Ing. Petr Hájek, Ph.D. Podpora přednášky kurzu Aplikace umělé inteligence

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Ing. Petr Hájek, Ph.D. Podpora přednášky kurzu Aplikace umělé inteligence"

Transkript

1 APLIKACE UMĚLÉ INTELIGENCE Ing. Petr Hájek, Ph.D. Podpora přednášky kurzu Aplikace umělé inteligence

2 Aplikace umělé inteligence - seminář ING. PETR HÁJEK, PH.D. ÚSTAV SYSTÉMOVÉHO INŽENÝRSTVÍ A INFORMATIKY FAKULTA EKONOMICKO-SPRÁVNÍ UNIVERZITA PARDUBICE

3 Objevování znalostí a strojové učení I Objevování znalostí (Knowledge Discovery) je možné definovat jako proces netriviálního dolování implicitních, dosud neznámých a potenciálně užitečných informací z dat. Příkladem znalosti je následující vzorek: IF věk < 25 AND kurs_výchovy_řidičů = Ne THEN nehoda = Ano s_pravděpodobností = 0.2. Tato znalost je ihned srozumitelná a použitelná. Zároveň ji lze vložit do jiného programu (např. ř expertního systému). Málokdy platí objevená znalost pro všechna data. Proto je používána míra určitosti C, která určuje míru důvěry, kterou má mít systém nebo uživatel v objevenou znalost. Bez dostatečné míry určitosti jsou vzorky neopodstatněné a nemohou proto být znalostmi.

4 Objevování znalostí a strojové učení II Cílem strojového učeníč je vypočítat t takovou funkci f, pomocí které bude možné správně klasifikovat jak data použitá pro její výpočet (tzv. trénovací data), tak i další data mimo množinu trénovacích dat (tzv. testovací data). Metody objevování znalostí mají za úkol jednak identifikovat zajímavé vzorky v datech a jednak je výstižně a smysluplně popsat. p Proces identifikace spočívá ve shlukování záznamů do tříd, které reprezentují vzorky vpůvodních datech. Proces popisu shrnuje důležité vlastnosti identifikovaných tříd. Ve strojovém učení se tyto procesy nazývají učení bez učitele (identifikace) a učení s učitelem (popis).

5 Systém na objevování znalostí v databázích

6 Úkoly I Načtěte data German credit do programového prostředí Weka. Znázorněte histogramy všech atributů. Znázorněte závislosti mezi vybranými atributy t (použijte zvětšení grafu a symbolů). Proveďte selekci atributů (pomocí filtrů např. založenou na korelacích, Chí-kvadrát testu, atd. a wrapperů pomocí zvoleného klasifikátoru) a extrakci nových atributů pomocí metody hlavních komponent. Odstraňte z původní množiny atributů ty, které se ukázaly jako statisticky nevýznamné (např. na základě selekce založené na korelacích s vyhledáváním pomocí genetických algoritmů). Proveďte shlukování vzorků (znázorněte také směrodatné odchylky a porovnejte výsledek se skutečnou klasifikací).

7 Úkoly II Nastavte t matici i nákladů pro klasifikaci. i Nechte na výstupu zobrazit také predikované hodnoty. Vyzkoušejte rozdělení na trénovací a testovací data v % poměru a 10-násobnou křížovou validaci. Použijte rozhodovací strom SimpleCart, jaké budou výsledky při prořezávání stromu a bez něj? Co když použijete jen trénovací data? Jaké informace dává predikce jednotlivých vzorků? P žijt l áh d ý h h d í h t ů J ký Použijte les náhodných rozhodovacích stromů. Jaký počet stromů je pro daný problém optimální?

8 Úkoly III Pro dopřednou neuronovou síť typu Perceptron použijte grafické uživatelské prostředí. Vyzkoušejte experimenty pro různé počty neuronů ve skryté vrstvě ě a různé ů rychlosti učení. č U RBF neuronové sítě měňte počet neuronů ve skryté vrstvě. U SVM měňte parametr komplexnosti, popř. typ jádrové funkce (polynomická, RBF). Odstraňte z množiny atributů kvantitativní atributy a vyzkoušejte si tvorbu asociačních pravidel pomocí apriori algoritmu. Jaké budou výsledky, když se změní parametr podpory a parametr určitosti. Jaký počet pravidel je potřeba nastavit?

9 Načtení dat

10 Četnosti atributů

11 Vizualizace závislostí

12 Datový slovník

13 Struktura datového souboru

14 Identifikace tříd

15 Klasifikační strom

16 Výsledek klasifikace

17 Objevování znalostí pomocí oc asociačních ač c pravidel

18 Neuronové sítě

19 Dopředná neuronová síť

20 RBF neuronová o síť ť a Support VectorMachines es

21 Děkuji za pozornost

ZÍSKÁVÁNÍ ZNALOSTÍ Z DATABÁZÍ

ZÍSKÁVÁNÍ ZNALOSTÍ Z DATABÁZÍ metodický list č. 1 Dobývání znalostí z databází Cílem tohoto tematického celku je vysvětlení základních pojmů z oblasti dobývání znalostí z databází i východisek dobývání znalostí z databází inspirovaných

Více

Dobývání a vizualizace znalostí

Dobývání a vizualizace znalostí Dobývání a vizualizace znalostí Olga Štěpánková et al. 1 Osnova předmětu 1. Dobývání znalostí - popis a metodika procesu a objasnění základních pojmů 2. Nástroje pro modelování klasifikovaných dat a jejich

Více

Získávání znalostí z databází. Alois Kužela

Získávání znalostí z databází. Alois Kužela Získávání znalostí z databází Alois Kužela Obsah související pojmy datové sklady, získávání znalostí asocianí pravidla 2/37 Úvod získávání znalostí z dat, dolování (z) dat, data mining proces netriviálního

Více

vzorek1 0.0033390 0.0047277 0.0062653 0.0077811 0.0090141... vzorek 30 0.0056775 0.0058778 0.0066916 0.0076192 0.0087291

vzorek1 0.0033390 0.0047277 0.0062653 0.0077811 0.0090141... vzorek 30 0.0056775 0.0058778 0.0066916 0.0076192 0.0087291 Vzorová úloha 4.16 Postup vícerozměrné kalibrace Postup vícerozměrné kalibrace ukážeme na úloze C4.10 Vícerozměrný kalibrační model kvality bezolovnatého benzinu. Dle následujících kroků na základě naměřených

Více

Lineární diskriminační funkce. Perceptronový algoritmus.

