Ing. Petr Hájek, Ph.D. Podpora přednášky kurzu Aplikace umělé inteligence

Rozměr: px
Začít zobrazení ze stránky:

Download "Ing. Petr Hájek, Ph.D. Podpora přednášky kurzu Aplikace umělé inteligence"

Transkript

1 APLIKACE UMĚLÉ INTELIGENCE Ing. Petr Hájek, Ph.D. Podpora přednášky kurzu Aplikace umělé inteligence

2 Aplikace umělé inteligence - seminář ING. PETR HÁJEK, PH.D. ÚSTAV SYSTÉMOVÉHO INŽENÝRSTVÍ A INFORMATIKY FAKULTA EKONOMICKO-SPRÁVNÍ UNIVERZITA PARDUBICE

3 Objevování znalostí a strojové učení I Objevování znalostí (Knowledge Discovery) je možné definovat jako proces netriviálního dolování implicitních, dosud neznámých a potenciálně užitečných informací z dat. Příkladem znalosti je následující vzorek: IF věk < 25 AND kurs_výchovy_řidičů = Ne THEN nehoda = Ano s_pravděpodobností = 0.2. Tato znalost je ihned srozumitelná a použitelná. Zároveň ji lze vložit do jiného programu (např. ř expertního systému). Málokdy platí objevená znalost pro všechna data. Proto je používána míra určitosti C, která určuje míru důvěry, kterou má mít systém nebo uživatel v objevenou znalost. Bez dostatečné míry určitosti jsou vzorky neopodstatněné a nemohou proto být znalostmi.

4 Objevování znalostí a strojové učení II Cílem strojového učeníč je vypočítat t takovou funkci f, pomocí které bude možné správně klasifikovat jak data použitá pro její výpočet (tzv. trénovací data), tak i další data mimo množinu trénovacích dat (tzv. testovací data). Metody objevování znalostí mají za úkol jednak identifikovat zajímavé vzorky v datech a jednak je výstižně a smysluplně popsat. p Proces identifikace spočívá ve shlukování záznamů do tříd, které reprezentují vzorky vpůvodních datech. Proces popisu shrnuje důležité vlastnosti identifikovaných tříd. Ve strojovém učení se tyto procesy nazývají učení bez učitele (identifikace) a učení s učitelem (popis).

5 Systém na objevování znalostí v databázích

6 Úkoly I Načtěte data German credit do programového prostředí Weka. Znázorněte histogramy všech atributů. Znázorněte závislosti mezi vybranými atributy t (použijte zvětšení grafu a symbolů). Proveďte selekci atributů (pomocí filtrů např. založenou na korelacích, Chí-kvadrát testu, atd. a wrapperů pomocí zvoleného klasifikátoru) a extrakci nových atributů pomocí metody hlavních komponent. Odstraňte z původní množiny atributů ty, které se ukázaly jako statisticky nevýznamné (např. na základě selekce založené na korelacích s vyhledáváním pomocí genetických algoritmů). Proveďte shlukování vzorků (znázorněte také směrodatné odchylky a porovnejte výsledek se skutečnou klasifikací).

7 Úkoly II Nastavte t matici i nákladů pro klasifikaci. i Nechte na výstupu zobrazit také predikované hodnoty. Vyzkoušejte rozdělení na trénovací a testovací data v % poměru a 10-násobnou křížovou validaci. Použijte rozhodovací strom SimpleCart, jaké budou výsledky při prořezávání stromu a bez něj? Co když použijete jen trénovací data? Jaké informace dává predikce jednotlivých vzorků? P žijt l áh d ý h h d í h t ů J ký Použijte les náhodných rozhodovacích stromů. Jaký počet stromů je pro daný problém optimální?

8 Úkoly III Pro dopřednou neuronovou síť typu Perceptron použijte grafické uživatelské prostředí. Vyzkoušejte experimenty pro různé počty neuronů ve skryté vrstvě ě a různé ů rychlosti učení. č U RBF neuronové sítě měňte počet neuronů ve skryté vrstvě. U SVM měňte parametr komplexnosti, popř. typ jádrové funkce (polynomická, RBF). Odstraňte z množiny atributů kvantitativní atributy a vyzkoušejte si tvorbu asociačních pravidel pomocí apriori algoritmu. Jaké budou výsledky, když se změní parametr podpory a parametr určitosti. Jaký počet pravidel je potřeba nastavit?

9 Načtení dat

10 Četnosti atributů

11 Vizualizace závislostí

12 Datový slovník

13 Struktura datového souboru

14 Identifikace tříd

15 Klasifikační strom

16 Výsledek klasifikace

17 Objevování znalostí pomocí oc asociačních ač c pravidel

18 Neuronové sítě

19 Dopředná neuronová síť

20 RBF neuronová o síť ť a Support VectorMachines es

21 Děkuji za pozornost

ZÍSKÁVÁNÍ ZNALOSTÍ Z DATABÁZÍ

ZÍSKÁVÁNÍ ZNALOSTÍ Z DATABÁZÍ metodický list č. 1 Dobývání znalostí z databází Cílem tohoto tematického celku je vysvětlení základních pojmů z oblasti dobývání znalostí z databází i východisek dobývání znalostí z databází inspirovaných

Více

Moderní systémy pro získávání znalostí z informací a dat

Moderní systémy pro získávání znalostí z informací a dat Moderní systémy pro získávání znalostí z informací a dat Jan Žižka IBA Institut biostatistiky a analýz PřF & LF, Masarykova universita Kamenice 126/3, 625 00 Brno Email: zizka@iba.muni.cz Bioinformatika:

Více

Dobývání a vizualizace znalostí

Dobývání a vizualizace znalostí Dobývání a vizualizace znalostí Olga Štěpánková et al. 1 Osnova předmětu 1. Dobývání znalostí - popis a metodika procesu a objasnění základních pojmů 2. Nástroje pro modelování klasifikovaných dat a jejich

