TESTOVÁNÍ HYPOTÉZ STATISTICKÁ HYPOTÉZA Statistické testy Testovací kritérium = B B > B < B B - B - B < 0 - B > 0 oboustranný test = B > B
|
|
- Michaela Sedláčková
- před 1 lety
- Počet zobrazení:
Transkript
1 TESTOVÁNÍ HYPOTÉZ Od statistického šetření neočekáváme pouze elementární informace o velikosti některých statistických ukazatelů. Používáme je i k ověřování našich očekávání o výsledcích nějakého procesu, k posuzování významnosti změn, které byly způsobeny například změnou technologie, změnou způsobu měření, opravou přístroje apod. Ač formulace úloh toho typu se liší od formulace úlohy o odhadech parametrů, jde zpravidla vždy o řešení inverzní úlohy o intervalovém odhadu. STATISTICKÁ HYPOTÉZA je tvrzení, které se týká neznámé vlastnosti rozdělení pravděpodobnosti náhodné proměnné (i vícerozměrné) nebo jejích parametrů. Hypotéza, jejíž platnost ověřujeme, se nazývá nulová hypotéza H 0. Proti nulové hypotéze stavíme alternativní hypotézu H 1. Ta může být buď oboustranná nebo jednostranná. Pak i testy jsou buď oboustranné nebo jednostranné. Hypotézy se mohu týkat pouze neznámých číselných parametrů rozložení náhodné veličiny, pak jde o testy parametrické. Ostatní typy jsou testy neparametrické. Statistické testy jsou postupy, jimiž prověřujeme platnost nulové hypotézy. Na základě nich pak hypotézu buď přijmeme nebo odmítneme. Testovací kritérium je náhodná veličina závislá na náhodném výběru (též nazývaná statistika) mající vztah k nulové hypotéze. Jednostranné a oboustranné testy se od sebe rozlišují z hlediska alternativní hypotézy, kterou stavíme proti prověřované nulové hypotéze a která může být dvojího druhu, jak plyne z tohoto příkladu: Nechť nulová hypotéza předpokládá, že A = B. V případě, že tuto hypotézu zamítneme, je buď A B, nebo A > B (resp. A < B). a) V prvém případě (A B) nebereme zřetel na znaménko rozdílu A - B, takže může být buďa - B < 0 nebo A - B > 0. V těchto případech používáme oboustranný test. b) V druhém případě, kdy proti hypotéze A = B klademe možnost A > B (resp. A < B), používáme jednostranných testů.
2 Pro kritické hodnoty testovacího kritéria a p, b p platí: P a X b p p p 1 Tyto hodnoty oddělují interval prakticky možných hodnot (interval spolehlivosti, konfidenční interval) <a p, b p > od kritických intervalů, v nichž se hodnoty veličiny X vyskytují s pravděpodobností p, které říkáme hladina významnosti. Nejčastěji volíme p = 0,01 nebo p = 0,05. Pro oboustranné odhady volíme: p P X ap P X bp, pro jednostranné buď P X a 0, P X b p nebo p p p p P X a p, P X b 0. Porovnání hodnoty testovacího kritéria s jeho kritickými hodnotami slouží k rozhodnutí o výsledku testu. Musíme si uvědomit, že nemůžeme mluvit o dokazování správnosti či nesprávnosti zvolené hypotézy - to není v možnostech statistické indukce. Závěr testu pouze rozhodne mezi dvěmi možnostmi: hypotézu přijímáme (zamítáme alternativní hypotézu), leží-li pozorovaná hodnota testovacího kritéria v intervalu prakticky možných hodnot. Znamená to, že rozdíl mezi pozorovanou a teoretickou hodnotou testovacího kritéria je vysvětlitelný na dané hladině významnosti p náhodností výběru. hypotézu zamítáme (přijímáme alternativní hypotézu), leží-li pozorovaná hodnota testovacího kritéria v kritickém oboru. Rozdíly považujeme za statisticky významné na zvolené hladině významnosti p, tzn., že se nedají vysvětlit pouze náhodností výběru. Příklady otázek, na které se dá odpovídat pomocí výsledků příslušných statistických testů: Má základní soubor (ZS) předpokládanou střední hodnotu? Mají dva soubory stejnou disperzi? Mají dva soubory stejnou střední hodnotu? Můžeme předpokládat, že dva výběry pocházejí z téhož ZS? Má ZS předpokládané rozdělení? atd.
3 DOPORUČENÝ POSTUP PŘI TESTOVÁNÍ STATISTICKÝCH HYPOTÉZ Formulace výzkumné otázky ve formě nulové a alternativní statistické hypotézy Zvolení přijatelné úrovně chyby rozhodování (volba hladiny významnosti p) Volba testovacího kritéria Výpočet hodnoty testovacího kritéria Určení kritických hodnot testovacího kritéria Doporučení ( přijmutí (nezamítnutí) nebo zamítnutí nulové hypotézy H 0 ) Poznámka Hladina významnosti je pravděpodobnost, že se zamítne nulová hypotéza, ačkoliv ona platí. Pochopitelně se tato hodnota volí velmi malá, jak již bylo řečeno, nejčastěji 0,01 či 0,05 nebo 0,01. Poznámka Jestliže test neindikuje zamítnutí nulové hypotézy H 0, je nesprávné přijmout nulovou hypotézu jako definitivně pravdivou. Správně můžeme pouze prohlásit, že není dostatek dokladů pro zamítnutí nulové hypotézy (viz shrnutí níže). Poznámka Netvrďme, že data ukazují, že teorie platí/neplatí. Správnější je říct, že data podporují nebo nepodporují rozhodnutí o zamítnutí platnosti nulové hypotézy. TEST JAKO ROZHODOVÁNÍ Při testování hypotéz mohou nastat čtyři možnosti, které popisuje následující tabulka: Závěr testu Závěr soudu Obžalovaný je nevinen Obžalovaný je vinen Skutečnost Existují tedy dvě možnosti chyby: H 0 platí H 0 neplatí H 0 platí správný chyba I.druhu H 0 neplatí chyba II.druhu správný Skutečnost Obžalovaný je nevinen Obžalovaný je vinen správný chyba II. druhu chyba I. druhu správný chyba I. druhu - nulová hypotéza platí, ale zamítne se; chyba II. druhu - nulová hypotéza neplatí, ale přijme se.
