Rozdělení náhodné veličiny. Distribuční funkce. Vlastnosti distribuční funkce

Rozměr: px
Začít zobrazení ze stránky:

Download "Rozdělení náhodné veličiny. Distribuční funkce. Vlastnosti distribuční funkce"

Transkript

1 Náhodná veličina motivace Náhodná veličina Často lze výsledek náhodného pokusu vyjádřit číslem: číslo, které padlo na kostce, výška náhodně vybraného studenta, čas strávený čekáním na metro, délka života člověka, počet gólů v zápase, počet zkoušek, které dopadnou na výborně,... číselně vyjádřený výsledek náhodného pokusu předem neznáme její hodnotu Náhodná veličina je funkce, která zobrazuje elementární jevy ω Ω na reálná čísla. většinou značíme písmenky X, Y, Z atd. každému elementárnímu jevu ω přiřadí reálné číslo (převádí elementární jevy (abstraktními objekty) na čísla) její hodnota X (ω) se liší podle toho, který elementární jev ω Ω nastal víme-li, který ω nastal, známe hodnotu náhodné veličiny X (ω) Matematická statistika Šárka Hudecová 1/ 45 Matematická statistika Šárka Hudecová 2/ 45 Příklad děti Příklad (Děti) Uvažujme náhodně vybranou rodinu, která má tři děti. Zaveďme náhodné veličiny X určuje počet dcer a Y je počet starších bratrů nejmladšího dítěte. Prozkoumejme náhodné veličiny X a Y. Prostor elementárních jevů Ω je dán výčtem pohlaví dětí od nejstaršího do nejmladšího (uspořádané trojice). Ω = {SSS, SSD, SDS, DSS, DDS, DSD, SDD, DDD} (S je syn, D je dcera). Matematická statistika Šárka Hudecová 3/ 45 Příklad děti pokrač. ω X (ω) Y (ω) SSS 2 SSD 1 2 SDS 1 1 DSS 1 1 DDS 2 DSD 2 1 SDD 2 1 DDD 3 Vidíme, jakých hodnot X a Y nabývají, a uměli bychom spočítat, s jakými pravděpodobnostmi. Matematická statistika Šárka Hudecová 4/ 45

2 Rozdělení náhodné veličiny Distribuční funkce Rozdělení náhodné veličiny X charakterizuje jakých hodnot může náhodná veličina X nabývat a s jakými pravděpodobnostmi. Distribuční funkce F náhodné veličiny X je funkce R, 1 definovaná předpisem Značení F () = P[X ] pro (, ). P[X = ] P({ω Ω : X (ω) = }) pro R, P[X ] P({ω Ω : X (ω) }) pro R, P[X B] P({ω Ω : X (ω) B}) pro B R Předpis, který nám pro každou B R udává P[X B], se nazývá rozdělení náhodné veličiny X. hodnota F () je pst, že X nepřekročí distribuční funkce jednoznačně určuje rozdělení X známe-li F () pro každé dokážeme spočítat P[X B] pro libovolnou B R někdy značení F X Matematická statistika Šárka Hudecová 5/ 45 Matematická statistika Šárka Hudecová 6/ 45 Vlastnosti distribuční funkce 1. Věta Distribuční funkce F splňuje 1 je neklesající; tj. F() < 2 F ( 1 ) F ( 2 ), je zprava spojitá, 3 F () se blíží k pro, tj. lim F () =, 4 F () se blíží k 1 pro, tj. F() lim F () = Matematická statistika Šárka Hudecová 7/ 45 Matematická statistika Šárka Hudecová / 45

3 Věta 1 Pro a < b je P[a < X b] = F (b) F (a). 2 P[X = b] rovna velikosti skoku funkce F v bodě b. Speciálně, je-li F v bodě b spojitá, pak P[X = b] =. Význam předchozí věty Ze znalosti distribuční funkce F jsme schopni okamžitě spočítat pravděpodobnost konkrétní hodnoty P[X = a], P[X = b], pravděpodobnost, že je X větší (menší, větší rovno, menší rovno) než dané číslo 1.. P[X a], P[X < a], P[X > a], P[X a], F() P(a<X<=b) pravděpodobnost, s jakou X leží v nějakém intervalu P[a < X b], P[a < X < b], P[a X b], P[a X < b] Matematická statistika Šárka Hudecová 9/ 45 Matematická statistika Šárka Hudecová 1/ 45 Význam náhodných veličin Náhodné veličiny převádějí abstraktní a většinou neznámou Ω na čísla pracuje se s nimi lépe ve složitějších situacích je těžké rozumně popsat ω nevadí nám to, stačí nám znát rozdělení X a pracovat na reálných číslech slouží jako model pro naše empirická pozorování (data) v teorii pravděpodobnosti s nimi pracujeme teoreticky jejich rozdělení považujeme za dané a zkoumáme jejich vlastnosti ve statistice se snažíme cosi usoudit o jejich neznámém rozdělení na základě konkrétních realizací Různé druhy náhodných veličin Diskrétní náhodná veličina může nabývat jen konečně nebo spočetně mnoha různých hodnot počty (četnosti), indikátory jevů apod. počet gólů v zápase, počet bodů na testu,... Spojitá náhodná veličina může nabývat nespočetně mnoha různých hodnot hodnoty z nějakého intervalu v R nebo celé R každá konkrétní hodnota má nulovou pravděpodobnost (nelze mluvit o pravděpodobnosti konkrétní hodnoty) výsledek měření: koncentrace látku ve vzorku, výška náhodně vybraného člověka... Matematická statistika Šárka Hudecová 11/ 45 Matematická statistika Šárka Hudecová 12/ 45

4 Rozdělení diskrétní náhodné veličiny Distribuční funkce diskrétní veličiny mluvíme o diskrétním rozdělení rozdělení charakterizováno výčtem možných hodnot 1, 2,... a jejich pravděpodobnostmi p 1, p 2,..., kde p k = P[X = k ] > tabulka rozdělení Distribuční funkce F () = j: j p j musí platit hodnota pravděpodobnost p 1 p 2... p j = 1, p j (, 1) j je po částech konstantní mezi jednotlivými j, v každém bodě j má skok o velikosti p j, je nulová pro pro < min j j. Matematická statistika Šárka Hudecová 13/ 45 Matematická statistika Šárka Hudecová 14/ 45 Příklad děti Připomenutí: Uvažujeme rodinu se třemi dětmi, X je počet dcer. Rozdělení X : Náhodná veličina X může nabývat hodnot, 1, 2, 3, a to s následujícími pravděpodobnostmi Výpočet: P[X = ] = {SSS} atd P(X = ) = 1 {SSD, SDS, DSS}, P[X = 1] = = 3 Matematická statistika Šárka Hudecová 15/ 45 1 Příklad děti Znázornění pravděpodobností (rozdělení) P[X=k] k Matematická statistika Šárka Hudecová 16/ 45