Více

2. RBF neuronové sítě

2. RBF neuronové sítě 2. RBF neuronové sítě Kapitola pojednává o neuronových sítích typu RBF. V kapitole je popsána základní struktura tohoto typu neuronové sítě. Poté následuje definice a charakteristika jednotlivých radiálně

Více

Získávání znalostí z databází. Alois Kužela

Získávání znalostí z databází. Alois Kužela Získávání znalostí z databází Alois Kužela Obsah související pojmy datové sklady, získávání znalostí asocianí pravidla 2/37 Úvod získávání znalostí z dat, dolování (z) dat, data mining proces netriviálního

Více

Strojové učení Marta Vomlelová

Strojové učení Marta Vomlelová Strojové učení Marta Vomlelová marta@ktiml.mff.cuni.cz KTIML, S303 Literatura 1.T. Hastie, R. Tishirani, and J. Friedman. The Elements of Statistical Learning, Data Mining, Inference and Prediction. Springer

Více

Získávání dat z databází 1 DMINA 2010

Získávání dat z databází 1 DMINA 2010 Získávání dat z databází 1 DMINA 2010 Získávání dat z databází Motto Kde je moudrost? Ztracena ve znalostech. Kde jsou znalosti? Ztraceny v informacích. Kde jsou informace? Ztraceny v datech. Kde jsou

Více

vzorek1 0.0033390 0.0047277 0.0062653 0.0077811 0.0090141... vzorek 30 0.0056775 0.0058778 0.0066916 0.0076192 0.0087291

vzorek1 0.0033390 0.0047277 0.0062653 0.0077811 0.0090141... vzorek 30 0.0056775 0.0058778 0.0066916 0.0076192 0.0087291 Vzorová úloha 4.16 Postup vícerozměrné kalibrace Postup vícerozměrné kalibrace ukážeme na úloze C4.10 Vícerozměrný kalibrační model kvality bezolovnatého benzinu. Dle následujících kroků na základě naměřených

Více

Emergence chování robotických agentů: neuroevoluce

Emergence chování robotických agentů: neuroevoluce Emergence chování robotických agentů: neuroevoluce Petra Vidnerová, Stanislav Slušný, Roman Neruda Ústav Informatiky, AV ČR Kognice a umělý život VIII Praha 28. 5. 2008 Evoluční robotika: EA & neuronové

Více

Dolování asociačních pravidel

Dolování asociačních pravidel Dolování asociačních pravidel Miloš Trávníček UIFS FIT VUT v Brně Obsah přednášky 1. Proces získávání znalostí 2. Asociační pravidla 3. Dolování asociačních pravidel 4. Algoritmy pro dolování asociačních

Více

Lineární diskriminační funkce. Perceptronový algoritmus.

Lineární diskriminační funkce. Perceptronový algoritmus. Lineární. Perceptronový algoritmus. Petr Pošík Czech Technical University in Prague Faculty of Electrical Engineering Dept. of Cybernetics P. Pošík c 2012 Artificial Intelligence 1 / 12 Binární klasifikace

Více

Uživatelská podpora v prostředí WWW

Uživatelská podpora v prostředí WWW Uživatelská podpora v prostředí WWW Jiří Jelínek Katedra managementu informací Fakulta managementu Jindřichův Hradec Vysoká škola ekonomická Praha Úvod WWW obsáhlost obsahová i formátová pestrost dokumenty,

Více

1. Data mining. Strojové učení. Základní úlohy.

1. Data mining. Strojové učení. Základní úlohy. 1... Základní úlohy. Učení s učitelem a bez učitele. Petr Pošík Katedra kybernetiky ČVUT FEL P. Pošík c 2010 Aplikace umělé inteligence 1 / 36 Obsah P. Pošík c 2010 Aplikace umělé inteligence 2 / 36 Co

Více

Rozpoznávání písmen. Jiří Šejnoha Rudolf Kadlec (c) 2005

Rozpoznávání písmen. Jiří Šejnoha Rudolf Kadlec (c) 2005 Rozpoznávání písmen Jiří Šejnoha Rudolf Kadlec (c) 2005 Osnova Motivace Popis problému Povaha dat Neuronová síť Architektura Výsledky Zhodnocení a závěr Popis problému Jedná se o praktický problém, kdy

Více

Využití strojového učení k identifikaci protein-ligand aktivních míst

Využití strojového učení k identifikaci protein-ligand aktivních míst Využití strojového učení k identifikaci protein-ligand aktivních míst David Hoksza, Radoslav Krivák SIRET Research Group Katedra softwarového inženýrství, Matematicko-fyzikální fakulta Karlova Univerzita

Více

Sémantický web a extrakce

Sémantický web a extrakce Sémantický web a extrakce informací Martin Kavalec kavalec@vse.cz Katedra informačního a znalostního inženýrství FIS VŠE Seminář KEG, 11. 11. 2004 p.1 Přehled témat Vize sémantického webu Extrakce informací

Více

VŠB Technická univerzita Ostrava

VŠB Technická univerzita Ostrava VŠB Technická univerzita Ostrava Fakulta elektrotechniky a informatiky JMÉNO STUDENTKY/STUDENTA: OSOBNÍ ČÍSLO: JMÉNO CVIČÍCÍ/CVIČÍCÍHO: PRAVDĚPODOBNOST A STATISTIKA Domácí úkoly Zadání 21 DATUM ODEVZDÁNÍ

Více

Tovek Tools. Tovek Tools jsou standardně dodávány ve dvou variantách: Tovek Tools Search Pack Tovek Tools Analyst Pack. Připojené informační zdroje

Tovek Tools. Tovek Tools jsou standardně dodávány ve dvou variantách: Tovek Tools Search Pack Tovek Tools Analyst Pack. Připojené informační zdroje jsou souborem klientských desktopových aplikací určených k indexování dat, vyhledávání informací, tvorbě různých typů analýz a vytváření přehledů a rešerší. Jsou vhodné pro práci s velkým objemem textových

Více

Cvičná bakalářská zkouška, 1. varianta

Cvičná bakalářská zkouška, 1. varianta jméno: studijní obor: PřF BIMAT počet listů(včetně tohoto): 1 2 3 4 5 celkem Cvičná bakalářská zkouška, 1. varianta 1. Matematická analýza Najdětelokálníextrémyfunkce f(x,y)=e 4(x y) x2 y 2. 2. Lineární

Více

Dobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze

Dobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Dobývání znalostí Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Dobývání znalostí Rozhodovací stromy Doc. RNDr. Iveta Mrázová, CSc.

