Teorie systémů TES 1. Úvod

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Teorie systémů TES 1. Úvod"

Transkript

1 Evropský sociální fond. Praha & EU: Investujeme do vaší budoucnosti. Teorie systémů TES 1. Úvod ZS 2011/2012 prof. Ing. Petr Moos, CSc. Ústav informatiky a telekomunikací Fakulta dopravní ČVUT v Praze Petr Moos, 2011

2 Moos, P., Malinovský, V.: Informační systémy a technologie, ČVUT, 2006 Vlček, J.: Systémové inženýrství, ČVUT, 1999 MI-TES: 1. Úvod (Petr Moos) 2

3 Informace informační systém MI-TES: 1. Úvod (Petr Moos) 3

4 MI-TES: 1. Úvod (Petr Moos) 4

5 Teorie systémů Patří mezi vědní disciplíny Má svůj předmět zkoumání prvky, vazby, procesy Má metody zkoumání systému, jeho okolí, zobrazení systému, analýzu, optimalizaci struktury i jeho chování, metody syntézy a realizaci MI-TES: 1. Úvod (Petr Moos) 5

6 Teorie systémů Zahrnuje : systémové teorie obecná teorie systémů kybernetika systémové aplikace systémová analýza a syntéza operační výzkum systémové inženýrství pomocné disciplíny teorie množin teorie grafů teorie algoritmů teorie her teorie automatů MI-TES: 1. Úvod (Petr Moos) 6

7 Teorie systémů MI-TES: 1. Úvod (Petr Moos) 7

8 Přínosy teorie systémů Studium systémů teoretický rozvoj systémového myšlení aplikace systémového myšlení pro řešení problémů hard-systems (systémové inženýrství) rozhodovací systémy soft-systems MI-TES: 1. Úvod (Petr Moos) 8

9 Co je systém Model objektu, abstraktní objekt vytvořený procesem poznávání, odrážející systémové vlastnosti reality Formální logické konstrukce Aplikace obecných systémů na reálné systémy usnadňuje poznávání statických a dynamických vlastností zkoumaných objektů Jedná se o model (zjednodušení), aproximace nesmí ovlivnit relevanci zkoumání reality někdy se pojem systém používá i pro reálné systémy, aby se zdůraznil systémový pohled MI-TES: 1. Úvod (Petr Moos) 9

10 Definice systému Systém je množina prvků ve vzájemné interakci. Systém je množina vzájemně propojených komponent, které na sebe vzájemně působí (spolupůsobí) směrem ke společnému cíli. MI-TES: 1. Úvod (Petr Moos) 10

11 Podrobnější definice systému Systém je ohraničený nebo distribuovaný objekt schopný reagovat na externí podněty, v průběhu této reakce vzájemně reagují vnitřní části systému a vzniká tím vnitřní i vnější efekt. části systému prvky, vazby a dále hranice funkce odpovědi na vnější podněty vnitřní komponenty procesy vlastnosti MI-TES: 1. Úvod (Petr Moos) 11

12 Přínosy teorie systémů Studium systémů teoretický rozvoj systémového myšlení aplikace systémového myšlení pro řešení problémů hard-systems (systémové inženýrství) rozhodovací systémy soft-systems MI-TES: 1. Úvod (Petr Moos) 12

13 Definice systému - zjednodušená S = (P, V) P = {p i }, i I V = {v ij }, i, j I P množina prvků (univerzum systému) V množina vazeb (struktura systému) I množina indexů Prvky elementární části systému Vazby vzájemné závislosti nebo působení mezi prvky (kauzální vztahy, způsoby spojení, souvislosti mezi jevy, matematické vztahy, informační vazby apod.) MI-TES: 1. Úvod (Petr Moos) 13

14 Komplexní model systému (Prof. J. Vlček, ČVUT 1992) S = (P, V, M, g, d) A množina prvků, každý prvek spojen s nárokem na kapacitu V soustava vazeb mezi dvojicemi prvků vnější, vnitřní měřitelné, lze jim přiřadit parametry M kardinální číslo, počet možných procesů vzniklých zřetězením v ij g podmnožina M, aktivované procesy, nazývají se chování systému, od ostatních se procesů liší čerpáním kapacit d podmnožina M, procesy s nejlepšími předpoklady pro chování (obsahují nejvíce silných schopností) MI-TES: 1. Úvod (Petr Moos) 14

15 Typy systémů Obecný systém obecný abstraktní model systémových jevů formální, nemají žádný obsah slouží jako stavební prvky modelů konkrétních objektů často popisovány matematicky - soustavy lineárních rovnic, nerovnic, výrokových funkcí apod. Reálný systém systém zavedený na konkrétním objektu obraz objektu vytvářený při zkoumání = zavádění (definování) reálného systému na objektu Koncepční systém koncepční představa vytvořená v procesu analýzy projekty, plány, strategie, teorie reálné a koncepční systémy často popisovány pomocí verbálních prostředků, schémat, grafů apod. MI-TES: 1. Úvod (Petr Moos) 15

16 Klasifikace systémů jednoduché / složité uzavřené / otevřené spojité / diskrétní deterministické / stochastické statické / dynamické adaptivní / neadaptivní trvalé / dočasné MI-TES: 1. Úvod (Petr Moos) 16

17 Základní pojmy Reálný systém - systém zavedený na konkrétním objektu, obraz objektu vytvářený při zkoumání = zavádění (definování) reálného systému na objektu Abstraktní systém formální systémy bez konkrétního obsahu, vyjádřeny soustavou rovnic apod. Metasystém systém, jehož některé prvky tvoří vlastnosti základního systému- používají se při studiu daného systému - uspořádaní výroků o vlastnostech základního systému do systému nového, koncepční představa o systému vytvořená v procesu analýzy, projekty, plány, zobrazení pomocí grafů, verbálně Univerzum systému - množina prvků systému MI-TES: 1. Úvod (Petr Moos) 17

18 Základní pojmy Okolí systému - (prostředí environment) soubor prvků, které nejsou částmi systému, ale jejichž změna může způsobit změnu stavu systému, a těch prvků, jejichž vlastnosti se mohou měnit chováním systému Vstupy/výstupy systému vstup (input): to, co vstupuje do systému (externí prvky vstupující do systému), výstup (output): to, co vystupuje ze systému (externí prvky vystupující ze systému), výsledek procesu nebo konečný stav systému Hraniční prvky vstupní, výstupní (má alespoň jednu vazbu s prvkem, který není prvkem systému) Hranice systému - rozhraní systému (boundary interface): množina hraničních prvků systému, rozhraní systému, kudy vstupují prvky z okolí a vystupují výstupy ze systému, rozhraní = vazba mezi systémy Vstupní/výstupní prvek systému MI-TES: 1. Úvod (Petr Moos) 18