4 Pravděpodobnost chyby I. druhu je podmíněná pravděpodobnost, že zamítneme nulovou hypotézu za předpokladu, že platí - označujeme p - viz výše. Pravděpodobnost chyby II. druhu je podmíněná pravděpodobnost, že nezamítneme nulovou hypotézu za předpokladu, že neplatí, označujeme p 0 : P(chyba I. druhu H 0 platí) = p P(chyba II. druhu H 1 neplatí) = p 0 Konvenční hodnoty pro p 0 jsou 0, nebo 0,1. Někdy můžeme také mluvit o opačných jevech k chybě I. a II. druhu, tzn. o podmíněné pravděpodobnosti, že neuděláme chybu I.druhu (spolehlivost testu) nebo že neuděláme chybu II. druhu. Síla testu odpovídá hodnotě (1 - p 0 ). Jedná se tedy o podmíněnou pravděpodobnost, že správně odhalíme testem neplatnost nulové hypotézy: P(neuděláme chybu I. druhu H 0 platí) = 1 - p = spolehlivost P(neuděláme chybu II. druhu H 1 neplatí) = 1 - p 0 = síla testu Cílem při testování nulové hypotézy je omezit úrovně pravděpodobnosti chyb I. a II. druhu. Jinými slovy - usilujeme o maximalizaci spolehlivosti a síly testu. SHRNUTÍ PŘEDCHOZÍCH POZNATKŮ Pravděpodobnost chyby I. druhu = hladina významnosti p volíme. Pravděpodobnost chyby II. druhu nevolíme a neznáme, víme pouze, že s pravděpodobností chyby I. druhu tvoří spojené nádoby, s rostoucí jednou hodnotou druhá klesá a naopak. Zamítneme-li tedy při testování nulovou hypotézu, můžeme se dopustit chyby I.druhu, jejíž pravděpodobnost známe, víme tedy s jakou chybou pracujeme. Pokud ale nulovou hypotézu nezamítneme, je možné, že se dopustíme chyby II.druhu, tudíž nevíme s jakou pracujeme chybou! Velikost hodnoty hladiny významnosti volíme podle toho, která z chyb (I., II.) má pro nás fatálnější následky. V mnoha případech však nevíme zcela přesně, která chyba je pro nás důležitější. Dále: VYBRANÉ STATISTICKÉ TESTY:
5 TEST VÝZNAMNOSTI ROZDÍLU DVOU ROZPTYLŮ (F-TEST) Jsou dány dva výběry o rozsazích n 1, n s rozptyly s 1, s, vybrané ze dvou základních souborů s rozděleními N( 1 ; 1 ) a N( ; ). H 0 : 1 = Alternativní hypotéza: H 1 : 1 n1 n 1. 1 S1 F n n1 1. S má Fisherovo-Snedecorovo rozdělení F(n 1-1, n - 1). Jestliže F F n 1, n 1, zamítáme hypotézu H 0 p 1 (přijímáme H 1 ). Indexy 1, volíme tak, aby testovací kritérium F > 1! Poznámka V případě, že bychom chtěli prokázat hypotézu H 0 proti hypotéze H 1 : 1 >, použili bychom kritickou hodnotu F p (n 1-1,n - 1), podobně jako u následujících testů. TEST VÝZNAMNOSTI ROZDÍLU DVOU VÝBĚROVÝCH PRŮMĚRŮ (T-TEST) Jsou dány dva výběry o rozsazích n 1, n se středními hodnotami m 1, m a disperzemi s 1, s, které pocházejí ze dvou základních souborů s rozděleními N( 1 ; 1 ) a N( ; ). H 0 : 1 = Alternativní hypotéza: H 1 : 1 a) jestliže můžeme předpokládat 1 = (prověříme F-testem), volíme testovací kritérium: T m m 1 n. s n. s 1 1. n. n. n n 1 1 n n 1, které má Studentovo rozdělení t(n 1 + n - ). Jestliže T > t p, zamítneme H 0. b) jestliže předpokládáme 1 (prověříme F-testem), volíme testovací kritérium: m m T n1 n n 1. s1 n1 1. s které má rozdělení, složené ze dvou Studentových rozdělení. Kritické hodnoty určíme podle vzorce: n 1. s1. t pn1 1 n1 1. s. t pn 1 t p n 1. s n 1. s 1 1 Jestliže T > t p (n 1 + n - ), zamítneme H 0., Poznámka t-test používáme např. k ověřování následujících hypotéz: Pocházejí dva vzorky z téhož základního souboru? Nedopustili jsme se při dvou měřeních, jejichž výsledkem bylo určení dvou středních hodnot m 1, m, systematických chyb? Poznámka Má určitý faktor vliv na zkoumaný argument? Zde zkoumáme dva vzorky - jeden při působení daného faktoru, druhý bez jeho působení.