Lineární diskriminační funkce. Perceptronový algoritmus. Lineární. Perceptronový algoritmus. Petr Pošík Czech Technical University in Prague Faculty of Electrical Engineering Dept. of Cybernetics P. Pošík c 2012 Artificial Intelligence 1 / 12 Binární klasifikace

Více

Uživatelská podpora v prostředí WWW

Uživatelská podpora v prostředí WWW Uživatelská podpora v prostředí WWW Jiří Jelínek Katedra managementu informací Fakulta managementu Jindřichův Hradec Vysoká škola ekonomická Praha Úvod WWW obsáhlost obsahová i formátová pestrost dokumenty,

Více

StatSoft Úvod do neuronových sítí

StatSoft Úvod do neuronových sítí StatSoft Úvod do neuronových sítí Vzhledem k vzrůstající popularitě neuronových sítí jsme se rozhodli Vám je v tomto článku představit a říci si něco o jejich využití. Co si tedy představit pod pojmem

Více

Dobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze

Dobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Dobývání znalostí Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Dobývání znalostí Rozhodovací stromy Doc. RNDr. Iveta Mrázová, CSc.

Více

1 Tabulky Příklad 3 Access 2010

1 Tabulky Příklad 3 Access 2010 TÉMA: Vytvoření tabulky v návrhovém zobrazení Pro společnost Naše zahrada je třeba vytvořit databázi pro evidenci objednávek o konkrétní struktuře tabulek. Do databáze je potřeba ještě přidat tabulku Platby,

Více

Aplikovaná informatika Možnosti analýzy validity a prezentace získaných dat z informačních databází. ZEMÁNEK, Z. - PLUSKAL, D. - ŠUBRT, Z.

Aplikovaná informatika Možnosti analýzy validity a prezentace získaných dat z informačních databází. ZEMÁNEK, Z. - PLUSKAL, D. - ŠUBRT, Z. Aplikovaná informatika Možnosti analýzy validity a prezentace získaných dat z informačních databází. ZEMÁNEK, Z. - PLUSKAL, D. - ŠUBRT, Z. Operační program Vzdělávání pro konkurenceschopnost Název projektu:

Více

Využití strojového učení k identifikaci protein-ligand aktivních míst

Využití strojového učení k identifikaci protein-ligand aktivních míst Využití strojového učení k identifikaci protein-ligand aktivních míst David Hoksza, Radoslav Krivák SIRET Research Group Katedra softwarového inženýrství, Matematicko-fyzikální fakulta Karlova Univerzita

Více

Úvodem Dříve les než stromy 3 Operace s maticemi

Úvodem Dříve les než stromy 3 Operace s maticemi Obsah 1 Úvodem 13 2 Dříve les než stromy 17 2.1 Nejednoznačnost terminologie 17 2.2 Volba metody analýzy dat 23 2.3 Přehled vybraných vícerozměrných metod 25 2.3.1 Metoda hlavních komponent 26 2.3.2 Faktorová

Více

MODELOVÁNÍ BONITY OBCÍ POMOCÍ KOHONENOVÝCH SAMOORGANIZUJÍCÍCH SE MAP A LVQ NEURONOVÝCH SÍTÍ

MODELOVÁNÍ BONITY OBCÍ POMOCÍ KOHONENOVÝCH SAMOORGANIZUJÍCÍCH SE MAP A LVQ NEURONOVÝCH SÍTÍ MODELOVÁNÍ BONITY OBCÍ POMOCÍ KOHONENOVÝCH SAMOORGANIZUJÍCÍCH SE MAP A LVQ NEURONOVÝCH SÍTÍ Vladimír Olej, Petr Hájek Univerzita Pardubice, Fakulta ekonomicko-správní, informatiky Ústav systémového inženýrství

Více

IDENTIFIKACE AUTOMATICKÝCH PŘÍSTUPŮ INTERNETOVÝCH OBCHODŮ S VYUŽÍTÍM METOD WEB USAGE MININGU

IDENTIFIKACE AUTOMATICKÝCH PŘÍSTUPŮ INTERNETOVÝCH OBCHODŮ S VYUŽÍTÍM METOD WEB USAGE MININGU IDENTIFIKACE AUTOMATICKÝCH PŘÍSTUPŮ INTERNETOVÝCH OBCHODŮ S VYUŽÍTÍM METOD WEB USAGE MININGU Jana Filipová, Karel Michálek, Pavel Petr Ústav systémového inženýrství a informatiky, Fakulta ekonomicko-správní,

Více

UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11.

UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11. UNIVERZITA OBRANY Fakulta ekonomiky a managementu Aplikace STAT1 Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 Jiří Neubauer, Marek Sedlačík, Oldřich Kříž 3. 11. 2012 Popis a návod k použití aplikace

Více

Zpracování náhodného výběru. Ing. Michal Dorda, Ph.D.