5 Příklad děti Distribuční funkce veličiny X : má skoky v bodech, 1, 2, 3 o velikostech 1, 3, 3, 1 je nulová pro < a rovna jedné pro 3. F() Matematická statistika Šárka Hudecová 17/ 45 Spojitá náhodná veličina Spojitá náhodná veličina může nabývat nespočetně mnoha různých hodnot hodnoty z nějakého intervalu reálných čísel, nebo jakékoli reálné číslo každá konkrétní hodnota má nulovou pravděpodobnost Příklady výsledek nějakého měření, který může nabývat velkého počtu hodnot uvnitř nějakého konečného či nekonečného intervalu výška, hladina cholesterolu v krvi, rychlost molekuly plynu nelze mluvit o pravděpodobnost jednotlivých hodnot (je jich nespočetně) většinou nelze rozumně popsat ω a Ω, stačí nám ale chování X Matematická statistika Šárka Hudecová 1/ 45 Hustota Nechť X je spojitá náhodná veličina. Pak její distribuční funkce F je spojitá a také diferencovatelná (skoro všude). Pro spojitou náhodnou veličinu X s distribuční funkcí F eistuje funkce f taková, že F () = f (t) dt. Funkci f nazýváme hustota náhodné veličiny X. Platí f () = F (), tj. hustota je derivací distribuční funkce (a naopak, distribuční funkce je primitivní funkcí k hustotě). Matematická statistika Šárka Hudecová 19/ 45 Význam hustoty hustota popisuje, jakých hodnot X nabývá a s jakými pravděpodobnostmi, f () ukazuje, jak často padá X do úzkého okolí bodu f() velké hodnoty v oblastech, kam X padá častěji, malé hodnoty v oblastech, kam X padá méně často, a nulové hodnoty v oblastech, kam X nepadá nikdy. Matematická statistika Šárka Hudecová 2/ 45

6 Vlastnosti hustoty Vlastnosti hustoty Pro spojitou náhodnou veličinu X platí: Každá hustota f musí splňovat je nezáporná, tj. f () pro všechna R, celková plocha pod hustotou je rovna jedné, tj. f () d = 1. Věta 1 Pravděpodobnost, že X nabude konkrétní hodnoty je nulová, tj. P[X = a] = pro všechna a R. 2 Pro l a < b platí P[a < X b] = P[a < X < b] = P[a X b] = P[a X < b] a P[a < X < b] = F (b) F (a) = b a f () d, tj. pravděpodobnost, že X padne do nějakého intervalu, je dána plochou pod hustotou mezi krajními body intervalu. Matematická statistika Šárka Hudecová 21/ 45 Matematická statistika Šárka Hudecová 22/ 45 Vlastnosti hustoty (pokrač.) Hustota Věta 3 Podobně, f() P[a<X<b] P[X < b] = P[X b] = F (b) = b P[X > a] = P[X a] = 1 F (a) = f ()d, a f ()d. a b 4 Hustota je na intervalu (a, b) nulová právě tehdy, když X do tohoto intervalu nemůže padnout, tj. f () = pro všechna (a, b) P[a < X < b] =. Matematická statistika Šárka Hudecová 23/ 45 Matematická statistika Šárka Hudecová 24/ 45

7 Hustota Příklad Mawellovo rozdělení f() P[X>a] Mawellovo rozdělení udává rozdělení rychlosti částic ideálního plynu (rychlost = spojitá náhodná veličina) v trojrozměrném prostoru. a Hustota je dána vzorcem Hustota f () = 2 a 3 2π 2 e 2 2a 2 f() F(b)=P[X<b] kt pro > (f () = pro < ), kde a =, k je Boltzmannova m konstanta, T je teplota [K] a m je hmotnost molekuly [kg]. b Matematická statistika Šárka Hudecová 25/ 45 Matematická statistika Šárka Hudecová 26/ 45 Hustota Mawellova rozdělení Hustota rychlosti molekuly O 2 při 25. Distribuční funkce Distribuční funkce má tvar (počítá se numericky) F () = 1 2π 2 /a 2 z e z/2 dz, hustota f rychlost v m/s 6 1 Distribucni fce F rychlost v m/s Matematická statistika Šárka Hudecová 27/ 45 Matematická statistika Šárka Hudecová 2/ 45

8 Určení pravděpodobnosti daného rozmezí Charakteristiky náhodných veličin Distribucni fce F hustota P[4<V<6] = rychlost v m/s Plocha = Hustota a distribuční funkce popisují celé rozdělení náhodné veličiny se vším všudy. To je často příliš mnoho podrobností Někdy nás zajímá jen nějaký aspekt rozdělení náhodné veličiny, který se dá popsat jedním číslem očekávaná hodnota variabilita možných hodnot, hodnota, nad níž leží jen malé procento možných hodnot apod. číselné charakteristiky rozdělení rychlost v m/s Matematická statistika Šárka Hudecová 29/ 45 Matematická statistika Šárka Hudecová 3/ 45 Střední hodnota Střední hodnota náhodné veličiny Střední hodnota Střední hodnota 1 Střední hodnotou diskrétní náhodné veličiny X, která nabývá hodnot 1, 2,... s pravděpodobnostmi p 1, p 2,..., rozumíme součet EX = p i i, i 2 Střední hodnotou spojité náhodné veličiny X s hustotou f () rozumíme integrál EX = f () d, Střední hodnotu EX lze chápat jako průměrnou (očekávanou) hodnotu veličiny X, kolem níž náhodná veličina náhodně kolísá, míru polohy, populační průměr, vážený průměr všech možných hodnot jako těžiště možných hodnot Poznámka: střední hodnota eistuje, je-li příslušný integrál (součet) konečný budeme pracovat jen s náhodnými veličinami, pro které střední hodnota eistuje Matematická statistika Šárka Hudecová 31/ 45 Matematická statistika Šárka Hudecová 32/ 45

9 Střední hodnota Příklad děti Střední hodnota Příklad Mawellovo rozdělení Příklad: Připomenutí: Uvažujeme rodinu s třemi dětmi a náhodnou veličinu X (počet dcer). Spočítejme střední počet dcer EX. Měli jsme: X je diskrétní, nabývá hodnot, 1, 2, 3 (to jsou i ) s pstmi po řadě 1, 3, 3, 1 (to jsou p i). EX = K i=1 p i i = = = 1.5 Střední počet dcer v rodině se třemi dětmi je 1.5. Očekávaný počet dcer v rodině je 1.5. Střední rychlost molekuly Pro a = EX = kt m 2 f () d = a 3 2π dostaneme EV = π kt m, 3 e 2 2a 2 dv = π a. tedy střední rychlost molekul je přímo úměrná odmocnině z teploty a nepřímo úměrná odmocnině z hmotnosti molekul. Matematická statistika Šárka Hudecová 33/ 45 Matematická statistika Šárka Hudecová 34/ 45 Střední hodnota Střední hodnota poznámky Rozptyl Rozptyl náhodné veličiny Poznámky: Náhodná veličina nemusí nikdy nabývat své střední hodnoty. Příklad: příklad děti (EX = 1.5 dcer), hod kostkou... Podobně lze počítat Eg(X ), kde g je nějaká funkce (tj. např. EX 2, E X apod.). { i Eg(X ) = g( i)p i pro diskrétní n.v., g()f ()d pro spojitou n.v. Rozptylem náhodné veličiny X rozumíme hodnotu výrazu míra variability var X = E(X EX ) 2. střední kvadratická odchylka X od EX udává velikost kolísání (variabilitu) kolem střední hodnoty rozptyl je malý X padá s velkou pravděpodobností blízko své střední hodnoty rozptyl je velký X často padá daleko od své střední hodnoty Matematická statistika Šárka Hudecová 35/ 45 Matematická statistika Šárka Hudecová 36/ 45