6 TEST VÝZNAMNOSTI ROZDÍLU M - 0 Je dán výběr ze základního souboru s rozdělením N(; ) o rozsahu n se střední hodnotou m a disperzí s. H 0 : = 0 Alternativní hypotéza: H 1 : 0 m T 0. n 1 s má Studentovo rozdělení t(n - 1). Jestliže T > t p (n - 1), zamítáme hypotézu H 0 (přijímáme H 1 ). Poznámka Volíme-li alternativní hypotézu H 1 : > 0, pak hodnotu testovacího kritéria srovnáváme s kritickou hodnotou t p (n - 1). STUDENTŮV TEST PRO PÁROVANÉ HODNOTY Ze dvou normálně rozložených základních souborů s parametry μ 1, σ 1 a μ, σ byly vybrány dva výběry se stejnými rozsahy n. Přitom každému prvku prvého výběru x 1i odpovídá právě jeden prvek druhého výběru x i. Vznikly tedy páry (x 1i ; x i ), i = 1,... n. H 0 : μ 1 = μ, což lze jinak zapsat: d = 0, když d je střední hodnota rozdílů d i = x 1i - x i, tedy: x x 1i i i d x1 x 0 n Alternativní hypotéza: H 1 : μ 1 μ nebo tedy: d 0. d. n1 t s d (s d je směrodatná odchylka hodnot d i ) Veličina t má Studentovo rozložení s n - 1 stupni volnosti t(n - 1). Jestliže t > t p (n - 1), zamítneme hypotézu H 0.
7 PEARSONŮV TEST DOBRÉ SHODY - Χ TEST PRO JEDEN VÝBĚR Nechť výsledky pozorování jsou roztříděny do k skupin a v každé skupině je zjištěna skupinová četnost n ej (četnosti experimentální). Uvažujme určité rozdělení, které budeme považovat za model pro náš výběr. Pro každou třídu určíme teoretické, modelové, očekávané četnosti n oj (j = 1,...,k). H 0 : Základní soubor má očekávané rozložení, tzn. že četnosti n ej a n oj (j = 1,...,k) se liší pouze náhodně. k j1 n ej noj n oj Tato veličina má Pearsonovo rozložení χ s ν = k - s - 1 stupni volnosti. Veličina s značí počet parametrů očekávaného rozložení odhadnutých na základě výběru. Jestliže χ > χ p (k - s - 1), zamítneme hypotézu H 0. Poznámka K výpočtu počtu tříd můžeme využít například Sturgesovo pravidlo: n 13,3 log N Poznámka Při použití tohoto testu se vyžaduje splnění těchto podmínek: - všechny očekávané třídní četnosti mají být větší než 1, - nejvýš 0 % očekávaných třídních četností může být menších než 5, - nedoporučuje se volit počet tříd větší než 0. Poznámka Nejsou-li splněny, lze přikročit k sloučení sousedních tříd v nezbytném rozsahu. Pozn. ke stupňům volnosti: Ověřujeme-li např. normalitu základního souboru, je s rovno, protože teoretické normální rozložení se stanovuje na základě odhadu střední hodnoty a disperze výběru, tedy na základě dvou charakteristik. TEST LINEÁRNÍ NEZÁVISLOSTI V ZÁKLADNÍM SOUBORU Dvojrozměrný základní soubor má normální rozložení a korelační koeficient ρ. Náhodný výběr z tohoto souboru má rozsah n a koeficient korelace r. ρ = 0 r t. n 1 r Tato veličina má Studentovo rozložení s n - stupni volnosti t(n - ). t t n, zamítneme H 0. Jestliže p Poznámka Odmítnutí nulové hypotézy znamená připuštění alternativní hypotézy, že mezi složkami náhodné veličiny je korelace, složky nejsou lineárně nezávislé.
8 TEST NEZÁVISLOSTI KVALITATIVNÍCH ZNAKŮ Máme k dispozici n nezávislých opakování experimentu se dvěma kvalitativními znaky A a B. Znak A má r možných kategorií hodnot, značených A 1, A,, A r, znak B má s možných kategorií hodnot B 1, B,, B s. Výsledek celého složeného experimentu lze shrnout do kontingenční tabulky: Kategorie znaku A / B B 1 B B s Součet A 1 n 11 n 1 n 1s n 1. A n 1 n n s n. A r n r1 n r n rs n r. Součet n.1 n. n.s n V tabulce značí n ij počet experimentů, při kterých znak A nabývá hodnoty (kategorie) A i a znak B hodnoty B j. Symbolem n i. značíme celkový počet opakování, při kterých se vyskytla i-tá kategorie znaku A, symbolem n j. značíme celkový počet opakování, při kterých se vyskytla j-tá kategorie znaku B. Nulová hypotéza H 0 : Kvalitativní znaky A a B jsou nezávislé. r s n ij G n 1 i 1 j 1 nn i.. j má Chi-kvadrát rozdělení s df =(r -1)(s -1) stupni volnosti. Hypotézu H 0 o nezávislosti znaků A a B zamítáme na hladině významnosti α, když hodnota statistiky G padne do kritického oboru C 1 df ;
Testování hypotéz testy o tvaru rozdělení. Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel
Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Statistickou hypotézou se rozumí určité tvrzení o parametrech rozdělení zkoumané náhodné veličiny (µ, σ 2, π,
Testování statistických hypotéz
Testování statistických hypotéz 1 Testování statistických hypotéz 1 Statistická hypotéza a její test V praxi jsme nuceni rozhodnout, zda nějaké tvrzeni o parametrech náhodných veličin nebo o veličině samotné
4ST201 STATISTIKA CVIČENÍ Č. 7
4ST201 STATISTIKA CVIČENÍ Č. 7 testování hypotéz parametrické testy test hypotézy o střední hodnotě test hypotézy o relativní četnosti test o shodě středních hodnot testování hypotéz v MS Excel neparametrické
Testování statistických hypotéz
Testování statistických hypotéz Na základě náhodného výběru, který je reprezentativním vzorkem základního souboru (který přesně neznáme, k němuž se ale daná statistická hypotéza váže), potřebujeme ověřit,
12. TESTOVÁNÍ STATISTICKÝCH HYPOTÉZ
1. TESTOVÁNÍ STATISTICKÝCH HYPOTÉZ Průvodce studiem Navážeme na předchozí kapitolu 11 a vysvětlíme některé statistické testy. Předpokládané znalosti Pojmy z předchozích kapitol. Cíle Cílem této kapitoly
TESTOVÁNÍ STATISTICKÝCH HYPOTÉZ ZÁKLADNÍ POJMY
TESTOVÁNÍ STATISTICKÝCH HYPOTÉZ ZÁKLADNÍ POJMY Statistická hypotéza je určitá domněnka (předpoklad) o vlastnostech ZÁKLADNÍHO SOUBORU. Test statistické hypotézy je pravidlo (kritérium), které na základě
Určujeme neznámé hodnoty parametru základního souboru. Pomocí výběrové charakteristiky vypočtené z náhodného výběru.