Zpracování náhodného výběru. Ing. Michal Dorda, Ph.D. Zpracování náhodného výběru popisná statistika Ing. Michal Dorda, Ph.D. Základní pojmy Úkolem statistiky je na základě vlastností výběrového souboru usuzovat o vlastnostech celé populace. Populace(základní

Více

StatSoft Úvod do data miningu

StatSoft Úvod do data miningu StatSoft Úvod do data miningu Tento článek je úvodním povídáním o data miningu, jeho vzniku, účelu a využití. Historie data miningu Rozvoj počítačů, výpočetní techniky a zavedení elektronického sběru dat

Více

Vysoká škola báňská technická univerzita Ostrava. Fakulta elektrotechniky a informatiky

Vysoká škola báňská technická univerzita Ostrava. Fakulta elektrotechniky a informatiky Vysoká škola báňská technická univerzita Ostrava Fakulta elektrotechniky a informatiky Bankovní účty (semestrální projekt statistika) Tomáš Hejret (hej124) 18.5.2013 Úvod Cílem tohoto projektu, zadaného

Více

Vytěžování znalostí z dat

Vytěžování znalostí z dat Pavel Kordík, Josef Borkovec (ČVUT FIT) Vytěžování znalostí z dat BI-VZD, 2011, Cvičení 9 1/16 Vytěžování znalostí z dat Pavel Kordík, Josef Borkovec Department of Computer Systems Faculty of Information

Více

Modelování na burze cenných papírů metodami umělé inteligence

Modelování na burze cenných papírů metodami umělé inteligence Univerzita Pardubice Fakulta ekonomicko-správní Ústav systémového inženýrství a informatiky Modelování na burze cenných papírů metodami umělé inteligence Bc. Vojtěch Zákoutský Diplomová práce 2013 Prohlášení

Více

Neuronové časové řady (ANN-TS)

Neuronové časové řady (ANN-TS) Neuronové časové řady (ANN-TS) Menu: QCExpert Prediktivní metody Neuronové časové řady Tento modul (Artificial Neural Network Time Series ANN-TS) využívá modelovacího potenciálu neuronové sítě k predikci

Více

Klasifikace předmětů a jevů

Klasifikace předmětů a jevů Klasifikace předmětů a jevů 1. Úvod Rozpoznávání neboli klasifikace je základní znak lidské činnosti. Rozpoznávání (klasifikace) předmětů a jevů spočívá v jejich zařazování do jednotlivých tříd. Třídou

Více

Experimentální systém pro WEB IR

Experimentální systém pro WEB IR Experimentální systém pro WEB IR Jiří Vraný Školitel: Doc. RNDr. Pavel Satrapa PhD. Problematika disertační práce velmi stručný úvod WEB IR information retrieval from WWW, vyhledávání na webu Vzhledem

Více

VYUŽITÍ MATLAB WEB SERVERU PRO INTERNETOVOU VÝUKU ANALÝZY DAT A ŘÍZENÍ JAKOSTI

VYUŽITÍ MATLAB WEB SERVERU PRO INTERNETOVOU VÝUKU ANALÝZY DAT A ŘÍZENÍ JAKOSTI VYUŽITÍ MATLAB WEB SERVERU PRO INTERNETOVOU VÝUKU ANALÝZY DAT A ŘÍZENÍ JAKOSTI Aleš Linka 1, Petr Volf 2 1 Katedra textilních materiálů, FT TUL, 2 Katedra aplikované matematiky, FP TUL ABSTRAKT. Internetové

Více

pracovní list studenta Kombinatorika, pravděpodobnost, základy statistiky Jak jsou vysocí? Mirek Kubera

pracovní list studenta Kombinatorika, pravděpodobnost, základy statistiky Jak jsou vysocí? Mirek Kubera Výstup RVP: Klíčová slova: pracovní list studenta Kombinatorika, pravděpodobnost, základy statistiky Mirek Kubera žák diskutuje a kriticky zhodnotí statistické informace a daná statistická sdělení, volí

Více

Obsah. Vybraná témata z Excelu pro techniky 13. Obsah. Úvod 11 Komu je kniha určena 11 Uspořádání knihy 11. Typografická konvence použitá v knize 12

Obsah. Vybraná témata z Excelu pro techniky 13. Obsah. Úvod 11 Komu je kniha určena 11 Uspořádání knihy 11. Typografická konvence použitá v knize 12 Obsah Úvod 11 Komu je kniha určena 11 Uspořádání knihy 11 Typografická konvence použitá v knize 12 1 Vybraná témata z Excelu pro techniky 13 Vzorce a funkce pro techniky 14 Vytvoření jednoduchého vzorce

Více

Aplikovaná statistika pro učitele a žáky v hodinách zeměpisu aneb jak využít MS Excel v praxi. Geografický seminář 30. března 2011 Pavel Bednář

Aplikovaná statistika pro učitele a žáky v hodinách zeměpisu aneb jak využít MS Excel v praxi. Geografický seminář 30. března 2011 Pavel Bednář Aplikovaná statistika pro učitele a žáky v hodinách zeměpisu aneb jak využít MS Excel v praxi Geografický seminář 30. března 2011 Pavel Bednář Výchozí stav Sebehodnocení práce s MS Excel studujícími oboru

Více

Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu

Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu K čemu slouží statistika Popisuje velké soubory dat pomocí charakteristických čísel (popisná statistika). Hledá skryté zákonitosti v souborech

Více

NÁSTROJE BUSINESS INTELLIGENCE

NÁSTROJE BUSINESS INTELLIGENCE NÁSTROJE BUSINESS INTELLIGENCE Milena Tvrdíková VŠB Technická univerzita Ostrava, Ekonomická fakulta, Katedra informatiky v ekonomice, Sokolská 33, 701021 Ostrava1, ČR, milena.tvrdikova@vsb.cz Abstrakt

Více

PRODUKTY. Tovek Tools

PRODUKTY. Tovek Tools jsou desktopovou aplikací určenou k vyhledávání informací, tvorbě různých typů analýz a vytváření přehledů a rešerší. Jsou vhodné pro práci i s velkým objemem textových dat z různorodých informačních zdrojů.