19 Analýza a syntéza systému MI-TES: 1. Úvod (Petr Moos) 19

20 Základní pojmy Otevřený systém existuje alespoň jeden prvek s vazbou na okolí Uzavřený (izolovaný) systém izolovaný, neexistuje prvek s vazbou na okolí. relativně uzavřený systém charakteristiky prvků dále nedělitelná část celku (na dané rozlišovací úrovni tvoří dále nedělitelný celek, jehož strukturu nechceme nebo nemůžeme rozlišit), část systému, v níž probíhá transformační proces, vnitřní (má vazby jen s prvky stejného systému), hraniční vstupní, výstupní (má alespoň jednu vazbu s prvkem, který není prvkem systému), externí vnější (má alespoň jednu vazbu s prvkem, který je prvkem systému): vstupy a výstupy, tranzitivní prvek (transient element): prochází systémem, určitou dobu je jeho součástí (externí vnitřní externí) MI-TES: 1. Úvod (Petr Moos) 20

21 Základní pojmy Atribut (vlastnost, charakteristika) prvku určuje prvek po kvalitativní nebo kvantitativní stránce Parametry vazeb systému určuje posloupnost procesů, tj. určuje, že výstup některého procesu je současně vstupem jiného určitého procesu Interface (rozhraní) rozhraní systému, kudy vstupují prvky z okolí a vystupují výstupy ze systému, rozhraní = vazba mezi systémy Struktura systému skladba či uspořádání prvků a vazeb, množina vzájemných vztahů, jimiž jsou spjaty prvky uvnitř systému a které umožňují předvídat chování systému. Struktura je binární relací definovaná na úplném kartézském součinu. MI-TES: 1. Úvod (Petr Moos) 21

22 Stav systému, stavové veličiny, události, procesy Stav systému souhrn přesně definovaných podmínek nebo vlastností systému Stavové veličiny: statický/dynamický systém deterministický/stochastický systém vstupní/výstupní/systémové veličiny transformační funkce, algoritmus stavový vektor - x(t) X X = {x}, x=(x 1, x 2 x n ) x i stavové veličiny (proměnné) potenciálové, intenzitní, tokové, rychlostní chování systému změna hodnot systémových veličin v čase (u dynamických systémů) MI-TES: 1. Úvod (Petr Moos) 22

23 Další pojmy subsystém S i = (P i, V i ) je subsystém systému S=(P, V) P i P, V i = V V i V i množina možných vazeb mezi prvky P i dílčí systém P i = P, V i V metasystém rozsáhlejší systém, který obsahuje daný systém jako svůj subsystém Subsystém: systém, který vznikne vypuštěním některých prvků a vazeb, které na vypuštěné prvky navazují. Pro podsystém vzniká nové okolí, do kterého patří ostatní podsystémy. Dílčí podsystém obsahuje stejný počet prvků, ale byl omezen rozsah vazeb. Nad celým systémem se provádí globální analýza a syntéza, nad podsystémy se provádí detailní analýza a syntéza. MI-TES: 1. Úvod (Petr Moos) 23

24 Analytické pojmy spojení systémů systém S =(P, V ) je spojením subsystémů S 1 = (P 1, V 1 ) a S 2 = (P 2, V 2 ) systému S = (P, V) kde P = P 1 P 2, V = V V V i množina možných vazeb mezi prvky P označujeme S = S 1 S 2 rozklad (dekompozice) systému soustava {S 1, S 2, S n } je rozklad systému S, když S 1 S 2 S n = S a P i P j = pro i j rozlišovací úroveň MI-TES: 1. Úvod (Petr Moos) 24

25 Popis systému Metody popisu Verbální Blokové diagramy Grafy Matice uzly prvky, hrany (orientované, neorientovné) vazby monostruktura mezi prvky v každém směru maximálně jedna orientovaná hrana multistruktura mezi dvěma prvky systému v jednom směru i více vazeb různého typu incidenční maticí grafu (=precedenční matice systému) matice sousednosti Množiny S = (P, V) Rovnice Přenosové funkce, Citlivostní funkce MI-TES: 1. Úvod (Petr Moos) 25

26 Stavové veličiny systému Potenciálové: Napětí Síla Tlak Teplota Výše hladiny Objem peněz Rychlostní tokové: Proud Rychlost pohybu mech. tělesa Rychlost proudění Tepelný tok Průtok Finanční obrat.. MI-TES: 1. Úvod (Petr Moos) 26

27 Analýza a syntéza systému Definici systému můžeme zapsat ve tvaru S = F {A(ai), H(hj), G(gk)} a i - funkce prvku h j - parametrické věty hran G(g k ) - představuje genetický kód systému pro složky g k Časový vývoj chování systému při uplatnění genetických vlastnosti reprezentovaných subgrafem [g] můžeme vyjádřit ve tvaru S(t i ) = g([g](t)) S(t o ) MI-TES: 1. Úvod (Petr Moos) 27

28 Děkuji za pozornost!. MI-TES: 1. Úvod (Petr Moos) 28

U Úvod do modelování a simulace systémů

U Úvod do modelování a simulace systémů U Úvod do modelování a simulace systémů Vyšetřování rozsáhlých soustav mnohdy nelze provádět analytickým výpočtem.často je nutné zkoumat chování zařízení v mezních situacích, do kterých se skutečné zařízení

Více

Modelování a simulace Lukáš Otte

Modelování a simulace Lukáš Otte Modelování a simulace 2013 Lukáš Otte Význam, účel a výhody MaS Simulační modely jsou nezbytné pro: oblast vědy a výzkumu (základní i aplikovaný výzkum) analýzy složitých dyn. systémů a tech. procesů oblast

Více

SIGNÁLY A LINEÁRNÍ SYSTÉMY

SIGNÁLY A LINEÁRNÍ SYSTÉMY SIGNÁLY A LINEÁRNÍ SYSTÉMY prof. Ing. Jiří Holčík, CSc. INVESTICE Institut DO biostatistiky ROZVOJE VZDĚLÁVÁNÍ a analýz VII. SYSTÉMY ZÁKLADNÍ POJMY SYSTÉM - DEFINICE SYSTÉM (řec.) složené, seskupené (v

