Využití strojového učení k identifikaci protein-ligand aktivních míst
|
|
- Otakar Pokorný
- před 10 lety
- Počet zobrazení:
Transkript
1 Využití strojového učení k identifikaci protein-ligand aktivních míst David Hoksza, Radoslav Krivák SIRET Research Group Katedra softwarového inženýrství, Matematicko-fyzikální fakulta Karlova Univerzita v Praze
2 Funkce proteinu Interakce s dalšími molekulami DNA RNA Proteiny Malé molekuly (ligandy) Určena strukturou Distribuce fyzikálně-chemických charakteristik v prostoru princip zámku a klíče 4
3 Protein-ligand interakce Aktivní místa (kapsy) Motivace Predikce funkce neznámého proteinu Identifikace potenciálních cílů pro léčiva Predikce vedlejších účinků léčiv 5
4 P2RANK Počítačová metoda (algoritmus) schopný identifikovat místa na povrchu proteinu, na které se může s vysokou pravděpodobností vázat nespecifikovaný ligand Vstup: počítačová reprezentace proteinové struktury Výstup: seznam míst na povrchu proteinu pravděpodobně schopných vázat ligand 6
5 Informatický pohled na protein Sekvence Řetěz aminokyselin lineární sekvence písmen (slovo) Struktura Pozice jednotlivých atomů v 3D prostoru Písmena reprezentují aminokyseliny (ARNDCEQGHILKMFPSTWYV) 7
6 P2RANK princip Využití informací o existujících aktivních místech pro rozpoznání typově podobných míst na neznámém proteinu Jak popsat rysy povrchu proteinu? Projekce fyzikálně chemických vlastností aminokyselin na povrch proteinu Jak určit kapsu na dosud neviděném proteinu? Strojové učení (s učitelem) Fáze učení: naučení modelu pro rozpoznání rysů bodů aktivních míst Fáze rozpoznávání: aplikace modelu na povrch neznámého proteinu 8
7 Algoritmus učící fáze 1. Získání známých protein-ligand komplexů 2. Potažení povrchů proteinů sítí bodů 3. Extrakce vektoru fyzikálně-chemických vlastností pro každý z bodů každého proteinu 4. Vybudování modelu, který pro daný bod (vektor) bude schopný určit, s jakou pravděpodobnostní je tento součástí kapsy = strojové učení 9
8 P2RANK - extrakce vlastností Okolo 30 atributů popisující fyzikálněchemické vlastnosti aminokyselin a lokálního okolí daného bodu < pc 1, pc 2,, pc n > 10
9 Strojové učení Skupina algoritmů schopných identifikovat (naučit se) vzory v datech a a tuto znalost aplikovat na dosud neviděných příkladech Klasifikace Regrese Shlukování Typy Strojové učení s učitelem (supervised learning) Strojové učení bez učitele (unsupervised learning) 11
10 12
11 Algoritmus fáze rozpoznávání 1. Potažení povrchu neznámého proteinu sítí bodů 2. Aplikace modelu pro každý bod sítě vazebné skóre bodu 3. Vypuštění bodů s nízkým vazebným skórem 4. Identifikace shluků vysoce skórujících bodů kapsa 5. Ohodnocení kapes součtem skór jejich bodů 14
12 Jaké znalosti jsou třeba pro vývoj P2RANKu? Základy biologie, proteomiky Znalost zdrojů biologických dat (PDB) Programování Pokročilá algoritmizace (strojové učení) Statistika 15
13 Bioinformatické projekty na KSI MFF UK Proteiny Podobnostní hledání proteinových struktur P3S Identifikací protein-ligand interakcí P2RANK Identifikace protein-protein interakcí Identifikace proteinových sekvencí ze spektrometrických dat - SIMTANDEM RNA Podobnost RNA struktur SETTER Predikce sekundární struktury RNA - rpredictor Malé molekuly Identifikace biologicky aktivních molekul explorací chemického prostoru - Molpher 16
14 Dotazy 17
Využití metod strojového učení v bioinformatice David Hoksza
Využití metod strojového učení v bioinformatice David Hoksza SIRET Research Group Katedra softwarového inženýrství, Matematicko-fyzikální fakulta Karlova Univerzita v Praze Bioinformatika Biologické inspirace
NAIL072 ROZPOZNÁVÁNÍ VZORŮ
NAIL072 ROZPOZNÁVÁNÍ VZORŮ RNDr. Jana Štanclová, Ph.D. jana.stanclova@ruk.cuni.cz www.cuni.cz/~stancloj LS Zk 2/0 OSNOVA 1. Úvod do rozpoznávání vzorů 2. Bayesovská teorie rozpoznávání 3. Diskriminační
Genomické databáze. Shlukování proteinových sekvencí. Ivana Rudolfová. školitel: doc. Ing. Jaroslav Zendulka, CSc.
