ZÍSKÁVÁNÍ ZNALOSTÍ Z DATABÁZÍ

Rozměr: px
Začít zobrazení ze stránky:

Download "ZÍSKÁVÁNÍ ZNALOSTÍ Z DATABÁZÍ"

Transkript

1 Metodický list č. 1 Dobývání znalostí z databází Cílem tohoto tematického celku je vysvětlení základních pojmů z oblasti dobývání znalostí z databází i východisek dobývání znalostí z databází inspirovaných oblastí databází, statistiky a strojového učení. Tématický celek je rozdělen do těchto dílčích témat: 1. Základní pojmy z oblasti dobývání znalostí 2. Zdroje dobývání znalostí 1. dílčí téma: Základní pojmy z oblasti dobývání znalostí K prvnímu dílčímu tématu si přečtěte příslušné kapitoly v: dobývání znalostí z databází, analýza nákupního košíku rozdíl mezi procesem dobývání znalostí a krokem data mining základní typy úloh dobývání znalostí z databází základní kroky metodiky CRISP-DM 2. dílčí téma: Východiska dobývání znalostí K druhému dílčímu tématu si přečtěte příslušné kapitoly v: 1

2 OLAP, datový sklad, mutidimenzionální krychle, roll-up, drill-down, kontingenční tabulka, shluková analýza, objekt, atribut, učení na základě podobnosti, prostor kombinací (modelů), učení jako prohledávání, učení jako aproximace, gradientní metoda rozdíl mezi MOLAP a ROLAP rozdíl mezi databázovým schématem hvězda a sněhová vločka rozdíl mezi diskriminační a regresní analýzou rozdíl mezi hierarchickým shlukováním a shlukováním metodo k-středů rozdíl mezi učením s učitelem a učením bez učitele rozdíl mezi aproximací a interpolací způsob převodu datové tabulky do podoby mutidimenzionální krychle princip χ 2 testu typy atributů formální vyjádření úlohy učení s učitelem základní způsoby prohledávání prostoru kombinací (modelů) Předmět je ukončen písemnou ZKOUŠKOU. 2

3 Metodický list č. 2 Symbolické metody dobývání znalostí Cílem tohoto tematického celku je vysvětlení základních principů algoritmů pro tvorbu rozhodovacích stromů, rozhodovacích a asociačních pravidel a algoritmů pro učení založeném na instancích. K tématickému celku si přečtěte příslušné kapitoly v: rozhodovací strom, prořezávání stromů, rozhodovací pravidlo, asociační pravidlo, pokrývání množin, implikace, dvojitá implikace, ekvivalence, centroid (etalon) rozdíl mezi rozhodovacími a regresními stromy rozdíl mezi rozhodovacími a asociačními pravidly základní kritéria používaná pro větvení rozhodovacího stromu základní podobu algoritmu pro tvorbu rozhodovacích stromů základní kvantitativní charakteristiky asociačních pravidel základní podobu algoritmu pro tvorbu rozhodovacích pravidel základní metriky pro měření vzdálenosti mezi příklady základní podobu algoritmu učení založeném na instancích Předmět je ukončen písemnou zkouškou. 3

4 Metodický list č. 3 Subsymbolické metody dobývání znalostí Cílem tohoto tematického celku je vysvětlení základních principů neuronových sítí, genetických algoritmů a bayesovských klasifikátorů. K tématickému celku si přečtěte příslušné kapitoly v: lineární neuron, vícevrstvá neuronová síť, Kohonenova mapa, selekce, křížení a mutace, naivní bayesovský klasifikátor, bayesovská síť rozdíl mezi různými modely jednoho neuronu rozdíl mezi naivním bayesovským klasifikátorem a bayesovskou sítí problém uváznutí v lokálním optimu a způsoby jeho řešení geometrickou interpretaci činnosti lineárního neuronu základní princip algoritmů pro učení neuronových sítí základní princip metody SVM základní podobu genetického algoritmu Předmět je ukončen písemnou zkouškou. 4

5 Metodický list č. 4 Další kroky procesu dobývání znalostí Cílem tohoto tematického celku je vysvětlení základních způsobů hodnocení kvality nalezených znalostí i základních metod předzpracování dat. Tématický celek je rozdělen do těchto dílčích témat: 1. Vyhodnocení výsledků 2. Příprava dat 1. dílčí téma: Vyhodnocení výsledků K prvnímu dílčímu tématu si přečtěte příslušné kapitoly v: matic záměn, přesnost a úplnost, ROC křivka, kombinování modelů meta-učení rozdíl mezi hodnocením správnosti klasifikace a numerické predikce vizualizací klasifikací a vizualizací modelů rozdíl mezi metodami bagging, boosting a stacking metody testování modelů metody porovnávání modelů 2. dílčí téma: Příprava dat K druhému dílčímu tématu si přečtěte příslušné kapitoly v: 5

6 diskretizace, selekce atributů, rozdíl mezi ostrou a fuzzy diskretizací rozdíl mezi diskretizací bez využití a s využitím informací o rozdělení objektů do tříd rozdíl mezi redukcí počtu atributů metodami transformace a metodami selekce způsob převodu časové řady na datovou tabulku způsob převodu relační databáze na jednu datovou tabulku kritéria pro selekci atributů metodou filtru způsob hodnocení kvality diskretizace z hlediska klasifikační úlohy Předmět je ukončen písemnou zkouškou. 6

ZÍSKÁVÁNÍ ZNALOSTÍ Z DATABÁZÍ

ZÍSKÁVÁNÍ ZNALOSTÍ Z DATABÁZÍ metodický list č. 1 Dobývání znalostí z databází Cílem tohoto tematického celku je vysvětlení základních pojmů z oblasti dobývání znalostí z databází i východisek dobývání znalostí z databází inspirovaných

Více

Okruhy ke státní závěrečné zkoušce z vedlejší specializace Informatika v řízení podniku

