKCÍ IN VITRO

Vybrané metody studia buněčných procesů KBB/VMSBP STUDIUM PROTEINOVÝCH INTERAKCÍ IN VITRO Implementace laboratorní medicíny do systému vzdělávání na Univerzitě Palackého v Olomouci reg. č.: CZ.1.07/2.2.00/28.0088 Vybrané metody studia buněčných procesů KBB/VMSBP STUDIUM PROTEINOVÝCH INTERAKCÍ

Více

Vybraná vyšetření u pacientů s diabetes mellitus

Vybraná vyšetření u pacientů s diabetes mellitus ÚSTAV LÉKAŘSKÉ BIOCHEMIE A LABORATORNÍ DIAGNOSTIKY 1. LF UK Vybraná vyšetření u pacientů s diabetes mellitus Praktické cvičení z lékařské biochemie Všeobecné lékařství Martin Vejražka 2018/19 Obsah 1.

Více

Protokol 04. pšeničná bílkovina. masné výrobky. zkrácená verze

Protokol 04. pšeničná bílkovina. masné výrobky. zkrácená verze 1 Popis vzorku Podle protokolu č. 04 lze vyšetřit vzorky různých druhů masných výrobků na přítomnost pšeničné bílkoviny. 2 Detekční limit vyšetření Přítomnost pšeničné bílkoviny lze spolehlivě prokázat,

Více

Vybrané úlohy z toxikologie

Vybrané úlohy z toxikologie ÚSTAV LÉKAŘSKÉ BIOCHEMIE A LABORATORNÍ DIAGNOSTIKY 1. LF UK Vybrané úlohy z toxikologie Praktické cvičení z lékařské biochemie Všeobecné lékařství Martin Vejražka 2018/19 Obsah 1. TENKOVRSTEVNÁ CHROMATOGRAFIE

Více

Stanovení izoelektrického bodu kaseinu

Stanovení izoelektrického bodu kaseinu Stanovení izoelektrického bodu kaseinu Shlukování koloidních částic do větších celků makroskopických rozměrů nazýváme koagulací. Ke koagulaci koloidních roztoků bílkovin dochází porušením solvatačního

Více

2) Připravte si 3 sady po šesti zkumavkách. Do všech zkumavek pipetujte 0.2 ml roztoku BAPNA o různé koncentraci podle tabulky.

2) Připravte si 3 sady po šesti zkumavkách. Do všech zkumavek pipetujte 0.2 ml roztoku BAPNA o různé koncentraci podle tabulky. CVIČENÍ Z ENZYMOLOGIE 1) Stanovení Michaelisovy konstanty trypsinu pomocí chromogenního substrátu. Aktivita trypsinu se určí změřením rychlosti hydrolýzy chromogenního substrátu BAPNA (Nα-benzoyl-L-arginin-p-nitroanilid)

Více

První testový úkol aminokyseliny a jejich vlastnosti

První testový úkol aminokyseliny a jejich vlastnosti První testový úkol aminokyseliny a jejich vlastnosti Vysvětlete co znamená pojem α-aminokyselina Jaký je rozdíl mezi D a L řadou aminokyselin Kolik je základních stavebních aminokyselin a z čeho jsou odvozeny

Více

Rekombinantní protilátky, bakteriofágy, aptamery a peptidové scaffoldy pro analytické a terapeutické účely Luděk Eyer

Rekombinantní protilátky, bakteriofágy, aptamery a peptidové scaffoldy pro analytické a terapeutické účely Luděk Eyer Rekombinantní protilátky, bakteriofágy, aptamery a peptidové scaffoldy pro analytické a terapeutické účely Luděk Eyer Virologie a diagnostika Výzkumný ústav veterinárního lékařství, v.v.i., Brno Alternativní

Více

Identifikace mikroorganismů pomocí sekvence jejich genu pro 16S rrna

Identifikace mikroorganismů pomocí sekvence jejich genu pro 16S rrna Praktická úloha Identifikace mikroorganismů pomocí sekvence jejich genu pro 16S rrna Pro spolehlivou identifikaci mikroorganismů pomocí genetických metod se velmi často využívá stanovení nukleotidové sekvence

Více

VÝZNAM FUNKCE PROTEINŮ V MEDICÍNĚ

VÝZNAM FUNKCE PROTEINŮ V MEDICÍNĚ FUNKCE PROTEINŮ 1 VÝZNAM FUNKCE PROTEINŮ V MEDICÍNĚ Příklad: protein: dystrofin onemocnění: Duchenneova svalová dystrofie 2 3 4 FUNKCE PROTEINŮ: 1. Vztah struktury a funkce proteinů 2. Rodiny proteinů

Více

Bílkoviny a rostlinná buňka

Bílkoviny a rostlinná buňka Bílkoviny a rostlinná buňka Bílkoviny Rostliny --- kontinuální diferenciace vytváření orgánů: - mitotická dělení -zvětšování buněk a tvorba buněčné stěny syntéza bílkovin --- fotosyntéza syntéza bílkovin