Více

METODY DOLOVÁNÍ V DATECH DATOVÉ SKLADY TEREZA HYNČICOVÁ H2IGE1

METODY DOLOVÁNÍ V DATECH DATOVÉ SKLADY TEREZA HYNČICOVÁ H2IGE1 METODY DOLOVÁNÍ V DATECH DATOVÉ SKLADY TEREZA HYNČICOVÁ H2IGE1 DOLOVÁNÍ V DATECH (DATA MINING) OBJEVUJE SE JIŽ OD 60. LET 20. ST. S ROZVOJEM POČÍTAČOVÉ TECHNIKY DEFINICE PROCES VÝBĚRU, PROHLEDÁVÁNÍ A MODELOVÁNÍ

Více

Získávání znalostí z dat

Získávání znalostí z dat Získávání znalostí z dat Informační a komunikační technologie ve zdravotnictví Získávání znalostí z dat Definice: proces netriviálního získávání implicitní, dříve neznámé a potencionálně užitečné informace

Více

Identifikace. Jiří Jelínek. Katedra managementu informací Fakulta managementu J. Hradec Vysoká škola ekonomická Praha

Identifikace. Jiří Jelínek. Katedra managementu informací Fakulta managementu J. Hradec Vysoká škola ekonomická Praha Identifikace tématických sociálních sítí Katedra managementu informací Fakulta managementu J. Hradec Vysoká škola ekonomická Praha 2 Obsah prezentace Cíl Fáze řešení a navržené postupy Prototyp a výsledky

Více

DATA MINING KLASIFIKACE DMINA LS 2009/2010

DATA MINING KLASIFIKACE DMINA LS 2009/2010 DATA MINING KLASIFIKACE DMINA LS 2009/2010 Osnova co je to klasifikace typy klasifikátoru typy výstupu jednoduchý klasifikátor (1R) rozhodovací stromy Klasifikace (ohodnocení) zařazuje data do předdefinovaných

Více

Strojové učení se zaměřením na vliv vstupních dat

Strojové učení se zaměřením na vliv vstupních dat Strojové učení se zaměřením na vliv vstupních dat Irina Perfilieva, Petr Hurtík, Marek Vajgl Centre of excellence IT4Innovations Division of the University of Ostrava Institute for Research and Applications

Více

Úvodem Dříve les než stromy 3 Operace s maticemi

Úvodem Dříve les než stromy 3 Operace s maticemi Obsah 1 Úvodem 13 2 Dříve les než stromy 17 2.1 Nejednoznačnost terminologie 17 2.2 Volba metody analýzy dat 23 2.3 Přehled vybraných vícerozměrných metod 25 2.3.1 Metoda hlavních komponent 26 2.3.2 Faktorová

Více

Spojení OntoUML a GLIKREM ve znalostním rozhodování

Spojení OntoUML a GLIKREM ve znalostním rozhodování 1 Formalizace biomedicínských znalostí Spojení OntoUML a GLIKREM ve znalostním rozhodování Ing. David Buchtela, Ph.D. 16. června 2014, Faustův dům, Praha Skupina mezioborových dovedností Fakulta informačních

Více

Vytěžování znalostí z dat

Vytěžování znalostí z dat Pavel Kordík, Josef Borkovec (ČVUT FIT) Vytěžování znalostí z dat BI-VZD, 2011, Cvičení 9 1/16 Vytěžování znalostí z dat Pavel Kordík, Josef Borkovec Department of Computer Systems Faculty of Information

Více

Obsah. Předmluva 13. O autorovi 15. Poděkování 16. O odborných korektorech 17. Úvod 19

Obsah. Předmluva 13. O autorovi 15. Poděkování 16. O odborných korektorech 17. Úvod 19 Předmluva 13 O autorovi 15 Poděkování 16 O odborných korektorech 17 Úvod 19 Co kniha popisuje 19 Co budete potřebovat 20 Komu je kniha určena 20 Styly 21 Zpětná vazba od čtenářů 22 Errata 22 KAPITOLA 1

Více

Neuronové časové řady (ANN-TS)

Neuronové časové řady (ANN-TS) Neuronové časové řady (ANN-TS) Menu: QCExpert Prediktivní metody Neuronové časové řady Tento modul (Artificial Neural Network Time Series ANN-TS) využívá modelovacího potenciálu neuronové sítě k predikci

Více

a) Základní informace o souboru Statistika: Základní statistika a tabulky: Popisné statistiky: Detaily

a) Základní informace o souboru Statistika: Základní statistika a tabulky: Popisné statistiky: Detaily Testování hypotéz Testování hypotéz jsou klasické statistické úsudky založené na nějakém apriorním předpokladu. Vyslovíme-li předpoklad o hodnotě neznámého parametru nebo o zákonu rozdělení sledované náhodné

Více

Dolování znalostí z rozsáhlých statistických souborů lékařských dat

Dolování znalostí z rozsáhlých statistických souborů lékařských dat Mendelova univerzita v Brně Provozně ekonomická fakulta Dolování znalostí z rozsáhlých statistických souborů lékařských dat Diplomová práce Vedoucí práce: doc. Ing. Jan Žižka, CSc. Brno 2015 Vypracoval:

Více

StatSoft Úvod do neuronových sítí

StatSoft Úvod do neuronových sítí StatSoft Úvod do neuronových sítí Vzhledem k vzrůstající popularitě neuronových sítí jsme se rozhodli Vám je v tomto článku představit a říci si něco o jejich využití. Co si tedy představit pod pojmem