Genomické databáze Shlukování proteinových sekvencí Ivana Rudolfová školitel: doc. Ing. Jaroslav Zendulka, CSc. Obsah Proteiny Zdroje dat Predikce struktury proteinů Cíle disertační práce Vstupní data
Bioinformatika a výpočetní biologie KFC/BIN. I. Přehled
Bioinformatika a výpočetní biologie KFC/BIN I. Přehled RNDr. Karel Berka, Ph.D. Univerzita Palackého v Olomouci Definice bioinformatiky (Molecular) bio informatics: bioinformatics is conceptualising biology
Tento rámcový přehled je určen všem studentům zajímajícím se o aktivní vědeckou práci.
Tento rámcový přehled je určen všem studentům zajímajícím se o aktivní vědeckou práci. Konkrétní témata bakalářských a diplomových prací se odvíjejí od jednotlivých projektů uvedených dále. Ústav analytické
Katedra kybernetiky laboratoř Inteligentní Datové Analýzy (IDA) Katedra počítačů, Computational Intelligence Group
Vytěžování dat Miroslav Čepek, Filip Železný Katedra kybernetiky laboratoř Inteligentní Datové Analýzy (IDA) Katedra počítačů, Computational Intelligence Group Evropský sociální fond Praha & EU: Investujeme
NG C Implementace plně rekurentní
NG C Implementace plně rekurentní neuronové sítě v systému Mathematica Zdeněk Buk, Miroslav Šnorek {bukz1 snorek}@fel.cvut.cz Neural Computing Group Department of Computer Science and Engineering, Faculty
Hemoglobin a jemu podobní... Studijní materiál. Jan Komárek
Hemoglobin a jemu podobní... Studijní materiál Jan Komárek Bioinformatika Bioinformatika je vědní disciplína, která se zabývá metodami pro shromážďování, analýzu a vizualizaci rozsáhlých souborů biologických
NAŘÍZENÍ KOMISE (EU) /... ze dne , kterým se mění nařízení (ES) č. 847/2000, pokud jde o definici pojmu podobný léčivý přípravek
EVROPSKÁ KOMISE V Bruselu dne 29.5.2018 C(2018) 3193 final NAŘÍZENÍ KOMISE (EU) /... ze dne 29.5.2018, kterým se mění nařízení (ES) č. 847/2000, pokud jde o definici pojmu podobný léčivý přípravek (Text
ANALÝZA A KLASIFIKACE DAT
ANALÝZA A KLASIFIKACE DAT prof. Ing. Jiří Holčík, CSc. INVESTICE Institut DO biostatistiky ROZVOJE VZDĚLÁVÁNÍ a analýz LITERATURA Holčík, J.: přednáškové prezentace Holčík, J.: Analýza a klasifikace signálů.
Algoritmy a struktury neuropočítačů ASN P9 SVM Support vector machines Support vector networks (Algoritmus podpůrných vektorů)
Algoritmy a struktury neuropočítačů ASN P9 SVM Support vector machines Support vector networks (Algoritmus podpůrných vektorů) Autor: Vladimir Vapnik Vapnik, V. The Nature of Statistical Learning Theory.