Okruhy ke státní závěrečné zkoušce z vedlejší specializace Informatika v řízení podniku Okruhy ke státní závěrečné zkoušce z vedlejší specializace Informatika v řízení podniku Aplikace auditních postupů Vyberte si jeden typ auditu (útvaru, projektu, aplikace, procesu, ) a na něm demonstrujte

Více

Získávání dat z databází 1 DMINA 2010

Získávání dat z databází 1 DMINA 2010 Získávání dat z databází 1 DMINA 2010 Získávání dat z databází Motto Kde je moudrost? Ztracena ve znalostech. Kde jsou znalosti? Ztraceny v informacích. Kde jsou informace? Ztraceny v datech. Kde jsou

Více

Ing. Petr Hájek, Ph.D. Podpora přednášky kurzu Aplikace umělé inteligence

Ing. Petr Hájek, Ph.D. Podpora přednášky kurzu Aplikace umělé inteligence APLIKACE UMĚLÉ INTELIGENCE Ing. Petr Hájek, Ph.D. Podpora přednášky kurzu Aplikace umělé inteligence Aplikace umělé inteligence - seminář ING. PETR HÁJEK, PH.D. ÚSTAV SYSTÉMOVÉHO INŽENÝRSTVÍ A INFORMATIKY

Více

Dobývání a vizualizace znalostí. Olga Štěpánková et al.

Dobývání a vizualizace znalostí. Olga Štěpánková et al. Dobývání a vizualizace znalostí Olga Štěpánková et al. 1 Osnova předmětu Dobývání znalostí - popis a metodika procesu CRISP a objasnění základních pojmů Nástroje pro modelování klasifikovaných dat a jejich

Více

Úvodem Dříve les než stromy 3 Operace s maticemi

Úvodem Dříve les než stromy 3 Operace s maticemi Obsah 1 Úvodem 13 2 Dříve les než stromy 17 2.1 Nejednoznačnost terminologie 17 2.2 Volba metody analýzy dat 23 2.3 Přehled vybraných vícerozměrných metod 25 2.3.1 Metoda hlavních komponent 26 2.3.2 Faktorová

Více

Moderní systémy pro získávání znalostí z informací a dat

Moderní systémy pro získávání znalostí z informací a dat Moderní systémy pro získávání znalostí z informací a dat Jan Žižka IBA Institut biostatistiky a analýz PřF & LF, Masarykova universita Kamenice 126/3, 625 00 Brno Email: zizka@iba.muni.cz Bioinformatika:

Více

METODY DOLOVÁNÍ V DATECH DATOVÉ SKLADY TEREZA HYNČICOVÁ H2IGE1

METODY DOLOVÁNÍ V DATECH DATOVÉ SKLADY TEREZA HYNČICOVÁ H2IGE1 METODY DOLOVÁNÍ V DATECH DATOVÉ SKLADY TEREZA HYNČICOVÁ H2IGE1 DOLOVÁNÍ V DATECH (DATA MINING) OBJEVUJE SE JIŽ OD 60. LET 20. ST. S ROZVOJEM POČÍTAČOVÉ TECHNIKY DEFINICE PROCES VÝBĚRU, PROHLEDÁVÁNÍ A MODELOVÁNÍ

Více

Okruhy ke státní závěrečné zkoušce z oboru Podniková informatika. platné pro studenty, kteří zahájili studium v ZS 2015/2016

Okruhy ke státní závěrečné zkoušce z oboru Podniková informatika. platné pro studenty, kteří zahájili studium v ZS 2015/2016 Okruhy ke státní závěrečné zkoušce z oboru Podniková informatika platné pro studenty, kteří zahájili studium v ZS 2015/2016 Agilní metodiky Charakterizujte agilní metodiky, na jakých principech jsou založeny,

Více

Dobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze

Dobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Dobývání znalostí Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Dobývání znalostí Úvod do problematiky Doc. RNDr. Iveta Mrázová,

Více

Multidimenzionální pohled na zdravotnické prostředí. INMED Petr Tůma

Multidimenzionální pohled na zdravotnické prostředí. INMED Petr Tůma Multidimenzionální pohled na zdravotnické prostředí INMED - 21.11.2003 Petr Tůma Koncepce multid pohledu Poskytování péče probíhá v multidimenzionálním světě; dimenze tento svět mapují podobně jako souřadnice

Více

ANALÝZA BIOLOGICKÝCH A KLINICKÝCH DAT V MEZIOBOROVÉM POJETÍ

ANALÝZA BIOLOGICKÝCH A KLINICKÝCH DAT V MEZIOBOROVÉM POJETÍ ANALÝZA BIOLOGICKÝCH A KLINICKÝCH DAT V MEZIOBOROVÉM POJETÍ INVESTICE Institut DO biostatistiky ROZVOJE VZDĚLÁVÁNÍ a analýz 5. LETNÍ ŠKOLA MATEMATICKÉ BIOLOGIE ANALÝZA BIOLOGICKÝCH A KLINICKÝCH DAT V MEZIOBOROVÉM

Více

Získávání znalostí z dat

Získávání znalostí z dat Získávání znalostí z dat Informační a komunikační technologie ve zdravotnictví Získávání znalostí z dat Definice: proces netriviálního získávání implicitní, dříve neznámé a potencionálně užitečné informace

Více

ALGORITMY A DATOVÉ STRUKTURY

ALGORITMY A DATOVÉ STRUKTURY Název tématického celku: Cíl: ALGORITMY A DATOVÉ STRUKTURY Metodický list č. 1 Časová složitost algoritmů Základním cílem tohoto tematického celku je vysvětlení potřebných pojmů a definic nutných k popisu

Více

Dobývání a vizualizace znalostí

Dobývání a vizualizace znalostí Dobývání a vizualizace znalostí Olga Štěpánková et al. 1 Osnova předmětu 1. Dobývání znalostí - popis a metodika procesu a objasnění základních pojmů 2. Nástroje pro modelování klasifikovaných dat a jejich

Více

Statistické metody v ekonomii. Ing. Michael Rost, Ph.D.