1 Statistické odhady Určujeme neznámé hodnoty parametru základního souboru. Pomocí výběrové charakteristiky vypočtené z náhodného výběru. Odhad lze provést jako: Bodový odhad o Jedna číselná hodnota Intervalový
You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com)
Testování statistických hypotéz Testování statistických hypotéz Princip: Ověřování určitého předpokladu zjišťujeme, zda zkoumaný výběr pochází ze základního souboru, který má určité rozdělení zjišťujeme,
Pravděpodobnost a statistika, Biostatistika pro kombinované studium. Tutoriál č. 5: Bodové a intervalové odhady, testování hypotéz.
Pravděpodobnost a statistika, Biostatistika pro kombinované studium Letní semestr 2015/2016 Tutoriál č. 5: Bodové a intervalové odhady, testování hypotéz Jan Kracík jan.kracik@vsb.cz Obsah: Výběrová rozdělení
Testování hypotéz. 4. přednáška 6. 3. 2010
Testování hypotéz 4. přednáška 6. 3. 2010 Základní pojmy Statistická hypotéza Je tvrzení o vlastnostech základního souboru, o jehož pravdivosti se chceme přesvědčit. Předem nevíme, zda je pravdivé nebo
Náhodné veličiny, náhodné chyby
Náhodné veličiny, náhodné chyby Máme náhodnou veličinu X, jejíž vlastnosti zkoumáme. Pokud známe její rozložení (např. z nějaké dřívější studie) nebo alespoň předpokládáme znalost rozložení, můžeme ji
Testování statistických hypotéz. Ing. Michal Dorda, Ph.D. 1
Testování statistických hypotéz Ing. Michal Dorda, Ph.D. 1 Úvodní poznámky Statistickou hypotézou rozumíme hypotézu o populaci (základním souboru) např.: Střední hodnota základního souboru je rovna 100.
STATISTICKÉ HYPOTÉZY
STATISTICKÉ HYPOTÉZY ZÁKLADNÍ POJMY Bodové/intervalové odhady Maruška řešila hodnoty parametrů (průměr, rozptyl atd.) Zde bude Maruška dělat hypotézy (předpoklady) ohledně parametrů Z.S. Výsledek nebude
Jana Vránová, 3. lékařská fakulta UK
Jana Vránová, 3. lékařská fakulta UK Vznikají při zkoumání vztahů kvalitativních resp. diskrétních znaků Jedná se o analogii s korelační analýzou spojitých znaků Přitom předpokládáme, že každý prvek populace
Pravděpodobnost a aplikovaná statistika
Pravděpodobnost a aplikovaná statistika MGR. JANA SEKNIČKOVÁ, PH.D. 8. KAPITOLA STATISTICKÉ TESTOVÁNÍ HYPOTÉZ 22.11.2016 Opakování: CLV příklad 1 Zadání: Před volbami je v populaci státu 52 % příznivců
Katedra matematické analýzy a aplikací matematiky, Přírodovědecká fakulta, UP v Olomouci
Zpracování dat v edukačních vědách - Testování hypotéz Kamila Fačevicová Katedra matematické analýzy a aplikací matematiky, Přírodovědecká fakulta, UP v Olomouci Obsah seminářů 5.11. Úvod do matematické
676 + 4 + 100 + 196 + 0 + 484 + 196 + 324 + 64 + 324 = = 2368
Příklad 1 Je třeba prověřit, zda lze na 5% hladině významnosti pokládat za prokázanou hypotézu, že střední doba výroby výlisku je 30 sekund. Přitom 10 náhodně vybraných výlisků bylo vyráběno celkem 540
Statistika, Biostatistika pro kombinované studium. Jan Kracík
Statistika, Biostatistika pro kombinované studium Letní semestr 2014/2015 Tutoriál č. 6: ANOVA Jan Kracík jan.kracik@vsb.cz Obsah: Testování hypotéz opakování ANOVA Testování hypotéz (opakování) Testování
Ing. Michael Rost, Ph.D.