Více

Informační a znalostní systémy jako podpora rozhodování

Informační a znalostní systémy jako podpora rozhodování Informační systémy a technologie Informační a znalostní systémy jako podpora rozhodování Petr Moos - ČVUT VŠL Přerov listopad 2015 Analýza a syntéza systému Definici systému můžeme zapsat ve tvaru: S =

Více

Systémová teorie a metodologie

Systémová teorie a metodologie Systémová teorie a metodologie Projektování IS - obecně projektování IS není věda, ale oblast praktické lidské činnosti, která má teoretické základy v různých vědních disciplínách (matematika, logika,

Více

Problémové domény a jejich charakteristiky

Problémové domény a jejich charakteristiky Milan Mišovič (ČVUT FIT) Pokročilé informační systémy MI-PIS, 2011, Přednáška 02 1/16 Problémové domény a jejich charakteristiky Prof. RNDr. Milan Mišovič, CSc. Katedra softwarového inženýrství Fakulta

Více

Konečný automat. Studium chování dynam. Systémů s diskrétním parametrem číslic. Počítae, nervové sys, jazyky...

Konečný automat. Studium chování dynam. Systémů s diskrétním parametrem číslic. Počítae, nervové sys, jazyky... Konečný automat. Syntéza kombinačních a sekvenčních logických obvodů. Sekvenční obvody asynchronní, synchronní a pulzní. Logické řízení technologických procesů, zápis algoritmů a formulace cílů řízení.

Více

Profilová část maturitní zkoušky 2013/2014

Profilová část maturitní zkoušky 2013/2014 Střední průmyslová škola, Přerov, Havlíčkova 2 751 52 Přerov Profilová část maturitní zkoušky 2013/2014 TEMATICKÉ OKRUHY A HODNOTÍCÍ KRITÉRIA Studijní obor: 78-42-M/01 Technické lyceum Předmět: TECHNIKA

Více

OOT Objektově orientované technologie

OOT Objektově orientované technologie OOT Objektově orientované technologie Systém, model, modelování Daniela Szturcová Institut geoinformatiky, HGF Osnova přednášky Systém Popis systému Modelování systému Co je systém Co si představujete

Více

Informační systémy 2008/2009. Radim Farana. Obsah. Nástroje business modelování. Business modelling, základní nástroje a metody business modelování.

Informační systémy 2008/2009. Radim Farana. Obsah. Nástroje business modelování. Business modelling, základní nástroje a metody business modelování. 3 Vysoká škola báňská Technická univerzita Ostrava Fakulta strojní, Katedra automatizační techniky a řízení 2008/2009 Radim Farana 1 Obsah Business modelling, základní nástroje a metody business modelování.

Více

Profilová část maturitní zkoušky 2017/2018

Profilová část maturitní zkoušky 2017/2018 Střední průmyslová škola, Přerov, Havlíčkova 2 751 52 Přerov Profilová část maturitní zkoušky 2017/2018 TEMATICKÉ OKRUHY A HODNOTÍCÍ KRITÉRIA Studijní obor: 78-42-M/01 Technické lyceum Předmět: TECHNIKA

Více

ANALÝZA A KLASIFIKACE DAT

ANALÝZA A KLASIFIKACE DAT ANALÝZA A KLASIFIKACE DAT prof. Ing. Jiří Holčík, CSc. INVESTICE Institut DO biostatistiky ROZVOJE VZDĚLÁVÁNÍ a analýz III. PŘÍZNAKOVÁ KLASIFIKACE - ÚVOD PŘÍZNAKOVÝ POPIS Příznakový obraz x zpracovávaných

Více

Matematika PRŮŘEZOVÁ TÉMATA

Matematika PRŮŘEZOVÁ TÉMATA Matematika ročník TÉMA 1-4 Operace s čísly a - provádí aritmetické operace v množině reálných čísel - používá různé zápisy reálného čísla - používá absolutní hodnotu, zapíše a znázorní interval, provádí

Více

TÉMATICKÝ OKRUH Teorie zpracování dat, Databázové a informační systémy a Teorie informačních systémů

TÉMATICKÝ OKRUH Teorie zpracování dat, Databázové a informační systémy a Teorie informačních systémů TÉMATICKÝ OKRUH Teorie zpracování dat, Databázové a informační systémy a Teorie informačních systémů Číslo otázky : 16. Otázka : Funkční a dynamická analýza informačního systému. Obsah : 1. Úvod 2. Funkční

Více

Grafy. doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava. Prezentace ke dni 13.

Grafy. doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava. Prezentace ke dni 13. Grafy doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava Prezentace ke dni 13. března 2017 Jiří Dvorský (VŠB TUO) Grafy 104 / 309 Osnova přednášky Grafy

Více

Vývoj vědeckého myšlení

Vývoj vědeckého myšlení Vývoj vědeckého myšlení Systémovost logistického řešení je spjata se schopností řešit komplexy navzájem souvisejících úkolů. V rámci vývoje vědeckého myšlení uvádí americký autor Waren Weaver tři vývojová

Více

Přijímací zkouška - matematika

Přijímací zkouška - matematika Přijímací zkouška - matematika Jméno a příjmení pište do okénka Číslo přihlášky Číslo zadání 1 Grafy 1 Pro který z následujících problémů není znám žádný algoritmus s polynomiální časovou složitostí? Problém,

Více

Moderní technologie ve studiu aplikované fyziky CZ.1.07/2.2.00/ Množiny, funkce

Moderní technologie ve studiu aplikované fyziky CZ.1.07/2.2.00/ Množiny, funkce Moderní technologie ve studiu aplikované fyziky CZ.1.07/2.2.00/07.0018 2. Množiny, funkce MNOŽIN, ZÁKLDNÍ POJMY Pojem množiny patří v matematice ke stěžejním. Nelze jej zavést ve formě definice pomocí

Více

Architektura informačních systémů. - dílčí architektury - strategické řízení taktické řízení. operativní řízení a provozu. Globální architektura

Architektura informačních systémů. - dílčí architektury - strategické řízení taktické řízení. operativní řízení a provozu. Globální architektura Dílčí architektury Informační systémy - dílčí architektury - EIS MIS TPS strategické řízení taktické řízení operativní řízení a provozu 1 Globální Funkční Procesní Datová SW Technologická HW Aplikační

Více

Automatický optický pyrometr v systémové analýze

Automatický optický pyrometr v systémové analýze ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA DOPRAVNÍ K611 ÚSTAV APLIKOVANÉ MATEMATIKY K620 ÚSTAV ŘÍDÍCÍ TECHNIKY A TELEMATIKY Automatický optický pyrometr v systémové analýze Jana Kuklová, 4 70 2009/2010