Statistické metody v ekonomii. Ing. Michael Rost, Ph.D. Statistické metody v ekonomii Ing. Michael Rost, Ph.D. Jihočeská univerzita v Českých Budějovicích Cíle kurzu: seznámit posluchače s vybranými statistickými metodami, které jsou aplikovatelné v ekonomických

Více

Projekční algoritmus. Urychlení evolučních algoritmů pomocí regresních stromů a jejich zobecnění. Jan Klíma

Projekční algoritmus. Urychlení evolučních algoritmů pomocí regresních stromů a jejich zobecnění. Jan Klíma Urychlení evolučních algoritmů pomocí regresních stromů a jejich zobecnění Jan Klíma Obsah Motivace & cíle práce Evoluční algoritmy Náhradní modelování Stromové regresní metody Implementace a výsledky

Více

Popis zobrazení pomocí fuzzy logiky

Popis zobrazení pomocí fuzzy logiky Popis zobrazení pomocí fuzzy logiky diplomová práce Ján Fröhlich KM, FJFI, ČVUT 23. dubna 2009 Ján Fröhlich ( KM, FJFI, ČVUT ) Popis zobrazení pomocí fuzzy logiky 23. dubna 2009 1 / 25 Obsah 1 Úvod Základy

Více

Dobývání a vizualizace znalostí

Dobývání a vizualizace znalostí Dobývání a vizualizace znalostí Olga Štěpánková, Lenka Vysloužilová, et al. https://cw.fel.cvut.cz/wiki/courses/a6m33dvz/start 1 Osnova přednášky Úvod: data, objem, reprezentace a základní terminologie

Více

MATEMATICKÁ TEORIE ROZHODOVÁNÍ

MATEMATICKÁ TEORIE ROZHODOVÁNÍ MATEMATICKÁ TEORIE ROZHODOVÁNÍ Metodický list č. 1 Název tématického celku: Řešení úloh Cílem tohoto tematického celku je vysvětlení vybraných pojmů z oblasti řešení úloh. Tématický celek je rozdělen do

Více

Strojové učení Marta Vomlelová

Strojové učení Marta Vomlelová Strojové učení Marta Vomlelová marta@ktiml.mff.cuni.cz KTIML, S303 Literatura 1.T. Hastie, R. Tishirani, and J. Friedman. The Elements of Statistical Learning, Data Mining, Inference and Prediction. Springer

Více

MATEMATICKÁ TEORIE ROZHODOVÁNÍ

MATEMATICKÁ TEORIE ROZHODOVÁNÍ MATEMATICKÁ metodický list č. 1 Řešení úloh Cílem tohoto tematického celku je vysvětlení vybraných pojmů z oblasti řešení úloh. Tématický celek je rozdělen do těchto dílčích témat: 1. Řešení úloh ve stavovém

Více

znalostí z databází- mnohostranná interpretace dat

znalostí z databází- mnohostranná interpretace dat Dobývání znalostí z databází- mnohostranná interpretace dat Petr Berka VŠE Praha berka@vse vse.cz Dobývání znalostí z databází Non-trivial process of identifying valid, novel, potentially useful and ultimately

Více

3 zdroje dat. Relační databáze EIS OLAP

3 zdroje dat. Relační databáze EIS OLAP Zdroje dat 3 zdroje dat Relační databáze EIS OLAP Relační databáze plochá dvourozměrná tabulková data OLTP (Online Transaction Processing) operace selekce projekce spojení průnik, sjednocení, rozdíl dotazování

Více

přetrénování = ztráta schopnosti generalizovat vlivem přílišného zaměření klasifikátorů na rozeznávání pouze konkrétních trénovacích dat

přetrénování = ztráta schopnosti generalizovat vlivem přílišného zaměření klasifikátorů na rozeznávání pouze konkrétních trénovacích dat Zkouška ISR 2013 přetrénování = ztráta schopnosti generalizovat vlivem přílišného zaměření klasifikátorů na rozeznávání pouze konkrétních trénovacích dat 1. Rozdílné principy u induktivního a deduktivního

Více

Cvičná bakalářská zkouška, 1. varianta

Cvičná bakalářská zkouška, 1. varianta jméno: studijní obor: PřF BIMAT počet listů(včetně tohoto): 1 2 3 4 5 celkem Cvičná bakalářská zkouška, 1. varianta 1. Matematická analýza Najdětelokálníextrémyfunkce f(x,y)=e 4(x y) x2 y 2. 2. Lineární

Více

Dobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze

Dobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Dobývání znalostí Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Dobývání znalostí Rozhodovací stromy Doc. RNDr. Iveta Mrázová, CSc.

Více

Evoluční algoritmy. Podmínka zastavení počet iterací kvalita nejlepšího jedince v populaci změna kvality nejlepšího jedince mezi iteracemi

Evoluční algoritmy. Podmínka zastavení počet iterací kvalita nejlepšího jedince v populaci změna kvality nejlepšího jedince mezi iteracemi Evoluční algoritmy Použítí evoluční principů, založených na metodách optimalizace funkcí a umělé inteligenci, pro hledání řešení nějaké úlohy. Populace množina jedinců, potenciálních řešení Fitness function

Více

UČENÍ BEZ UČITELE. Václav Hlaváč

UČENÍ BEZ UČITELE. Václav Hlaváč UČENÍ BEZ UČITELE Václav Hlaváč Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání hlavac@fel.cvut.cz, http://cmp.felk.cvut.cz/~hlavac 1/22 OBSAH PŘEDNÁŠKY ÚVOD Učení

Více

10. Datové sklady (Data Warehouses) Datový sklad

10. Datové sklady (Data Warehouses) Datový sklad 10. Datové sklady (Data Warehouses) Datový sklad komplexní data uložená ve struktuře, která umožňuje efektivní analýzu a dotazování data čerpána z primárních informačních systémů a dalších zdrojů OLAP