Více

DIAGNOSTICKÝ KIT PRO DETEKCI MINIMÁLNÍ REZIDUÁLNÍ CHOROBY U KOLOREKTÁLNÍHO KARCINOMU

DIAGNOSTICKÝ KIT PRO DETEKCI MINIMÁLNÍ REZIDUÁLNÍ CHOROBY U KOLOREKTÁLNÍHO KARCINOMU Úvod IntellMed, s.r.o., Václavské náměstí 820/41, 110 00 Praha 1 DIAGNOSTICKÝ KIT PRO DETEKCI MINIMÁLNÍ REZIDUÁLNÍ CHOROBY U KOLOREKTÁLNÍHO KARCINOMU Jednou z nejvhodnějších metod pro detekci minimální

Více

RADIOIMUNOANALÝZA (RADIOIMMUNOASSAY) Převzato: sciencephoto.com Test krve hepatitis virus

RADIOIMUNOANALÝZA (RADIOIMMUNOASSAY) Převzato: sciencephoto.com Test krve hepatitis virus RADIOIMUNOANALÝZA (RADIOIMMUNOASSAY) Převzato: sciencephoto.com Test krve hepatitis virus RADIOIMUNOANALÝZA Stanovení látek, proti kterým lze připravit protilátky ng (10-9 g) až pg (10-12 g) ve složitých

Více

laktoferin BSA α S2 -CN α S1 -CN Popis: BSA bovinní sérový albumin, CN kasein, LG- laktoglobulin, LA- laktalbumin

laktoferin BSA α S2 -CN α S1 -CN Popis: BSA bovinní sérový albumin, CN kasein, LG- laktoglobulin, LA- laktalbumin Aktivita KA 2340/4-8up Stanovení bílkovin v mléce pomocí SDS PAGE (elektroforéza na polyakrylamidovém gelu s přídavkem dodecyl sulfátu sodného) vypracovala: MVDr. Michaela Králová, Ph.D. Princip: Metoda

Více

Jednotné pracovní postupy zkoušení krmiv STANOVENÍ OBSAHU KOBALTU METODOU ICP-MS

Jednotné pracovní postupy zkoušení krmiv STANOVENÍ OBSAHU KOBALTU METODOU ICP-MS Národní referenční laboratoř Strana 1 STANOVENÍ OBSAHU KOBALTU METODOU ICP-MS 1 Rozsah a účel Metoda specifikuje podmínky pro stanovení celkového obsahu kobaltu v krmivech metodou hmotnostní spektrometrie

Více

Imunoblot, imunoelektroforéza

Imunoblot, imunoelektroforéza Imunoblot, imunoelektroforéza Jana Švarcová. Plazmatické proteiny. http://slideplayer.cz/slide/2345714/ Jana Švarcová. Plazmatické proteiny. http://slideplayer.cz/slide/2345714/ Jana Švarcová. Plazmatické

Více

Jazykové gymnázium Pavla Tigrida, Ostrava-Poruba Název projektu: Podpora rozvoje praktické výchovy ve fyzice a chemii

Jazykové gymnázium Pavla Tigrida, Ostrava-Poruba Název projektu: Podpora rozvoje praktické výchovy ve fyzice a chemii Datum: Jazykové gymnázium Pavla Tigrida, Ostrava-Poruba Název projektu: Podpora rozvoje praktické výchovy ve fyzice a chemii Laboratorní cvičení č. Tlak vzduchu: Teplota vzduchu: Bílkoviny(proteiny) Vlhkost

Více

Standardní operační postup

Standardní operační postup Standardní operační postup CHOL_1 Stanovení cholesterolu v potravinách metodou HPLC V Brně dne 20. 3. 2011 Vypracoval: RNDr. Ivana Borkovcová, Ph.D. 1. Princip Po alkalické hydrolýze (saponifikaci, zmýdelnění)

Více

PO STOPÁCH BAKTERIÍ V/KOLEM NÁS

PO STOPÁCH BAKTERIÍ V/KOLEM NÁS PO STOPÁCH BAKTERIÍ V/KOLEM NÁS Jana Spáčilová, UK v Praze, PřF, Katedra buněčné biologie Svět bakterií je nesmírně druhově bohatý a máme ho blíž než před očima. Mikroskopickými metodami můžeme obdivovat

Více

Elektroforéza. Rozdělení proteinů na základě pohyblivosti v el. poli

Elektroforéza. Rozdělení proteinů na základě pohyblivosti v el. poli Elektroforéza Rozdělení proteinů na základě pohyblivosti v el. poli K realizaci je nutné mít: Stejnosměrný el. proud Speciální elektroforetické vany Vhodný pufr a nosič (dříve papír, acetátcelulóza, agar)

Více

UHLOVODÍKY A HALOGENDERIVÁTY

UHLOVODÍKY A HALOGENDERIVÁTY LABORATORNÍ PRÁCE Č. 25 UHLOVODÍKY A HALOGENDERIVÁTY PRINCIP Uhlovodíky jsou nejjednodušší organické sloučeniny, jejichž molekuly jsou tvořeny pouze uhlíkem a vodíkem. Uhlovodíky klasifikujeme z několika

Více

Chelatometrie. Stanovení tvrdosti vody

Chelatometrie. Stanovení tvrdosti vody Chelatometrie Stanovení tvrdosti vody CHELATOMETRIE Cheláty (vnitřně komplexní sloučeniny; řecky chelé = klepeto) jsou komplexní sloučeniny, kde centrální ion je členem jednoho nebo více vznikajících kruhů.

