Projekční algoritmus. Urychlení evolučních algoritmů pomocí regresních stromů a jejich zobecnění. Jan Klíma
|
|
- Marek Marek
- před 8 lety
- Počet zobrazení:
Transkript
1 Urychlení evolučních algoritmů pomocí regresních stromů a jejich zobecnění Jan Klíma
2 Obsah Motivace & cíle práce Evoluční algoritmy Náhradní modelování Stromové regresní metody Implementace a výsledky testů
3 Motivace Empirické cílové funkce a evoluční optimalizace Vyhodnocení cílové funkce bývá časově náročné drahé Příklady Aerodynamika, katalýza Řešení = použití náhradního modelu místo cílové funkce
4 Cíle práce Návrh evolučního algoritmu Náhradní model = regresní stromy a odvozené metody Umí pracovat s diskrétními proměnnými Vstup algoritmu ve speciálním tvaru vhodném pro řešení optimalizačních problémů v katalýze Otestování prototypové implementace navržených algoritmů
5 Evoluční algoritmy Stochastická optimalizační metoda Jedinec = řešení problému Volba vhodného kódování Fitness = kvalita jedince Populace = soubor jedinců Selekce Operátory křížení a mutace Elitismus
6 Evoluční algoritmy - schéma
7 Náhradní modelování Při výpočtu fitness model místo cílové funkce Cíl = rychlejší konvergence v závislosti na počtu vyhodnocení cílové funkce V literatuře především spojité modely Neuronové sítě Gaussovské procesy Polynomiální modely Databáze hodnot cílové funkce Evoluční řízení
8 Individuální Generační Evoluční řízení
9 Individuální evoluční řízení
10 Preselekce
11 Individuální evoluční řízení Best strategie Random strategie Shlukovací strategie Jak vybírat reprezentanty shluků? Strategie založená na odhadu chyby modelu
12 Generační evoluční řízení Cílová funkce se použije pro ohodnocení populací v cyklu délky populací, Volba : Pevná (heuristika) Adaptivní V závislosti na kvalitě modelu
13 Stromové regresní metody Regresní stromy Bagging Náhodné lesy AdaBoost R2 Gradientní boosting
14 Regresní stromy Základní publikace je Breiman a kol. (1984) Binární stromy Vnitřním vrcholům stromu přiřazena pravidla tvaru X n t n pro spojité proměnné nebo X subset dom( X )) pro diskrétní proměnné n ( n Listům jsou přiřazeny konstanty Každý list odpovídá části def. oboru Odezva v bodě M x f ( x) c ( m mi x R 1 m c m R je dána předpisem ) R m
15 Regresní stromy
16 Regresní stromy
17 Regresní stromy - konstrukce Počáteční strom obsahuje jediný list a c1 mean( y Data) Iterativně: j Vyber vrchol a dělení s největším ziskem ( 2 2 y y ) ( ) ( ( x, y) Parent Parent y y ( x, y) Left L y y ( x, y) Right R Vrcholu přiřaď rozhodovací pravidlo odpovídající dělení a nastav pro oba potomky c Leaf mean( y Leaf ) ) 2
18 Regresní stromy - konstrukce Volba ukončovacího kriteria Problém přeučení Prořezávání Optimální prořezávací sekvence vzhledem k MSE #listů 0-SE, 1-SE pravidla Možnost využití křížové validace
19 Regresní stromy - vlastnosti Výhody Jednoduchá konstrukce i interpretace Rychlost Kombinace spojitých i diskrétních proměnných Nevýhody Po částech konstantní model Nestabilní
20 Regresní stromy vs. polynom. model
21 Stromový bagging Bagging = Bootstrap Aggregation N regresních stromů natrénováno bez prořezávání Trénovací množina pro i-tý strom je vybrána z původní trénovací množiny s opakováním Odezva modelu v bodě x se pak vypočítá jako průměr odezvy jednotlivých stromů: f ( x) N Tn ( x) i 1 N
22 Průměrování Stromový bagging Odstraní nestabilitu Brání přeučení Každý strom popisuje jinou část dat Jeden vzorek má pst., že nebude vybrán (1 1 N ) N e 1 Přibližně 37% vzorků se pro jeden strom nepoužije Tzv. out-of-bag data