Více

Aplikovaná statistika pro učitele a žáky v hodinách zeměpisu aneb jak využít MS Excel v praxi. Geografický seminář 30. března 2011 Pavel Bednář

Aplikovaná statistika pro učitele a žáky v hodinách zeměpisu aneb jak využít MS Excel v praxi. Geografický seminář 30. března 2011 Pavel Bednář Aplikovaná statistika pro učitele a žáky v hodinách zeměpisu aneb jak využít MS Excel v praxi Geografický seminář 30. března 2011 Pavel Bednář Výchozí stav Sebehodnocení práce s MS Excel studujícími oboru

Více

Metoda Monte Carlo a její aplikace v problematice oceňování technologií. Manuál k programu

Metoda Monte Carlo a její aplikace v problematice oceňování technologií. Manuál k programu Metoda Monte Carlo a její aplikace v problematice oceňování technologií Manuál k programu This software was created under the state subsidy of the Czech Republic within the research and development project

Více

Dálkový průzkum Země. Klasifikace obrazu

Dálkový průzkum Země. Klasifikace obrazu Dálkový průzkum Země Klasifikace obrazu Neřízená klasifikace v IDRISI Modul CLUSTER (Image Processing / Hard Classifiers) využívá techniku histogramových vrcholů pásma pro klasifikaci výsledný obraz volba

Více

1 Tabulky Příklad 3 Access 2010

1 Tabulky Příklad 3 Access 2010 TÉMA: Vytvoření tabulky v návrhovém zobrazení Pro společnost Naše zahrada je třeba vytvořit databázi pro evidenci objednávek o konkrétní struktuře tabulek. Do databáze je potřeba ještě přidat tabulku Platby,

Více

Daniel Beneš Slezská univerzita v Opavě Filozoficko-přírodovědecká fakulta Ústav informatiky

Daniel Beneš Slezská univerzita v Opavě Filozoficko-přírodovědecká fakulta Ústav informatiky Daniel Beneš Slezská univerzita v Opavě Filozoficko-přírodovědecká fakulta Ústav informatiky Charakteristika projektu On-line aplikace pro analýzu mikrosatelitů révy vinné Charakteristika projektu On-line

Více

UNIVERZITA PARDUBICE KLASIFIKAČNÍ ÚLOHY PRO DATA MINING. Fakulta ekonomicko-správní Ústav systémového inženýrství a informatiky.

UNIVERZITA PARDUBICE KLASIFIKAČNÍ ÚLOHY PRO DATA MINING. Fakulta ekonomicko-správní Ústav systémového inženýrství a informatiky. UNIVERZITA PARDUBICE Fakulta ekonomicko-správní Ústav systémového inženýrství a informatiky KLASIFIKAČNÍ ÚLOHY PRO DATA MINING Petra Jandová Bakalářská práce 2013 PROHLÁŠENÍ Prohlašuji, že jsem tuto

Více

MODELOVÁNÍ BONITY OBCÍ POMOCÍ KOHONENOVÝCH SAMOORGANIZUJÍCÍCH SE MAP A LVQ NEURONOVÝCH SÍTÍ

MODELOVÁNÍ BONITY OBCÍ POMOCÍ KOHONENOVÝCH SAMOORGANIZUJÍCÍCH SE MAP A LVQ NEURONOVÝCH SÍTÍ MODELOVÁNÍ BONITY OBCÍ POMOCÍ KOHONENOVÝCH SAMOORGANIZUJÍCÍCH SE MAP A LVQ NEURONOVÝCH SÍTÍ Vladimír Olej, Petr Hájek Univerzita Pardubice, Fakulta ekonomicko-správní, informatiky Ústav systémového inženýrství

Více

Stále větší množství dat uložených v databázích Neustále generujeme data Obchodní a bankovní transakce

Stále větší množství dat uložených v databázích Neustále generujeme data Obchodní a bankovní transakce Stále větší mžství dat uložených v databázích Neustále generujeme data Obchodní a bankovní transakce Biologická, astromická data atd Ukládáme stále více dat Úvod do problematiky Databázové techlogie jsou

Více

Základy vytěžování dat

Základy vytěžování dat Základy vytěžování dat předmět A7Bb36vyd Vytěžování dat Filip Železný, Miroslav Čepek, Radomír Černoch, Jan Hrdlička katedra kybernetiky a katedra počítačů ČVUT v Praze, FEL Evropský sociální fond Praha

Více

Aplikovaná informatika Možnosti analýzy validity a prezentace získaných dat z informačních databází. ZEMÁNEK, Z. - PLUSKAL, D. - ŠUBRT, Z.

Aplikovaná informatika Možnosti analýzy validity a prezentace získaných dat z informačních databází. ZEMÁNEK, Z. - PLUSKAL, D. - ŠUBRT, Z. Aplikovaná informatika Možnosti analýzy validity a prezentace získaných dat z informačních databází. ZEMÁNEK, Z. - PLUSKAL, D. - ŠUBRT, Z. Operační program Vzdělávání pro konkurenceschopnost Název projektu:

Více

VŠB Technická univerzita Ostrava BIOSTATISTIKA

VŠB Technická univerzita Ostrava BIOSTATISTIKA VŠB Technická univerzita Ostrava Fakulta elektrotechniky a informatiky JMÉNO STUDENTKY/STUDENTA: OSOBNÍ ČÍSLO: JMÉNO CVIČÍCÍ/CVIČÍCÍHO: BIOSTATISTIKA Zadání 11 DATUM ODEVZDÁNÍ DOMÁCÍ ÚKOL 1: DOMÁCÍ ÚKOL

Více

Zpracování náhodného výběru. Ing. Michal Dorda, Ph.D.