Ing. Petr Hájek, Ph.D. Podpora přednášky kurzu Aplikace umělé inteligence
APLIKACE UMĚLÉ INTELIGENCE Ing. Petr Hájek, Ph.D. Podpora přednášky kurzu Aplikace umělé inteligence Aplikace umělé inteligence - seminář ING. PETR HÁJEK, PH.D. ÚSTAV SYSTÉMOVÉHO INŽENÝRSTVÍ A INFORMATIKY
Strojové učení se zaměřením na vliv vstupních dat
Strojové učení se zaměřením na vliv vstupních dat Irina Perfilieva, Petr Hurtík, Marek Vajgl Centre of excellence IT4Innovations Division of the University of Ostrava Institute for Research and Applications
Markovovy modely v Bioinformatice
Markovovy modely v Bioinformatice Outline Markovovy modely obecně Profilové HMM Další použití HMM v Bioinformatice Analýza biologických sekvencí Biologické sekvence: DNA,RNA,protein prim.str. Sekvenování
Následující text je součástí učebních textů předmětu Bi0034 Analýza a klasifikace dat a je určen
11. Klasifikace V této kapitole se seznámíme s účelem, principy a jednotlivými metodami klasifikace dat, jež tvoří samostatnou rozsáhlou oblast analýzy dat. Klasifikace umožňuje určit, do které skupiny
Neuronové sítě (11. přednáška)
Neuronové sítě (11. přednáška) Machine Learning Naučit stroje se učit O co jde? Máme model výpočtu (t.j. výpočetní postup jednoznačně daný vstupy a nějakými parametry), chceme najít vhodné nastavení parametrů,
ZÍSKÁVÁNÍ ZNALOSTÍ Z DATABÁZÍ
metodický list č. 1 Dobývání znalostí z databází Cílem tohoto tematického celku je vysvětlení základních pojmů z oblasti dobývání znalostí z databází i východisek dobývání znalostí z databází inspirovaných
Tématické okruhy pro státní závěrečné zkoušky
Tématické okruhy pro státní závěrečné zkoušky Obor Povinný okruh Volitelný okruh (jeden ze dvou) Forenzní biologická Biochemie, pathobiochemie a Toxikologie a bioterorismus analýza genové inženýrství Kriminalistické
Katedra kybernetiky, FEL, ČVUT v Praze.
Strojové učení a dolování dat přehled Jiří Kléma Katedra kybernetiky, FEL, ČVUT v Praze http://ida.felk.cvut.cz posnova přednášek Přednáška Učitel Obsah 1. J. Kléma Úvod do předmětu, učení s a bez učitele.
Moderní systémy pro získávání znalostí z informací a dat
Moderní systémy pro získávání znalostí z informací a dat Jan Žižka IBA Institut biostatistiky a analýz PřF & LF, Masarykova universita Kamenice 126/3, 625 00 Brno Email: zizka@iba.muni.cz Bioinformatika:
Studijní materiály pro bioinformatickou část ViBuChu. úloha II. Jan Komárek, Gabriel Demo
Studijní materiály pro bioinformatickou část ViBuChu úloha II Jan Komárek, Gabriel Demo Adenin Struktura DNA Thymin 5 konec 3 konec DNA tvořena dvěmi řetězci orientovanými antiparalelně (liší se orientací
Umělé neuronové sítě
Umělé neuronové sítě 17. 3. 2018 5-1 Model umělého neuronu y výstup neuronu u vnitřní potenciál neuronu w i váhy neuronu x i vstupy neuronu Θ práh neuronu f neuronová aktivační funkce 5-2 Neuronové aktivační
analýzy dat v oboru Matematická biologie
INSTITUT BIOSTATISTIKY A ANALÝZ Lékařská a Přírodovědecká fakulta, Masarykova univerzita Komplexní přístup k výuce analýzy dat v oboru Matematická biologie Tomáš Pavlík, Daniel Schwarz, Jiří Jarkovský,
Neuronové sítě Ladislav Horký Karel Břinda
Neuronové sítě Ladislav Horký Karel Břinda Obsah Úvod, historie Modely neuronu, aktivační funkce Topologie sítí Principy učení Konkrétní typy sítí s ukázkami v prostředí Wolfram Mathematica Praktické aplikace
Profilování vzorků heroinu s využitím vícerozměrné statistické analýzy
Profilování vzorků heroinu s využitím vícerozměrné statistické analýzy Autor práce : RNDr. Ivo Beroun,CSc. Vedoucí práce: prof. RNDr. Milan Meloun, DrSc. PROFILOVÁNÍ Profilování = klasifikace a rozlišování
Cvičení z matematiky jednoletý volitelný předmět
Název předmětu: Zařazení v učebním plánu: Cvičení z matematiky O8A, C4A, jednoletý volitelný předmět Cíle předmětu Obsah předmětu je zaměřen na přípravu studentů gymnázia na společnou část maturitní zkoušky
P ro te i n o vé d a ta b á ze
Proteinové databáze Osnova Základní stavební jednotky proteinů Hierarchie proteinové struktury Stanovení proteinové struktury Důležitost proteinové struktury Proteinové strukturní databáze Proteinové klasifikační
Dobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze
Dobývání znalostí Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Dobývání znalostí Bayesovské modely Doc. RNDr. Iveta Mrázová, CSc.