23 Využití out-of-bag dat Odhad aproximační chyby modelu Chyba se počítá pouze na vzorcích, které se nepoužily při trénování stromu Výpočet matice příbuznosti mezi jednotlivými vzorky ij M [ ij ] je procento stromů, ve kterých i-tý a j-tý vzorek skončí ve stejném listu Detekce outliers
24 Stromový bagging - příklad
25 Náhodné lesy Algoritmus téměř totožný s baggingem Při dělení vrcholu se uvažují dělení jen podle náhodně vybrané podmnožiny všech proměnných Počet uvažovaných proměnných je pro všechny vrcholy stejný (pro regresní stromy se doporučuje podmnožina třetinové velikosti) Každá proměnná má větší šanci přispět
26 AdaBoost R2 Inspirace klasifikačním algoritmem AdaBoost Výběr trénovací množiny pro jeden strom s opakováním Každý vzorek má přiřazenu pravděpodobnost vybrání Po přidání nového stromu se pravděpodobnost vybrání vzorku mění exponenciálně vzhledem k velikosti chyby Odezva se počítá jako vážený medián odezev jednotlivých stromů vzhledem k míře spolehlivosti
27 Gradientní boosting Aditivní model Využívá stromy jako tzv. weak learner Typicky stromy s pevným malým počtem listů (4-10) Nový strom se učí místo na hodnotách cílové funkce na negativním gradientu ztrátové funkce gr i [ yi fm 1( xi )] Iterativní konstrukce modelu: f mean( y Data) ˆ0 fˆ m ( x) fˆ m 1( x) Treem ( x)
28 Volba Gradientní boosting Doporučuje se malé, ~0.01 Kvalita modelu vs. rychlost konvergence Volba trénovací množiny Celá trénovací data Podmnožina trénovacích dat vybraná bez opakování (stochastický gradientní boosting)
29 Učení lesových modelů Pevný počet stromů Early stopping Out-of-bag data Validační množina Klady vs. zápory
30 Implementace algoritmů v MATLABu Zmíněné stromové metody Genetický algoritmus Evoluční řízení Individuální Generační Trénování náhradního modelu Speciální genetické operátory pro křížení a mutace
31 Testování stromových metod Testovací data Umělé testovací funkce Standardní datasety z repozitářů Dataset z reálného experimentu v katalýze Trénovací metody Pevná velikost lesa Early stopping 10 pokusů Lesové metody obecně podstatně lepší než samotný regresní strom
32 Testování stromových metod MSE RT B RF SGB ABR2 Friedman # ± 0.77 (500) 3.59 ± ± ± ± 0.18 (VS) 3.83 ± ± ± ± 0.52 (OOB) 3.63 ± ± 0.23 Friedman # ± (500) ± ± ± ± 6.66 (VS) ± ± ± ± (OOB) ± ± 8.40 Friedman # ± 4.37 (500) 6.81 ± ± ± ± 2.56 (VS) 8.37 ± ± ± ± 3.13 (OOB) 7.20 ± ± 1.51
33 Testování stromových metod Nodes RT B RF SGB ABR2 Friedman #1 36 (500) 312, ,755 5, ,949 (VS) 46,669 42,092 5,497 31,048 (OOB) 84,236 77,389 Friedman #2 34 (500) 312, ,850 5, ,710 (VS) 33,099 36,319 4,828 14,236 (OOB) 78,480 64,667 Friedman #3 33 (500) 312, ,901 5, ,030 (VS) 18,369 27,676 5,432 11,349 (OOB) 44,858 73,865
34 Testování stromových metod
35 Testování genetického algoritmu 2 různé benchmarkové funkce: První pouze spojitých proměnných Druhá spojitých i diskrétních proměnných Individuální i generační strategie Vybrané typy náhradních modelů 50 běhů algoritmu s velikostí populace 100 Náhradní model vždy od 3. generace Maximálně 2000 vyhodnocení cílové funkce
36 Testování genetického algoritmu Ve většině případů urychlení konvergence Generační strategie pro obě funkce lepší než individuální Přínos modelu s rostoucím počtem generací klesá Někdy až zhoršení chování s modelem Nejlepší AdaBoost R2 a stochastický gradientní boosting
37 Testování genetického algoritmu
38 Testování genetického algoritmu
39 Testování genetického algoritmu Valero/Gen WEC RT B RF SGB ABR2 Mean Deviation Median quantile quantile
40 Testování genetického algoritmu
41 Testování genetického algoritmu Ocenasek/Gen WEC RT B RF SGB ABR2 Mean Deviation Median quantile quantile
42 Závěr Dotazy Připomínky
Obsah přednášky Jaká asi bude chyba modelu na nových datech?