Více

Bezpečnost a spolehlivost systémů DIAGNOSTIKA

Bezpečnost a spolehlivost systémů DIAGNOSTIKA Bezpečnost a spolehlivost systémů DIAGNOSTIKA Bakalářské studium - 3.ročník Ing. Tomáš Tichý, Ph.D. 2005 použitá literatura: prof.ing.milan Lánský,DrSc., Ing.Jan Mazánek: DIAGNOSTIKA A INFORMAČNÍ DIAGNOSTICKÉ

Více

Vývoj IS - strukturované paradigma II

Vývoj IS - strukturované paradigma II Milan Mišovič (ČVUT FIT) Pokročilé informační systémy MI-PIS, 2011, Přednáška 05 1/18 Vývoj IS - strukturované paradigma II Prof. RNDr. Milan Mišovič, CSc. Katedra softwarového inženýrství Fakulta informačních

Více

Management projektu III. Fakulta sportovních studií přednáška do předmětu Projektový management ve sportu

Management projektu III. Fakulta sportovních studií přednáška do předmětu Projektový management ve sportu Management projektu III. Fakulta sportovních studií 2016 5. přednáška do předmětu Projektový management ve sportu doc. Ing. Petr Pirožek,Ph.D. Ekonomicko-správní fakulta Lipova 41a 602 00 Brno Email: pirozek@econ.muni.cz

Více

7. Rozdělení pravděpodobnosti ve statistice

7. Rozdělení pravděpodobnosti ve statistice 7. Rozdělení pravděpodobnosti ve statistice Statistika nuda je, má však cenné údaje, neklesejte na mysli, ona nám to vyčíslí Jednou z úloh statistiky je odhad (výpočet) hodnot statistického znaku x i,

Více

MATURITNÍ TÉMATA Z MATEMATIKY

MATURITNÍ TÉMATA Z MATEMATIKY MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické

Více

Učitelství 1. stupně ZŠ tématické plány předmětů matematika

Učitelství 1. stupně ZŠ tématické plány předmětů matematika Učitelství 1. stupně ZŠ tématické plány předmětů matematika Povinné předměty: Matematika I aritmetika (KMD/MATE1) 2 Matematika 3 aritmetika s didaktikou (KMD/MATE3) 3 Matematika 5 geometrie (KMD/MATE5)

Více

1 Nejkratší cesta grafem

1 Nejkratší cesta grafem Bakalářské zkoušky (příklady otázek) podzim 2014 1 Nejkratší cesta grafem 1. Uvažujte graf s kladným ohodnocením hran (délka). Definujte formálně problém hledání nejkratší cesty mezi dvěma uzly tohoto

Více

Otázky ke státní závěrečné zkoušce

Otázky ke státní závěrečné zkoušce Otázky ke státní závěrečné zkoušce obor Ekonometrie a operační výzkum a) Diskrétní modely, Simulace, Nelineární programování. b) Teorie rozhodování, Teorie her. c) Ekonometrie. Otázka č. 1 a) Úlohy konvexního

Více

2. Množiny, funkce. Poznámka: Prvky množiny mohou být opět množiny. Takovou množinu, pak nazýváme systém množin, značí se

2. Množiny, funkce. Poznámka: Prvky množiny mohou být opět množiny. Takovou množinu, pak nazýváme systém množin, značí se MNOŽIN, ZÁKLDNÍ POJMY Pojem množiny patří v matematice ke stěžejním. Nelze jej zavést ve formě definice pomocí primitivních pojmů; považuje se totiž rovněž za pojem primitivní. Představa o pojmu množina

Více

Algoritmus. Přesné znění definice algoritmu zní: Algoritmus je procedura proveditelná Turingovým strojem.

Algoritmus. Přesné znění definice algoritmu zní: Algoritmus je procedura proveditelná Turingovým strojem. Algoritmus Algoritmus je schematický postup pro řešení určitého druhu problémů, který je prováděn pomocí konečného množství přesně definovaných kroků. nebo Algoritmus lze definovat jako jednoznačně určenou

Více

TÉMATICKÝ OKRUH Softwarové inženýrství

TÉMATICKÝ OKRUH Softwarové inženýrství TÉMATICKÝ OKRUH Softwarové inženýrství Číslo otázky : 24. Otázka : Implementační fáze. Postupy při specifikaci organizace softwarových komponent pomocí UML. Mapování modelů na struktury programovacího

Více

3. Úloha o společném rozhraní

3. Úloha o společném rozhraní 34 3. Úloha o společném rozhraní Cíle Po prostudování této kapitoly budete schopni: Zjistit neregularity v systému Navrhnout řešení pro odstranění neregulárních vazeb Doba potřebná ke studiukapitoly:60minut

Více

RELACE, OPERACE. Relace

RELACE, OPERACE. Relace RELACE, OPERACE Relace Užití: 1. K popisu (evidenci) nějaké množiny objektů či jevů, které lze charakterizovat pomocí jejich vlastnostmi. Entita je popsána pomocí atributů. Ty se vybírají z domén. Různé

Více

B) výchovné a vzdělávací strategie jsou totožné se strategiemi vyučovacího předmětu Matematika.

B) výchovné a vzdělávací strategie jsou totožné se strategiemi vyučovacího předmětu Matematika. 4.8.3. Cvičení z matematiky Předmět Cvičení z matematiky je vyučován v sextě a v septimě jako volitelný předmět. Vzdělávací obsah vyučovacího předmětu Cvičení z matematiky vychází ze vzdělávací oblasti

Více

POLITICKÝ PROCES NA LOKÁLNÍ A REGIONÁLNÍ ÚROVNI

POLITICKÝ PROCES NA LOKÁLNÍ A REGIONÁLNÍ ÚROVNI POLITICKÝ PROCES NA LOKÁLNÍ A REGIONÁLNÍ ÚROVNI Úskalí zkoumání lokálního a regionálního politického života mechanické přenášení poznatků z národní úrovně na úroveň regionální a lokální předčasné zobecňování

Více

Maturitní otázky z předmětu PROGRAMOVÁNÍ

Maturitní otázky z předmětu PROGRAMOVÁNÍ Wichterlovo gymnázium, Ostrava-Poruba, příspěvková organizace Maturitní otázky z předmětu PROGRAMOVÁNÍ 1. Algoritmus a jeho vlastnosti algoritmus a jeho vlastnosti, formy zápisu algoritmu ověřování správnosti