Více

Klasifikační metody pro genetická data: regularizace a robustnost

Klasifikační metody pro genetická data: regularizace a robustnost Odd medicínské informatiky a biostatistiky Ústav informatiky AV ČR, vvi Práce vznikla za finanční podpory Nadačního fondu Neuron na podporu vědy Klasifikační metody pro genetická data Regularizovaná klasifikační

Více

Automatické vyhledávání informace a znalosti v elektronických textových datech

Automatické vyhledávání informace a znalosti v elektronických textových datech Automatické vyhledávání informace a znalosti v elektronických textových datech Jan Žižka Ústav informatiky & SoNet RC PEF, Mendelova universita Brno (Text Mining) Data, informace, znalost Elektronická

Více

Analýza dat pomocí systému Weka, Rapid miner a Enterprise miner

Analýza dat pomocí systému Weka, Rapid miner a Enterprise miner Vysoká škola ekonomická v Praze Analýza dat pomocí systému Weka, Rapid miner a Enterprise miner Dobývání znalostí z databází 4IZ450 XXXXXXXXXXX Přidělená data a jejich popis Data určená pro zpracování

Více

STATISTICA Data Miner

STATISTICA Data Miner STATISTICA Data Miner I Základní přehled vlastností systému STATISTICA Data Miner Obsahuje nejrozsáhlejší výběr analytických technik dostupný na trhu (zdaleka největší výběr algoritmů na shlukování, pro

Více

Databáze. datum jmeno prijmeni adresa_ulice adresa_mesto cislo_uctu platba zustatek

Databáze. datum jmeno prijmeni adresa_ulice adresa_mesto cislo_uctu platba zustatek Databáze datum jmeno prijmeni adresa_ulice adresa_mesto cislo_uctu platba zustatek 980103 Jan Novak Dlouha 5 Praha 1 9945371 100.00 100.00 980105 Jan Novak Dlouha 5 Praha 1 9945371 1500.00 1600.00 980106

Více

Informační systémy 2006/2007

Informační systémy 2006/2007 13 Vysoká škola báňská Technická univerzita Ostrava Fakulta strojní, Katedra automatizační techniky a řízení Informační systémy 2006/2007 Ivan Kedroň 1 Obsah Analytické nástroje SQL serveru. OLAP analýza

Více

IBM SPSS Modeler Professional

IBM SPSS Modeler Professional IBM SPSS Modeler Professional 16 IBM SPSS Software IBM SPSS Modeler Professional Včasné rozhodnutí díky přesným informacím Metodami data miningu získáte detailní přehled o svém současném stavu i jasnější

Více

Stále větší množství dat uložených v databázích Neustále generujeme data Obchodní a bankovní transakce

Stále větší množství dat uložených v databázích Neustále generujeme data Obchodní a bankovní transakce Stále větší mžství dat uložených v databázích Neustále generujeme data Obchodní a bankovní transakce Biologická, astromická data atd Ukládáme stále více dat Úvod do problematiky Databázové techlogie jsou

Více

Dolování z textu. Martin Vítek

Dolování z textu. Martin Vítek Dolování z textu Martin Vítek Proč dolovat z textu Obrovské množství materiálu v nestrukturované textové podobě knihy časopisy vědeckéčlánky sborníky konferencí internetové diskuse Proč dolovat z textu

Více

Profilování vzorků heroinu s využitím vícerozměrné statistické analýzy

Profilování vzorků heroinu s využitím vícerozměrné statistické analýzy Profilování vzorků heroinu s využitím vícerozměrné statistické analýzy Autor práce : RNDr. Ivo Beroun,CSc. Vedoucí práce: prof. RNDr. Milan Meloun, DrSc. PROFILOVÁNÍ Profilování = klasifikace a rozlišování

Více

UNIVERZITA PARDUBICE KLASIFIKAČNÍ ÚLOHY PRO DATA MINING. Fakulta ekonomicko-správní Ústav systémového inženýrství a informatiky.

UNIVERZITA PARDUBICE KLASIFIKAČNÍ ÚLOHY PRO DATA MINING. Fakulta ekonomicko-správní Ústav systémového inženýrství a informatiky. UNIVERZITA PARDUBICE Fakulta ekonomicko-správní Ústav systémového inženýrství a informatiky KLASIFIKAČNÍ ÚLOHY PRO DATA MINING Petra Jandová Bakalářská práce 2013 PROHLÁŠENÍ Prohlašuji, že jsem tuto

Více

NÁSTROJE BUSINESS INTELLIGENCE

NÁSTROJE BUSINESS INTELLIGENCE NÁSTROJE BUSINESS INTELLIGENCE Milena Tvrdíková VŠB Technická univerzita Ostrava, Ekonomická fakulta, Katedra informatiky v ekonomice, Sokolská 33, 701021 Ostrava1, ČR, milena.tvrdikova@vsb.cz Abstrakt

Více

PROJEKTOVÁNÍ A KOMUNIKACE

PROJEKTOVÁNÍ A KOMUNIKACE metodický list č. 1 Problémy současných projektů Základním cílem tohoto tematického celku je vysvětlení základních problémových oblastí při projektování a inovaci informačních systémů. Dále i vysvětlení

Více

Získávání znalostí z databází. Alois Kužela

Získávání znalostí z databází. Alois Kužela Získávání znalostí z databází Alois Kužela Obsah související pojmy datové sklady, získávání znalostí asocianí pravidla 2/37 Úvod získávání znalostí z dat, dolování (z) dat, data mining proces netriviálního

Více

Obsah. Kapitola 1. Kapitola 2. Kapitola 3. Úvod 9

Obsah. Kapitola 1. Kapitola 2. Kapitola 3. Úvod 9 Obsah Úvod 9 Kapitola 1 Business Intelligence, datové sklady 11 Přechod od transakčních databází k analytickým..................... 13 Kvalita údajů pro analýzy................................................