Úvod do testování hypotéz, jednovýběrový t-test Ing. Michael Rost, Ph.D. Testovaná hypotéza Pokud nás zajímá zda platí, či neplatí tvrzení o určitém parametru, např. o parametru Θ, pak takovéto tvrzení
Statistické metody uţívané při ověřování platnosti hypotéz
Statistické metody uţívané při ověřování platnosti hypotéz Hypotéza Domněnka, předpoklad Nejčastěji o rozdělení, středních hodnotách, závislostech, Hypotézy ve vědeckém výzkumu pracovní, věcné hypotézy
KGG/STG Statistika pro geografy
KGG/STG Statistika pro geografy 9. Korelační analýza Mgr. David Fiedor 20. dubna 2015 Analýza závislostí v řadě geografických disciplín studujeme jevy, u kterých vyšetřujeme nikoliv pouze jednu vlastnost
Příklad 1. Korelační pole. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 13
Příklad 1 Máme k dispozici výsledky prvního a druhého testu deseti sportovců. Na hladině významnosti 0,05 prověřte, zda jsou výsledky testů kladně korelované. 1.test : 7, 8, 10, 4, 14, 9, 6, 2, 13, 5 2.test
Testování hypotéz. Analýza dat z dotazníkových šetření. Kuranova Pavlina
Testování hypotéz Analýza dat z dotazníkových šetření Kuranova Pavlina Statistická hypotéza Možné cíle výzkumu Srovnání účinnosti různých metod Srovnání výsledků různých skupin Tzn. prokázání rozdílů mezi
7.1. Podstata testu statistické hypotézy
7. TESTOVÁNÍ STATISTICKÝCH HYPOTÉZ 7.1. Podstata testu statistické hypotézy Statistická hypotéza určitý předpoklad o parametrech nebo tvaru rozdělení zkoumaného st. znaku. Testování hypotéz proces ověřování
Testování hypotéz Biolog Statistik: Matematik: Informatik:
Testování hypotéz Biolog, Statistik, Matematik a Informatik na safari. Zastaví džíp a pozorují dalekohledem. Biolog "Podívejte se! Stádo zeber! A mezi nimi bílá zebra! To je fantastické! " "Existují bílé
Rozhodnutí / Skutečnost platí neplatí Nezamítáme správně chyba 2. druhu Zamítáme chyba 1. druhu správně
Testování hypotéz Nechť,, je náhodný výběr z nějakého rozdělení s neznámými parametry. Máme dvě navzájem si odporující hypotézy o parametrech daného rozdělení: Nulová hypotéza parametry (případně jediný
Úvod do teorie odhadu. Ing. Michael Rost, Ph.D.
Úvod do teorie odhadu Ing. Michael Rost, Ph.D. Náhodný výběr Náhodným výběrem ze základního souboru populace, která je popsána prostřednictvím hustoty pravděpodobnosti f(x, θ), budeme nazývat posloupnost
Statistika. Testování hypotéz statistická indukce Úvod do problému. Roman Biskup
Statistika Testování hypotéz statistická indukce Úvod do problému Roman Biskup (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at)email.cz 21. února 2012 Statistika by Birom
15. T e s t o v á n í h y p o t é z
15. T e s t o v á n í h y p o t é z Na základě hodnot náhodného výběru činíme rozhodnutí o platnosti hypotézy o hodnotách parametrů rozdělení nebo o jeho vlastnostech. Rozeznáváme dva základní typy testů:
PSY117/454 Statistická analýza dat v psychologii seminář 9. Statistické testování hypotéz
PSY117/454 Statistická analýza dat v psychologii seminář 9 Statistické testování hypotéz Základní výzkumné otázky/hypotézy 1. Stanovení hodnoty parametru =stanovení intervalu spolehlivosti na μ, σ, ρ,
Intervalové Odhady Parametrů II Testování Hypotéz
Parametrů II Testování Hypotéz Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc. Katedra počítačových systémů Katedra teoretické informatiky Fakulta informačních technologií České vysoké učení
MATEMATIKA III V PŘÍKLADECH
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ MATEMATIKA III V PŘÍKLADECH Cvičení 12 Testování hypotéz Mgr. Petr Otipka Ostrava 2013 Mgr. Petr Otipka Vysoká škola báňská Technická univerzita
Testování statistických hypotéz. Ing. Michal Dorda, Ph.D.
Testování statistických hypotéz Ing. Michal Dorda, Ph.D. Testování normality Př. : Při simulaci provozu na křižovatce byla získána data o mezerách mezi přijíždějícími vozidly v [s]. Otestujte na hladině
1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004.
Prostá regresní a korelační analýza 1 1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Problematika závislosti V podstatě lze rozlišovat mezi závislostí nepodstatnou, čili náhodnou
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 010 1.týden (0.09.-4.09. ) Data, typy dat, variabilita, frekvenční analýza
Příklady na testy hypotéz o parametrech normálního rozdělení
Příklady na testy hypotéz o parametrech normálního rozdělení. O životnosti 75W žárovky (v hodinách) je známo, že má normální rozdělení s = 5h. Pro náhodný výběr 0 žárovek byla stanovena průměrná životnost
Dva případy chybného rozhodnutí při testování: a) Testační statistika padne mimo obor přijetí nulové H hypotézy O, tj.
Uvedeme obecný postup statistického testování:. Formulace nulové H 0a alternativní hpotéz H A.. Volba hladin významnosti α.. Volba testační statistik např... Určení kritického oboru testové charakteristik.