Více

Aplikovaná numerická matematika

Aplikovaná numerická matematika Aplikovaná numerická matematika 6. Metoda nejmenších čtverců doc. Ing. Róbert Lórencz, CSc. České vysoké učení technické v Praze Fakulta informačních technologií Katedra počítačových systémů Příprava studijních

Více

Středoškolská technika SCI-Lab

Středoškolská technika SCI-Lab Středoškolská technika 2016 Setkání a prezentace prací středoškolských studentů na ČVUT SCI-Lab Kamil Mudruňka Gymnázium Dašická 1083 Dašická 1083, Pardubice O projektu SCI-Lab je program napsaný v jazyce

Více

Dodatek č. 3 ke školnímu vzdělávacímu programu. Strojírenství. (platné znění k 1. 9. 2009)

Dodatek č. 3 ke školnímu vzdělávacímu programu. Strojírenství. (platné znění k 1. 9. 2009) Střední průmyslová škola Jihlava tř. Legionářů 1572/3, Jihlava Dodatek č. 3 ke školnímu vzdělávacímu programu Strojírenství (platné znění k 1. 9. 09) Tento dodatek nabývá platnosti dne 1. 9. 13 (počínaje

Více

Základní pojmy; algoritmizace úlohy Osnova kurzu

Základní pojmy; algoritmizace úlohy Osnova kurzu Osnova kurzu 1) 2) Teorie logického řízení 3) Fuzzy logika 4) Algebra blokových schémat 5) Vlastnosti členů regulačních obvodů 6) Vlastnosti regulátorů 7) Stabilita regulačního obvodu 8) Kvalita regulačního

Více

Diferenciální rovnice a jejich aplikace. (Brkos 2011) Diferenciální rovnice a jejich aplikace 1 / 36

Diferenciální rovnice a jejich aplikace. (Brkos 2011) Diferenciální rovnice a jejich aplikace 1 / 36 Diferenciální rovnice a jejich aplikace Zdeněk Kadeřábek (Brkos 2011) Diferenciální rovnice a jejich aplikace 1 / 36 Obsah 1 Co to je derivace? 2 Diferenciální rovnice 3 Systémy diferenciálních rovnic

Více

Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od jara 2014

Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od jara 2014 Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od jara 2014 Zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia

Více

Učitelství 2. stupně ZŠ tématické plány předmětů matematika

Učitelství 2. stupně ZŠ tématické plány předmětů matematika Učitelství 2. stupně ZŠ tématické plány předmětů matematika Povinné předměty: Matematická analýza I (KMD/MANA1)...2 Úvod do teorie množin (KMD/TMNZI)...4 Algebra 2 (KMD/ALGE2)...6 Konstruktivní geometrie

Více

Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014. 1. Obor reálných čísel

Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014. 1. Obor reálných čísel Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014 1. Obor reálných čísel - obor přirozených, celých, racionálních a reálných čísel - vlastnosti operací (sčítání, odčítání, násobení, dělení) -

Více

Teoretická informatika Tomáš Foltýnek Teorie čísel Nekonečno

Teoretická informatika Tomáš Foltýnek Teorie čísel Nekonečno Tomáš Foltýnek foltynek@pef.mendelu.cz Teorie čísel Nekonečno strana 2 Opakování z minulé přednášky Jak je definována podmnožina, průnik, sjednocení, rozdíl? Jak je definována uspořádaná dvojice a kartézský

Více

Základy informatiky. Teorie grafů. Zpracoval: Pavel Děrgel Úprava: Daniela Szturcová

Základy informatiky. Teorie grafů. Zpracoval: Pavel Děrgel Úprava: Daniela Szturcová Základy informatiky Teorie grafů Zpracoval: Pavel Děrgel Úprava: Daniela Szturcová Obsah přednášky Barvení mapy Teorie grafů Definice Uzly a hrany Typy grafů Cesty, cykly, souvislost grafů Barvení mapy

Více

Modely teorie grafů, min.kostra, max.tok, CPM, MPM, PERT

Modely teorie grafů, min.kostra, max.tok, CPM, MPM, PERT PEF ČZU Modely teorie grafů, min.kostra, max.tok, CPM, MPM, PERT Okruhy SZB č. 5 Zdroje: Demel, J., Operační výzkum Jablonský J., Operační výzkum Šubrt, T., Langrová, P., Projektové řízení I. a různá internetová

Více

OSTRAVSKÁ UNIVERZITA V OSTRAVĚ PŘÍRODOVĚDECKÁ FAKULTA

OSTRAVSKÁ UNIVERZITA V OSTRAVĚ PŘÍRODOVĚDECKÁ FAKULTA OSTRAVSKÁ UNIVERZITA V OSTRAVĚ PŘÍRODOVĚDECKÁ FAKULTA BAKALÁŘSKÁ PRÁCE 2002 SEDLÁK MARIAN - 1 - OSTRAVSKÁ UNIVERZITA PŘÍRODOVĚDECKÁ FAKULTA KATEDRA INFORMATIKY A POČÍTAČŮ Vizualizace principů výpočtu konečného

Více

TES cv 4. Metodologie, měkké systémy příklady ZS 2011/2012

TES cv 4. Metodologie, měkké systémy příklady ZS 2011/2012 Evropský sociální fond. Praha & EU: Investujeme do vaší budoucnosti. TES cv 4 Metodologie, měkké systémy příklady ZS 2011/2012 prof. Ing. Petr Moos, CSc. Ústav informatiky a telekomunikací Fakulta dopravní

Více

Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice

Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice Vektorové podprostory K množina reálných nebo komplexních čísel, U vektorový prostor nad K. Lineární kombinace vektorů u 1, u 2,...,u

Více

NÁSTROJE A TECHNIKY PROJEKTOVÉHO MANAGEMENTU

NÁSTROJE A TECHNIKY PROJEKTOVÉHO MANAGEMENTU NÁSTROJE A TECHNIKY PROJEKTOVÉHO MANAGEMENTU Projektová dekompozice Přednáška Teorie PM č. 2 Úvod do vybraných nástrojů projektového managementu Úvodní etapa projektu je nejdůležitější fáze projektu. Pokud

Více

Učební plán 4. letého studia předmětu matematiky. Učební plán 6. letého studia předmětu matematiky

Učební plán 4. letého studia předmětu matematiky. Učební plán 6. letého studia předmětu matematiky Učební plán 4. letého studia předmětu matematiky Ročník I II III IV Dotace 3 3+1 2+1 2+2 Povinnost povinný povinný povinný povinný Učební plán 6. letého studia předmětu matematiky Ročník 1 2 3 4 5 6 Dotace