Více

PRINCIPY POČÍTAČOVÉ GRAFIKY

PRINCIPY POČÍTAČOVÉ GRAFIKY Název tématického celku: PRINCIPY POČÍTAČOVÉ GRAFIKY metodický list č. 1 Cíl: Barvy v počítačové grafice Základním cílem tohoto tematického celku je seznámení se základními reprezentacemi barev a barevnými

Více

Obsah. Předmluva 13. O autorovi 15. Poděkování 16. O odborných korektorech 17. Úvod 19

Obsah. Předmluva 13. O autorovi 15. Poděkování 16. O odborných korektorech 17. Úvod 19 Předmluva 13 O autorovi 15 Poděkování 16 O odborných korektorech 17 Úvod 19 Co kniha popisuje 19 Co budete potřebovat 20 Komu je kniha určena 20 Styly 21 Zpětná vazba od čtenářů 22 Errata 22 KAPITOLA 1

Více

ití empirických modelů při i optimalizaci procesu mokré granulace léčivl ková SVK ÚOT

ití empirických modelů při i optimalizaci procesu mokré granulace léčivl ková SVK ÚOT Využit ití empirických modelů při i optimalizaci procesu mokré granulace léčivl Jana Kalčíkov ková 5. ročník Školitel: Doc. Ing. Zdeněk k Bělohlav, B CSc. Granulace Prášek Granule Vlhčivo Promíchávání

Více

AVDAT Mnohorozměrné metody, metody klasifikace Shluková analýza

AVDAT Mnohorozměrné metody, metody klasifikace Shluková analýza AVDAT Mnohorozměrné metody, metody klasifikace Shluková analýza Josef Tvrdík Katedra informatiky Přírodovědecká fakulta Ostravská univerzita Shluková analýza Cílem shlukové analýzy je nalézt v datech podmnožiny

Více

Strojové učení se zaměřením na vliv vstupních dat

Strojové učení se zaměřením na vliv vstupních dat Strojové učení se zaměřením na vliv vstupních dat Irina Perfilieva, Petr Hurtík, Marek Vajgl Centre of excellence IT4Innovations Division of the University of Ostrava Institute for Research and Applications

Více

Předmět a cíle rizikové analýzy přehrad Koncepční přístupy k rizikové analýze přehrad. Aktuální stav RA přehrad v ČR

Předmět a cíle rizikové analýzy přehrad Koncepční přístupy k rizikové analýze přehrad. Aktuální stav RA přehrad v ČR ÚVOD VYMEZENÍ CÍLŮ A OBSAHU PUBLIKACE TERMINOLOGIE POUŽÍVANÁ v ANALÝZE RIZIKA PŘEHRAD NÁVRHOVÉ PARAMETRY VODNÍCH DĚL BEZPEČNOST PŘEHRAD TECHNICKO-BEZPEČNOSTNÍ DOHLED Charakteristika a rámec činností TBD

Více

JESTLIŽE Poruchy druhu p j Vykazují v období záruky odchylku S > P resp. S < P POTOM Potenciální příčinou poruch je závada Z s vahou w

JESTLIŽE Poruchy druhu p j Vykazují v období záruky odchylku S > P resp. S < P POTOM Potenciální příčinou poruch je závada Z s vahou w Volba aplikační oblasti 1. dvoukriteriální schéma založené na odhadu vágnosti a komplexnosti Důvody aplikace: Faktory úspěchu expert odchází a je třeba zaškolit nástupce snaha pro standardizaci způsobu

Více

ANALÝZA A KLASIFIKACE DAT

ANALÝZA A KLASIFIKACE DAT ANALÝZA A KLASIFIKACE DAT prof. Ing. Jiří Holčík, CSc. INVESTICE Institut DO biostatistiky ROZVOJE VZDĚLÁVÁNÍ a analýz III. PŘÍZNAKOVÁ KLASIFIKACE - ÚVOD PŘÍZNAKOVÝ POPIS Příznakový obraz x zpracovávaných

Více

ANALÝZA A KLASIFIKACE DAT. Institut biostatistiky a analýz

ANALÝZA A KLASIFIKACE DAT. Institut biostatistiky a analýz ANALÝZA A KLASIFIKACE DAT prof. Ing. Jiří Holčík,, CSc. VII. VOLBA A VÝBĚR PŘÍZNAKŮ ZAČÍNÁME kolik a jaké příznaky? málo příznaků možná chyba klasifikace; moc příznaků možná nepřiměřená pracnost, vysoké

Více

Dobývání znalostí z databází. Databáze. datum jmeno prijmeni adresa_ulice adresa_mesto cislo_uctu platba zustatek

Dobývání znalostí z databází. Databáze. datum jmeno prijmeni adresa_ulice adresa_mesto cislo_uctu platba zustatek Databáze datum jmeno prijmeni adresa_ulice adresa_mesto cislo_uctu platba zustatek 980103 Jan Novak Dlouha 5 Praha 1 9945371 100.00 100.00 980105 Jan Novak Dlouha 5 Praha 1 9945371 1500.00 1600.00 980106

Více

BI v rámci IS/ICT komponenty BI architektura. Charakteristika dat a procesů v IS/ICT. Datové sklady ukládání dat návrh datového skladu

BI v rámci IS/ICT komponenty BI architektura. Charakteristika dat a procesů v IS/ICT. Datové sklady ukládání dat návrh datového skladu BI v rámci IS/ICT komponenty BI architektura Charakteristika dat a procesů v IS/ICT Datové sklady ukládání dat návrh datového skladu BI CRM ERP SCM Aplikace pro podporu základních řídících a administrativních

Více

1. Data mining. Strojové učení. Základní úlohy.

1. Data mining. Strojové učení. Základní úlohy. 1... Základní úlohy. Učení s učitelem a bez učitele. Petr Pošík Katedra kybernetiky ČVUT FEL P. Pošík c 2010 Aplikace umělé inteligence 1 / 36 Obsah P. Pošík c 2010 Aplikace umělé inteligence 2 / 36 Co