Obsah přednášky Jaká asi bude chyba modelu na nových datech? Chyba modelu Bootstrap Cross Validation Vapnik-Chervonenkisova dimenze 2 Chyba skutečná a trénovací Máme 30 záznamů, rozhodli jsme se na jejich
Rozpoznávání písmen. Jiří Šejnoha Rudolf Kadlec (c) 2005
Rozpoznávání písmen Jiří Šejnoha Rudolf Kadlec (c) 2005 Osnova Motivace Popis problému Povaha dat Neuronová síť Architektura Výsledky Zhodnocení a závěr Popis problému Jedná se o praktický problém, kdy
Emergence chování robotických agentů: neuroevoluce
Emergence chování robotických agentů: neuroevoluce Petra Vidnerová, Stanislav Slušný, Roman Neruda Ústav Informatiky, AV ČR Kognice a umělý život VIII Praha 28. 5. 2008 Evoluční robotika: EA & neuronové
Pokročilé neparametrické metody. Klára Kubošová
Pokročilé neparametrické metody Klára Kubošová Pokročilé neparametrické metody Výuka 13 přednášek doplněných o praktické cvičení v SW Úvod do neparametrických metod + princip rozhodovacích stromů Klasifikační
Státnice odborné č. 20
Státnice odborné č. 20 Shlukování dat Shlukování dat. Metoda k-středů, hierarchické (aglomerativní) shlukování, Kohonenova mapa SOM Shlukování dat Shluková analýza je snaha o seskupení objektů do skupin
ZÍSKÁVÁNÍ ZNALOSTÍ Z DATABÁZÍ
Metodický list č. 1 Dobývání znalostí z databází Cílem tohoto tematického celku je vysvětlení základních pojmů z oblasti dobývání znalostí z databází i východisek dobývání znalostí z databází inspirovaných
Evoluční výpočetní techniky (EVT)
Evoluční výpočetní techniky (EVT) - Nacházejí svoji inspiraci v přírodních vývojových procesech - Stejně jako přírodní jevy mají silnou náhodnou složku, která nezanedbatelným způsobem ovlivňuje jejich
Dobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze
Dobývání znalostí Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Dobývání znalostí Pravděpodobnost a učení Doc. RNDr. Iveta Mrázová,
ZÍSKÁVÁNÍ ZNALOSTÍ Z DATABÁZÍ
metodický list č. 1 Dobývání znalostí z databází Cílem tohoto tematického celku je vysvětlení základních pojmů z oblasti dobývání znalostí z databází i východisek dobývání znalostí z databází inspirovaných
1. Vlastnosti diskretních a číslicových metod zpracování signálů... 15
Úvodní poznámky... 11 1. Vlastnosti diskretních a číslicových metod zpracování signálů... 15 1.1 Základní pojmy... 15 1.2 Aplikační oblasti a etapy zpracování signálů... 17 1.3 Klasifikace diskretních
Genetické algoritmy. Informační a komunikační technologie ve zdravotnictví
Genetické algoritmy Informační a komunikační technologie ve zdravotnictví Přehled přednášky Úvod Historie Základní pojmy Principy genetických algoritmů Možnosti použití Související metody AI Příklad problém
Moderní systémy pro získávání znalostí z informací a dat
Moderní systémy pro získávání znalostí z informací a dat Jan Žižka IBA Institut biostatistiky a analýz PřF & LF, Masarykova universita Kamenice 126/3, 625 00 Brno Email: zizka@iba.muni.cz Bioinformatika:
Evoluční algoritmy. Podmínka zastavení počet iterací kvalita nejlepšího jedince v populaci změna kvality nejlepšího jedince mezi iteracemi
Evoluční algoritmy Použítí evoluční principů, založených na metodách optimalizace funkcí a umělé inteligenci, pro hledání řešení nějaké úlohy. Populace množina jedinců, potenciálních řešení Fitness function
Ing. Petr Hájek, Ph.D. Podpora přednášky kurzu Aplikace umělé inteligence
APLIKACE UMĚLÉ INTELIGENCE Ing. Petr Hájek, Ph.D. Podpora přednášky kurzu Aplikace umělé inteligence Aplikace umělé inteligence - seminář ING. PETR HÁJEK, PH.D. ÚSTAV SYSTÉMOVÉHO INŽENÝRSTVÍ A INFORMATIKY
Algoritmy a struktury neuropočítačů ASN - P10. Aplikace UNS v biomedicíně
Aplikace UNS v biomedicíně aplikace v medicíně postup při zpracování úloh Aplikace UNS v medicíně Důvod: nalezení exaktnějších, levnějších a snadnějších metod určování diagnóz pro lékaře nalezení šetrnějších
ití empirických modelů při i optimalizaci procesu mokré granulace léčivl ková SVK ÚOT
Využit ití empirických modelů při i optimalizaci procesu mokré granulace léčivl Jana Kalčíkov ková 5. ročník Školitel: Doc. Ing. Zdeněk k Bělohlav, B CSc. Granulace Prášek Granule Vlhčivo Promíchávání
UČENÍ BEZ UČITELE. Václav Hlaváč
UČENÍ BEZ UČITELE Václav Hlaváč Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání hlavac@fel.cvut.cz, http://cmp.felk.cvut.cz/~hlavac 1/22 OBSAH PŘEDNÁŠKY ÚVOD Učení
A0M33EOA: Evoluční optimalizační algoritmy
A0M33EOA: Evoluční optimalizační algoritmy Zkouškový test Pátek 8. února 2011 Vaše jméno: Známka, kterou byste si z předmětu sami dali, a její zdůvodnění: Otázka: 1 2 3 4 5 6 7 8 Celkem Body: 1 3 2 1 4