Více

Pojem binární relace patří mezi nejzákladnější matematické pojmy. Binární relace

Pojem binární relace patří mezi nejzákladnější matematické pojmy. Binární relace RELACE Pojem binární relace patří mezi nejzákladnější matematické pojmy. Binární relace slouží k vyjádření vztahů mezi prvky nějakých množin. Vztahy mohou být různé povahy. Patří sem vztah býti potomkem,

Více

Základní pojmy teorie grafů [Graph theory]

Základní pojmy teorie grafů [Graph theory] Část I Základní pojmy teorie grafů [Graph theory] V matematice grafem obvykle rozumíme grafické znázornění funkční závislosti. Pro tento předmět je však podstatnější pohled jiný. V teorii grafů rozumíme

Více

ELT1 - Přednáška č. 6

ELT1 - Přednáška č. 6 ELT1 - Přednáška č. 6 Elektrotechnická terminologie a odborné výrazy, měřicí jednotky a činitelé, které je ovlivňují. Rozdíl potenciálů, elektromotorická síla, napětí, el. napětí, proud, odpor, vodivost,

Více

MANAŽERSKÉ INFORMAČNÍ SYSTÉMY

MANAŽERSKÉ INFORMAČNÍ SYSTÉMY Metodický list č. 1 MANAŽERSKÉ INFORMAČNÍ SYSTÉMY Úvodem: Protože předmětu manažerské informační systémy (MIS) je vyhrazeno ve studijním plánu kombinovaného studia pouze 10 prezenční hodin (5 dvouhodinových

Více

Bakalářská matematika I

Bakalářská matematika I 1. Funkce Diferenciální počet Mgr. Jaroslav Drobek, Ph. D. Katedra matematiky a deskriptivní geometrie Bakalářská matematika I Některé užitečné pojmy Kartézský součin podrobnosti Definice 1.1 Nechť A,

Více

MODELOVÁNÍ. Základní pojmy. Obecný postup vytváření induktivních modelů. Měřicí a řídicí technika magisterské studium FTOP - přednášky ZS 2009/10

MODELOVÁNÍ. Základní pojmy. Obecný postup vytváření induktivních modelů. Měřicí a řídicí technika magisterské studium FTOP - přednášky ZS 2009/10 MODELOVÁNÍ základní pojmy a postupy principy vytváření deterministických matematických modelů vybrané základní vztahy používané při vytváření matematických modelů ukázkové příklady Základní pojmy matematický

Více

Stochastické procesy - pokračování

Stochastické procesy - pokračování Stochastické procesy - pokračování Úvodní pojmy: Stochastické procesy jsou to procesy (funkce) jejichž hodnoty jsou náhodné veličiny závislé na parametru t stav systému souhrn vlastností a charakteristik,

Více

GRAFY A GRAFOVÉ ALGORITMY

GRAFY A GRAFOVÉ ALGORITMY KATEDRA INFORMATIKY PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITA PALACKÉHO GRAFY A GRAFOVÉ ALGORITMY ARNOŠT VEČERKA VÝVOJ TOHOTO UČEBNÍHO TEXTU JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ

Více

Statistika. Regresní a korelační analýza Úvod do problému. Roman Biskup

Statistika. Regresní a korelační analýza Úvod do problému. Roman Biskup Statistika Regresní a korelační analýza Úvod do problému Roman Biskup Jihočeská univerzita v Českých Budějovicích Ekonomická fakulta (Zemědělská fakulta) Katedra aplikované matematiky a informatiky 2008/2009

Více

B i n á r n í r e l a c e. Patrik Kavecký, Radomír Hamřík

B i n á r n í r e l a c e. Patrik Kavecký, Radomír Hamřík B i n á r n í r e l a c e Patrik Kavecký, Radomír Hamřík Obsah 1 Kartézský součin dvou množin... 3 2 Binární relace... 6 3 Inverzní relace... 8 4 Klasifikace binární relací... 9 5 Ekvivalence... 12 2 1

Více

Základní pojmy teorie množin Vektorové prostory

Základní pojmy teorie množin Vektorové prostory Základní pojmy teorie množin Přednáška MATEMATIKA č. 1 Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz 7. 10. 2010 Základní pojmy teorie množin Základní pojmy

Více

Teorie síťových modelů a síťové plánování

Teorie síťových modelů a síťové plánování KSI PEF ČZU Teorie síťových modelů a síťové plánování Část přednášky doc. Jaroslava Švasty z předmětu systémové analýzy a modelování. Zápis obsahuje základní vymezení projektu, časového plánování a popis

Více

ALGORITMY A DATOVÉ STRUKTURY

ALGORITMY A DATOVÉ STRUKTURY Název tématického celku: Cíl: ALGORITMY A DATOVÉ STRUKTURY Metodický list č. 1 Časová složitost algoritmů Základním cílem tohoto tematického celku je vysvětlení potřebných pojmů a definic nutných k popisu

Více

DERIVACE FUKNCÍ VÍCE PROMĚNNÝCH

DERIVACE FUKNCÍ VÍCE PROMĚNNÝCH DERIVACE FUKNCÍ VÍCE PROMĚNNÝCH Reálná funkce dvou proměnných a definiční obor Kartézský součin R R značíme R 2 R 2 je množina všech uspořádaných dvojic reálných čísel (rovina) Prvk R 2 jsou bod v rovině

Více

ANALÝZA BIOLOGICKÝCH A KLINICKÝCH DAT V MEZIOBOROVÉM POJETÍ

ANALÝZA BIOLOGICKÝCH A KLINICKÝCH DAT V MEZIOBOROVÉM POJETÍ ANALÝZA BIOLOGICKÝCH A KLINICKÝCH DAT V MEZIOBOROVÉM POJETÍ INVESTICE Institut DO biostatistiky ROZVOJE VZDĚLÁVÁNÍ a analýz 5. LETNÍ ŠKOLA MATEMATICKÉ BIOLOGIE ANALÝZA BIOLOGICKÝCH A KLINICKÝCH DAT V MEZIOBOROVÉM

Více

CZ 1.07/1.1.32/02.0006

CZ 1.07/1.1.32/02.0006 PO ŠKOLE DO ŠKOLY CZ 1.07/1.1.32/02.0006 Číslo projektu: CZ.1.07/1.1.32/02.0006 Název projektu: Po škole do školy Příjemce grantu: Gymnázium, Kladno Název výstupu: Prohlubující semináře Matematika (MI