Více

2C06028-00-Tisk-ePROJEKTY

2C06028-00-Tisk-ePROJEKTY Stránka. 27 z 50 3.2. ASOVÝ POSTUP PRACÍ - rok 2009 3.2.0. P EHLED DÍL ÍCH CÍL PLÁNOVANÉ 2009 íslo podrobn Datum pln ní matematicky formulovat postup výpo t V001 výpo etní postup ve form matematických

Více

MATURITNÍ OTÁZKY ELEKTROTECHNIKA - POČÍTAČOVÉ SYSTÉMY 2003/2004 PROGRAMOVÉ VYBAVENÍ POČÍTAČŮ

MATURITNÍ OTÁZKY ELEKTROTECHNIKA - POČÍTAČOVÉ SYSTÉMY 2003/2004 PROGRAMOVÉ VYBAVENÍ POČÍTAČŮ MATURITNÍ OTÁZKY ELEKTROTECHNIKA - POČÍTAČOVÉ SYSTÉMY 2003/2004 PROGRAMOVÉ VYBAVENÍ POČÍTAČŮ 1) PROGRAM, ZDROJOVÝ KÓD, PŘEKLAD PROGRAMU 3 2) HISTORIE TVORBY PROGRAMŮ 3 3) SYNTAXE A SÉMANTIKA 3 4) SPECIFIKACE

Více

MATEMATIKA A 3 Metodický list č. 1

MATEMATIKA A 3 Metodický list č. 1 Metodický list č. 1 Název tématického celku: Úvod do problematiky diskrétní matematiky Cíl: Cílem tohoto tématického celku je vymezení oblasti diskrétní matematiky a příprava na další výklad kurzu. Jedná

Více

Genetické algoritmy. Informační a komunikační technologie ve zdravotnictví

Genetické algoritmy. Informační a komunikační technologie ve zdravotnictví Genetické algoritmy Informační a komunikační technologie ve zdravotnictví Přehled přednášky Úvod Historie Základní pojmy Principy genetických algoritmů Možnosti použití Související metody AI Příklad problém

Více

EKONOMICKÉ MODELOVÁNÍ

EKONOMICKÉ MODELOVÁNÍ Metodický list č. 1 Podnikové procesy v řízení podniku Cílem tohoto tematického celku je vysvětlení základních pojmů z oblasti podnikových procesů a úvod do Business Process Reengineeringu i východisek

Více

Základy vytěžování dat

Základy vytěžování dat Základy vytěžování dat předmět A7Bb36vyd Vytěžování dat Filip Železný, Miroslav Čepek, Radomír Černoch, Jan Hrdlička katedra kybernetiky a katedra počítačů ČVUT v Praze, FEL Evropský sociální fond Praha

Více

Umělá inteligence a rozpoznávání

Umělá inteligence a rozpoznávání Václav Matoušek KIV e-mail: matousek@kiv.zcu.cz 0-1 Sylabus předmětu: Datum Náplň přednášky 11. 2. Úvod, historie a vývoj UI, základní problémové oblasti a typy úloh, aplikace UI, příklady inteligentních

Více

Business Intelligence. Adam Trčka

Business Intelligence. Adam Trčka Business Intelligence Adam Trčka 09:00 11:30: BI v kostce Navrhněme si sklad Ukázka BI Datamining 12:30 14:30: Pokračování kurzu 14:30 15:00: Q&A Agenda Co se dnes dovíme? Data informace znalost Business

Více

Hodnocení klasifikátoru Test nezávislosti. 14. prosinec Rozvoj aplikačního potenciálu (RAPlus) CZ.1.07/2.4.00/

Hodnocení klasifikátoru Test nezávislosti. 14. prosinec Rozvoj aplikačního potenciálu (RAPlus) CZ.1.07/2.4.00/ Čtyřpolní tabulky Čtyřpolní tabulky 14. prosinec 2012 Rozvoj aplikačního potenciálu (RAPlus) CZ.1.07/2.4.00/17.0117 O čem se bude mluvit? Čtyřpolní tabulky Osnova prezentace Čtyřpolní tabulky 1. přístupy

Více

DOLOVÁNÍ DAT Z DATABÁZÍ DATA MINING

DOLOVÁNÍ DAT Z DATABÁZÍ DATA MINING VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV AUTOMATIZACE A MĚŘICÍ TECHNIKY FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION

Více

1. Dobývání znalostí z databází

1. Dobývání znalostí z databází 1. Dobývání znalostí z databází O dobývání znalostí z databází (Knowledge Discovery in Databases, KDD) se začíná ve vědeckých kruzích mluvit počátkem 90. let. První impuls přišel z Ameriky, kde se na konferencích

Více

Obsah. Seznam obrázků... XV. Seznam tabulek... XV

Obsah. Seznam obrázků... XV. Seznam tabulek... XV Obsah Seznam obrázků... XV Seznam tabulek... XV 1. Úvod.... 1 1.1 Benchmarking, benchmarkingové modely... 3 1.1.1 Teorie benchmarkingu... 4 1.1.2 Základní typy benchmarkingu a jeho další modifikace...

Více

IDENTIFIKACE AUTOMATICKÝCH PŘÍSTUPŮ INTERNETOVÝCH OBCHODŮ S VYUŽÍTÍM METOD WEB USAGE MININGU

IDENTIFIKACE AUTOMATICKÝCH PŘÍSTUPŮ INTERNETOVÝCH OBCHODŮ S VYUŽÍTÍM METOD WEB USAGE MININGU IDENTIFIKACE AUTOMATICKÝCH PŘÍSTUPŮ INTERNETOVÝCH OBCHODŮ S VYUŽÍTÍM METOD WEB USAGE MININGU Jana Filipová, Karel Michálek, Pavel Petr Ústav systémového inženýrství a informatiky, Fakulta ekonomicko-správní,

Více

Strukturální regresní modely. určitý nadhled nad rozličnými typy modelů

Strukturální regresní modely. určitý nadhled nad rozličnými typy modelů Strukturální regresní modely určitý nadhled nad rozličnými typy modelů Jde zlepšit odhad k-nn? Odhad k-nn konverguje pro slušné k očekávané hodnotě. ALE POMALU! Jiné přístupy přidají předpoklad o funkci

Více

Obsah Úvod Kapitola 1 Než začneme Kapitola 2 Práce s hromadnými daty před analýzou

Obsah Úvod Kapitola 1 Než začneme Kapitola 2 Práce s hromadnými daty před analýzou Úvod.................................................................. 11 Kapitola 1 Než začneme.................................................................. 17 1.1 Logika kvantitativního výzkumu...........................................