Testování hypotéz. 1 Jednovýběrové testy. 90/2 odhad času
Testování hypotéz 1 Jednovýběrové testy 90/ odhad času V podmínkách naprostého odloučení má voák prokázat schopnost orientace v čase. Úkolem voáka e provést odhad časového intervalu 1 hodiny bez hodinek
5. T e s t o v á n í h y p o t é z
5. T e s t o v á n í h y p o t é z Na základě hodnot náhodného výběru činíme rozhodnutí o platnosti hypotézy o hodnotách parametrů rozdělení nebo o jeho vlastnostech. Rozeznáváme dva základní typy testů:
Cvičení ze statistiky - 9. Filip Děchtěrenko
Cvičení ze statistiky - 9 Filip Děchtěrenko Minule bylo.. Dobrali jsme normální rozdělení Tyhle termíny by měly být známé: Inferenční statistika Konfidenční intervaly Z-test Postup při testování hypotéz
Aproximace binomického rozdělení normálním
Aproximace binomického rozdělení normálním Aproximace binomického rozdělení normálním Příklad Sybilla a Kassandra tvrdí, že mají telepatické schopnosti, a chtějí to dokázat následujícím pokusem: V jedné
Základy biostatistiky II. Veřejné zdravotnictví 3.LF UK - II
Základy biostatistiky II Veřejné zdravotnictví 3.LF UK - II Teoretické rozložení-matematické modely rozložení Naměřená data Výběrové rozložení Teoretické rozložení 1 e 2 x 2 Teoretické rozložení-matematické
analýza kategoriáln lních dat Prof. RNDr. Jana Zvárová, DrSc. Záznam epidemiologických dat Epidemiologické ukazatele
Testování statistických hypotéz z a analýza kategoriáln lních dat Prof. RNDr. Jana Zvárová, DrSc. 1 Záznam epidemiologických dat Rizikový faktor Populace Přítomen Nepřítomen Celkem Nemocní a b a+b Kontroly
Statistika. Teorie odhadu statistická indukce. Roman Biskup. (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at) .
Statistika Teorie odhadu statistická indukce Intervalový odhad µ, σ 2 a π Roman Biskup (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at)email.cz 21. února 2012 Statistika
Epidemiologické ukazatele. lních dat. analýza kategoriáln. Prof. RNDr. Jana Zvárová, DrSc. Záznam epidemiologických dat. a I E
Testování statistických hypotéz z a analýza kategoriáln lních dat Prof. RNDr. Jana Zvárová, DrSc. Epidemiologické ukazatele Rizikový faktor Populace Přítomen Nepřítomen Celkem Nemocní a b a+b Kontroly
STATISTIKA A INFORMATIKA - bc studium OZW, 1.roč. (zkušební otázky)
STATISTIKA A INFORMATIKA - bc studium OZW, 1.roč. (zkušební otázky) 1) Význam a využití statistiky v biologických vědách a veterinárním lékařství ) Rozdělení znaků (veličin) ve statistice 3) Základní a
Testování hypotéz. Testování hypotéz o rozdílu průměrů t-test pro nezávislé výběry t-test pro závislé výběry
Testování hypotéz Testování hypotéz o rozdílu průměrů t-test pro nezávislé výběry t-test pro závislé výběry Testování hypotéz Obecný postup 1. Určení statistické hypotézy 2. Určení hladiny chyby 3. Výpočet
Tomáš Karel LS 2012/2013
Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není
Testování hypotéz o parametrech regresního modelu
Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Lineární regresní model kde Y = Xβ + e, y 1 e 1 β y 2 Y =., e = e 2 x 11 x 1 1k., X =....... β 2,
Jednofaktorová analýza rozptylu
I I.I Jednofaktorová analýza rozptylu Úvod Jednofaktorová analýza rozptylu (ANOVA) se využívá při porovnání několika středních hodnot. Často se využívá ve vědeckých a lékařských experimentech, při kterých
Intervalové odhady. Interval spolehlivosti pro střední hodnotu v N(µ, σ 2 ) Interpretace intervalu spolehlivosti. Interval spolehlivosti ilustrace
Intervalové odhady Interval spolehlivosti pro střední hodnotu v Nµ, σ 2 ) Situace: X 1,..., X n náhodný výběr z Nµ, σ 2 ), kde σ 2 > 0 známe měli jsme: bodové odhady odhadem charakteristiky je číslo) nevyjadřuje
Problematika analýzy rozptylu. Ing. Michael Rost, Ph.D.
Problematika analýzy rozptylu Ing. Michael Rost, Ph.D. Úvod do problému Již umíte testovat shodu dvou středních hodnot prostřednictvím t-testů. Otázka: Jaké předpoklady musí být splněny, abyste mohli použít
Program Statistica Base 9. Mgr. Karla Hrbáčková, Ph.D.
Program Statistica Base 9 Mgr. Karla Hrbáčková, Ph.D. OBSAH KURZU obsluha jednotlivých nástrojů, funkce pro import dat z jiných aplikací, práce s popisnou statistikou, vytváření grafů, analýza dat, výstupní
JEDNOVÝBĚROVÉ TESTY. Komentované řešení pomocí programu Statistica
JEDNOVÝBĚROVÉ TESTY Komentované řešení pomocí programu Statistica Vstupní data Data umístěná v excelovském souboru překopírujeme do tabulky ve Statistice a pojmenujeme proměnné, viz prezentace k tématu
7. Analýza rozptylu.
7. Analýza rozptylu. Uvedeme obecnou ideu, která je založena na minimalizaci chyby metodou nejmenších čtverců. Nejdříve uvedeme několik základních tvrzení. Uvažujeme náhodný vektor Y = (Y, Y,..., Y n a
Jednofaktorová analýza rozptylu
Jednofaktorová analýza rozptylu David Hampel Ústav statistiky a operačního výzkumu, Mendelova univerzita v Brně Kurz pokročilých statistických metod Global Change Research Centre AS CR, 5 7 8 2015 Tato
Jana Vránová, 3.lékařská fakulta UK, Praha. Hypotézy o populacích
Jana Vránová, 3.lékařská fakulta UK, Praha Hypotézy o populacích Příklad IQ test: Předpokládejme, že z nějakého důvodu ministerstvo školství věří, že studenti absolventi středních škol v Hradci Králové
Náhodné veličiny jsou nekorelované, neexistuje mezi nimi korelační vztah. Když jsou X; Y nekorelované, nemusí být nezávislé.