Více

Program a životní cyklus programu

Program a životní cyklus programu Program a životní cyklus programu Program algoritmus zapsaný formálně, srozumitelně pro počítač program se skládá z elementárních kroků Elementární kroky mohou být: instrukce operačního kódu počítače příkazy

Více

PowerPoint 2010. Kurz 2, 3. Inovace a modernizace studijních oborů FSpS (IMPACT) CZ.1.07/2.2.00/28.0221

PowerPoint 2010. Kurz 2, 3. Inovace a modernizace studijních oborů FSpS (IMPACT) CZ.1.07/2.2.00/28.0221 PowerPoint 2010 Kurz 2, 3 CZ.1.07/2.2.00/28.0221 Jak by měla vypadat prezentace v PowerPointu Typy na správnou prezentaci Základním prvkem prezentace je text kontrola opakujících se slov v prezentaci Texty

Více

EXCELentní tipy a triky pro mírně pokročilé. Martina Litschmannová

EXCELentní tipy a triky pro mírně pokročilé. Martina Litschmannová EXCELentní tipy a triky pro mírně pokročilé Martina Litschmannová Obsah semináře definování názvu dynamicky měněné oblasti, kontingenční tabulky úvod, kontingenční tabulky násobné oblasti sloučení, převod

Více

4ST201 STATISTIKA CVIČENÍ Č. 7

4ST201 STATISTIKA CVIČENÍ Č. 7 4ST201 STATISTIKA CVIČENÍ Č. 7 testování hypotéz parametrické testy test hypotézy o střední hodnotě test hypotézy o relativní četnosti test o shodě středních hodnot testování hypotéz v MS Excel neparametrické

Více

2. Statistická terminologie a vyjadřovací prostředky. 2.1. Statistická terminologie. Statistická jednotka

2. Statistická terminologie a vyjadřovací prostředky. 2.1. Statistická terminologie. Statistická jednotka 2. Statistická terminologie a vyjadřovací prostředky 2.1. Statistická terminologie Statistická jednotka Statistická jednotka = nositel statistické informace, elementární prvek hromadného jevu. Příklady:

Více

Termovizní měření. 1 Teoretický úvod. Cíl cvičení: Detekce lidské kůže na snímcích z termovizní i klasické kamery

Termovizní měření. 1 Teoretický úvod. Cíl cvičení: Detekce lidské kůže na snímcích z termovizní i klasické kamery Termovizní měření Cíl cvičení: Detekce lidské kůže na snímcích z termovizní i klasické kamery 1 Teoretický úvod Termovizní měření Termovizní kamera je přístroj pro bezkontaktní měření teplotních polí na

Více

Architektura - struktura sítě výkonných prvků, jejich vzájemné propojení.

Architektura - struktura sítě výkonných prvků, jejich vzájemné propojení. Základní pojmy z oblasti neuronových sítí Zde je uveden přehled některých základních pojmů z oblasti neuronových sítí. Tento přehled usnadní studium a pochopení předmětu. ADALINE - klasická umělá neuronová

Více

Možnosti modelování lesní vegetační stupňovitosti pomocí geoinformačních analýz

Možnosti modelování lesní vegetační stupňovitosti pomocí geoinformačních analýz 25. 10. 2012, Praha Ing. Petr Vahalík Ústav geoinformačních technologií Možnosti modelování lesní vegetační stupňovitosti pomocí geoinformačních analýz 21. konference GIS Esri v ČR Lesní vegetační stupně

Více

NÁVRH A REALIZACE TRADING STRATEGIÍ NA BÁZI STROJOVÉHO UČENÍ S POMOCÍ MATLABU

NÁVRH A REALIZACE TRADING STRATEGIÍ NA BÁZI STROJOVÉHO UČENÍ S POMOCÍ MATLABU NÁVRH A REALIZACE TRADING STRATEGIÍ NA BÁZI STROJOVÉHO UČENÍ S POMOCÍ MATLABU RNDr. Miroslav Pavelka, PhD m.pavelka@sh.cvut.cz Ing. Jan Hovad jan@hovad.cz OBSAH Obchodování a strojové učení Specifika prediktivního

Více

Simulace. Simulace dat. Parametry

Simulace. Simulace dat. Parametry Simulace Simulace dat Menu: QCExpert Simulace Simulace dat Tento modul je určen pro generování pseudonáhodných dat s danými statistickými vlastnostmi. Nabízí čtyři typy rozdělení: normální, logaritmicko-normální,

Více

Základy business intelligence. Jaroslav Šmarda

Základy business intelligence. Jaroslav Šmarda Základy business intelligence Jaroslav Šmarda Základy business intelligence Business intelligence Datový sklad On-line Analytical Processing (OLAP) Kontingenční tabulky v MS Excelu jako příklad OLAP Dolování

Více

ADZ základní statistické funkce

ADZ základní statistické funkce ADZ základní statistické funkce Základní statistické funkce a znaky v softwaru Excel Znak Stručný popis + Sčítání buněk - Odčítání buněk * Násobení buněk / Dělení buněk Ctrl+c Vyjmutí buňky Ctrl+v Vložení

Více

Hotline Helios Tel.: 800 129 734 E-mail: helios@ikomplet.cz Pokročilé ovládání IS Helios Orange

Hotline Helios Tel.: 800 129 734 E-mail: helios@ikomplet.cz Pokročilé ovládání IS Helios Orange Hotline Helios Tel.: 800 129 734 E-mail: helios@ikomplet.cz Pokročilé ovládání IS Helios Orange 2013 BüroKomplet, s.r.o. Obsah 1 Kontingenční tabulky... 3 1.1 Vytvoření nové kontingenční tabulky... 3 2

Více

Pojem a úkoly statistiky

Pojem a úkoly statistiky Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Pojem a úkoly statistiky Statistika je věda, která se zabývá získáváním, zpracováním a analýzou dat pro potřeby