Více

1. Vlastnosti diskretních a číslicových metod zpracování signálů... 15

1. Vlastnosti diskretních a číslicových metod zpracování signálů... 15 Úvodní poznámky... 11 1. Vlastnosti diskretních a číslicových metod zpracování signálů... 15 1.1 Základní pojmy... 15 1.2 Aplikační oblasti a etapy zpracování signálů... 17 1.3 Klasifikace diskretních

Více

kapitola 2 Datové sklady, OLAP

kapitola 2 Datové sklady, OLAP Tomáš Burger, burger@fit.vutbr.cz kapitola 2 Datové sklady, OLAP Získávání znalostí z databází IT-DR-3 / ZZD Co je to datový sklad A data warehouse is a subjectoriented, integrated, time-variant and nonvolatile

Více

DATABÁZOVÉ SYSTÉMY. Metodický list č. 1

DATABÁZOVÉ SYSTÉMY. Metodický list č. 1 Metodický list č. 1 Cíl: Cílem předmětu je získat přehled o možnostech a principech databázového zpracování, získat v tomto směru znalosti potřebné pro informačního manažera. Databázové systémy, databázové

Více

Modely vyhledávání informací 4 podle technologie. 1) Booleovský model. George Boole 1815 1864. Aplikace booleovské logiky

Modely vyhledávání informací 4 podle technologie. 1) Booleovský model. George Boole 1815 1864. Aplikace booleovské logiky Modely vyhledávání informací 4 podle technologie 1) Booleovský model 1) booleovský 2) vektorový 3) strukturní 4) pravděpodobnostní a další 1 dokumenty a dotazy jsou reprezentovány množinou indexových termů

Více

IBM SPSS Modeler Premium

IBM SPSS Modeler Premium IBM SPSS Modeler Premium 16 IBM SPSS Software IBM SPSS Modeler Premium Modelování strukturovaných a nestrukturovaných dat, identifikace entit a analýza sociálních sítí IBM SPSS Modeler Premium je software

Více

Metody umělé inteligence ve vodním hospodářství

Metody umělé inteligence ve vodním hospodářství Metody umělé inteligence ve vodním hospodářství Miloš Starý VUT FAST Brno, ÚVHK Umělá inteligence Umělá inteligence (vědní disciplína) aproximace určitých schopností živých organismů (intelektuálních schopností

Více

Multirobotická kooperativní inspekce

Multirobotická kooperativní inspekce Multirobotická kooperativní inspekce prostředí Diplomová práce Multirobotická kooperativní inspekce prostředí Diplomová práce Intelligent and Mobile Robotics Group Laboratory for Intelligent Decision Making

Více

Neuronové sítě Ladislav Horký Karel Břinda

Neuronové sítě Ladislav Horký Karel Břinda Neuronové sítě Ladislav Horký Karel Břinda Obsah Úvod, historie Modely neuronu, aktivační funkce Topologie sítí Principy učení Konkrétní typy sítí s ukázkami v prostředí Wolfram Mathematica Praktické aplikace

Více

Vědecký tutoriál, část I. A Tutorial. Vilém Vychodil (Univerzita Palackého v Olomouci)

Vědecký tutoriál, část I. A Tutorial. Vilém Vychodil (Univerzita Palackého v Olomouci) ..! POSSIBILISTIC Laboratoř pro analýzu INFORMATION: a modelování dat Vědecký tutoriál, část I A Tutorial Vilém Vychodil (Univerzita Palackého v Olomouci) George J. Klir State University of New York (SUNY)

Více

HOVYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY

HOVYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY HOVYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA INFORMAČNÍCH TECHNOLOGIÍ ÚSTAV INFORMAČNÍCH SYSTÉMŮ FACULTY OF INFORMATION TECHNOLOGY DEPARTMENT OF INFORMATION SYSTEMS WEBOVÁ APLIKACE

Více

Vícerozměrné metody. PSY117/454 Statistická analýza dat v psychologii Přednáška 12. Schematický úvod

Vícerozměrné metody. PSY117/454 Statistická analýza dat v psychologii Přednáška 12. Schematický úvod PSY117/454 Statistická analýza dat v psychologii Přednáška 12 Vícerozměrné metody Schematický úvod Co je na slově statistika tak divného, že jeho vyslovení tak často způsobuje napjaté ticho? William Kruskal

Více

Profitabilita klienta v kontextu Performance management

Profitabilita klienta v kontextu Performance management IBM Technical specialist team Pre Sale 26/10/2010 Profitabilita klienta v kontextu Performance management Co všechno řadíme do PM? Automatická data Běžný reporting Pokročilé statistické modely Včera What

Více

Rosenblattův perceptron

Rosenblattův perceptron Perceptron Přenosové funkce Rosenblattův perceptron Rosenblatt r. 1958. Inspirace lidským okem Podle fyziologického vzoru je třívrstvá: Vstupní vrstva rozvětvovací jejím úkolem je mapování dvourozměrného

Více

Emergence chování robotických agentů: neuroevoluce

Emergence chování robotických agentů: neuroevoluce Emergence chování robotických agentů: neuroevoluce Petra Vidnerová, Stanislav Slušný, Roman Neruda Ústav Informatiky, AV ČR Kognice a umělý život VIII Praha 28. 5. 2008 Evoluční robotika: EA & neuronové