ZÍSKÁVÁNÍ ZNALOSTÍ Z DATABÁZÍ
Metodický list č. 1 Dobývání znalostí z databází Cílem tohoto tematického celku je vysvětlení základních pojmů z oblasti dobývání znalostí z databází i východisek dobývání znalostí z databází inspirovaných
5. Umělé neuronové sítě. neuronové sítě. Umělé Ondřej Valenta, Václav Matoušek. 5-1 Umělá inteligence a rozpoznávání, LS 2015
Umělé neuronové sítě 5. 4. 205 _ 5- Model umělého neuronu y výstup neuronu u vnitřní potenciál neuronu w i váhy neuronu x i vstupy neuronu Θ práh neuronu f neuronová aktivační funkce _ 5-2 Neuronové aktivační
VÝUKA studentů celkem 3 000 (bakaláři + magistři + doktorandi); 72 profesorů, 120 docentů
založena roku 1920 centrum výuky a výzkumu rozpočet v roce 2013 cca 1,114 miliardy Kč (zhruba 1:1 státní dotace a grantové prostředky) - z toho biologie má asi 1/3 (i v dalších parametrech) VÝUKA studentů
HÝČKEJTE SVOU ALMA MATER Závěrečná zpráva
HÝČKEJTE SVOU ALMA MATER Závěrečná zpráva Řešitelé projektu: Martin Vondrák Tomáš Heger Název projektu: Molekulární kaleidoskop Typ projektu: Popularizačně-vědecká prezentace s praktickou ukázkou Řešitelské
Deriváty karboxylových kyselin, aminokyseliny, estery
Deriváty karboxylových kyselin, aminokyseliny, estery Zpracovala: Ing. Štěpánka Janstová 29.1.2012 Určeno pro 9. ročník ZŠ V/II,EU-OPVK,42/CH9/Ja Přehled a využití derivátů organických kyselin, jejich
přetrénování = ztráta schopnosti generalizovat vlivem přílišného zaměření klasifikátorů na rozeznávání pouze konkrétních trénovacích dat
Zkouška ISR 2013 přetrénování = ztráta schopnosti generalizovat vlivem přílišného zaměření klasifikátorů na rozeznávání pouze konkrétních trénovacích dat 1. Rozdílné principy u induktivního a deduktivního
Úvod do optimalizace, metody hladké optimalizace
Evropský sociální fond Investujeme do vaší budoucnosti Úvod do optimalizace, metody hladké optimalizace Matematika pro informatiky, FIT ČVUT Martin Holeňa, 13. týden LS 2010/2011 O čem to bude? Příklady
Algoritmy a struktury neuropočítačů ASN - P10. Aplikace UNS v biomedicíně
Aplikace UNS v biomedicíně aplikace v medicíně postup při zpracování úloh Aplikace UNS v medicíně Důvod: nalezení exaktnějších, levnějších a snadnějších metod určování diagnóz pro lékaře nalezení šetrnějších
Přednáška 13 Redukce dimenzionality
Vytěžování Dat Přednáška 13 Redukce dimenzionality Miroslav Čepek Fakulta Elektrotechnická, ČVUT Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti ČVUT (FEL) Redukce dimenzionality 1 /
Institucionální akreditace - bakalářské studium informatiky
Institucionální akreditace - bakalářské studium informatiky 1. ročník pro všechny společný ZS Algoritmizace 2/1 Z+Zk 4 kredity T.Dvořák Programování 1 2/2 Z 5 kreditů Holan Principy počítačů 2/0 Zk 3 kredity
Inovace studia molekulární a buněčné biologie
Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. MBIO1/Molekulární biologie 1 Tento projekt je spolufinancován
Odečítání pozadí a sledování lidí z nehybné kamery. Ondřej Šerý
Odečítání pozadí a sledování lidí z nehybné kamery Ondřej Šerý Plán Motivace a popis úlohy Rozdělení úlohy na tři části Detekce pohybu Detekce objektů Sledování objektů Rozbor každé z částí a nástin několika
ANALÝZA BIOLOGICKÝCH A KLINICKÝCH DAT V MEZIOBOROVÉM POJETÍ