Zpracování náhodného výběru. Ing. Michal Dorda, Ph.D. Zpracování náhodného výběru popisná statistika Ing. Michal Dorda, Ph.D. Základní pojmy Úkolem statistiky je na základě vlastností výběrového souboru usuzovat o vlastnostech celé populace. Populace(základní

Více

pracovní list studenta Kombinatorika, pravděpodobnost, základy statistiky Jak jsou vysocí? Mirek Kubera

pracovní list studenta Kombinatorika, pravděpodobnost, základy statistiky Jak jsou vysocí? Mirek Kubera Výstup RVP: Klíčová slova: pracovní list studenta Kombinatorika, pravděpodobnost, základy statistiky Mirek Kubera žák diskutuje a kriticky zhodnotí statistické informace a daná statistická sdělení, volí

Více

IDENTIFIKACE AUTOMATICKÝCH PŘÍSTUPŮ INTERNETOVÝCH OBCHODŮ S VYUŽÍTÍM METOD WEB USAGE MININGU

IDENTIFIKACE AUTOMATICKÝCH PŘÍSTUPŮ INTERNETOVÝCH OBCHODŮ S VYUŽÍTÍM METOD WEB USAGE MININGU IDENTIFIKACE AUTOMATICKÝCH PŘÍSTUPŮ INTERNETOVÝCH OBCHODŮ S VYUŽÍTÍM METOD WEB USAGE MININGU Jana Filipová, Karel Michálek, Pavel Petr Ústav systémového inženýrství a informatiky, Fakulta ekonomicko-správní,

Více

IBM SPSS Decision Trees

IBM SPSS Decision Trees IBM Software IBM SPSS Decision Trees Jednoduše identifikujte skupiny a predikujte Stromově uspořádané postupné štěpení dat na homogenní podmnožiny je technika vhodná pro exploraci vztahů i pro tvorbu rozhodovacích

Více

Klasifikace předmětů a jevů

Klasifikace předmětů a jevů Klasifikace předmětů a jevů 1. Úvod Rozpoznávání neboli klasifikace je základní znak lidské činnosti. Rozpoznávání (klasifikace) předmětů a jevů spočívá v jejich zařazování do jednotlivých tříd. Třídou

Více

Katedra kybernetiky skupina Inteligentní Datové Analýzy (IDA) 9. dubna 2009. Filip Železný (ČVUT) Vytěžování dat 9.

Katedra kybernetiky skupina Inteligentní Datové Analýzy (IDA) 9. dubna 2009. Filip Železný (ČVUT) Vytěžování dat 9. Vytěžování dat Filip Železný Katedra kybernetiky skupina Inteligentní Datové Analýzy (IDA) 9. dubna 2009 Filip Železný (ČVUT) Vytěžování dat 9. dubna 2009 1 / 22 Rozhodovací pravidla Strom lze převést

Více

Tvorba asociačních pravidel a hledání. položek

Tvorba asociačních pravidel a hledání. položek Tvorba asociačních pravidel a hledání častých skupin položek 1 Osnova Asociace Transakce Časté skupiny položek Apriori vlastnost podmnožin Asociační pravidla Aplikace 2 Asociace Nechť I je množina položek.

Více

Znalostní technologie proč a jak?

Znalostní technologie proč a jak? Znalostní technologie proč a jak? Peter Mikulecký Kamila Olševičová Daniela Ponce Univerzita Hradec Králové Motivace 1993 vznik Fakulty řízení a informační technologie na Vysoké škole pedagogické v Hradci

Více

Obsah. Vybraná témata z Excelu pro techniky 13. Obsah. Úvod 11 Komu je kniha určena 11 Uspořádání knihy 11. Typografická konvence použitá v knize 12

Obsah. Vybraná témata z Excelu pro techniky 13. Obsah. Úvod 11 Komu je kniha určena 11 Uspořádání knihy 11. Typografická konvence použitá v knize 12 Obsah Úvod 11 Komu je kniha určena 11 Uspořádání knihy 11 Typografická konvence použitá v knize 12 1 Vybraná témata z Excelu pro techniky 13 Vzorce a funkce pro techniky 14 Vytvoření jednoduchého vzorce

Více

WEBOVÁ APLIKACE GEOPORTÁL ŘSD ČR

WEBOVÁ APLIKACE GEOPORTÁL ŘSD ČR Uživatelská dokumentace Datum: 3. 5. 2016 Verze: 1.2 WEBOVÁ APLIKACE GEOPORTÁL ŘSD ČR Zpracoval VARS BRNO a.s. A:: Kroftova 3167/80c 616 00 Brno T:: +420 515 514 111 E:: info@vars.cz IČ:: 634 819 01 DIČ::

Více

Obsah. Seznam obrázků. Seznam tabulek. Petr Berka, 2011

Obsah. Seznam obrázků. Seznam tabulek. Petr Berka, 2011 Petr Berka, 2011 Obsah... 1... 1 1 Obsah 1... 1 Dobývání znalostí z databází 1 Dobývání znalostí z databází O dobývání znalostí z databází (Knowledge Discovery in Databases, KDD) se začíná ve vědeckých

Více

UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11.

UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11. UNIVERZITA OBRANY Fakulta ekonomiky a managementu Aplikace STAT1 Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 Jiří Neubauer, Marek Sedlačík, Oldřich Kříž 3. 11. 2012 Popis a návod k použití aplikace

Více

přetrénování = ztráta schopnosti generalizovat vlivem přílišného zaměření klasifikátorů na rozeznávání pouze konkrétních trénovacích dat

přetrénování = ztráta schopnosti generalizovat vlivem přílišného zaměření klasifikátorů na rozeznávání pouze konkrétních trénovacích dat Zkouška ISR 2013 přetrénování = ztráta schopnosti generalizovat vlivem přílišného zaměření klasifikátorů na rozeznávání pouze konkrétních trénovacích dat 1. Rozdílné principy u induktivního a deduktivního

Více

Modelování na burze cenných papírů metodami umělé inteligence

Modelování na burze cenných papírů metodami umělé inteligence Univerzita Pardubice Fakulta ekonomicko-správní Ústav systémového inženýrství a informatiky Modelování na burze cenných papírů metodami umělé inteligence Bc. Vojtěch Zákoutský Diplomová práce 2013 Prohlášení