Více

6. Lineární regresní modely

6. Lineární regresní modely 6. Lineární regresní modely 6.1 Jednoduchá regrese a validace 6.2 Testy hypotéz v lineární regresi 6.3 Kritika dat v regresním tripletu 6.4 Multikolinearita a polynomy 6.5 Kritika modelu v regresním tripletu

Více

Trendy v IS/ICT přístupy k návrhu multidimenzionální modelování

Trendy v IS/ICT přístupy k návrhu multidimenzionální modelování Trendy v IS/ICT přístupy k návrhu multidimenzionální modelování Aplikace IS/ICT BI SCM e-business ERP ERP CRM II e-business Aplikace pro podporu základních řídících a administrativních operací 1 Informační

Více

IBM SPSS Modeler Professional

IBM SPSS Modeler Professional IBM SPSS Modeler Professional 16 IBM SPSS Software IBM SPSS Modeler Professional Včasné rozhodnutí díky přesným informacím Metodami data miningu získáte detailní přehled o svém současném stavu i jasnější

Více

Přínos k rozvoji klíčových kompetencí:

Přínos k rozvoji klíčových kompetencí: Střední škola hospodářská a lesnická, Frýdlant, Bělíkova 1387, příspěvková organizace Název modulu Informační a komunikační Kód modulu ICT-M-4/1-5 technologie Délka modulu 60 hodin Platnost 1.09.2010 Typ

Více

30 APZ Klienti. Popis modulu

30 APZ Klienti. Popis modulu 30 APZ Klienti Uživatelský modul APZ Klienti náleží k modulům řešícím agendu agentury podporovaného zaměstnávání se zaměřením na osoby se zdravotním postižením. Modul umožňuje evidenci klientů agentury

Více

Dotazy tvorba nových polí (vypočítané pole)

Dotazy tvorba nových polí (vypočítané pole) Téma 2.4 Dotazy tvorba nových polí (vypočítané pole) Pomocí dotazu lze také vytvářet nová pole, která mají vazbu na již existující pole v databázi. Vznikne tedy nový sloupec, který se počítá podle vzorce.

Více

0,7 0,6 0,5 0,4 0,3 0,2 0,1

0,7 0,6 0,5 0,4 0,3 0,2 0,1 VÝVOJ PROSTŘEDKŮ VÝPOČTOVÉ INTELIGENCE PRO MONITOROVÁNÍ A ŘÍZENÍ OCELÁŘSKÝCH VÝROBNÍCH PROCESŮ Miroslav Pokorný¹ Václav Kafka² Zdeněk Bůžek³ 1) VŠB TU Ostrava, FEI, 17. listopadu 15, 708 33 Ostrava, ČR,

Více

Učivo obsah. Druhá mocnina a odmocnina Druhá mocnina a odmocnina Třetí mocnina a odmocnina Kružnice a kruh

Učivo obsah. Druhá mocnina a odmocnina Druhá mocnina a odmocnina Třetí mocnina a odmocnina Kružnice a kruh Výstupy žáka ZŠ Chrudim, U Stadionu Je schopen vypočítat druhou mocninu a odmocninu nebo odhadnout přibližný výsledek Určí druhou mocninu a odmocninu pomocí tabulek a kalkulačky Umí řešit úlohy z praxe

Více

Praktické příklady v Excelu 2007

Praktické příklady v Excelu 2007 =P Praktické příklady v Excelu 2007 Marek Laurenčík Nakladatelství a vydavatelství R Vzdìlávání, které baví www.computermedia.cz Praktické příklady v Excelu 2007 Praktické příklady v Excelu 2007 Autor:

Více

Diagnostika infarktu myokardu pomocí pravidlových systémů

Diagnostika infarktu myokardu pomocí pravidlových systémů pomocí pravidlových systémů Bakalářská práce 2009 pomocí pravidlových systémů Přehled prezentace Motivace a cíle Infarkt myokardu, EKG Pravidlové systémy Výsledky Motivace Infarkt myokardu Detekce infarktu

Více

Uživatelské preference v prostředí webových obchodů. Ladislav Peška, MFF UK

Uživatelské preference v prostředí webových obchodů. Ladislav Peška, MFF UK Uživatelské preference v prostředí webových obchodů Ladislav Peška, MFF UK Disclaimer Obsah Uživatelské preference Získávání UP Využití UP Doporučování na webových obchodech Proč doporučovat? Jak doporučovat?

Více

Metody tvorby ontologií a sémantický web. Martin Malčík, Rostislav Miarka

Metody tvorby ontologií a sémantický web. Martin Malčík, Rostislav Miarka Metody tvorby ontologií a sémantický web Martin Malčík, Rostislav Miarka Obsah Reprezentace znalostí Ontologie a sémantický web Tvorba ontologií Hierarchie znalostí (D.R.Tobin) Data jakékoliv znakové řetězce

Více

4.8 Jak jsme na tom v porovnání s jinými přístupy

4.8 Jak jsme na tom v porovnání s jinými přístupy Vážení zákazníci, dovolujeme si Vás upozornit, že na tuto ukázku knihy se vztahují autorská práva, tzv. copyright. To znamená, že ukázka má sloužit výhradnì pro osobní potøebu potenciálního kupujícího

Více

Kartogramy. Přednáška z předmětu Tematická kartografie (KMA/TKA) Otakar Čerba Západočeská univerzita

Kartogramy. Přednáška z předmětu Tematická kartografie (KMA/TKA) Otakar Čerba Západočeská univerzita Kartogramy Přednáška z předmětu Tematická kartografie (KMA/TKA) Otakar Čerba Západočeská univerzita Datum vytvoření dokumentu: 20. 9. 2004 Datum poslední aktualizace: 17. 10. 2011 Definice Kartogram je

Více

OSOBA JEDNAJÍCÍ ZA SPRÁVCE ČÍSELNÍKU NÁVOD K OBSLUZE INFORMAČNÍHO SYSTÉMU O DATOVÝCH PRVCÍCH (ISDP)