10 Rozptyl Výpočet rozptylu Rozptyl Směrodatná odchylka náhodné veličiny Platí pro diskrétní veličinu X var X = EX 2 (EX ) 2 var X = i pro spojitou veličinu X var X = ( ) 2 i 2 p i i p i, i ( 2 2 f ()d f ()d). Směrodatnou odchylkou σ X náhodné veličiny X rozumíme odmocninu z rozptylu, t.j. var X. směrodatná odchylka má stejný fyzikální rozměr jako veličina X rozptyl je vyjádřen v jednotkách 2 Matematická statistika Šárka Hudecová 37/ 45 Matematická statistika Šárka Hudecová 3/ 45 Rozptyl Vlastnost střední hodnoty a rozptyly Vlastnosti střední hodnoty a rozptyly hustota f() Pro náhodnou veličinu X a a, b R platí 1 Je-li X = a, pak EX = a a var X =. 2 Platí E(a + bx ) = a + bex, var (a + bx ) = b 2 var X. hustota f() var X a rovnost nastane pouze, je-li X konstatní Matematická statistika Šárka Hudecová 39/ 45 Matematická statistika Šárka Hudecová 4/ 45

11 Kvantily Medián náhodné veličiny Kvantily Výpočet mediánu spojitého rozdělení Je-li distribuční funkce F rostoucí a spojitá, pak Mediánem náhodné veličiny X rozumíme kterékoli reálné číslo m X, které splňuje P[X m X ] 1 2 a zároveň P[X m X ] 1 2. míra polohy podobně jako střední hodnota medián je bod, který náhodná veličina v polovině případů nedosáhne a v polovině případů přesáhne F m X = medx = F 1 (1/2) Matematická statistika Šárka Hudecová 41/ 45 Matematická statistika Šárka Hudecová 42/ 45 Kvantily Obecná situace Jestliže není F rostoucí, pak může definici mediánu vyhovovat celý interval čísel vezmeme jeho střed F Kvantily Vlastnosti mediánu Pro náhodnou veličinu X a a, b R platí: 1 Platí med(a + bx ) = a + b medx 2 Je-li g rostoucí nebo klesající funkce, pak med g(x ) = g(medx ). 3 Má-li náhodná veličina X symetrické rozdělení (hustota je symetrická kolem nějakého bodu a R), pak EX = a = medx Matematická statistika Šárka Hudecová 43/ 45 Matematická statistika Šárka Hudecová 44/ 45

12 Kvantily Kvantil náhodné veličiny Kvantil je zobecnění mediánu. Nechť je dáno číslo α (, 1). α-kvantilem náhodné veličiny X rozumíme kterékoli reálné číslo q X (α), které splňuje P[X q X (α)] α a zároveň P[X q X (α)] 1 α. pro α = 1/2 dostaneme medián α-kvantil je bod, který náhodná veličina ve 1α % případů nedosáhne a v 1(1 α) % případů přesáhne je to hodnota, pod kterou je 1α % pravděpodobnosti je-li distr. fce F rostoucí a spojitá, pak eistuje právě jeden α-kvantil q X (α) = F 1 X (α) Matematická statistika Šárka Hudecová 45/ 45

Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel

Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Výsledky některých náhodných pokusů jsou přímo vyjádřeny číselně (např. při hodu kostkou padne 6). Náhodnou veličinou

Více

letní semestr Katedra pravděpodobnosti a matematické statistiky Matematicko-fyzikální fakulta Univerzity Karlovy Matematická statistika vektory

letní semestr Katedra pravděpodobnosti a matematické statistiky Matematicko-fyzikální fakulta Univerzity Karlovy Matematická statistika vektory Šárka Hudecová Katedra pravděpodobnosti a matematické statistiky Matematicko-fyzikální fakulta Univerzity Karlovy letní semestr 202 Založeno na materiálech doc. Michala Kulicha Náhodný vektor často potřebujeme

Více

I. D i s k r é t n í r o z d ě l e n í

I. D i s k r é t n í r o z d ě l e n í 6. T y p y r o z d ě l e n í Poznámka: V odst. 5.5-5.10 jsme uvedli příklady náhodných veličin a jejich distribučních funkcí. Poznali jsme, že se od sebe liší svým typem. V příkladech 5.5, 5.6 a 5.8 jsme

Více

Někdy lze výsledek pokusu popsat jediným číslem, které označíme X (nebo jiným velkým písmenem). Hodíme dvěma kostkami jaký padl součet?

Někdy lze výsledek pokusu popsat jediným číslem, které označíme X (nebo jiným velkým písmenem). Hodíme dvěma kostkami jaký padl součet? Náhodné veličiny Náhodné veličiny Někdy lze výsledek pokusu popsat jediným číslem, které označíme X (nebo jiným velkým písmenem). Příklad Vytáhneme tři karty z balíčku zajímá nás, kolik je mezi nimi es.

Více

p(x) = P (X = x), x R,

p(x) = P (X = x), x R, 6. T y p y r o z d ě l e n í Poznámka: V odst. 5.5-5.10 jsme uvedli příklady náhodných veličin a jejich distribučních funkcí. Poznali jsme, že se od sebe liší svým typem. V příkladech 5.5, 5.6 a 5.8 jsme

Více

Náhodná veličina a rozdělení pravděpodobnosti

Náhodná veličina a rozdělení pravděpodobnosti 3.2 Náhodná veličina a rozdělení pravděpodobnosti Bůh hraje se světem hru v kostky. Jsou to ale falešné kostky. Naším hlavním úkolem je zjistit, podle jakých pravidel byly označeny, a pak toho využít pro

Více

Definice spojité náhodné veličiny zjednodušená verze

Definice spojité náhodné veličiny zjednodušená verze Definice spojité náhodné veličiny zjednodušená verze Náhodná veličina X se nazývá spojitá, jestliže existuje nezáporná funkce f : R R taková, že pro každé a, b R { }, a < b, platí P(a < X < b) = b a f

Více

Náhodná veličina a její charakteristiky. Před provedením pokusu jeho výsledek a tedy ani sledovanou hodnotu neznáte. Proto je proměnná, která

Náhodná veličina a její charakteristiky. Před provedením pokusu jeho výsledek a tedy ani sledovanou hodnotu neznáte. Proto je proměnná, která Náhodná veličina a její charakteristiky Náhodná veličina a její charakteristiky Představte si, že provádíte náhodný pokus, jehož výsledek jste schopni ohodnotit nějakým číslem. Před provedením pokusu jeho

Více

Téma 22. Ondřej Nývlt

Téma 22. Ondřej Nývlt Téma 22 Ondřej Nývlt nyvlto1@fel.cvut.cz Náhodná veličina a náhodný vektor. Distribuční funkce, hustota a pravděpodobnostní funkce náhodné veličiny. Střední hodnota a rozptyl náhodné veličiny. Sdružené