Více

STATISTICA Téma 8. Regresní a korelační analýza, regrese prostá

STATISTICA Téma 8. Regresní a korelační analýza, regrese prostá STATISTICA Téma 8. Regresní a korelační analýza, regrese prostá 1) Lineární i nelineární regrese prostá, korelace Naeditujeme data viz obr. 1. Obr. 1 V menu Statistika zvolíme submenu Pokročilé lineární/nelineární

Více

FORTANNS. havlicekv@fzp.czu.cz 22. února 2010

FORTANNS. havlicekv@fzp.czu.cz 22. února 2010 FORTANNS manuál Vojtěch Havlíček havlicekv@fzp.czu.cz 22. února 2010 1 Úvod Program FORTANNS je software určený k modelování časových řad. Kód programu má 1800 řádek a je napsán v programovacím jazyku

Více

PRODUKTY. Tovek Tools

PRODUKTY. Tovek Tools jsou desktopovou aplikací určenou k vyhledávání informací, tvorbě různých typů analýz a vytváření přehledů a rešerší. Jsou vhodné pro práci i s velkým objemem textových dat z různorodých informačních zdrojů.

Více

Zdokonalování gramotnosti v oblasti ICT. Kurz MS Excel kurz 6. Inovace a modernizace studijních oborů FSpS (IMPACT) CZ.1.07/2.2.00/28.

Zdokonalování gramotnosti v oblasti ICT. Kurz MS Excel kurz 6. Inovace a modernizace studijních oborů FSpS (IMPACT) CZ.1.07/2.2.00/28. Zdokonalování gramotnosti v oblasti ICT Kurz MS Excel kurz 6 1 Obsah Kontingenční tabulky... 3 Zdroj dat... 3 Příprava dat... 3 Vytvoření kontingenční tabulky... 3 Možnosti v poli Hodnoty... 7 Aktualizace

Více

Extrakce a selekce příznaků

Extrakce a selekce příznaků Extrakce a selekce příznaků Based on slides Martina Bachlera martin.bachler@igi.tugraz.at, Makoto Miwa And paper Isabelle Guyon, André Elisseeff: An Introduction to variable and feature selection. JMLR,

Více

MOŽNOSTI VYUŽITÍ NEURONOVÝCH SÍTÍ PRO MODELOVÁNÍ DYNAMIKY CESTUJÍCÍCH V TERMINÁLU LETIŠTĚ

MOŽNOSTI VYUŽITÍ NEURONOVÝCH SÍTÍ PRO MODELOVÁNÍ DYNAMIKY CESTUJÍCÍCH V TERMINÁLU LETIŠTĚ MOŽNOSTI VYUŽITÍ NEURONOVÝCH SÍTÍ PRO MODELOVÁNÍ DYNAMIKY CESTUJÍCÍCH V TERMINÁLU LETIŠTĚ POSSIBILITY OF USING NEURAL NETWORKS FOR MODELLING THE PASSENGER DYNAMICS INSIDE THE AIRPORT TERMINAL Pavlína Hlavsová

Více

Vysoká škola báňská technická univerzita Ostrava. Fakulta elektrotechniky a informatiky

Vysoká škola báňská technická univerzita Ostrava. Fakulta elektrotechniky a informatiky Vysoká škola báňská technická univerzita Ostrava Fakulta elektrotechniky a informatiky Bankovní účty (semestrální projekt statistika) Tomáš Hejret (hej124) 18.5.2013 Úvod Cílem tohoto projektu, zadaného

Více

Úvod Příklad Výpočty a grafické znázornění. Filip Habr. České vysoké učení technické v Praze Fakulta jaderná a fyzikálně inženýrská

Úvod Příklad Výpočty a grafické znázornění. Filip Habr. České vysoké učení technické v Praze Fakulta jaderná a fyzikálně inženýrská Neuronové sítě-delta učení Filip Habr České vysoké učení technické v Praze Fakulta jaderná a fyzikálně inženýrská 30. března 2009 Obsah prezentace Obsah prezentace Delta učení 1 Teorie k delta učení 2

Více

Zpracování evidence odpadů za rok 2015

Zpracování evidence odpadů za rok 2015 Zpracování evidence odpadů za rok 2015 Program: EVI 8 Obec, ESPI 8 Datum: 22.12.2015 Vypracoval: Tomáš Čejchan Obsah 1. Úvod... 2 2. Legislativní změny... 3 2.1. Ohlašování zařízení... 3 2.2. Zpracování

Více

VYUŽITÍ MATLAB WEB SERVERU PRO INTERNETOVOU VÝUKU ANALÝZY DAT A ŘÍZENÍ JAKOSTI

VYUŽITÍ MATLAB WEB SERVERU PRO INTERNETOVOU VÝUKU ANALÝZY DAT A ŘÍZENÍ JAKOSTI VYUŽITÍ MATLAB WEB SERVERU PRO INTERNETOVOU VÝUKU ANALÝZY DAT A ŘÍZENÍ JAKOSTI Aleš Linka 1, Petr Volf 2 1 Katedra textilních materiálů, FT TUL, 2 Katedra aplikované matematiky, FP TUL ABSTRAKT. Internetové

Více

Data Miner Recipes. StatSoft

Data Miner Recipes. StatSoft StatSoft Data Miner Recipes V tomto článku Vám ukážeme postup dataminingového modelování ve výukovém modulu Data Miner Recipes, který je vhodný pro začínající uživatele, protože Vás krok po kroku provede

Více

Sklad v Excelu OBSAH 2/11

Sklad v Excelu OBSAH 2/11 SKLAD V EXCELU OBSAH 1 ÚVOD... 3 2 POPIS FUNKCÍ... 3 2.1 VLASTNÍ ZOBRAZENÍ... 3 2.2 MASTER DATA... 4 2.3 ŠARŽE... 6 2.4 ŘÍZENÍ ZÁSOBY... 7 3 POPIS SYSTÉMU... 7 3.1 ŠARŽE... 7 3.2 KNIHA ŠARŽÍ... 8 3.3 LOG