Popis zobrazení pomocí fuzzy logiky
Popis zobrazení pomocí fuzzy logiky diplomová práce Ján Fröhlich KM, FJFI, ČVUT 23. dubna 2009 Ján Fröhlich ( KM, FJFI, ČVUT ) Popis zobrazení pomocí fuzzy logiky 23. dubna 2009 1 / 25 Obsah 1 Úvod Základy
Úvod do optimalizace, metody hladké optimalizace
Evropský sociální fond Investujeme do vaší budoucnosti Úvod do optimalizace, metody hladké optimalizace Matematika pro informatiky, FIT ČVUT Martin Holeňa, 13. týden LS 2010/2011 O čem to bude? Příklady
Vytěžování znalostí z dat
Pavel Kordík (ČVUT FIT) Vytěžování znalostí z dat BI-VZD, 2012, Přednáška 11 1/31 Vytěžování znalostí z dat Pavel Kordík Department of Computer Systems Faculty of Information Technology Czech Technical
Pokročilé neparametrické metody. Klára Kubošová
Klára Kubošová Další typy stromů CHAID, PRIM, MARS CHAID - Chi-squared Automatic Interaction Detector G.V.Kass (1980) nebinární strom pro kategoriální proměnné. Jako kriteriální statistika pro větvení
Strojové učení Marta Vomlelová
Strojové učení Marta Vomlelová marta@ktiml.mff.cuni.cz KTIML, S303 Literatura 1.T. Hastie, R. Tishirani, and J. Friedman. The Elements of Statistical Learning, Data Mining, Inference and Prediction. Springer
Algoritmy pro spojitou optimalizaci
Algoritmy pro spojitou optimalizaci Vladimír Bičík Katedra počítačů Fakulta elektrotechnická České vysoké učení technické v Praze 10.6.2010 Vladimír Bičík (ČVUT Praha) Algoritmy pro spojitou optimalizaci
Smíšené regresní modely a možnosti jejich využití. Karel Drápela
Smíšené regresní modely a možnosti jejich využití Karel Drápela Regresní modely Základní úloha regresní analýzy nalezení vhodného modelu studované závislosti vyjádření reálného tvaru závislosti minimalizace
Jak se matematika poučila v biologii
Jak se matematika poučila v biologii René Kalus IT4Innovations, VŠB TUO Role matematiky v (nejen) přírodních vědách Matematika inspirující a sloužící jazyk pro komunikaci s přírodou V 4 3 r 3 Matematika
Pokročilé neparametrické metody. Klára Kubošová
Pokročilé neparametrické metody Klára Kubošová Klasifikační a regresní lesy Pokročilé neparametrické metody Klasifikační a regresní lesy Klasifikační les Klasifikační les je klasifikační model vytvořený
Testování neuronových sítí pro prostorovou interpolaci v softwaru GRASS GIS
Testování neuronových sítí pro prostorovou interpolaci v softwaru GRASS GIS Veronika NEVTÍPILOVÁ Gisáček 2013 Katedra Geoinformatiky Univerzita Palackého v Olomouci Cíle otestovat kvalitu interpolace pomocí
Zpětnovazební učení Michaela Walterová Jednoocí slepým,
Zpětnovazební učení Michaela Walterová Jednoocí slepým, 17. 4. 2019 V minulých dílech jste viděli Tři paradigmata strojového učení: 1) Učení s učitelem (supervised learning) Trénovací data: vstup a požadovaný
Lineární klasifikátory
Lineární klasifikátory Lineární klasifikátory obsah: perceptronový algoritmus základní verze varianta perceptronového algoritmu přihrádkový algoritmus podpůrné vektorové stroje Lineární klasifikátor navrhnout
METODY DOLOVÁNÍ V DATECH DATOVÉ SKLADY TEREZA HYNČICOVÁ H2IGE1
METODY DOLOVÁNÍ V DATECH DATOVÉ SKLADY TEREZA HYNČICOVÁ H2IGE1 DOLOVÁNÍ V DATECH (DATA MINING) OBJEVUJE SE JIŽ OD 60. LET 20. ST. S ROZVOJEM POČÍTAČOVÉ TECHNIKY DEFINICE PROCES VÝBĚRU, PROHLEDÁVÁNÍ A MODELOVÁNÍ
O kurzu MSTU Témata probíraná v MSTU
O kurzu MSTU Témata probíraná v MSTU 1.: Úvod do STU. Základní dělení, paradigmata. 2.: Základy statistiky. Charakteristiky, rozložení, testy. 3.: Modely: rozhodovací stromy. 4.: Modely: učení založené
DETEKCE HRAN V BIOMEDICÍNSKÝCH OBRAZECH
DETEKCE HRAN V BIOMEDICÍNSKÝCH OBRAZECH Viktor Haškovec, Martina Mudrová Vysoká škola chemicko-technologická v Praze, Ústav počítačové a řídicí techniky Abstrakt Příspěvek je věnován zpracování biomedicínských
Kombinování klasifikátorů Ensamble based systems
Kombinování klasifikátorů Ensamble based systems Rozhodování z více hledisek V běžném životě se často snažíme získat názor více expertů, než přijmeme závažné rozhodnutí: Před operací se radíme s více lékaři
Aktivní detekce chyb
Fakulta aplikovaných věd, Katedra kybernetiky a Výzkumné centrum Data - Algoritmy - Rozhodování Západočeská univerzita v Plzni Prezentace v rámci odborného semináře Katedry kybernetiky Obsah Motivační
Dobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze
Dobývání znalostí Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Dobývání znalostí Rozhodovací stromy Doc. RNDr. Iveta Mrázová, CSc.