Více

8 Střední hodnota a rozptyl

8 Střední hodnota a rozptyl Břetislav Fajmon, UMAT FEKT, VUT Brno Této přednášce odpovídá kapitola 10 ze skript [1]. Také je k dispozici sbírka úloh [2], kde si můžete procvičit příklady z kapitol 2, 3 a 4. K samostatnému procvičení

Více

7. Rozdělení pravděpodobnosti ve statistice

7. Rozdělení pravděpodobnosti ve statistice 7. Rozdělení pravděpodobnosti ve statistice Statistika nuda je, má však cenné údaje, neklesejte na mysli, ona nám to vyčíslí Jednou z úloh statistiky je odhad (výpočet) hodnot statistického znaku x i,

Více

Definice 7.1 Nechť je dán pravděpodobnostní prostor (Ω, A, P). Zobrazení. nebo ekvivalentně

Definice 7.1 Nechť je dán pravděpodobnostní prostor (Ω, A, P). Zobrazení. nebo ekvivalentně 7 Náhodný vektor Nezávislost náhodných veličin Definice 7 Nechť je dán pravděpodobnostní prostor (Ω, A, P) Zobrazení X : Ω R n, které je A-měřitelné, se nazývá (n-rozměrný) náhodný vektor Měřitelností

Více

Cvičení ze statistiky - 5. Filip Děchtěrenko

Cvičení ze statistiky - 5. Filip Děchtěrenko Cvičení ze statistiky - 5 Filip Děchtěrenko Minule bylo.. Začali jsme pravděpodobnost Klasická a statistická definice pravděpodobnosti Náhodný jev Doplněk, průnik, sjednocení Podmíněná pravděpodobnost

Více

Diskrétní náhodná veličina. November 12, 2008

Diskrétní náhodná veličina. November 12, 2008 Diskrétní náhodná veličina November 12, 2008 (Náhodná veličina (náhodná proměnná)) Náhodná veličina (nebo též náhodná proměnná) je veličina X, jejíž hodnota je jednoznačně určena výsledkem náhodného pokusu.

Více

1 Rozptyl a kovariance

1 Rozptyl a kovariance Rozptyl a kovariance Nechť X je náhodná veličina s konečnou střední hodnotou EX Potom rozptyl náhodné veličiny X definujeme jako: DX E(X EX, pokud střední hodnota na pravé straně existuje Podobně jako

Více

ROZDĚLENÍ SPOJITÝCH NÁHODNÝCH VELIČIN

ROZDĚLENÍ SPOJITÝCH NÁHODNÝCH VELIČIN ROZDĚLENÍ SPOJITÝCH NÁHODNÝCH VELIČIN Rovnoměrné rozdělení R(a,b) rozdělení s konstantní hustotou pravděpodobnosti v intervalu (a,b) f( x) distribuční funkce 0 x a F( x) a x b b a 1 x b b 1 a x a a x b

Více

Pravděpodobnost a statistika

Pravděpodobnost a statistika Pravděpodobnost a statistika Teorie pravděpodobnosti popisuje vznik náhodných dat, zatímco matematická statistika usuzuje z dat na charakter procesů, jimiž data vznikla. NÁHODNOST - forma existence látky,

Více

Matematika III 10. týden Číselné charakteristiky střední hodnota, rozptyl, kovariance, korelace

Matematika III 10. týden Číselné charakteristiky střední hodnota, rozptyl, kovariance, korelace Matematika III 10. týden Číselné charakteristiky střední hodnota, rozptyl, kovariance, korelace Jan Slovák Masarykova univerzita Fakulta informatiky 28. 11 2. 12. 2016 Obsah přednášky 1 Literatura 2 Střední

Více

MATEMATIKA III V PŘÍKLADECH

MATEMATIKA III V PŘÍKLADECH VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ MATEMATIKA III V PŘÍKLADECH Cvičení 7 Rozdělení pravděpodobnosti spojité náhodné veličiny Mgr. Petr Otipka Ostrava 2013 Mgr. Petr Otipka

Více

Rovnoměrné rozdělení

Rovnoměrné rozdělení Rovnoměrné rozdělení Nejjednodušší pravděpodobnostní rozdělení pro diskrétní náhodnou veličinu. V literatuře se také nazývá jako klasické rozdělení pravděpodobnosti. Náhodná veličina může nabývat n hodnot

Více

Střední hodnota a rozptyl náhodné. kvantilu. Ing. Michael Rost, Ph.D.

Střední hodnota a rozptyl náhodné. kvantilu. Ing. Michael Rost, Ph.D. Střední hodnota a rozptyl náhodné veličiny, vybraná rozdělení diskrétních a spojitých náhodných veličin, pojem kvantilu Ing. Michael Rost, Ph.D. Príklad Předpokládejme že máme náhodnou veličinu X která

Více

Téma 2: Pravděpodobnostní vyjádření náhodných veličin

Téma 2: Pravděpodobnostní vyjádření náhodných veličin 0.025 0.02 0.015 0.01 0.005 Nominální napětí v pásnici Std Mean 140 160 180 200 220 240 260 Std Téma 2: Pravděpodobnostní vyjádření náhodných veličin Přednáška z předmětu: Pravděpodobnostní posuzování

Více

Náhodný vektor a jeho charakteristiky

Náhodný vektor a jeho charakteristiky Náhodný vektor a jeho číselné charakteristiky 1 Náhodný vektor a jeho charakteristiky V následující kapitole budeme věnovat pozornost pouze dvourozměřnému náhodnému vektoru, i když uvedené pojmy a jejich

Více

1 Náhodný výběr a normální rozdělení 1.1 Teoretická a statistická pravděpodobnost

1 Náhodný výběr a normální rozdělení 1.1 Teoretická a statistická pravděpodobnost 1 Náhodný výběr a normální rozdělení 1.1 Teoretická a statistická pravděpodobnost Ve světě kolem nás eistují děje, jejichž výsledek nelze předem jednoznačně určit. Například nemůžete předem určit, kolik

Více

Metody výpočtu limit funkcí a posloupností

Metody výpočtu limit funkcí a posloupností Metody výpočtu limit funkcí a posloupností Martina Šimůnková, 6. listopadu 205 Učební tet k předmětu Matematická analýza pro studenty FP TUL Značení a terminologie R značí množinu reálných čísel, rozšířenou

Více

pravděpodobnosti Pravděpodobnost je teorií statistiky a statistika je praxí teorie pravděpodobnosti.

pravděpodobnosti Pravděpodobnost je teorií statistiky a statistika je praxí teorie pravděpodobnosti. 3.1 Základy teorie pravděpodobnosti Pravděpodobnost je teorií statistiky a statistika je praxí teorie pravděpodobnosti. Co se dozvíte Náhodný pokus a náhodný jev. Pravděpodobnost, počítání s pravděpodobnostmi.