Více

UČENÍ BEZ UČITELE. Václav Hlaváč

UČENÍ BEZ UČITELE. Václav Hlaváč UČENÍ BEZ UČITELE Václav Hlaváč Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání hlavac@fel.cvut.cz, http://cmp.felk.cvut.cz/~hlavac 1/22 OBSAH PŘEDNÁŠKY ÚVOD Učení

Více

Big data ukážou mapu, TOVEK řekne kudy jít

Big data ukážou mapu, TOVEK řekne kudy jít Řešení pro Competitive Intelligence Big data ukážou mapu, TOVEK řekne kudy jít Tomáš Vejlupek President Tovek 6.11.2015, VŠE Praha TOVEK, spol. s r.o. Výsledek zpracování BIG DATA Jaké cesty k cíli mohu

Více

Okruhy ke státní závěrečné zkoušce z vedlejší specializace Informatika v řízení podniku

Okruhy ke státní závěrečné zkoušce z vedlejší specializace Informatika v řízení podniku Okruhy ke státní závěrečné zkoušce z vedlejší specializace Informatika v řízení podniku Aplikace auditních postupů Vyberte si jeden typ auditu (útvaru, projektu, aplikace, procesu, ) a na něm demonstrujte

Více

hledání zajímavých asociací i korelací ve velkém množství dat původně pro transakční data obchodní transakce analýza nákupního košíku

hledání zajímavých asociací i korelací ve velkém množství dat původně pro transakční data obchodní transakce analýza nákupního košíku Asociační pravidla Asociační pravidla hledání zajímavých asociací i korelací ve velkém množství dat původně pro transakční data obchodní transakce analýza nákupního košíku podpora rozhodování Analýza nákupního

Více

Dobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze

Dobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Dobývání znalostí Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Dobývání znalostí Úvod do problematiky Doc. RNDr. Iveta Mrázová,

Více

Univerzita Pardubice Fakulta ekonomicko správní Modelování predikce časové řady návštěvnosti web domény pomocí RBF neuronových sítí

Univerzita Pardubice Fakulta ekonomicko správní Modelování predikce časové řady návštěvnosti web domény pomocí RBF neuronových sítí Univerzita Pardubice Fakulta ekonomicko správní Modelování predikce časové řady návštěvnosti web domény pomocí RBF neuronových sítí Bc. Kateřina Štěpánková Diplomová práce 2011 Prohlašuji: Tuto práci

Více

NÁVRH A REALIZACE TRADING STRATEGIÍ NA BÁZI STROJOVÉHO UČENÍ S POMOCÍ MATLABU

NÁVRH A REALIZACE TRADING STRATEGIÍ NA BÁZI STROJOVÉHO UČENÍ S POMOCÍ MATLABU NÁVRH A REALIZACE TRADING STRATEGIÍ NA BÁZI STROJOVÉHO UČENÍ S POMOCÍ MATLABU RNDr. Miroslav Pavelka, PhD m.pavelka@sh.cvut.cz Ing. Jan Hovad jan@hovad.cz OBSAH Obchodování a strojové učení Specifika prediktivního

Více

Experimentální systém pro WEB IR

Experimentální systém pro WEB IR Experimentální systém pro WEB IR Jiří Vraný Školitel: Doc. RNDr. Pavel Satrapa PhD. Problematika disertační práce velmi stručný úvod WEB IR information retrieval from WWW, vyhledávání na webu Vzhledem

Více

StatSoft Úvod do data miningu

StatSoft Úvod do data miningu StatSoft Úvod do data miningu Tento článek je úvodním povídáním o data miningu, jeho vzniku, účelu a využití. Historie data miningu Rozvoj počítačů, výpočetní techniky a zavedení elektronického sběru dat

Více

Možnosti modelování lesní vegetační stupňovitosti pomocí geoinformačních analýz

Možnosti modelování lesní vegetační stupňovitosti pomocí geoinformačních analýz 25. 10. 2012, Praha Ing. Petr Vahalík Ústav geoinformačních technologií Možnosti modelování lesní vegetační stupňovitosti pomocí geoinformačních analýz 21. konference GIS Esri v ČR Lesní vegetační stupně

Více

Popisná statistika kvantitativní veličiny

Popisná statistika kvantitativní veličiny StatSoft Popisná statistika kvantitativní veličiny Protože nám surová data obvykle žádnou smysluplnou informaci neposkytnou, je žádoucí vyjádřit tyto ve zhuštěnější formě. V předchozím dílu jsme začali

Více

Střední škola informačních technologií a sociální péče, Brno, Purkyňova 97. Vybrané části Excelu. Ing. Petr Adamec

Střední škola informačních technologií a sociální péče, Brno, Purkyňova 97. Vybrané části Excelu. Ing. Petr Adamec INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ Střední škola informačních technologií a sociální péče, Brno, Purkyňova 97 Vybrané části Excelu Ing. Petr Adamec Brno 2010 Cílem předmětu je seznámení se s programem Excel

Více

Softwarová podpora v procesním řízení

Softwarová podpora v procesním řízení Softwarová podpora v procesním řízení Zkušenosti z praxe využití software ATTIS Ostrava, 7. října 2010 www.attis.cz ATTN Consulting s.r.o. 1 Obsah Koncepce řízení výkonnosti Koncepce řízení výkonnosti

Více

Pracovní celky 3.2, 3.3 a 3.4 Sémantická harmonizace - Srovnání a přiřazení datových modelů

Pracovní celky 3.2, 3.3 a 3.4 Sémantická harmonizace - Srovnání a přiřazení datových modelů Pracovní celky 3.2, 3.3 a 3.4 Sémantická harmonizace - Srovnání a datových modelů Obsah Seznam tabulek... 1 Seznam obrázků... 1 1 Úvod... 2 2 Metody sémantické harmonizace... 2 3 Dvojjazyčné katalogy objektů