Miroslav Čepek. Fakulta Elektrotechnická, ČVUT. Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti
Vytěžování Dat Přednáška 12 Kombinování modelů Miroslav Čepek Pavel Kordík a Jan Černý (FIT) Fakulta Elektrotechnická, ČVUT Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti ČVUT (FEL)
7. Rozdělení pravděpodobnosti ve statistice
7. Rozdělení pravděpodobnosti ve statistice Statistika nuda je, má však cenné údaje, neklesejte na mysli, ona nám to vyčíslí Jednou z úloh statistiky je odhad (výpočet) hodnot statistického znaku x i,
Metaheuristiky s populacemi
Metaheuristiky s populacemi 8. března 2018 1 Společné vlastnosti 2 Evoluční algoritmy 3 Optimalizace mravenčí kolonie Zdroj: El-Ghazali Talbi, Metaheuristics: From Design to Implementation. Wiley, 2009.
SPOLEHLIVOST KONSTRUKCÍ & TEORIE SPOLEHLIVOSTI část 5: Aproximační techniky
SPOLEHLIVOST KONSTRUKCÍ & TEORIE SPOLEHLIVOSTI část 5: Aproximační techniky Drahomír Novák Jan Eliáš 2012 Spolehlivost konstrukcí, Drahomír Novák & Jan Eliáš 1 část 5 Aproximační techniky 2012 Spolehlivost
Optimální rozdělující nadplocha 4. Support vector machine. Adaboost.
Optimální rozdělující nadplocha. Support vector machine. Adaboost. Petr Pošík Czech Technical University in Prague Faculty of Electrical Engineering Dept. of Cybernetics Opakování Lineární diskriminační
Připomeň: Shluková analýza
Připomeň: Shluková analýza Data Návrh kategorií X Y= 1, 2,..., K resp. i jejich počet K = co je s čím blízké + jak moc Neposkytne pravidlo pro zařazování Připomeň: Klasifikace Data (X,Y) X... prediktory
Předzpracování dat. Lenka Vysloužilová
Předzpracování dat Lenka Vysloužilová 1 Metodika CRISP-DM (www.crisp-dm.org) Příprava dat Data Preparation příprava dat pro modelování selekce příznaků výběr relevantních příznaků čištění dat získávání
Katedra kybernetiky laboratoř Inteligentní Datové Analýzy (IDA) Katedra počítačů, Computational Intelligence Group
Vytěžování dat Miroslav Čepek, Filip Železný Katedra kybernetiky laboratoř Inteligentní Datové Analýzy (IDA) Katedra počítačů, Computational Intelligence Group Evropský sociální fond Praha & EU: Investujeme
Rozdělování dat do trénovacích a testovacích množin
Rozdělování dat do trénovacích a testovacích množin Marcel Jiřina Rozpoznávání je důležitou metodou při zpracování reálných úloh. Rozpoznávání je definováno dvěma kroky a to pořízením dat o reálném rozpoznávaném
Přednáška 13 Redukce dimenzionality
Vytěžování Dat Přednáška 13 Redukce dimenzionality Miroslav Čepek Fakulta Elektrotechnická, ČVUT Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti ČVUT (FEL) Redukce dimenzionality 1 /
Genetické programování
Genetické programování Vyvinuto v USA v 90. letech J. Kozou Typické problémy: Predikce, klasifikace, aproximace, tvorba programů Vlastnosti Soupeří s neuronovými sítěmi apod. Potřebuje značně velké populace
K možnostem krátkodobé předpovědi úrovně znečištění ovzduší statistickými metodami. Josef Keder
K možnostem krátkodobé předpovědi úrovně znečištění ovzduší statistickými metodami Josef Keder Motivace Předpověď budoucí úrovně znečištění ovzduší s předstihem v řádu alespoň několika hodin má význam
Evolučníalgoritmy. Dále rozšiřována, zde uvedeme notaci a algoritmy vznikléna katedře mechaniky, Fakulty stavební ČVUT. Moderní metody optimalizace 1
Evolučníalgoritmy Kategorie vytvořená v 90. letech, aby se sjednotily jednotlivémetody, kterévyužívaly evoluční principy, tzn. Genetickéalgoritmy, Evolučnístrategie a Evoluční programování (v těchto přednáškách
Neuronové časové řady (ANN-TS)
Neuronové časové řady (ANN-TS) Menu: QCExpert Prediktivní metody Neuronové časové řady Tento modul (Artificial Neural Network Time Series ANN-TS) využívá modelovacího potenciálu neuronové sítě k predikci
Aproximativní algoritmy UIN009 Efektivní algoritmy 1
Aproximativní algoritmy. 14.4.2005 UIN009 Efektivní algoritmy 1 Jak nakládat s NP-těžkými úlohami? Speciální případy Aproximativní algoritmy Pravděpodobnostní algoritmy Exponenciální algoritmy pro data
Genetické algoritmy. Vysoká škola ekonomická Praha. Tato prezentace je k dispozici na: http://www.utia.cas.cz/vomlel/
Genetické algoritmy Jiří Vomlel Laboratoř inteligentních systémů Vysoká škola ekonomická Praha Tato prezentace je k dispozici na: http://www.utia.cas.cz/vomlel/ Motivace z Darwinovy teorie evoluce Přírodní