ANALÝZA BIOLOGICKÝCH A KLINICKÝCH DAT V MEZIOBOROVÉM POJETÍ INVESTICE Institut DO biostatistiky ROZVOJE VZDĚLÁVÁNÍ a analýz 5. LETNÍ ŠKOLA MATEMATICKÉ BIOLOGIE ANALÝZA BIOLOGICKÝCH A KLINICKÝCH DAT V MEZIOBOROVÉM
5. Umělé neuronové sítě. Neuronové sítě
Neuronové sítě Přesný algoritmus práce přírodních neuronových systémů není doposud znám. Přesto experimentální výsledky na modelech těchto systémů dávají dnes velmi slibné výsledky. Tyto systémy, včetně
Úvodem Dříve les než stromy 3 Operace s maticemi
Obsah 1 Úvodem 13 2 Dříve les než stromy 17 2.1 Nejednoznačnost terminologie 17 2.2 Volba metody analýzy dat 23 2.3 Přehled vybraných vícerozměrných metod 25 2.3.1 Metoda hlavních komponent 26 2.3.2 Faktorová
Úvod do zpracování obrazů. Petr Petyovský Miloslav Richter
Úvod do zpracování obrazů Petr Petyovský Miloslav Richter 1 OBSAH Motivace, prvky a základní problémy počítačového vidění, pojem scéna Terminologie, obraz, zpracování a analýza obrazu, počítačové vidění,
Vytěžování znalostí z dat
Pavel Kordík, Josef Borkovec (ČVUT FIT) Vytěžování znalostí z dat BI-VZD, 2012, Přednáška 8 1/26 Vytěžování znalostí z dat Pavel Kordík, Josef Borkovec Department of Computer Systems Faculty of Information
Analýza dat v GIS. Dotazy na databáze. Překrytí Overlay Mapová algebra Vzdálenostní funkce. Funkce souvislosti Interpolační funkce Topografické funkce
Analýza dat v GIS Dotazy na databáze Prostorové Atributové Překrytí Overlay Mapová algebra Vzdálenostní funkce Euklidovské vzdálenosti Oceněné vzdálenosti Funkce souvislosti Interpolační funkce Topografické
Automatické vyhledávání informace a znalosti v elektronických textových datech
Automatické vyhledávání informace a znalosti v elektronických textových datech Jan Žižka Ústav informatiky & SoNet RC PEF, Mendelova universita Brno (Text Mining) Data, informace, znalost Elektronická
Magisterský program Biomedicínské inženýrství a informatika na ČVUT FEL Praha
České vysoké učení technické v Praze Fakulta elektrotechnická Magisterský program Biomedicínské inženýrství a informatika na ČVUT FEL Praha Olga Štěpánková, Lenka Lhotská Filip Železný, Jan Havlík Katedra
Doprovodný materiál k práci s přípravným textem Biologické olympiády 2014/2015 pro soutěžící a organizátory kategorie B
Doprovodný materiál k práci s přípravným textem Biologické olympiády 2014/2015 pro soutěžící a organizátory kategorie B Níže uvedené komentáře by měly pomoci soutěžícím z kategorie B ke snazší orientaci
Klasifikace hudebních stylů
Klasifikace hudebních stylů Martin Šimonovský (mys7@seznam.cz) Rozpoznávání hudby úloha z oblasti DSP klasifikace dle hudebních stylů
Aplikovaná bioinformatika
Aplikovaná bioinformatika Číslo aktivity: 2.V Název klíčové aktivity: Na realizaci se podílí: Implementace nových předmětů do daného studijního programu doc. RNDr. Michaela Wimmerová, Ph.D., Mgr. Josef
VÝBĚROVÁ ŘÍZENÍ CENTRUM REGIONU HANÁ PROJEKT EXCELENTNÍ VÝZKUM (OP VVV)
VÝBĚROVÁ ŘÍZENÍ CENTRUM REGIONU HANÁ PROJEKT EXCELENTNÍ VÝZKUM (OP VVV) Oddělení biofyziky - absolvování magisterského studia v oboru biofyzika, biochemie nebo v biologickém oboru - prezenční Ph.D. studium
Výroční konference ELIXIR CZ
Výroční konference ELIXIR CZ 2.11.2016 Praha 2016 Výroční konference ELIXIR CZ Konformační prostor DNA Bohdan Schneider za Jiří Černý 1, Paulína Božíková 1, Iva Nečasová 1, Petr Čech 2, Daniel Svozil 2,