Více

ADZ základní statistické funkce

ADZ základní statistické funkce ADZ základní statistické funkce Základní statistické funkce a znaky v softwaru Excel Znak Stručný popis + Sčítání buněk - Odčítání buněk * Násobení buněk / Dělení buněk Ctrl+c Vyjmutí buňky Ctrl+v Vložení

Více

ROZPOZNÁVÁNÍ AKUSTICKÉHO SIGNÁLU ŘEČI S PODPOROU VIZUÁLNÍ INFORMACE

ROZPOZNÁVÁNÍ AKUSTICKÉHO SIGNÁLU ŘEČI S PODPOROU VIZUÁLNÍ INFORMACE TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky a mezioborových inženýrských studií ROZPOZNÁVÁNÍ AKUSTICKÉHO SIGNÁLU ŘEČI S PODPOROU VIZUÁLNÍ INFORMACE AUTOREFERÁT DISERTAČNÍ PRÁCE 2005 JOSEF CHALOUPKA

Více

www. www g. r g ad ra a d.c a. z Kniha obsahuje tato témata: Příklady k procvičování zdarma ke stažení na www.grada.cz

www. www g. r g ad ra a d.c a. z Kniha obsahuje tato témata: Příklady k procvičování zdarma ke stažení na www.grada.cz www.grada.cz Příklady k procvičování zdarma ke stažení na www.grada.cz O autorech Vedoucí autor knihy, Ing. Marek Laurenčík se (společně se spoluautorem Michalem Burešem) výuce a vzdělávání v oblasti výpočetní

Více

Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady

Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady Předmět: Náplň: Třída: Počet hodin: Pomůcky: Matematika Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady 4. ročník 3 hodiny týdně PC a dataprojektor Kombinatorika Řeší jednoduché úlohy

Více

Profilování vzorků heroinu s využitím vícerozměrné statistické analýzy

Profilování vzorků heroinu s využitím vícerozměrné statistické analýzy Profilování vzorků heroinu s využitím vícerozměrné statistické analýzy Autor práce : RNDr. Ivo Beroun,CSc. Vedoucí práce: prof. RNDr. Milan Meloun, DrSc. PROFILOVÁNÍ Profilování = klasifikace a rozlišování

Více

Funkce a vzorce v Excelu

Funkce a vzorce v Excelu Funkce a vzorce v Excelu Lektor: Ing. Martin Kořínek, Ph.D. Formátování tabulky V této kapitole si vysvětlíme, jak tabulku graficky zdokonalit, jak změnit nastavení šířky a případně výšky sloupců, jak

Více

Časové řady - Cvičení

Časové řady - Cvičení Časové řady - Cvičení Příklad 2: Zobrazte měsíční časovou řadu míry nezaměstnanosti v obci Rybitví za roky 2005-2010. Příslušná data naleznete v souboru cas_rada.xlsx. Řešení: 1. Pro transformaci dat do

Více

BALISTICKÝ MĚŘICÍ SYSTÉM

BALISTICKÝ MĚŘICÍ SYSTÉM BALISTICKÝ MĚŘICÍ SYSTÉM UŽIVATELSKÁ PŘÍRUČKA Verze 2.3 2007 OBSAH 1. ÚVOD... 5 2. HLAVNÍ OKNO... 6 3. MENU... 7 3.1 Soubor... 7 3.2 Měření...11 3.3 Zařízení...16 3.4 Graf...17 3.5 Pohled...17 1. ÚVOD

Více

Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu

Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu K čemu slouží statistika Popisuje velké soubory dat pomocí charakteristických čísel (popisná statistika). Hledá skryté zákonitosti v souborech

Více

Pojem a úkoly statistiky

Pojem a úkoly statistiky Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Pojem a úkoly statistiky Statistika je věda, která se zabývá získáváním, zpracováním a analýzou dat pro potřeby

Více

VYUŽITÍ NEURONOVÝCH SÍTÍ PROSTŘEDÍ MATLAB K PREDIKCI HODNOT NÁKLADŮ PRO ELEKTRICKÉ OBLOUKOVÉ PECE

VYUŽITÍ NEURONOVÝCH SÍTÍ PROSTŘEDÍ MATLAB K PREDIKCI HODNOT NÁKLADŮ PRO ELEKTRICKÉ OBLOUKOVÉ PECE VYUŽITÍ NEURONOVÝCH SÍTÍ PROSTŘEDÍ MATLAB K PREDIKCI HODNOT NÁKLADŮ PRO ELEKTRICKÉ OBLOUKOVÉ PECE V. Hon VŠB TU Ostrava, FEI, K455, 17. Listopadu 15, Ostrava Poruba, 70833 Abstrakt Neuronová síť (dále

Více

Protokol č. 1. Tloušťková struktura. Zadání:

Protokol č. 1. Tloušťková struktura. Zadání: Protokol č. 1 Tloušťková struktura Zadání: Pro zadané výčetní tloušťky (v cm) vypočítejte statistické charakteristiky a slovně interpretujte základní statistické vlastnosti tohoto souboru tloušťek. Dále

Více

Výpočetní teorie učení. PAC učení. VC dimenze.

Výpočetní teorie učení. PAC učení. VC dimenze. Výpočetní teorie učení. PAC učení. VC dimenze. Petr Pošík Czech Technical University in Prague Faculty of Electrical Engineering Dept. of Cybernetics COLT 2 Koncept...........................................................................................................

Více

Přínos k rozvoji klíčových kompetencí:

Přínos k rozvoji klíčových kompetencí: Střední škola hospodářská a lesnická, Frýdlant, Bělíkova 1387, příspěvková organizace Název modulu Informační a komunikační Kód modulu ICT-M-4/1-5 technologie Délka modulu 60 hodin Platnost 1.09.2010 Typ

Více

Postupy práce se šablonami IS MPP

Postupy práce se šablonami IS MPP Postupy práce se šablonami IS MPP Modul plánování a přezkoumávání, verze 1.20 vypracovala společnost ASD Software, s.r.o. dokument ze dne 27. 3. 2013, verze 1.01 Postupy práce se šablonami IS MPP Modul

Více