Více

KGG/STG Statistika pro geografy

KGG/STG Statistika pro geografy KGG/STG Statistika pro geografy 4. Teoretická rozdělení Mgr. David Fiedor 9. března 2015 Osnova Úvod 1 Úvod 2 3 4 5 Vybraná rozdělení náhodných proměnných normální rozdělení normované normální rozdělení

Více

Číselné charakteristiky a jejich výpočet

Číselné charakteristiky a jejich výpočet Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz charakteristiky polohy charakteristiky variability charakteristiky koncetrace charakteristiky polohy charakteristiky

Více

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004.

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Prostá regresní a korelační analýza 1 1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Problematika závislosti V podstatě lze rozlišovat mezi závislostí nepodstatnou, čili náhodnou

Více

1 Pravděpodobnostní prostor

1 Pravděpodobnostní prostor PaS 1.-10. přednáška 1 Pravděpodobnostní prostor Náhodný pokus je takový pokus, jehož výsledek nelze s jistotou předpovědět. Pokud jsme schopni pokus za stále stejných podmínek opakovat (například házíme

Více

Vybraná rozdělení náhodné veličiny

Vybraná rozdělení náhodné veličiny 3.3 Vybraná rozdělení náhodné veličiny 0,16 0,14 0,12 0,1 0,08 0,06 0,04 0,02 0 Rozdělení Z 3 4 5 6 7 8 9 10 11 12 13 14 15 Život je umění vytvářet uspokojivé závěry na základě nedostatečných předpokladů.

Více

Diskrétní náhodná veličina

Diskrétní náhodná veličina Lekce Diskrétní náhodná veličina Výsledek náhodného pokusu může být vyjádřen slovně to vede k zavedení pojmu náhodného jevu Výsledek náhodného pokusu můžeme někdy vyjádřit i číselně, což vede k pojmu náhodné

Více

Téma 2: Pravděpodobnostní vyjádření náhodných veličin

Téma 2: Pravděpodobnostní vyjádření náhodných veličin 0.05 0.0 0.05 0.0 0.005 Nominální napětí v pásnici Std Mean 40 60 80 00 0 40 60 Std Téma : Pravděpodobnostní vyjádření náhodných veličin Přednáška z předmětu: Spolehlivost a bezpečnost staveb 4. ročník

Více

Pravděpodobnost a statistika

Pravděpodobnost a statistika Pravděpodobnost a statistika 1 Náhodné pokusy a náhodné jevy Činnostem, jejichž výsledek není jednoznačně určen podmínkami, za kterých probíhají, a které jsou (alespoň teoreticky) neomezeně opakovatelné,

Více

Normální rozložení a odvozená rozložení

Normální rozložení a odvozená rozložení I Normální rozložení a odvozená rozložení I.I Normální rozložení Data, se kterými pracujeme, pocházejí z různých rozložení. Mohou být vychýlena (doleva popř. doprava, nebo v nich není na první pohled vidět

Více

Statistika I (KMI/PSTAT)

Statistika I (KMI/PSTAT) Statistika I (KMI/PSTAT) Cvičení druhé aneb Kvantily, distribuční funkce Statistika I (KMI/PSTAT) 1 / 1 Co se dnes naučíme Po absolvování této hodiny byste měli být schopni: rozumět pojmu modus (modální

Více

Me neˇ nezˇ minimum ze statistiky Michaela S ˇ edova KPMS MFF UK Principy medicı ny zalozˇene na du kazech a za klady veˇdecke prˇı pravy 1 / 33

Me neˇ nezˇ minimum ze statistiky Michaela S ˇ edova KPMS MFF UK Principy medicı ny zalozˇene na du kazech a za klady veˇdecke prˇı pravy 1 / 33 1 / 33 Méně než minimum ze statistiky Michaela Šedová KPMS MFF UK Principy medicíny založené na důkazech a základy vědecké přípravy Příklad Studie syndromu náhodného úmrtí dětí. Dvě skupiny: Děti, které

Více

Určete zákon rozložení náhodné veličiny, která značí součet ok při hodu a) jednou kostkou, b) dvěma kostkami, c) třemi kostkami.

Určete zákon rozložení náhodné veličiny, která značí součet ok při hodu a) jednou kostkou, b) dvěma kostkami, c) třemi kostkami. 3.1. 3.2. Třikrát vystřelíme na cíl. Pravděpodobnost zásahu při každém výstřelu je p = 0,7. Určete: a) pravděpodobnostní funkci počtu zásahů při třech nezávislých výsledcích, b) distribuční funkci a její

Více

1 Posloupnosti a řady.

1 Posloupnosti a řady. 1 Posloupnosti a řady. 1.1 Posloupnosti reálných čísel. Definice 1.1: Posloupností reálných čísel nazýváme zobrazení f množiny N všech přirozených čísel do množiny R všech reálných čísel. Pokud nemůže

Více

Lékařská biofyzika, výpočetní technika I. Biostatistika Josef Tvrdík (doc. Ing. CSc.)

Lékařská biofyzika, výpočetní technika I. Biostatistika Josef Tvrdík (doc. Ing. CSc.) Lékařská biofyzika, výpočetní technika I Biostatistika Josef Tvrdík (doc. Ing. CSc.) Přírodovědecká fakulta, katedra informatiky josef.tvrdik@osu.cz konzultace úterý 14.10 až 15.40 hod. http://www1.osu.cz/~tvrdik

Více

Diskrétní matematika. DiM /01, zimní semestr 2016/2017

Diskrétní matematika. DiM /01, zimní semestr 2016/2017 Diskrétní matematika Petr Kovář petr.kovar@vsb.cz Vysoká škola báňská Technická univerzita Ostrava DiM 470-2301/01, zimní semestr 2016/2017 O tomto souboru Tento soubor je zamýšlen především jako pomůcka

Více

Pojmy z kombinatoriky, pravděpodobnosti, znalosti z kapitoly náhodná veličina, znalost parciálních derivací, dvojného integrálu.

Pojmy z kombinatoriky, pravděpodobnosti, znalosti z kapitoly náhodná veličina, znalost parciálních derivací, dvojného integrálu. 6. NÁHODNÝ VEKTOR Průvodce studiem V počtu pravděpodobnosti i v matematické statistice se setkáváme nejen s náhodnými veličinami, jejichž hodnotami jsou reálná čísla, ale i s takovými, jejichž hodnotami

Více

E(X) = np D(X) = np(1 p) 1 2p np(1 p) (n + 1)p 1 ˆx (n + 1)p. A 3 (X) =

E(X) = np D(X) = np(1 p) 1 2p np(1 p) (n + 1)p 1 ˆx (n + 1)p. A 3 (X) = Základní rozdělení pravděpodobnosti Diskrétní rozdělení pravděpodobnosti. Pojem Náhodná veličina s Binomickým rozdělením Bi(n, p), kde n je přirozené číslo, p je reálné číslo, < p < má pravděpodobnostní

Více

AVDAT Náhodný vektor, mnohorozměrné rozdělení

AVDAT Náhodný vektor, mnohorozměrné rozdělení AVDAT Náhodný vektor, mnohorozměrné rozdělení Josef Tvrdík Katedra informatiky Přírodovědecká fakulta Ostravská univerzita Opakování, náhodná veličina, rozdělení Náhodná veličina zobrazuje elementární

Více

Zpracování náhodného výběru. Ing. Michal Dorda, Ph.D.