1. Korelační analýza V životě většinou nesledujeme pouze jeden statistický znak. Sledujeme více statistických znaků zároveň. Kromě vlastností statistických znaků nás zajímá také jejich těsnost (velikost,
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická
Tomáš Karel LS 2012/2013
Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není
Kontingenční tabulky, korelační koeficienty
Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Mějme kategoriální proměnné X a Y. Vytvoříme tzv. kontingenční tabulku. Budeme tedy testovat hypotézu
Zápočtová práce STATISTIKA I
Zápočtová práce STATISTIKA I Obsah: - úvodní stránka - charakteristika dat (původ dat, důvod zpracování,...) - výpis naměřených hodnot (v tabulce) - zpracování dat (buď bodové nebo intervalové, podle charakteru
6. Testování statistických hypotéz. KGG/STG Zimní semestr 6. Testování statistických hypotéz
6. Testování statistických Testování statistických Princip: Ověř ěřování určit itého předpokladu p zjišťujeme, zda zkoumaný výběr r pochází ze základnz kladního souboru, který mám určit ité rozdělen lení
STATISTICKÉ TESTY VÝZNAMNOSTI
STATISTICKÉ TESTY VÝZNAMNOSTI jsou statistické postupy, pomocí nichž ověřujeme, zda mezi proměnnými existuje vztah (závislost, rozdíl). Pokud je výsledek šetření statisticky významný (signifikantní), znamená
Úvod do analýzy rozptylu
Úvod do analýzy rozptylu Párovým t-testem se podařilo prokázat, že úprava režimu stravování a fyzické aktivity ve vybrané škole měla vliv na zlepšené hodnoty HDLcholesterolu u školáků. Pro otestování jsme
Lékařská biofyzika, výpočetní technika I. Biostatistika Josef Tvrdík (doc. Ing. CSc.)
Lékařská biofyzika, výpočetní technika I Biostatistika Josef Tvrdík (doc. Ing. CSc.) Přírodovědecká fakulta, katedra informatiky josef.tvrdik@osu.cz konzultace úterý 14.10 až 15.40 hod. http://www1.osu.cz/~tvrdik
Pearsonův korelační koeficient
I I.I Pearsonův korelační koeficient Úvod Předpokládejme, že náhodně vybereme n objektů (nebo osob) ze zkoumané populace. Často se stává, že na každém z objektů měříme ne pouze jednu, ale několik kvantitativních
5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza
5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5.1 Vícerozměrná data a vícerozměrná rozdělení Při zpracování vícerozměrných dat se hledají souvislosti mezi dvěma, případně
5 Parametrické testy hypotéz
5 Parametrické testy hypotéz 5.1 Pojem parametrického testu (Skripta str. 95-96) Na základě výběru srovnáváme dvě tvrzení o hodnotě určitého parametru θ rozdělení f(x, θ). První tvrzení (které většinou
Statistická analýza jednorozměrných dat
Statistická analýza jednorozměrných dat Prof. RNDr. Milan Meloun, DrSc. Univerzita Pardubice, Pardubice 31.ledna 2011 Tato prezentace je spolufinancována Evropským sociálním fondem a státním rozpočtem
Statistická analýza dat v psychologii. Věci, které můžeme přímo pozorovat, jsou téměř vždy pouze vzorky. Alfred North Whitehead
PSY117/454 Statistická analýza dat v psychologii Přednáška 8 Statistické usuzování, odhady Věci, které můžeme přímo pozorovat, jsou téměř vždy pouze vzorky. Alfred North Whitehead Barevná srdíčka kolegyně
Testování hypotéz. Testování hypotéz o rozdílu průměrů t-test pro nezávislé výběry t-test pro závislé výběry
Testování hypotéz Testování hypotéz o rozdílu průměrů t-test pro nezávislé výběry t-test pro závislé výběry Testování hypotéz Obecný postup 1. Určení statistické hypotézy 2. Určení hladiny chyby 3. Výpočet
2 ) 4, Φ 1 (1 0,005)
Příklad 1 Ze zásilky velkého rozsahu byl náhodně vybrán soubor obsahující 1000 kusů. V tomto souboru bylo zjištěno 26 kusů nekvalitních. Rozhodněte, zda je možné s 99% jistotou tvrdit, že zásilka obsahuje
Dobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze
Dobývání znalostí Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Dobývání znalostí Pravděpodobnost a učení Doc. RNDr. Iveta Mrázová,
KGG/STG Statistika pro geografy
KGG/STG Statistika pro geografy 7. Testování statistických hypotéz Mgr. David Fiedor 30. března 2015 Osnova 1 2 3 Dělení testů parametrické - o parametrech rozdělení základního souboru (průměr, rozptyl,
Normální rozložení a odvozená rozložení
I Normální rozložení a odvozená rozložení I.I Normální rozložení Data, se kterými pracujeme, pocházejí z různých rozložení. Mohou být vychýlena (doleva popř. doprava, nebo v nich není na první pohled vidět
KGG/STG Statistika pro geografy
KGG/STG Statistika pro geografy 4. Teoretická rozdělení Mgr. David Fiedor 9. března 2015 Osnova Úvod 1 Úvod 2 3 4 5 Vybraná rozdělení náhodných proměnných normální rozdělení normované normální rozdělení
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 2010 1.týden (20.09.-24.09. ) Data, typy dat, variabilita, frekvenční analýza
LIMITNÍ VĚTY DALŠÍ SPOJITÁ ROZDĚLENÍ PR. 8. cvičení
LIMITNÍ VĚTY DALŠÍ SPOJITÁ ROZDĚLENÍ PR. 8. cvičení Způsoby statistického šetření Vyčerpávající šetření prošetření všech jednotek statistického souboru (populace) Výběrové šetření ze základního souboru
Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu
Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu K čemu slouží statistika Popisuje velké soubory dat pomocí charakteristických čísel (popisná statistika). Hledá skryté zákonitosti v souborech
Přednáška X. Testování hypotéz o kvantitativních proměnných
Přednáška X. Testování hypotéz o kvantitativních proměnných Testování hypotéz o podílech Kontingenční tabulka, čtyřpolní tabulka Testy nezávislosti, Fisherůvexaktní test, McNemarůvtest Testy dobré shody
Příklad 1. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 11
Příklad 1 Vyhláška Ministerstva zdravotnictví předpokládala, že doba dojezdu k pacientovi od nahlášení požadavku nepřekročí 17 minut. Hodnoty deseti náhodně vybraných dob příjezdu sanitky k nemocnému byly:
Vymezení důležitých pojmů. nulová hypotéza, alternativní hypotéza testování hypotézy hladina významnosti (alfa) chyba I. druhu, chyba II.