Seminář z umělé inteligence. Otakar Trunda
Seminář z umělé inteligence Otakar Trunda Plánování Vstup: Satisficing task: počáteční stav, cílové stavy, přípustné akce Optimization task: počáteční stav, cílové stavy, přípustné akce, ceny akcí Výstup:
Univerzita Karlova v Praze. Matematicko-fyzikální fakulta. Katedra softwarového inženýrství (Matematicko-fyzikální fakulta UK)
Univerzita Karlova v Praze Matematicko-fyzikální fakulta DIPLOMOVÁ PRÁCE Martin Dörfler Využití umělých neuronových sítí k řízení genetických algoritmů Katedra softwarového inženýrství (Matematicko-fyzikální
Obsah přednášky. 1. Principy Meta-learningu 2. Bumping 3. Bagging 4. Stacking 5. Boosting 6. Shrnutí
1 Obsah přednášy 1. Principy Meta-learningu 2. Bumping 3. Bagging 4. Stacing 5. Boosting 6. Shrnutí 2 Meta learning = Ensemble methods Cíl použít predici ombinaci více různých modelů Meta learning (meta
Pokročilé metody učení neuronových sítí. Tomáš Řehořek tomas.rehorek@fit.cvut.cz
Pokročilé metody učení neuronových sítí Tomáš Řehořek tomas.rehorek@fit.cvut.cz Problém učení neuronové sítě (1) Nechť N = (V, I, O, S, w, f, h) je dopředná neuronová síť, kde: V je množina neuronů I V
AVDAT Nelineární regresní model
AVDAT Nelineární regresní model Josef Tvrdík Katedra informatiky Přírodovědecká fakulta Ostravská univerzita Nelineární regresní model Ey i = f (x i, β) kde x i je k-členný vektor vysvětlujících proměnných
Navrženy v 60. letech jako experimentální optimalizační metoda. Velice rychlá s dobrou podporou teorie
Evoluční strategie Navrženy v 60. letech jako experimentální optimalizační metoda Založena na reálných číslech Velice rychlá s dobrou podporou teorie Jako první zavedla self-adaptation (úpravu sebe sama)
Optimalizační metody v CFD
Optimalizační metody v CFD diferenciální evoluce 20.dubna 2006 Ondřej Suchomel, FS ČVUT 4.ročník, obor IMM úvod předmět: cíl: popis: optimalizační metoda: programy: Projekt II., Počítačová mechanika tekutin
Algoritmy a struktury neuropočítačů ASN P4. Vícevrstvé sítě dopředné a Elmanovy MLNN s učením zpětného šíření chyby
Algoritmy a struktury neuropočítačů ASN P4 Vícevrstvé sítě dopředné a Elmanovy MLNN s učením zpětného šíření chyby Vrstevnatá struktura - vícevrstvé NN (Multilayer NN, MLNN) vstupní vrstva (input layer)
PŘEDNÁŠKA 03 OPTIMALIZAČNÍ METODY Optimization methods
CW057 Logistika (R) PŘEDNÁŠKA 03 Optimization methods Ing. Václav Venkrbec skupina obecných modelů slouží k nalezení nejlepšího řešení problémů a modelovaných reálií přináší řešení: prvky konečné / nekonečné
KLASIFIKAČNÍ A REGRESNÍ LESY
ROBUST 2004 c JČMF 2004 KLASIFIKAČNÍ A REGRESNÍ LESY Jan Klaschka, Emil Kotrč Klíčová slova: Klasifikační stromy, klasifikační lesy, bagging, boosting, arcing, Random Forests. Abstrakt: Klasifikační les
Úvod do modelování a simulace. Ing. Michal Dorda, Ph.D.
Úvod do modelování a simulace systémů Ing. Michal Dorda, Ph.D. 1 Základní pojmy Systém systémem rozumíme množinu prvků (příznaků) a vazeb (relací) mezi nimi, která jako celek má určité vlastnosti. Množinu
Využití neuronové sítě pro identifikaci realného systému
1 Portál pre odborné publikovanie ISSN 1338-0087 Využití neuronové sítě pro identifikaci realného systému Pišan Radim Elektrotechnika 20.06.2011 Identifikace systémů je proces, kdy z naměřených dat můžeme
Optimalizační metody v CFD diferenciální evoluce
Fakulta strojní ČVUT, Ú 12107.1 - Odbor mechaniky tekutin a termodynamiky Optimalizační metody v CFD diferenciální evoluce Ondřej Suchomel, ing. Tomáš Hyhlík Abstrakt Příspěvek popisuje využití jednokriteriální
Umělá inteligence aneb co už není sci -fi
Umělá inteligence aneb co už není sci -fi doc. Ing. Zuzana Komínková Oplatková, Ph.D. oplatkova@fai.utb.cz Umělá inteligence člověk se snažil vždy vyrobit nějaký stroj nebo systém, který by mu usnadnil
Otázky ke státní závěrečné zkoušce
Otázky ke státní závěrečné zkoušce obor Ekonometrie a operační výzkum a) Diskrétní modely, Simulace, Nelineární programování. b) Teorie rozhodování, Teorie her. c) Ekonometrie. Otázka č. 1 a) Úlohy konvexního
Genetické algoritmy a jejich praktické využití