Více

LISp-Miner: systém pro získávání znalostí z dat 1

LISp-Miner: systém pro získávání znalostí z dat 1 LISp-Miner: systém pro získávání znalostí z dat 1 Petr Berka, Jan Rauch, Milan Šimůnek VŠE Praha Nám. W. Churchilla 4, Praha 3 e-mail: {berka,rauch,simunek}@vse.cz Abstrakt. Systém LISp-Miner je otevřený

Více

8-9. Pravděpodobnostní rozhodování a predikce. Gerstnerova laboratoř katedra kybernetiky fakulta elektrotechnická ČVUT v Praze

8-9. Pravděpodobnostní rozhodování a predikce. Gerstnerova laboratoř katedra kybernetiky fakulta elektrotechnická ČVUT v Praze KYBERNETIKA A UMĚLÁ INTELIGENCE 8-9. Pravděpodobnostní rozhodování a predikce laboratory Gerstner Gerstnerova laboratoř katedra kybernetiky fakulta elektrotechnická ČVUT v Praze Rozhodování za neurčitosti

Více

Využití strojového učení k identifikaci protein-ligand aktivních míst

Využití strojového učení k identifikaci protein-ligand aktivních míst Využití strojového učení k identifikaci protein-ligand aktivních míst David Hoksza, Radoslav Krivák SIRET Research Group Katedra softwarového inženýrství, Matematicko-fyzikální fakulta Karlova Univerzita

Více

DATA MINING KLASIFIKACE DMINA LS 2009/2010

DATA MINING KLASIFIKACE DMINA LS 2009/2010 DATA MINING KLASIFIKACE DMINA LS 2009/2010 Osnova co je to klasifikace typy klasifikátoru typy výstupu jednoduchý klasifikátor (1R) rozhodovací stromy Klasifikace (ohodnocení) zařazuje data do předdefinovaných

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY DOLOVÁNÍ DAT DATA MINING

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY DOLOVÁNÍ DAT DATA MINING VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV AUTOMATIZACE A MĚŘICÍ TECHNIKY FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION

Více

Testování modelů a jejich výsledků. Jak moc můžeme věřit tomu, co jsme se naučili?

Testování modelů a jejich výsledků. Jak moc můžeme věřit tomu, co jsme se naučili? Testování modelů a jejich výsledků Jak moc můžeme věřit tomu, co jsme se naučili? 2 Osnova Úvod různé klasifikační modely a jejich kvalita Hodnotící míry (kriteria kvality) pro zvolený model. Postup vyhodnocování

Více

Metody zpracování a analýzy medicínských obrazových dat: možnosti využití v neurovědním výzkumu

Metody zpracování a analýzy medicínských obrazových dat: možnosti využití v neurovědním výzkumu Metody zpracování a analýzy medicínských obrazových dat: možnosti využití v neurovědním výzkumu Ing. Daniel Schwarz, Ph.D. Bc. Eva Janoušov ová INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ O čem budu mluvit? Neurovědy

Více

5. Umělé neuronové sítě. neuronové sítě. Umělé Ondřej Valenta, Václav Matoušek. 5-1 Umělá inteligence a rozpoznávání, LS 2015

5. Umělé neuronové sítě. neuronové sítě. Umělé Ondřej Valenta, Václav Matoušek. 5-1 Umělá inteligence a rozpoznávání, LS 2015 Umělé neuronové sítě 5. 4. 205 _ 5- Model umělého neuronu y výstup neuronu u vnitřní potenciál neuronu w i váhy neuronu x i vstupy neuronu Θ práh neuronu f neuronová aktivační funkce _ 5-2 Neuronové aktivační

Více

8. Strojové učení. Strojové učení. 16. prosince 2014. Václav Matoušek. 8-1 Úvod do znalostního inženýrství, ZS 2014/15

8. Strojové učení. Strojové učení. 16. prosince 2014. Václav Matoušek. 8-1 Úvod do znalostního inženýrství, ZS 2014/15 Strojové učení 16. prosince 2014 8-1 Klasifikace metod strojového učení podle vynaloženého úsilí na získání nových znalostí Učení zapamatováním (rote learning, biflování) Pouhé zaznamenání dat nebo znalostí.

Více

Datový sklad. Datový sklad

Datový sklad. Datový sklad Datový sklad Postavení v rámci IS/ICT Specifika návrhu Modelování Datový sklad POSTAVENÍ NÁVRH Postavení datového skladu (DW) v IS/ICT z hlediska aplikací jako součást Business Intelligence z hlediska

Více

STATISTIKA I Metodický list č. 1 Název tématického celku:

STATISTIKA I Metodický list č. 1 Název tématického celku: STATISTIKA I Metodický list č. 1 Analýza závislostí Základním cílem tohoto tématického celku je seznámit se s pokročilejšími metodami zpracování statistických údajů.. 1. kontingenční tabulky 2. regresní

Více

Analýza dat Meningoencephalitis

Analýza dat Meningoencephalitis Analýza dat Meningoencephalitis Štěpán Sem 4IZ450 Dobývání znalostí z databází LS 2009/2010 1 Úvod Cílem této práce je řešení vybrané úlohy z oblasti dobývání znalostí (predikce, klasifikace, deskripce)

Více

TECHNICKÁ UNIVERZITA V LIBERCI

TECHNICKÁ UNIVERZITA V LIBERCI TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií Rozdělení sub-oborů robotiky Učební text jméno a příjmení autora Doc. Ing. Mgr. Václav Záda, CSc. Liberec 2010 Materiál

Více

Analýza a modelování dat 5. přednáška. Helena Palovská

Analýza a modelování dat 5. přednáška. Helena Palovská Analýza a modelování dat 5. přednáška Helena Palovská Historie databázových modelů Multidimenzionální model Kvantitativní typ faktu s určitými hledisky např.: Kdo komu kdy jak moc čeho prodal. kdo, komu,

Více