Více

Vybrané imunochemické metody

Vybrané imunochemické metody ÚSTAV LÉKAŘSKÉ BIOCHEMIE A LABORATORNÍ DIAGNOSTIKY 1. LF UK Vybrané imunochemické metody Praktické cvičení z lékařské biochemie Všeobecné lékařství Lenka Fialová 2013 Úloha 1 Imunoprecipitační křivka lidského

Více

Elektroforéza. Rozdělení proteinů na základě pohyblivosti v el. poli

Elektroforéza. Rozdělení proteinů na základě pohyblivosti v el. poli Elektroforéza Rozdělení proteinů na základě pohyblivosti v el. poli K realizaci je nutné mít: Stejnosměrný el. proud Speciální elektroforetické vany Vhodný pufr a nosič (dříve papír, acetátcelulóza, agar)

Více

Jednotné pracovní postupy zkoušení krmiv STANOVENÍ OBSAHU MYKOTOXINŮ METODOU LC-MS - FUMONISIN B 1 A B 2

Jednotné pracovní postupy zkoušení krmiv STANOVENÍ OBSAHU MYKOTOXINŮ METODOU LC-MS - FUMONISIN B 1 A B 2 Národní referenční laboratoř Strana 1 STANOVENÍ OBSAHU MYKOTOXINŮ METODOU LC-MS - FUMONISIN B 1 A B 2 1 Rozsah a účel Metoda je vhodná pro stanovení fumonisinů B 1 a B 2 v krmivech. 2 Princip Fumonisiny

Více

Rapid-VIDITEST. H. pylori. (Jednokrokový kazetový test pro in vitro diagnostiku Helicobacter pylori ve stolici ) Návod k použití soupravy

Rapid-VIDITEST. H. pylori. (Jednokrokový kazetový test pro in vitro diagnostiku Helicobacter pylori ve stolici ) Návod k použití soupravy Rapid-VIDITEST H. pylori (Jednokrokový kazetový test pro in vitro diagnostiku Helicobacter pylori ve stolici ) Návod k použití soupravy Výrobce: VIDIA spol. s r.o., Nad Safinou II 365, Vestec, 252 42 Jesenice

Více

Protilátky proti Helicobacter pylori (IgG) Návod na použití ELISA testu

Protilátky proti Helicobacter pylori (IgG) Návod na použití ELISA testu Protilátky proti Helicobacter pylori (IgG) Návod na použití ELISA testu Objednací číslo Určení Ig-třída Substrát Formát EI 2080-9601 G Helicobacter pylori IgG Ag-potažené mikrotitrační jamky 96 x 01 (96)

Více

Jednotné pracovní postupy zkoušení krmiv STANOVENÍ OBSAHU MYKOTOXINŮ METODOU LC-MS - aflatoxin B1, B2, G1 a G2

Jednotné pracovní postupy zkoušení krmiv STANOVENÍ OBSAHU MYKOTOXINŮ METODOU LC-MS - aflatoxin B1, B2, G1 a G2 Národní referenční laboratoř Strana 1 STANOVENÍ OBSAHU MYKOTOXINŮ METODOU LC-MS - aflatoxin B1, B2, G1 a G2 1 Rozsah a účel Metoda je vhodná pro stanovení aflatoxinů B1, B2, G1 a G2 v krmivech. 2 Princip

Více

Jednotné pracovní postupy zkoušení krmiv Stanovení obsahu celkového a volného tryptofanu metodou HPLC

Jednotné pracovní postupy zkoušení krmiv Stanovení obsahu celkového a volného tryptofanu metodou HPLC Strana 1 STANOVENÍ OBSAHU CELKOVÉHO A VOLNÉHO TRYPTOFANU METODOU HPLC 1 Rozsah a účel Metoda specifikuje podmínky pro stanovení obsahu celkového a volného tryptofanu v krmivech metodou vysokoúčinné kapalinové

Více

Praktický kurz Praktický kurz monitorování apoptózy a autofágie u nádorových prostatických buněk pomocí průtokové cytometrie

Praktický kurz Praktický kurz monitorování apoptózy a autofágie u nádorových prostatických buněk pomocí průtokové cytometrie Laboratoř Metalomiky a Nanotechnologií Praktický kurz Praktický kurz monitorování apoptózy a autofágie u nádorových prostatických buněk pomocí průtokové cytometrie Nastavení průtokového cytometru a jeho

Více

STANOVENÍ SIŘIČITANŮ VE VÍNĚ

STANOVENÍ SIŘIČITANŮ VE VÍNĚ STANOVENÍ SIŘIČITANŮ VE VÍNĚ CÍLE ÚLOHY: seznámit se s principy izotachoforézy a jodometrické titrace kvantitativně stanovit siřičitany v bílém víně oběma metodami POUŽITÉ VYBAVENÍ: Chemikálie: ITP 10mM

Více