Genetické algoritmy a jejich praktické využití Pavel Šturc PB016 Úvod do umělé inteligence 21.12.2012 Osnova Vznik a účel GA Princip fungování GA Praktické využití Budoucnost GA Vznik a účel GA Darwinova
5.5 Evoluční algoritmy
5.5 Evoluční algoritmy Jinou skupinou metod strojového učení, které vycházejí z biologických principů, jsou evoluční algoritmy. Zdrojem inspirace se tentokrát stal mechanismus evoluce, chápaný jako Darwinův
Trénování sítě pomocí učení s učitelem
Trénování sítě pomocí učení s učitelem! předpokládá se, že máme k dispozici trénovací množinu, tj. množinu P dvojic [vstup x p, požadovaný výstup u p ]! chceme nastavit váhy a prahy sítě tak, aby výstup
1. Statistická analýza dat Jak vznikají informace Rozložení dat
1. Statistická analýza dat Jak vznikají informace Rozložení dat J. Jarkovský, L. Dušek, S. Littnerová, J. Kalina Význam statistické analýzy dat Sběr a vyhodnocování dat je způsobem k uchopení a pochopení
Národní informační středisko pro podporu kvality
Národní informační středisko pro podporu kvality 19.6.2008 Využití umělých neuronových sítí - seminář ČSJ 1 Seminář ČSJ - J. NPJ Tupa Využití umělých neuronových sítí pro řešení predikčních, regresních
Příbuznost a inbreeding
Příbuznost a inbreeding Příbuznost Přímá (z předka na potomka). Souběžná (mezi libovolnými jedinci). Inbreeding Inbrední koeficient je pravděpodobnost, že dva geny přítomné v lokuse daného jedince jsou
2015 http://excel.fit.vutbr.cz Kartézské genetické programování s LUT Karolína Hajná* Abstract Tato práce se zabývá problematikou návrhu obvodů pomocí kartézského genetického programování na úrovni třívstupových
PRAVDĚPODOBNOST A STATISTIKA
PRAVDĚPODOBNOS A SAISIKA Regresní analýza - motivace Základní úlohou regresní analýzy je nalezení vhodného modelu studované závislosti. Je nutné věnovat velkou pozornost tomu aby byla modelována REÁLNÁ
Pokročilé operace s obrazem
Získávání a analýza obrazové informace Pokročilé operace s obrazem Biofyzikální ústav Lékařské fakulty Masarykovy univerzity Brno prezentace je součástí projektu FRVŠ č.2487/2011 (BFÚ LF MU) Získávání
NEURONOVÉ SÍTĚ A EVOLUČNÍ ALGORITMY NEURAL NETWORKS AND EVOLUTIONARY ALGORITHMS
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV BIOMEDICÍNSKÉHO INŽENÝRSTVÍ FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION DEPARTMENT
Obsah přednášky. Analýza algoritmu Algoritmická složitost Návrhy algoritmů Urychlování algoritmů 1/41
Obsah přednášky Analýza algoritmu Algoritmická složitost Návrhy algoritmů Urychlování algoritmů 1/41 Analýza algoritmu Proč vůbec dělat analýzu? pro většinu problémů existuje několik různých přístupů aby
Analýza dat pomocí systému Weka, Rapid miner a Enterprise miner
Vysoká škola ekonomická v Praze Analýza dat pomocí systému Weka, Rapid miner a Enterprise miner Dobývání znalostí z databází 4IZ450 XXXXXXXXXXX Přidělená data a jejich popis Data určená pro zpracování
10. Složitost a výkon
Jiří Vokřínek, 2016 B6B36ZAL - Přednáška 10 1 Základy algoritmizace 10. Složitost a výkon doc. Ing. Jiří Vokřínek, Ph.D. Katedra počítačů Fakulta elektrotechnická České vysoké učení technické v Praze Jiří
ANALÝZA A KLASIFIKACE DAT
ANALÝZA A KLASIFIKACE DAT RNDr. Eva Janoušová INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ HODNOCENÍ ÚSPĚŠNOSTI KLASIFIKACE A SROVNÁNÍ KLASIFIKÁTORŮ ÚVOD Vstupní data Subjekt Objem hipokampu Objem komor Skutečnost
A6M33SSL: Statistika a spolehlivost v lékařství Teorie spolehlivosti Přednáška 2
A6M33SSL: Statistika a spolehlivost v lékařství Teorie spolehlivosti Přednáška 2 Vojta Vonásek vonasek@labe.felk.cvut.cz České vysoké učení technické v Praze Fakulta elektrotechnická Katedra kybernetiky
Algoritmy pro shlukování prostorových dat
Algoritmy pro shlukování prostorových dat Marta Žambochová Katedra matematiky a informatiky Fakulta sociálně ekonomická Univerzita J. E. Purkyně v Ústí nad Labem ROBUST 21. 26. leden 2018 Rybník - Hostouň
Univerzita Karlova v Praze Matematicko-fyzikální fakulta DIPLOMOVÁ PRÁCE. Antonín Wimberský. Katedra softwarového inženýrství
Univerzita Karlova v Praze Matematicko-fyzikální fakulta DIPLOMOVÁ PRÁCE Antonín Wimberský Využití umělých neuronových sítí k urychlení evolučních algoritmů Katedra softwarového inženýrství Vedoucí diplomové
Základy vytěžování dat