Nový bakalářský studijní obor Biomedicínská informatika na Fakultě biomedicínského inženýrství v Kladně
Fakulta biomedicínského inženýrství České vysoké učení technické v Praze Nový bakalářský studijní obor Biomedicínská informatika na Fakultě biomedicínského inženýrství v Kladně Zoltán Szabó Katedra biomedicínské
Informatika a výpočetní technika 1. roč./1. sem. 1. roč./2. sem. 2. roč./3. sem. 1 kr. Povinné předměty pro obor IVT
1. roč./1. sem. 1. roč./2. sem. 2. roč./3. sem. 1+0 Zk 2. roč./4. sem. Semestrální Semestrální 460-4064/01 460-4067/01 460-4095/01 460-4096/01 460-4065/01 470-4405/01 Povinně volitelné předměty pro obor
IBM SPSS Decision Trees
IBM Software IBM SPSS Decision Trees Jednoduše identifikujte skupiny a predikujte Stromově uspořádané postupné štěpení dat na homogenní podmnožiny je technika vhodná pro exploraci vztahů i pro tvorbu rozhodovacích
Úvod do molekulové dynamiky simulace proteinů. Eva Fadrná evaf@chemi.muni.cz
Úvod do molekulové dynamiky simulace proteinů Eva Fadrná evaf@chemi.muni.cz Molekulová mechanika = metoda silového pole = force field Energie vypočtená řešením Schrodingerovy rovnice Energie vypočtená
Klasifikace a rozpoznávání. Lineární klasifikátory
Klasifikace a rozpoznávání Lineární klasifikátory Opakování - Skalární součin x = x1 x 2 w = w T x = w 1 w 2 x 1 x 2 w1 w 2 = w 1 x 1 + w 2 x 2 x. w w T x w Lineární klasifikátor y(x) = w T x + w 0 Vyber
Strojové učení Marta Vomlelová
Strojové učení Marta Vomlelová marta@ktiml.mff.cuni.cz KTIML, S303 Literatura 1.T. Hastie, R. Tishirani, and J. Friedman. The Elements of Statistical Learning, Data Mining, Inference and Prediction. Springer
SOFTWAROVÉ INŽENÝRSTVÍ
SOFTWAROVÉ INŽENÝRSTVÍ Plán a odhady projeku Ing. Ondřej Macek 2013/14 ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Příprava plánu projektu 3 Motivace k plánování Průběh projektu Bolest Dobré plánování Špatné
Zpětnovazební učení Michaela Walterová Jednoocí slepým,
Zpětnovazební učení Michaela Walterová Jednoocí slepým, 17. 4. 2019 V minulých dílech jste viděli Tři paradigmata strojového učení: 1) Učení s učitelem (supervised learning) Trénovací data: vstup a požadovaný
SYNTETICKÉ OLIGONUKLEOTIDY
Oddělení funkční genomiky a proteomiky Přírodovědecká fakulta Masarykovy university SYNTETICKÉ OLIGONUKLEOTIDY Hana Konečná CENTRÁLNÍ LABORATOŘ Masarykovy Univerzity v Brně ODDĚLENÍ FUNKČNÍ GENOMIKY A
Uživatelská podpora v prostředí WWW
Uživatelská podpora v prostředí WWW Jiří Jelínek Katedra managementu informací Fakulta managementu Jindřichův Hradec Vysoká škola ekonomická Praha Úvod WWW obsáhlost obsahová i formátová pestrost dokumenty,
Jak se matematika poučila v biologii
Jak se matematika poučila v biologii René Kalus IT4Innovations, VŠB TUO Role matematiky v (nejen) přírodních vědách Matematika inspirující a sloužící jazyk pro komunikaci s přírodou V 4 3 r 3 Matematika
Získávání znalostí z dat
Získávání znalostí z dat Informační a komunikační technologie ve zdravotnictví Získávání znalostí z dat Definice: proces netriviálního získávání implicitní, dříve neznámé a potencionálně užitečné informace
1. Data mining. Strojové učení. Základní úlohy.
1... Základní úlohy. Učení s učitelem a bez učitele. Petr Pošík Katedra kybernetiky ČVUT FEL P. Pošík c 2010 Aplikace umělé inteligence 1 / 36 Obsah P. Pošík c 2010 Aplikace umělé inteligence 2 / 36 Co