Více

Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 2015

Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 2015 Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 05 Zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia

Více

CW01 - Teorie měření a regulace cv. 7.0

CW01 - Teorie měření a regulace cv. 7.0 Ústav technologie, mechanizace a řízení staveb CW01 - Teorie měření a regulace cv. 7.0 Teorie regulace ZS 2014/2015 2014 - Ing. Václav Rada, CSc. Ústav technologie, mechanizace a řízení staveb Teorie měření

Více

IB112 Základy matematiky

IB112 Základy matematiky IB112 Základy matematiky Řešení soustavy lineárních rovnic, matice, vektory Jan Strejček IB112 Základy matematiky: Řešení soustavy lineárních rovnic, matice, vektory 2/53 Obsah Soustava lineárních rovnic

Více

MANAŽERSKÉ INFORMAČNÍ SYSTÉMY

MANAŽERSKÉ INFORMAČNÍ SYSTÉMY metodický list č. 1 Úvodem: Protože předmětu manažerské informační systémy (MIS) je vyhrazeno ve studijním plánu kombinovaného studia pouze 10 prezenční hodin (5 dvouhodinových bloků), je nezbytné, abyste

Více

Operační výzkum. Teorie her. Hra v normálním tvaru. Optimální strategie. Maticové hry.

Operační výzkum. Teorie her. Hra v normálním tvaru. Optimální strategie. Maticové hry. Operační výzkum Hra v normálním tvaru. Optimální strategie. Maticové hry. Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty ekonomiky

Více

Křivky a plochy technické praxe

Křivky a plochy technické praxe Kapitola 7 Křivky a plochy technické praxe V technické praxi se setkáváme s tím, že potřebujeme křivky a plochy, které se dají libovolně upravovat a zároveň je jejich matematické vyjádření jednoduché.

Více

Informační systémy 2008/2009. Radim Farana. Obsah. UML - charakteristika

Informační systémy 2008/2009. Radim Farana. Obsah. UML - charakteristika 2 Vysoká škola báňská Technická univerzita Ostrava Fakulta strojní, Katedra automatizační techniky a řízení 2008/2009 Radim Farana 1 Obsah Jazyk UML, základní modely, diagramy aktivit, diagramy entit.

Více

České vysoké učení technické v Praze Fakulta jaderná a fyzikálně inženýrská OKRUHY. ke státním závěrečným zkouškám BAKALÁŘSKÉ STUDIUM

České vysoké učení technické v Praze Fakulta jaderná a fyzikálně inženýrská OKRUHY. ke státním závěrečným zkouškám BAKALÁŘSKÉ STUDIUM OKRUHY ke státním závěrečným zkouškám BAKALÁŘSKÉ STUDIUM Obor: Studijní program: Aplikace přírodních věd 1. Vektorový prostor R n 2. Podprostory 3. Lineární zobrazení 4. Matice 5. Soustavy lineárních rovnic

Více

zejména Dijkstrův algoritmus pro hledání minimální cesty a hladový algoritmus pro hledání minimální kostry.

zejména Dijkstrův algoritmus pro hledání minimální cesty a hladový algoritmus pro hledání minimální kostry. Kapitola Ohodnocené grafy V praktických aplikacích teorie grafů zpravidla graf slouží jako nástroj k popisu nějaké struktury. Jednotlivé prvky této struktury mají často přiřazeny nějaké hodnoty (může jít

Více

ALGEBRA. Téma 5: Vektorové prostory

ALGEBRA. Téma 5: Vektorové prostory SLEZSKÁ UNIVERZITA V OPAVĚ Matematický ústav v Opavě Na Rybníčku 1, 746 01 Opava, tel. (553) 684 611 DENNÍ STUDIUM Téma 5: Vektorové prostory Základní pojmy Vektorový prostor nad polem P, reálný (komplexní)

Více

Měření závislosti statistických dat

Měření závislosti statistických dat 5.1 Měření závislosti statistických dat Každý pořádný astronom je schopen vám předpovědět, kde se bude nacházet daná hvězda půl hodiny před půlnocí. Ne každý je však téhož schopen předpovědět v případě

Více

28.z-8.pc ZS 2015/2016

28.z-8.pc ZS 2015/2016 Ústav technologie, mechanizace a řízení staveb Teorie měření a regulace počítačové řízení 5 28.z-8.pc ZS 2015/2016 2015 - Ing. Václav Rada, CSc. Další hlavní téma předmětu se dotýká obsáhlé oblasti logického

Více

Kapitola 11. Vzdálenost v grafech. 11.1 Matice sousednosti a počty sledů

Kapitola 11. Vzdálenost v grafech. 11.1 Matice sousednosti a počty sledů Kapitola 11 Vzdálenost v grafech V každém grafu lze přirozeným způsobem definovat vzdálenost libovolné dvojice vrcholů. Hlavním výsledkem této kapitoly je překvapivé tvrzení, podle kterého lze vzdálenosti

Více

Matematika. ochrana životního prostředí analytická chemie chemická technologie Forma vzdělávání:

Matematika. ochrana životního prostředí analytická chemie chemická technologie Forma vzdělávání: Studijní obor: Aplikovaná chemie Učební osnova předmětu Matematika Zaměření: ochrana životního prostředí analytická chemie chemická technologie Forma vzdělávání: denní Celkový počet vyučovacích hodin za

Více

MATICE. a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij]

MATICE. a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij] MATICE Matice typu m/n nad tělesem T je soubor m n prvků z tělesa T uspořádaných do m řádků a n sloupců: a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij] a m1 a m2 a mn Prvek a i,j je prvek matice A na místě

Více

Tematický plán Obor: Informační technologie. Vyučující: Ing. Joanna Paździorová

Tematický plán Obor: Informační technologie. Vyučující: Ing. Joanna Paździorová Tematický plán Vyučující: Ing. Joanna Paździorová 1. r o č n í k 5 h o d i n t ý d n ě, c e l k e m 1 7 0 h o d i n Téma- Tematický celek Z á ř í 1. Opakování a prohloubení učiva základní školy 18 1.1.

Více

prof. RNDr. Čestmír Burdík DrCs. prof. Ing. Edita Pelantová CSc. BI-ZMA ZS 2009/2010

prof. RNDr. Čestmír Burdík DrCs. prof. Ing. Edita Pelantová CSc. BI-ZMA ZS 2009/2010 Základní pojmy prof. RNDr. Čestmír Burdík DrCs. prof. Ing. Edita Pelantová CSc. Katedra matematiky České vysoké učení technické v Praze c Čestmír Burdík, Edita Pelantová 2009 Základy matematické analýzy

Více

POČÍTAČOVÁ SIMULACE PODNIKOVÝCH PROCESŮ. Ing. V. Glombíková, PhD.