Základy vytěžování dat předmět A7Bb36vyd Vytěžování dat Filip Železný, Miroslav Čepek, Radomír Černoch, Jan Hrdlička katedra kybernetiky a katedra počítačů ČVUT v Praze, FEL Evropský sociální fond Praha
1. Číselné posloupnosti - Definice posloupnosti, základní vlastnosti, operace s posloupnostmi, limita posloupnosti, vlastnosti limit posloupností,
KMA/SZZS1 Matematika 1. Číselné posloupnosti - Definice posloupnosti, základní vlastnosti, operace s posloupnostmi, limita posloupnosti, vlastnosti limit posloupností, operace s limitami. 2. Limita funkce
Rosenblattův perceptron
Perceptron Přenosové funkce Rosenblattův perceptron Rosenblatt r. 1958. Inspirace lidským okem Podle fyziologického vzoru je třívrstvá: Vstupní vrstva rozvětvovací jejím úkolem je mapování dvourozměrného
přetrénování = ztráta schopnosti generalizovat vlivem přílišného zaměření klasifikátorů na rozeznávání pouze konkrétních trénovacích dat
Zkouška ISR 2013 přetrénování = ztráta schopnosti generalizovat vlivem přílišného zaměření klasifikátorů na rozeznávání pouze konkrétních trénovacích dat 1. Rozdílné principy u induktivního a deduktivního
RNDr. Eva Janoušová doc. RNDr. Ladislav Dušek, Dr.
Analýza dat pro Neurovědy RNDr. Eva Janoušová doc. RNDr. Ladislav Dušek, Dr. Jaro 2014 Institut biostatistiky Janoušová, a analýz Dušek: Analýza dat pro neurovědy Blok 7 Jak hodnotit vztah spojitých proměnných
České vysoké učení technické v Praze Fakulta jaderná a fyzikálně inženýrská OKRUHY. ke státním závěrečným zkouškám BAKALÁŘSKÉ STUDIUM
OKRUHY ke státním závěrečným zkouškám BAKALÁŘSKÉ STUDIUM Obor: Studijní program: Aplikace přírodních věd 1. Vektorový prostor R n 2. Podprostory 3. Lineární zobrazení 4. Matice 5. Soustavy lineárních rovnic
Dobývání dat a strojové učení
Dobývání dat a strojové učení Dobývání znalostí z databází (Knowledge discovery in databases) Non-trivial process of identifying valid, novel, potentially useful and ultimately understandable patterns
Systém rizikové analýzy při sta4ckém návrhu podzemního díla. Jan Pruška
Systém rizikové analýzy při sta4ckém návrhu podzemního díla Jan Pruška Definice spolehlivos. Spolehlivost = schopnost systému (konstrukce) zachovávat požadované vlastnos4 po celou dobu životnos4 = pravděpodobnost,
Algoritmy a struktury neuropočítačů ASN - P11
Aplikace UNS při rozpoznání obrazů Základní úloha segmentace obrazu rozdělení obrazu do několika významných oblastí klasifikační úloha, clusterová analýza target Metody Kohonenova metoda KSOM Kohonenova
Modelování a simulace Lukáš Otte
Modelování a simulace 2013 Lukáš Otte Význam, účel a výhody MaS Simulační modely jsou nezbytné pro: oblast vědy a výzkumu (základní i aplikovaný výzkum) analýzy složitých dyn. systémů a tech. procesů oblast
Změkčování hranic v klasifikačních stromech
Změkčování hranic v klasifikačních stromech Jakub Dvořák Seminář strojového učení a modelování 24.5.2012 Obsah Klasifikační stromy Změkčování hran Ranking, ROC křivka a AUC Metody změkčování Experiment
Využití metod strojového učení v bioinformatice David Hoksza
Využití metod strojového učení v bioinformatice David Hoksza SIRET Research Group Katedra softwarového inženýrství, Matematicko-fyzikální fakulta Karlova Univerzita v Praze Bioinformatika Biologické inspirace
FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV AUTOMATIZACE A INFORMATIKY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV AUTOMATIZACE A INFORMATIKY FACULTY OF MECHANICAL ENGINEERING INSTITUTE OF AUTOMATION AND COMPUTER SCIENCE
Dobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze
Dobývání znalostí Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Dobývání znalostí Bayesovské modely Doc. RNDr. Iveta Mrázová, CSc.
OSA. maximalizace minimalizace 1/22
OSA Systémová analýza metodika používaná k navrhování a racionalizaci systémů v podmínkách neurčitosti vyšší stupeň operační analýzy Operační analýza (výzkum) soubor metod umožňující řešit rozhodovací,
Insolace a povrchová teplota na planetách mimo sluneční soustavu. Michaela Káňová
Insolace a povrchová teplota na planetách mimo sluneční soustavu Michaela Káňová Obsah Extrasolární planety Insolace Rovnice vedení tepla v 1D a 3D Testy Výsledky Závěr Extrasolární planety k 11.6. potvrzeno