6. Kde v DNA nalézáme rozdíly, zodpovědné za obrovskou diverzitu života?
6. Kde v DNA nalézáme rozdíly, zodpovědné za obrovskou diverzitu života? Pamatujete na to, co se objevilo v pracích Charlese Darwina a Alfreda Wallace ohledně vývoje druhů? Aby mohl mechanismus přírodního
Sociální síť informatiků v regionech České republiky
SoSIReČR Sociální síť informatiků v regionech České republiky Martin Nečaský, Ph.D. Katedra softwarového inženýrství MFF UK Systémová Integrace 2010 Strategie projektu Vize Sociální síť IT profesionálů
1. Vlastnosti diskretních a číslicových metod zpracování signálů... 15
Úvodní poznámky... 11 1. Vlastnosti diskretních a číslicových metod zpracování signálů... 15 1.1 Základní pojmy... 15 1.2 Aplikační oblasti a etapy zpracování signálů... 17 1.3 Klasifikace diskretních
Studium enzymatické reakce metodami výpočetní chemie
Studium enzymatické reakce metodami výpočetní chemie 2. kolo Petr Kulhánek, Zora Střelcová kulhanek@chemi.muni.cz CEITEC - Středoevropský technologický institut Masarykova univerzita, Kamenice 5, 625 00
Moderní nástroje pro zobrazování biologicky významných molekul pro zajištění zdraví. René Kizek
Moderní nástroje pro zobrazování biologicky významných molekul pro zajištění zdraví René Kizek 12.04.2013 Fluorescence je fyzikálně chemický děj, který je typem luminiscence. Luminiscence se dále dělí
StatSoft Úvod do neuronových sítí
StatSoft Úvod do neuronových sítí Vzhledem k vzrůstající popularitě neuronových sítí jsme se rozhodli Vám je v tomto článku představit a říci si něco o jejich využití. Co si tedy představit pod pojmem
č ů š ň č č Ú č č č Ú ů Ú č ž ú š š ý č ú ó ó ž č ý ý ý č ž č ý ž ý č ý ž ž č ý ý ý ž ý ý ý ý š ý š ů ů č č ý ž č ý ů š ž ý Ú Ú úč š ů ž ů ů Úč ž č ý č š ý ů č š ý ý ý ů č č ž ů š ů ů š ý ý ů ů č č ž ú
Á Ě Í Ě Á Á ó č ž č ž č Í š úč é úč š ž č é ů č é č é é ů č ů č č ů é Ž š ů ů š č é Ž č é Ž č Í ž Ž Ž é é Ů é Ř ů ť š é é č é é é š č č é č č č č š č š é č é č ů č č š ú é č é š é Ž Ž é é ú č č é ů č š
úč úč ž ů ž Č Č č č ů ž úč č úč ť Ň č ú Ý č č Ú Ú ť ú č ď ů ž š úč ž úč úč ž ť ď ť ď ž ú č č úč š ž Ů č č ú úč ž ů ť úč ž ž ž Ů č ž ú č Š úč č Úč Č Č š ď š Š š Ó Ó ž ůč ú Ď ť ž ů ů č ů Č ů ž úč Ý č ž úč
Kybernetika a umělá inteligence, cvičení 10/11
Kybernetika a umělá inteligence, cvičení 10/11 Program 1. seminární cvičení: základní typy klasifikátorů a jejich princip 2. počítačové cvičení: procvičení na problému rozpoznávání číslic... body za aktivitu
Dynamické procesy & Pokročilé aplikace NMR. chemická výměna, translační difuze, gradientní pulsy, potlačení rozpouštědla, NMR proteinů
Dynamické procesy & Pokročilé aplikace NMR chemická výměna, translační difuze, gradientní pulsy, potlačení rozpouštědla, NMR proteinů Chemická výměna jakýkoli proces při kterém dané jádro mění svůj stav
Autor: Jan Hošek
Úvod STC Závěr Autor: Jan Hošek Školitel: RNDr. Radim Řehůřek Fakulta jaderná a fyzikálně inženýrzká České vysoké učení technické v Praze 25. 5. 2009 Osnova Úvod STC Závěr 1 Úvod Motivace Ukázka technologie
Biochemie Ch52 volitelný předmět pro 4. ročník
Biochemie Ch52 volitelný předmět pro 4. ročník Charakteristika vyučovacího předmětu Vyučovací předmět vychází ze vzdělávací oblasti Člověk a příroda, vzdělávacího oboru Chemie. Mezipředmětové přesahy a
OPVK CZ.1.07/2.2.00/
OPVK CZ.1.07/2.2.00/28.0184 Základní principy vývoje nových léčiv OCH/ZPVNL Mgr. Radim Nencka, Ph.D. ZS 2012/2013 První kroky k objevu léčiva Nobelova cena za chemii 2013 Martin Karplus Michael Levitt
Standard studijního programu Bioinformatika
Standard studijního Bioinformatika A. Specifika a obsah studijního : Typ Navazující magisterský Oblast/oblasti vzdělávání Chemie Základní tematické okruhy Chemické disciplíny: zejména biochemie a chemická
ÚVOD DO MATEMATICKÉ BIOLOGIE I.