Zpracování náhodného výběru. Ing. Michal Dorda, Ph.D. Zpracování náhodného výběru popisná statistika Ing. Michal Dorda, Ph.D. Základní pojmy Úkolem statistiky je na základě vlastností výběrového souboru usuzovat o vlastnostech celé populace. Populace(základní

Více

10. N á h o d n ý v e k t o r

10. N á h o d n ý v e k t o r 10. N á h o d n ý v e k t o r 10.1. Definice: Náhodný vektor. Uspořádanou n tici (X 1, X 2,..., X n ) náhodných veličin X i, 1 i n, nazýváme náhodným vektorem. Poznámka: Pro jednoduchost budeme zavádět

Více

III. Úplná pravděpodobnost. Nezávislé pokusy se dvěma výsledky. Úplná pravděpodobnost Nezávislé pokusy se dvěma výsledky Náhodná veličina

III. Úplná pravděpodobnost. Nezávislé pokusy se dvěma výsledky. Úplná pravděpodobnost Nezávislé pokusy se dvěma výsledky Náhodná veličina III Přednáška Úplná pravděpodobnost Nezávislé pokusy se dvěma výsledky Náhodná veličina Pravděpodobnost při existenci neslučitelných hypotéz Věta Mějme jev. Pokud H 1,H 2, : : :,H n tvoří úplnou skupinu

Více

11. přednáška 10. prosince Kapitola 3. Úvod do teorie diferenciálních rovnic. Obyčejná diferenciální rovnice řádu n (ODR řádu n) je vztah

11. přednáška 10. prosince Kapitola 3. Úvod do teorie diferenciálních rovnic. Obyčejná diferenciální rovnice řádu n (ODR řádu n) je vztah 11. přednáška 10. prosince 2007 Kapitola 3. Úvod do teorie diferenciálních rovnic. Obyčejná diferenciální rovnice řádu n (ODR řádu n) je vztah F (x, y, y, y,..., y (n) ) = 0 mezi argumentem x funkce jedné

Více

SPOJITÉ ROZDĚLENÍ PRAVDĚPODOBNOSTI. 7. cvičení

SPOJITÉ ROZDĚLENÍ PRAVDĚPODOBNOSTI. 7. cvičení SPOJITÉ ROZDĚLENÍ PRAVDĚPODOBNOSTI 7. cvičení Intenzita poruch Funkce modelující dobu do výskytu události životnost, dobu do poruchy, dobu do relapsu (návratu onemocnění), apod. používáme spolu s distribuční

Více

Inferenční statistika - úvod. z-skóry normální rozdělení pravděpodobnost rozdělení výběrových průměrů

Inferenční statistika - úvod. z-skóry normální rozdělení pravděpodobnost rozdělení výběrových průměrů Inferenční statistika - úvod z-skóry normální rozdělení pravděpodobnost rozdělení výběrových průměrů Pravděpodobnost postupy induktivní statistiky vycházejí z teorie pravděpodobnosti pravděpodobnost, že

Více

INTEGRÁLY S PARAMETREM

INTEGRÁLY S PARAMETREM INTEGRÁLY S PARAMETREM b a V kapitole o integraci funkcí více proměnných byla potřeba funkce g(x) = f(x, y) dy proměnné x. Spojitost funkce g(x) = b a f(x, y) dy proměnné x znamená vlastně prohození limity

Více

Limitní věty teorie pravděpodobnosti. Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel

Limitní věty teorie pravděpodobnosti. Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Jestliže opakujeme nezávisle nějaký pokus, můžeme z pozorovaných hodnot sestavit rozdělení relativních četností

Více

1. Náhodný vektor (X, Y ) má diskrétní rozdělení s pravděpodobnostní funkcí p, kde. p(x, y) = a(x + y + 1), x, y {0, 1, 2}.

1. Náhodný vektor (X, Y ) má diskrétní rozdělení s pravděpodobnostní funkcí p, kde. p(x, y) = a(x + y + 1), x, y {0, 1, 2}. VIII. Náhodný vektor. Náhodný vektor (X, Y má diskrétní rozdělení s pravděpodobnostní funkcí p, kde p(x, y a(x + y +, x, y {,, }. a Určete číslo a a napište tabulku pravděpodobnostní funkce p. Řešení:

Více

Cvičení 5. Přednášející: Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc.

Cvičení 5. Přednášející: Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc. 5 Přednášející: Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc. Katedra počítačových systémů Katedra teoretické informatiky Fakulta informačních technologií České vysoké učení technické v

Více

Základy teorie odhadu parametrů bodový odhad

Základy teorie odhadu parametrů bodový odhad Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Odhady parametrů Úkolem výběrového šetření je podat informaci o neznámé hodnotě charakteristiky základního souboru

Více

Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od jara 2014

Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od jara 2014 Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od jara 2014 Zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia

Více

Příklad 1. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 11

Příklad 1. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 11 Příklad 1 Vyhláška Ministerstva zdravotnictví předpokládala, že doba dojezdu k pacientovi od nahlášení požadavku nepřekročí 17 minut. Hodnoty deseti náhodně vybraných dob příjezdu sanitky k nemocnému byly:

Více

Derivace funkce. prof. RNDr. Čestmír Burdík DrCs. prof. Ing. Edita Pelantová CSc. Katedra matematiky BI-ZMA ZS 2009/2010

Derivace funkce. prof. RNDr. Čestmír Burdík DrCs. prof. Ing. Edita Pelantová CSc. Katedra matematiky BI-ZMA ZS 2009/2010 Derivace funkce prof. RNDr. Čestmír Burdík DrCs. prof. Ing. Edita Pelantová CSc. Katedra matematiky České vysoké učení technické v Praze c Čestmír Burdík, Edita Pelantová 2009 Základy matematické analýzy

Více

Úvod do teorie odhadu. Ing. Michael Rost, Ph.D.

Úvod do teorie odhadu. Ing. Michael Rost, Ph.D. Úvod do teorie odhadu Ing. Michael Rost, Ph.D. Náhodný výběr Náhodným výběrem ze základního souboru populace, která je popsána prostřednictvím hustoty pravděpodobnosti f(x, θ), budeme nazývat posloupnost

Více

IV. Základní pojmy matematické analýzy IV.1. Rozšíření množiny reálných čísel

IV. Základní pojmy matematické analýzy IV.1. Rozšíření množiny reálných čísel Matematická analýza IV. Základní pojmy matematické analýzy IV.1. Rozšíření množiny reálných čísel na množině R je definováno: velikost (absolutní hodnota), uspořádání, aritmetické operace; znázornění:

Více

8.1. Definice: Normální (Gaussovo) rozdělení N(µ, σ 2 ) s parametry µ a. ( ) ϕ(x) = 1. označovat písmenem U. Její hustota je pak.