OSOBA JEDNAJÍCÍ ZA SPRÁVCE ČÍSELNÍKU NÁVOD K OBSLUZE INFORMAČNÍHO SYSTÉMU O DATOVÝCH PRVCÍCH (ISDP) OSOBA JEDNAJÍCÍ ZA SPRÁVCE ČÍSELNÍKU NÁVOD K OBSLUZE INFORMAČNÍHO SYSTÉMU O DATOVÝCH PRVCÍCH (ISDP) Obsah Úvod...2 Co je ISDP...2 Jaké jsou funkce ISDP...2 Slovník pojmů...2 Dílčí DP...2 DS...2 ISDP...2

Více

PowerOPTI Řízení účinnosti tepelného cyklu

PowerOPTI Řízení účinnosti tepelného cyklu PowerOPTI Řízení účinnosti tepelného cyklu VIZE Zvýšit konkurenceschopnost provozovatelů elektráren a tepláren. Základní funkce: Spolehlivé hodnocení a řízení účinnosti tepelného cyklu, včasná diagnostika

Více

POČÍTAČOVÁ FORMALIZACE MENTÁLNÍCH MODELŮ METODAMI PRAVDĚPODOBNOSTNÍHO JAZYKOVÉHO MODELOVÁNÍ

POČÍTAČOVÁ FORMALIZACE MENTÁLNÍCH MODELŮ METODAMI PRAVDĚPODOBNOSTNÍHO JAZYKOVÉHO MODELOVÁNÍ POČÍTAČOVÁ FORMALIZACE MENTÁLNÍCH MODELŮ METODAMI PRAVDĚPODOBNOSTNÍHO JAZYKOVÉHO MODELOVÁNÍ ON MENTAL MODELS FORMALIZATION THROUGH THE METHODS OF PROBABILISTIC LINGUISTIC MODELLING Zdeňka Krišová, Miroslav

Více

T6: Program MS Excel II. (standard) Určeno pro získání standardní úrovně znalostí (2 4 hodiny)

T6: Program MS Excel II. (standard) Určeno pro získání standardní úrovně znalostí (2 4 hodiny) T6: Určeno pro získání standardní úrovně znalostí (2 4 hodiny) Co lekce nabízí? Školení je určeno všem uživatelům, kteří chtějí zvládnout standardní úroveň práce s MS Excel. Naučíte se profesionálně vytvářet,

Více

VOZIDLA. Uživatelská příručka SeeMe - Ecofleet. Provozovatel GPS služeb: pobočka ZNOJMO pobočka JIHLAVA pobočka DOMAŽLICE pobočka PRAHA Identifikace

VOZIDLA. Uživatelská příručka SeeMe - Ecofleet. Provozovatel GPS služeb: pobočka ZNOJMO pobočka JIHLAVA pobočka DOMAŽLICE pobočka PRAHA Identifikace alarmy do vozidel, sledování úbytku paliva a další služby VOZIDLA Uživatelská příručka SeeMe - Ecofleet Identifikace IČO:28550650 Rejstříkový soud: Praha, Oddíl C vložka 149630 Systémové požadavky... 3

Více

INTLIB. Osnova. Projekt (TA02010182/Inteligentní knihovna) je řešen s finanční podporou TA ČR. ! Legislativní doména

INTLIB. Osnova. Projekt (TA02010182/Inteligentní knihovna) je řešen s finanční podporou TA ČR. ! Legislativní doména INTLIB Projekt (TA02010182/Inteligentní knihovna) je řešen s finanční podporou TA ČR. Osnova! O projektu! Postupy prací podle oblastí! Legislativní doména " Judikatura " Účetní poddoména! Environmentální

Více

Pracovní list č. 3 Charakteristiky variability

Pracovní list č. 3 Charakteristiky variability 1. Při zjišťování počtu nezletilých dětí ve třiceti vybraných rodinách byly získány tyto výsledky: 1, 1, 0, 2, 3, 4, 2, 2, 3, 0, 1, 2, 2, 4, 3, 3, 0, 1, 1, 1, 2, 2, 0, 2, 1, 1, 2, 3, 3, 2. Uspořádejte

Více

Příprava dat v softwaru Statistica

Příprava dat v softwaru Statistica Příprava dat v softwaru Statistica Software Statistica obsahuje pokročilé nástroje pro přípravu dat a tvorbu nových proměnných. Tyto funkcionality přinášejí značnou úsporu času při přípravě datového souboru,

Více

Kompletní manuál programu HiddenSMS Lite

Kompletní manuál programu HiddenSMS Lite v1.1001 Kompletní manuál programu HiddenSMS Lite Poslední aktualizace: 27. 8. 2009 HiddenSMS Lite software pro mobilní telefony s operačním systémem Windows Mobile, určený pro skrytí Vašich soukromých

Více

Podmíněné formátování

Podmíněné formátování Podmíněné formátování 274 K čemu slouží podmíněné formátování začátečník Podmíněné formátování umožňuje měnit formát buňky na základě hodnoty. Změna formátu je automatická, Excel vyhodnocuje podmínky nastavené

Více

Návod na cvičení VoIP Hodnocení kvality řeči neintrusivní metodou

Návod na cvičení VoIP Hodnocení kvality řeči neintrusivní metodou Fakulta elektrotechniky a informatiky, VSB-TU Ostrava Návod na cvičení VoIP Hodnocení kvality řeči neintrusivní metodou Datum: 15.2.2013 Autor: Ing. Karel Tomala Kontakt: karel.tomala@vsb.cz Předmět: Telekomunikační

Více

Informace k převodu na nový školní rok

Informace k převodu na nový školní rok Informace k převodu na nový školní rok Pokud nebudete chtít využívat nové možnosti průvodce přechodem na nový školní rok, které jsou popsány v následující kapitole, pak použijete volbu základní převod

Více

Vysoká škola báňská Technická univerzita Ostrava TEORIE ÚDRŽBY. učební text. Jan Famfulík. Jana Míková. Radek Krzyžanek

Vysoká škola báňská Technická univerzita Ostrava TEORIE ÚDRŽBY. učební text. Jan Famfulík. Jana Míková. Radek Krzyžanek Vysoká škola báňská Technická univerzita Ostrava TEORIE ÚDRŽBY učební text Jan Famfulík Jana Míková Radek Krzyžanek Ostrava 2007 Recenze: Prof. Ing. Milan Lánský, DrSc. Název: Teorie údržby Autor: Ing.