Testování hypotéz 1. vymezení důležitých pojmů 2. testování hypotéz o rozdílu průměrů 3. jednovýběrový t-test 4. t-test pro nezávislé výběry 5. t-test pro závislé výběry Vymezení důležitých pojmů nulová
I. D i s k r é t n í r o z d ě l e n í
6. T y p y r o z d ě l e n í Poznámka: V odst. 5.5-5.10 jsme uvedli příklady náhodných veličin a jejich distribučních funkcí. Poznali jsme, že se od sebe liší svým typem. V příkladech 5.5, 5.6 a 5.8 jsme
Regresní a korelační analýza
Regresní a korelační analýza Mějme dvojici proměnných, které spolu nějak souvisí. x je nezávisle (vysvětlující) proměnná y je závisle (vysvětlovaná) proměnná Chceme zjistit funkční závislost y = f(x).
p(x) = P (X = x), x R,
6. T y p y r o z d ě l e n í Poznámka: V odst. 5.5-5.10 jsme uvedli příklady náhodných veličin a jejich distribučních funkcí. Poznali jsme, že se od sebe liší svým typem. V příkladech 5.5, 5.6 a 5.8 jsme
NÁHODNÁ ČÍSLA. F(x) = 1 pro x 1. Náhodná čísla lze generovat některým z následujících generátorů náhodných čísel:
NÁHODNÁ ČÍSLA TYPY GENERÁTORŮ, LINEÁRNÍ KONGRUENČNÍ GENERÁTORY, TESTY NÁHODNOSTI, VYUŽITÍ HODNOT NÁHODNÝCH VELIČIN V SIMULACI CO JE TO NÁHODNÉ ČÍSLO? Náhodné číslo definujeme jako nezávislé hodnoty z rovnoměrného
1. Číselné posloupnosti - Definice posloupnosti, základní vlastnosti, operace s posloupnostmi, limita posloupnosti, vlastnosti limit posloupností,
KMA/SZZS1 Matematika 1. Číselné posloupnosti - Definice posloupnosti, základní vlastnosti, operace s posloupnostmi, limita posloupnosti, vlastnosti limit posloupností, operace s limitami. 2. Limita funkce
2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení
2 Zpracování naměřených dat Důležitou součástí každé experimentální práce je statistické zpracování naměřených dat. V této krátké kapitole se budeme věnovat určení intervalů spolehlivosti získaných výsledků
Přednáška XI. Asociace ve čtyřpolní tabulce a základy korelační analýzy
Přednáška XI. Asociace ve čtyřpolní tabulce a základy korelační analýzy Relativní riziko a poměr šancí Princip korelace dvou náhodných veličin Korelační koeficienty Pearsonůva Spearmanův Korelace a kauzalita
Korelační a regresní analýza
Korelační a regresní analýza Analýza závislosti v normálním rozdělení Pearsonův (výběrový) korelační koeficient: r = s XY s X s Y, kde s XY = 1 n (x n 1 i=0 i x )(y i y ), s X (s Y ) je výběrová směrodatná
Návod na vypracování semestrálního projektu
Návod na vypracování semestrálního projektu Následující dokument má charakter doporučení. Není závazný, je pouze návodem pro studenty, kteří si nejsou jisti výběrem dat, volbou metod a formou zpracování
Úvod do problematiky měření
1/18 Lord Kelvin: "Když to, o čem mluvíte, můžete změřit, a vyjádřit to pomocí čísel, něco o tom víte. Ale když to nemůžete vyjádřit číselně, je vaše znalost hubená a nedostatečná. Může to být začátek
PSY117/454 Statistická analýza dat v psychologii Přednáška 10
PSY117/454 Statistická analýza dat v psychologii Přednáška 10 TESTY PRO NOMINÁLNÍ A ORDINÁLNÍ PROMĚNNÉ NEPARAMETRICKÉ METODY... a to mělo, jak sám vidíte, nedozírné následky. Smrť Analýza četností hodnot
STATISTICA Téma 6. Testy na základě jednoho a dvou výběrů
STATISTICA Téma 6. Testy na základě jednoho a dvou výběrů 1) Test na velikost rozptylu Test na velikost rozptylu STATISTICA nemá. 2) Test na velikost střední hodnoty V menu Statistika zvolíme nabídku Základní
Statistická analýza jednorozměrných dat
Statistická analýza jednorozměrných dat Prof. RNDr. Milan Meloun, DrSc. Univerzita Pardubice, Pardubice 31.ledna 2011 Tato prezentace je spolufinancována Evropským sociálním fondem a státním rozpočtem
STATISTICKÉ ZJIŠŤOVÁNÍ
STATISTICKÉ ZJIŠŤOVÁNÍ ÚVOD Základní soubor Všechny ryby v rybníce, všechny holky/kluci na škole Cílem určit charakteristiky, pravděpodobnosti Průměr, rozptyl, pravděpodobnost, že Maruška kápne na toho