8.1. Definice: Normální (Gaussovo) rozdělení N(µ, σ 2 ) s parametry µ a. ( ) ϕ(x) = 1. označovat písmenem U. Její hustota je pak. 8. Normální rozdělení 8.. Definice: Normální (Gaussovo) rozdělení N(µ, ) s parametry µ a > 0 je rozdělení určené hustotou ( ) f(x) = (x µ) e, x (, ). Rozdělení N(0; ) s parametry µ = 0 a = se nazývá normované

Více

Základy matematiky pro FEK

Základy matematiky pro FEK Základy matematiky pro FEK 8. přednáška Blanka Šedivá KMA zimní semestr 2016/2017 Blanka Šedivá (KMA) Základy matematiky pro FEK zimní semestr 2016/2017 1 / 14 Derivace funkce U lineárních funkcí ve tvaru

Více

ROZDĚLENÍ NÁHODNÝCH VELIČIN

ROZDĚLENÍ NÁHODNÝCH VELIČIN ROZDĚLENÍ NÁHODNÝCH VELIČIN 1 Vytvořeno s podporou projektu Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny společného základu (reg. č. CZ.1.07/2.2.00/28.0021)

Více

Jednofaktorová analýza rozptylu

Jednofaktorová analýza rozptylu I I.I Jednofaktorová analýza rozptylu Úvod Jednofaktorová analýza rozptylu (ANOVA) se využívá při porovnání několika středních hodnot. Často se využívá ve vědeckých a lékařských experimentech, při kterých

Více

Matematika I (KMI/PMATE)

Matematika I (KMI/PMATE) Přednáška první aneb Úvod do matematické analýzy Funkce a její vlastnosti Úvod do matematické analýzy Osnova přednášky pojem funkce definice funkce graf funkce definiční obor funkce obor hodnot funkce

Více

Distribuční funkce je funkcí neklesající, tj. pro všechna

Distribuční funkce je funkcí neklesající, tj. pro všechna Téma: Náhodná veličina, distribuční funkce a její graf, pravděpodobnostní funkce a její graf, funkce hustoty pravděpodobnosti a její graf, výpočet střední hodnoty a rozptylu náhodné veličiny 1 Náhodná

Více

Příklady: - počet členů dané domácnosti - počet zákazníků ve frontě - počet pokusů do padnutí čísla šest - životnost televizoru - věk člověka

Příklady: - počet členů dané domácnosti - počet zákazníků ve frontě - počet pokusů do padnutí čísla šest - životnost televizoru - věk člověka Náhodná veličina Náhodnou veličinou nazýváme veličinu, terá s určitými p-stmi nabývá reálných hodnot jednoznačně přiřazených výsledům příslušných náhodných pousů Náhodné veličiny obvyle dělíme na dva záladní

Více

veličin, deskriptivní statistika Ing. Michael Rost, Ph.D.

veličin, deskriptivní statistika Ing. Michael Rost, Ph.D. Vybraná rozdělení spojitých náhodných veličin, deskriptivní statistika Ing. Michael Rost, Ph.D. Třídění Základním zpracováním dat je jejich třídění. Jde o uspořádání získaných dat, kde volba třídícího

Více

Funkce komplexní proměnné a integrální transformace

Funkce komplexní proměnné a integrální transformace Funkce komplexní proměnné a integrální transformace Fourierovy řady I. Marek Lampart Text byl vytvořen v rámci realizace projektu Matematika pro inženýry 21. století (reg. č. CZ.1.07/2.2.00/07.0332), na

Více

Pravděpodobnost a její vlastnosti

Pravděpodobnost a její vlastnosti Pravděpodobnost a její vlastnosti 1 Pravděpodobnost a její vlastnosti Náhodné jevy Náhodný jev je výsledek pokusu (tj. realizace určitého systému podmínek) a jeho charakteristickým rysem je, že může, ale

Více

Kapitola 7: Integrál. 1/17

Kapitola 7: Integrál. 1/17 Kapitola 7: Integrál. 1/17 Neurčitý integrál - Motivační příklad 2/17 Příklad: Necht se bod pohybuje po přímce rychlostí a) v(t) = 3 [m/s] (rovnoměrný přímočarý pohyb), b) v(t) = 2t [m/s] (rovnoměrně zrychlený

Více

Intuitivní pojem pravděpodobnosti

Intuitivní pojem pravděpodobnosti Pravděpodobnost Intuitivní pojem pravděpodobnosti Intuitivní pojem pravděpodobnosti Pravděpodobnost zkoumaného jevu vyjadřuje míru naděje, že tento jev nastane. Řekneme-li, že má nějaký jev pravděpodobnost

Více

MĚŘENÍ, TYPY VELIČIN a TYPY ŠKÁL

MĚŘENÍ, TYPY VELIČIN a TYPY ŠKÁL MĚŘENÍ, TYPY VELIČIN a TYPY ŠKÁL Matematika a stejně i matematická statistika a biometrie s námi hovoří řečí čísel. Musíme tedy vlastnosti nebo intenzitu vlastností jedinců změřit kvantifikovat. Měřením

Více

Statistická teorie učení

Statistická teorie učení Statistická teorie učení Petr Havel Marek Myslivec přednáška z 9. týdne 1 Úvod Představme si situaci výrobce a zákazníka, který si u výrobce objednal algoritmus rozpoznávání. Zákazník dodal experimentální

Více

Funkce jedn e re aln e promˇ enn e Derivace Pˇredn aˇska ˇr ıjna 2015

Funkce jedn e re aln e promˇ enn e Derivace Pˇredn aˇska ˇr ıjna 2015 Funkce jedné reálné proměnné Derivace Přednáška 2 15. října 2015 Obsah 1 Funkce 2 Limita a spojitost funkce 3 Derivace 4 Průběh funkce Informace Literatura v elektronické verzi (odkazy ze STAGu): 1 Lineární

Více

Číselné charakteristiky

Číselné charakteristiky . Číselné charakteristiky statistických dat Průměrný statistik se během svého života ožení s 1,75 ženami, které se ho snaží vytáhnout večer do společnosti,5 x týdně, ale pouze s 50% úspěchem. W. F. Miksch

Více

Posloupnosti a jejich konvergence POSLOUPNOSTI

Posloupnosti a jejich konvergence POSLOUPNOSTI Posloupnosti a jejich konvergence Pojem konvergence je velmi důležitý pro nediskrétní matematiku. Je nezbytný všude, kde je potřeba aproximovat nějaké hodnoty, řešit rovnice přibližně, používat derivace,

Více

Induktivní statistika. z-skóry pravděpodobnost

Induktivní statistika. z-skóry pravděpodobnost Induktivní statistika z-skóry pravděpodobnost normální rozdělení Z-skóry umožňují najít a popsat pozici každé hodnoty v rámci rozdělení hodnot a také srovnávání hodnot pocházejících z měření na rozdílných

Více

Náhodné vektory a matice

Náhodné vektory a matice Náhodné vektory a matice Jiří Militký Katedra textilních materiálů Technická Universita Liberec, Červeně označené slide jsou jen pro doplnění informací a nezkouší se. Symbolika A B Jev jistý S (nastane

Více

Pravdpodobnost výskytu náhodné veliiny na njakém intervalu urujeme na základ tchto vztah: f(x)