POČÍTAČOVÁ SIMULACE PODNIKOVÝCH PROCESŮ. Ing. V. Glombíková, PhD. POČÍTAČOVÁ SIMULACE PODNIKOVÝCH PROCESŮ Ing. V. Glombíková, PhD. SIMULACE nástroj pro studium chování objektů reálného světa SYSTÉM určitým způsobem uspořádána množina komponent a relací mezi nimi. zjednodušený,

Více

2. RBF neuronové sítě

2. RBF neuronové sítě 2. RBF neuronové sítě Kapitola pojednává o neuronových sítích typu RBF. V kapitole je popsána základní struktura tohoto typu neuronové sítě. Poté následuje definice a charakteristika jednotlivých radiálně

Více

1 VZNIK, VÝVOJ A DEFINICE MECHATRONIKY

1 VZNIK, VÝVOJ A DEFINICE MECHATRONIKY 1 VZNIK, VÝVOJ A DEFINICE MECHATRONIKY 1.1 VÝVOJ MECHATRONIKY Ve vývoji mechatroniky lze vysledovat tři období: 1. etapa polovina 70. let, Japonsko, založení nového oboru shrnuje poznatky z mechaniky,

Více

Elementární křivky a plochy

Elementární křivky a plochy Příloha A Elementární křivky a plochy A.1 Analytický popis geometrických objektů Geometrické vlastnosti, které jsme dosud studovali, se týkaly především základních geometrických objektů bodů, přímek, rovin

Více

Hydromechanické procesy Obtékání těles

Hydromechanické procesy Obtékání těles Hydromechanické procesy Obtékání těles M. Jahoda Klasifikace těles 2 Typy externích toků dvourozměrné osově symetrické třírozměrné (s/bez osy symetrie) nebo: aerodynamické vs. neaerodynamické Odpor a vztlak

Více

Praha technic/(4 -+ (/T'ERATU"'P. ))I~~

Praha technic/(4 -+ (/T'ERATU'P. ))I~~ Jaroslav Baláte Praha 2003 -technic/(4 -+ (/T'ERATU"'P ))I~~ @ ZÁKLADNí OZNAČENí A SYMBOLY 13 O KNIZE 24 1 SYSTÉMOVÝ ÚVOD PRO TEORII AUTOMATICKÉHO iízení 26 11 VYMEZENí POJMU - SYSTÉM 26 12 DEFINICE SYSTÉMU

Více

Modely datové. Další úrovní je logická úroveň Databázové modely Relační, Síťový, Hierarchický. Na fyzické úrovni se jedná o množinu souborů.

Modely datové. Další úrovní je logická úroveň Databázové modely Relační, Síťový, Hierarchický. Na fyzické úrovni se jedná o množinu souborů. Modely datové Existují různé úrovně pohledu na data. Nejvyšší úroveň je úroveň, která zachycuje pouze vztahy a struktury dat samotných. Konceptuální model - E-R model. Další úrovní je logická úroveň Databázové

Více

Cvičení 5. Přednášející: Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc.

Cvičení 5. Přednášející: Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc. 5 Přednášející: Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc. Katedra počítačových systémů Katedra teoretické informatiky Fakulta informačních technologií České vysoké učení technické v

Více

Jana Dannhoferová Ústav informatiky, PEF MZLU

Jana Dannhoferová Ústav informatiky, PEF MZLU Počítačová grafika Křivky Jana Dannhoferová (jana.dannhoferova@mendelu.cz) Ústav informatiky, PEF MZLU Základní vlastnosti křivek křivka soustava parametrů nějaké rovnice, která je posléze generativně

Více

Státní závěrečná zkouška z oboru Matematika a její použití v přírodních vědách

Státní závěrečná zkouška z oboru Matematika a její použití v přírodních vědách Státní závěrečná zkouška z oboru Matematika a její použití v přírodních vědách Ústní zkouška z oboru Náročnost zkoušky je podtržena její ústní formou a komisionálním charakterem. Předmětem bakalářské zkoušky

Více

MATURITNÍ OTÁZKY ELEKTROTECHNIKA - POČÍTAČOVÉ SYSTÉMY 2003/2004 PROGRAMOVÉ VYBAVENÍ POČÍTAČŮ

MATURITNÍ OTÁZKY ELEKTROTECHNIKA - POČÍTAČOVÉ SYSTÉMY 2003/2004 PROGRAMOVÉ VYBAVENÍ POČÍTAČŮ MATURITNÍ OTÁZKY ELEKTROTECHNIKA - POČÍTAČOVÉ SYSTÉMY 2003/2004 PROGRAMOVÉ VYBAVENÍ POČÍTAČŮ 1) PROGRAM, ZDROJOVÝ KÓD, PŘEKLAD PROGRAMU 3 2) HISTORIE TVORBY PROGRAMŮ 3 3) SYNTAXE A SÉMANTIKA 3 4) SPECIFIKACE

Více

Lineární a adaptivní zpracování dat. 1. ÚVOD: SIGNÁLY a SYSTÉMY

Lineární a adaptivní zpracování dat. 1. ÚVOD: SIGNÁLY a SYSTÉMY Lineární a adaptivní zpracování dat 1. ÚVOD: SIGNÁLY a SYSTÉMY Daniel Schwarz Investice do rozvoje vzdělávání Osnova Úvodní informace o předmětu Signály, časové řady klasifikace, příklady, vlastnosti Vzorkovací

Více

5. Lokální, vázané a globální extrémy

5. Lokální, vázané a globální extrémy 5 Lokální, vázané a globální extrémy Studijní text Lokální extrémy 5 Lokální, vázané a globální extrémy Definice 51 Řekneme, že f : R n R má v bodě a Df: 1 lokální maximum, když Ka, δ Df tak, že x Ka,

Více

1. Vlastnosti diskretních a číslicových metod zpracování signálů... 15

1. Vlastnosti diskretních a číslicových metod zpracování signálů... 15 Úvodní poznámky... 11 1. Vlastnosti diskretních a číslicových metod zpracování signálů... 15 1.1 Základní pojmy... 15 1.2 Aplikační oblasti a etapy zpracování signálů... 17 1.3 Klasifikace diskretních

Více