Více

Třídění statistických dat

Třídění statistických dat 2.1 Třídění statistických dat Všechny muže ve městě rozdělíme na 2 skupiny: A) muži, kteří chodí k holiči B) muži, kteří se holí sami Do které skupiny zařadíme holiče? prof. Raymond M. Smullyan, Dr. Math.

Více

Analýza dat s využitím MS Excel

Analýza dat s využitím MS Excel Analýza dat s využitím MS Excel Seminář aplikované statistiky Martina Litschmannová Několik fíglů na úvod Absolutní vs. relativní adresování změna pomocí F4 =$H$20 =H$20 =$H20 =H20 Posun po souvislé oblasti

Více

S M Ě R N I C E č. 6/2014 ministra financí ------------------------------------------------------------------------

S M Ě R N I C E č. 6/2014 ministra financí ------------------------------------------------------------------------ MINISTERSTVO FINANCÍ Praha 1, Letenská 15 V Praze dne 12. prosince 2014 Č.j.: MF 69 949/2014/4703-2 S M Ě R N I C E č. 6/2014 ministra financí ------------------------------------------------------------------------

Více

Přehledy pro Tabulky Hlavním smyslem této nové agendy je jednoduché řazení, filtrování a seskupování dle libovolných sloupců.

Přehledy pro Tabulky Hlavním smyslem této nové agendy je jednoduché řazení, filtrování a seskupování dle libovolných sloupců. Přehledy pro Tabulky V programu CONTACT Professional 5 naleznete u firem, osob a obchodních případů záložku Tabulka. Tuto záložku lze rozmnožit, přejmenovat a sloupce je možné definovat dle vlastních požadavků

Více

aktivita A0705 Metodická a faktografická příprava řešení regionálních disparit ve fyzické dostupnosti bydlení v ČR

aktivita A0705 Metodická a faktografická příprava řešení regionálních disparit ve fyzické dostupnosti bydlení v ČR aktivita A0705 Metodická a faktografická příprava řešení regionálních disparit ve fyzické dostupnosti bydlení v ČR 1 aktivita A0705 Metodická a faktografická příprava řešení regionálních disparit ve fyzické

Více

KOMENTÁTOR ISDP NÁVOD K OBSLUZE INFORMAČNÍHO SYSTÉMU O DATOVÝCH PRVCÍCH (ISDP)

KOMENTÁTOR ISDP NÁVOD K OBSLUZE INFORMAČNÍHO SYSTÉMU O DATOVÝCH PRVCÍCH (ISDP) KOMENTÁTOR ISDP NÁVOD K OBSLUZE INFORMAČNÍHO SYSTÉMU O DATOVÝCH PRVCÍCH (ISDP) Obsah Úvod...3 Co je ISDP...3 Jaké jsou funkce ISDP...3 Slovník pojmů...3 Dílčí DP...3 DS...3 ISDP...3 JeDP...3 OS...3 SlDP...3

Více

STATISTICKÉ TESTY VÝZNAMNOSTI

STATISTICKÉ TESTY VÝZNAMNOSTI STATISTICKÉ TESTY VÝZNAMNOSTI jsou statistické postupy, pomocí nichž ověřujeme, zda mezi proměnnými existuje vztah (závislost, rozdíl). Pokud je výsledek šetření statisticky významný (signifikantní), znamená

Více

Návrh systému řízení

Návrh systému řízení Návrh systému řízení Jelikož popisované ostrovní systémy využívají zdroje elektrické energie s nestabilní dodávkou elektrické energie, jsou kladeny vysoké nároky na řídicí systém celého ostrovního systému.

Více

Projekt do NEU Dokumentace

Projekt do NEU Dokumentace Projekt do NEU Dokumentace Vypracoval: Zbyně k Křivka (xkrivk01) Datum: 10. 12. 2003 Zadání: Demonstrace využ ití neuronovésítě typu BP a RCE při analýze jazyků v teoretické informatice. Analý za problé

Více

Bezpečnostní systémy - rychlostní kamery Identifikace SPZ a RZ. www.mestozlin.cz

Bezpečnostní systémy - rychlostní kamery Identifikace SPZ a RZ. www.mestozlin.cz Bezpečnostní systémy - rychlostní kamery Identifikace SPZ a RZ Město Zlín Jednou z možností monitorování a řízení dopravy v obcích je automatické snímání silničního provozu Monitorování dopravy vozidel

Více

Úvod Příklad Výpočty a grafické znázornění. Filip Habr. České vysoké učení technické v Praze Fakulta jaderná a fyzikálně inženýrská

Úvod Příklad Výpočty a grafické znázornění. Filip Habr. České vysoké učení technické v Praze Fakulta jaderná a fyzikálně inženýrská Neuronové sítě-delta učení Filip Habr České vysoké učení technické v Praze Fakulta jaderná a fyzikálně inženýrská 30. března 2009 Obsah prezentace Obsah prezentace Delta učení 1 Teorie k delta učení 2

Více

DATABÁZE A SYSTÉMY PRO UCHOVÁNÍ DAT 61 DATABÁZE - ACCESS. (příprava k vykonání testu ECDL Modul 5 Databáze a systémy pro zpracování dat)