Pravdpodobnost výskytu náhodné veliiny na njakém intervalu urujeme na základ tchto vztah: f(x) NÁHODNÁ VELIINA Náhodná veliina je veliina, jejíž hodnota je jednoznan urena výsledkem náhodného pokusu (je-li tento výsledek dán reálným íslem). Jde o reálnou funkci definovanou na základním prostoru

Více

Diferenciální rovnice a jejich aplikace. (Brkos 2011) Diferenciální rovnice a jejich aplikace 1 / 36

Diferenciální rovnice a jejich aplikace. (Brkos 2011) Diferenciální rovnice a jejich aplikace 1 / 36 Diferenciální rovnice a jejich aplikace Zdeněk Kadeřábek (Brkos 2011) Diferenciální rovnice a jejich aplikace 1 / 36 Obsah 1 Co to je derivace? 2 Diferenciální rovnice 3 Systémy diferenciálních rovnic

Více

Intervalové odhady. Interval spolehlivosti pro střední hodnotu v N(µ, σ 2 ) Interpretace intervalu spolehlivosti. Interval spolehlivosti ilustrace

Intervalové odhady. Interval spolehlivosti pro střední hodnotu v N(µ, σ 2 ) Interpretace intervalu spolehlivosti. Interval spolehlivosti ilustrace Intervalové odhady Interval spolehlivosti pro střední hodnotu v Nµ, σ 2 ) Situace: X 1,..., X n náhodný výběr z Nµ, σ 2 ), kde σ 2 > 0 známe měli jsme: bodové odhady odhadem charakteristiky je číslo) nevyjadřuje

Více

Některé zákony rozdělení pravděpodobnosti. 1. Binomické rozdělení

Některé zákony rozdělení pravděpodobnosti. 1. Binomické rozdělení Přednáška 5/1 Některé zákony rozdělení pravděpodobnosti 1. Binomické rozdělení Předpoklady: (a) pst výskytu jevu A v jediném pokuse P (A) = π, (b) je uskutečněno n pokusů, (c) pokusy jsou nezávislé, tj.

Více

PRIMITIVNÍ FUNKCE. Primitivní funkce primitivní funkce. geometrický popis integrály 1 integrály 2 spojité funkce konstrukce prim.

PRIMITIVNÍ FUNKCE. Primitivní funkce primitivní funkce. geometrický popis integrály 1 integrály 2 spojité funkce konstrukce prim. PRIMITIVNÍ FUNKCE V předchozích částech byly zkoumány derivace funkcí a hlavním tématem byly funkce, které derivace mají. V této kapitole se budou zkoumat funkce, které naopak jsou derivacemi jiných funkcí

Více

Riemannův určitý integrál

Riemannův určitý integrál Riemannův určitý integrál 1. Motivační příklad Příklad (Motivační příklad pro zavedení Riemannova integrálu). Nechť,. Vypočtěme obsah vybarvené oblasti ohraničené grafem funkce, osou a svislými přímkami

Více

NAIVNÍ TEORIE MNOŽIN, okruh č. 5

NAIVNÍ TEORIE MNOŽIN, okruh č. 5 NAIVNÍ TEORIE MNOŽIN, okruh č. 5 Definování množiny a jejích prvků Množina je souhrn nějakých věcí. Patří-li věc do množiny X, říkáme, že v ní leží, že je jejím prvkem nebo že množina X tuto věc obsahuje.

Více

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0.

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0. Nalezněte definiční obor funkce Diferenciální počet f = ln arcsin + Definiční obor funkce f je určen vztahy Z těchto nerovností plyne < + ln arcsin + je tedy D f =, Určete definiční obor funkce arcsin

Více

0.1 Úvod do matematické analýzy

0.1 Úvod do matematické analýzy Matematika I (KMI/PMATE) 1 0.1 Úvod do matematické analýzy 0.1.1 Pojem funkce Veličina - pojem, který popisuje kvantitativní (číselné) vlastnosti reálných i abstraktních objektů. Příklady veličin: hmotnost

Více

Texty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech

Texty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech Texty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech 1. července 2008 1 Funkce v R n Definice 1 Necht n N a D R n. Reálnou funkcí v R n (reálnou funkcí n proměnných) rozumíme zobrazení

Více

REÁLNÁ FUNKCE JEDNÉ PROMĚNNÉ

REÁLNÁ FUNKCE JEDNÉ PROMĚNNÉ REÁLNÁ FUNKCE JEDNÉ PROMĚNNÉ 5 přednáška S funkcemi se setkáváme na každém kroku ve všech přírodních vědách ale i v každodenním životě Každá situace kdy jsou nějaký jev nebo veličina jednoznačně určeny

Více

7 Pravděpodobnostní modely úvod

7 Pravděpodobnostní modely úvod 7 Pravděpodobnostní modely úvod 7 Pravděpodobnostní modely úvod Břetislav Fajmon, UMAT FEKT, VUT Brno Nyní ve druhé polovině kursu bude obsahem odlišná matematická disciplína, která snad má s numerickými

Více

Jana Vránová, 3. lékařská fakulta UK

Jana Vránová, 3. lékařská fakulta UK Jana Vránová, 3. lékařská fakulta UK Vznikají při zkoumání vztahů kvalitativních resp. diskrétních znaků Jedná se o analogii s korelační analýzou spojitých znaků Přitom předpokládáme, že každý prvek populace

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ OBOR GEODÉZIE A KARTOGRAFIE KATEDRA VYŠŠÍ GEODÉZIE název předmětu úloha/zadání název úlohy Fyzikální geodézie 2/7 Gravitační potenciál a jeho derivace

Více

Přednáška IV. Náhodná veličina, rozdělení pravděpodobnosti a reálná data

Přednáška IV. Náhodná veličina, rozdělení pravděpodobnosti a reálná data Přednáška IV. Náhodná veličina, rozdělení pravděpodobnosti a reálná data Náhodná veličina Rozdělení pravděpodobnosti náhodných veličin Normální rozdělení a rozdělení příbuzná Transformace náhodných veličin

Více

Poznámky k předmětu Aplikovaná statistika, 5.téma

Poznámky k předmětu Aplikovaná statistika, 5.téma Poznámky k předmětu Aplikovaná statistika, 5.téma 5. Některá významná rozdělení A. Diskrétní rozdělení (i) Diskrétní rovnoměrné rozdělení na množině {,..., n} Náhodná veličina X, která má diskrétní rovnoměrné

Více

Statistika. Teorie odhadu statistická indukce. Roman Biskup. (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at) .

Statistika. Teorie odhadu statistická indukce. Roman Biskup. (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at) . Statistika Teorie odhadu statistická indukce Intervalový odhad µ, σ 2 a π Roman Biskup (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at)email.cz 21. února 2012 Statistika

Více

Posloupnosti a řady. 28. listopadu 2015

Posloupnosti a řady. 28. listopadu 2015 Posloupnosti a řady Přednáška 5 28. listopadu 205 Obsah Posloupnosti 2 Věty o limitách 3 Řady 4 Kritéria konvergence 5 Absolutní a relativní konvergence 6 Operace s řadami 7 Mocninné a Taylorovy řady Zdroj

Více