DATABÁZE A SYSTÉMY PRO UCHOVÁNÍ DAT 61 DATABÁZE - ACCESS. (příprava k vykonání testu ECDL Modul 5 Databáze a systémy pro zpracování dat) DATABÁZE A SYSTÉMY PRO UCHOVÁNÍ DAT 61 DATABÁZE - ACCESS (příprava k vykonání testu ECDL Modul 5 Databáze a systémy pro zpracování dat) DATABÁZE A SYSTÉMY PRO UCHOVÁNÍ DAT 62 Databáze a systémy pro uchování

Více

Dokumentace k aplikaci CDS (centra lní datový sklad pro mapý povodn ove ho nebezpec í a povodn ový ch rizik) (verze pro ver ejnost)

Dokumentace k aplikaci CDS (centra lní datový sklad pro mapý povodn ove ho nebezpec í a povodn ový ch rizik) (verze pro ver ejnost) Dokumentace k aplikaci CDS (centra lní datový sklad pro mapý povodn ove ho nebezpec í a povodn ový ch rizik) (verze pro ver ejnost) Cíl projektu Cílem projektu je soustředit všechny mapové a textové informace

Více

Nejistota měř. ěření, návaznost a kontrola kvality. Miroslav Janošík

Nejistota měř. ěření, návaznost a kontrola kvality. Miroslav Janošík Nejistota měř ěření, návaznost a kontrola kvality Miroslav Janošík Obsah Referenční materiály Návaznost referenčních materiálů Nejistota Kontrola kvality Westgardova pravidla Unity Referenční materiál

Více

ArcGIS Online Subscription

ArcGIS Online Subscription ArcGIS Online Subscription GIS pro organizace ArcGIS Online je GIS v cloudu. Poskytuje služby GIS v prostředí internetu, ať už se jedná o úložné místo, publikaci mapových a geoprocessingových služeb, nebo

Více

Reporting. Ukazatele je možno definovat nad libovolnou tabulkou Helios Orange, která je zapsána v nadstavbě firmy SAPERTA v souboru tabulek:

Reporting. Ukazatele je možno definovat nad libovolnou tabulkou Helios Orange, která je zapsána v nadstavbě firmy SAPERTA v souboru tabulek: Finanční analýza Pojem finanční analýza Finanční analýza umožňuje načítat data podle dimenzí a tyto součty dlouhodobě vyhodnocovat. Pojem finanční analýza není nejpřesnější, protože ukazatele mohou být

Více

Program Statistica Base 9. Mgr. Karla Hrbáčková, Ph.D.

Program Statistica Base 9. Mgr. Karla Hrbáčková, Ph.D. Program Statistica Base 9 Mgr. Karla Hrbáčková, Ph.D. OBSAH KURZU obsluha jednotlivých nástrojů, funkce pro import dat z jiných aplikací, práce s popisnou statistikou, vytváření grafů, analýza dat, výstupní

Více

9. Dobývání znalostí v praxi

9. Dobývání znalostí v praxi 9. Dobývání znalostí v praxi 9.1 Příklad úlohy Na závěr knihy se opět vraťme k příkladu zmíněném v první kapitole. Vodítkem při dobývání znalostí nám bude metodologie CRISP-DM. 9.1.1 Porozumění problematice

Více

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT)

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) 1. Číselné obory 1.1 Přirozená čísla provádět aritmetické operace s přirozenými čísly rozlišit prvočíslo

Více

Forecasting, demand planning a řízení zásob: Skrytý potenciál. Tomáš Hladík Logio

Forecasting, demand planning a řízení zásob: Skrytý potenciál. Tomáš Hladík Logio Forecasting, demand planning a řízení zásob: Skrytý potenciál Tomáš Hladík Logio 14.3.2012 Obsah Cíl správného řízení zásob Proč segmentovat portfolio? Dobrý forecasting je základ Jak na pomaluobrátkové

Více

Základní popis Toolboxu MPSV nástroje

Základní popis Toolboxu MPSV nástroje Základní popis Toolboxu MPSV nástroje Nástroj XLS2DBF ze sady MPSV nástroje slouží pro zkonvertování souboru ve formátu XLS do formátu DBF. Nástroj umožňuje konvertovat buď vybraný list nebo listy ze sešitu

Více

Dreamsystem - expertní neuro systém ve financích s lidskou tváří

Dreamsystem - expertní neuro systém ve financích s lidskou tváří Dreamsystem - expertní neuro systém ve financích s lidskou tváří Vedoucí projektu: RNDr. M. Kopecký, Ph.D. Externí konzultant: M. Houska Počet řešitelů: 4-6 Řešitelé: tým ještě není kompletní Předpokládané

Více

Mapa Česka: www.mapa-ceska.cz

Mapa Česka: www.mapa-ceska.cz Mapa Česka: www.mapa-ceska.cz Mapový portál Mapa Česka, který je dostupný na internetové adrese www.mapa-ceska.cz, byl vytvořen v roce 2014 v rámci bakalářské práce na Přírodovědecké fakultě Univerzity

Více

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická

Více

Moje Cisco Nejčastější dotazy

Moje Cisco Nejčastější dotazy 1. Co je Moje Cisco? Moje Cisco umožňuje mobilní, přizpůsobitelné zobrazení vašich oblíbených informací na webu Cisco.com. 2. Jak otevřít stránku Moje Cisco? Moje Cisco lze otevřít dvěma způsoby: Rozbalovací

Více

Obsah. Úvod 15 Základní možnosti Excelu 17

Obsah. Úvod 15 Základní možnosti Excelu 17 Obsah Úvod 15 Základní možnosti Excelu 17 1 Jak spouštět Excel z úvodní obrazovky Windows 8 17 2 Jak spouštět Excel z hlavního panelu 17 3 Jak otevřít nový dokument podle šablony 18 4 Jak zařídit, aby

Více