ÚVOD DO MATEMATICKÉ BIOLOGIE I. setkání třetí prof. Ing. Jiří Holčík, CSc. UKB, pav.a29, RECETOX, dv.č.112 holcik@iba.muni.cz POJĎME SI HRÁT SE SLOVY MATEMATIKA INFORMATIKA BIOLOGIE MEDICÍNA? BIOMEDICÍNA??
Jak bude zítra? Skoro jako dneska. Dan Lessner
Jak bude zítra? Skoro jako dneska. Dan Lessner Osnova O čem budu mluvit Motivace, popis problému Vhodná data Použitá architektura sítě Zajímavá zjištění Kde je zakopaný pes? Tady Co teď s tím Další zajímavá
DOBÝVÁNÍ ZNALOSTÍ Z DATABÁZÍ
DOBÝVÁNÍ ZNALOSTÍ Z DATABÁZÍ Úvod a oblasti aplikací Martin Plchút plchut@e-globals.net DEFINICE A POJMY Netriviální extrakce implicitních, ch, dříve d neznámých a potenciáln lně užitečných informací z
STRATEGICKÉ ŘÍZENÍ LIDSKÝCH ZDROJŮ
STRATEGICKÉ ŘÍZENÍ LIDSKÝCH ZDROJŮ Vzdělávání & Rozvoj Plánování & Nábor & Výběr Kariérový růst Firemní strategie STRATEGIE ŘÍZENÍ LIDSKÝCH ZDROJŮ Firemní výsledky FF UK 18. DUBEN 2016 Odměňování Řízení
Principy počítačů I Perspektivní technologie, měření výkonnosti a spolehlivost
Principy počítačů I Perspektivní technologie, měření výkonnosti a spolehlivost snímek 1 Principy počítačů Část XI Perspektivní technologie, měření výkonnosti a spolehlivost 1 snímek 2 1 cm 1 µm 50 nm 1
Počítačová chemie. výpočetně náročné simulace chemických a biomolekulárních systémů. Zora Střelcová
Počítačová chemie výpočetně náročné simulace chemických a biomolekulárních systémů Zora Střelcová Národní centrum pro výzkum biomolekul, Masarykova univerzita, Kotlářská 2, 611 37 Brno, Česká Republika
Studijní program Matematika Obor Pravděpodobnost, matematická statistika a ekonometrie
Studijní program Matematika Obor Pravděpodobnost, matematická statistika a ekonometrie Doporučené průběhy studia pro rok 2014/15 24. září 2014 Vysvětlivky: Tento dokument obsahuje několik alternativních
LABORATOŘ KOVŮ A KOROZE VZDĚLÁVÁNÍ ODBORNÉ KURZY A SEMINÁŘE
ODBORNÉ KURZY A SEMINÁŘE Vysoké učení technické v Brně Fakulta chemická Purkyňova 464/118 612 00 Brno wasserbauer@fch.vutbr.cz Využijte bohaté know-how odborných pracovníků Laboratoře kovů a koroze při
ZÁKLADY PROGRAMOVÁNÍ. Mgr. Vladislav BEDNÁŘ 2014 7.4 13/14
ZÁKLADY PROGRAMOVÁNÍ Mgr. Vladislav BEDNÁŘ 2014 7.4 13/14 Co je vhodné vědět, než si vybereme programovací jazyk a začneme programovat roboty. 1 / 13 0:40 Implementace Umělá inteligence (UI) Umělá inteligence
Vícerozměrné statistické metody
Vícerozměrné statistické metody Shluková analýza Jiří Jarkovský, Simona Littnerová FSTA: Pokročilé statistické metody Typy shlukových analýz Shluková analýza: cíle a postupy Shluková analýza se snaží o
Nanotechnologie jako součást výuky fyziky
Nanotechnologie jako součást výuky fyziky Lucie Kolářová Oddělení didaktiky fyziky Školitel: Doc. Jiří Tuček Katedra exprimentální fyziky Přírodovědecká fakulta Univerzity Palackého v Olomouci Vítejte
Fakulta chemicko-technologická
Fakulta chemicko-technologická Katedra analytické chemie Katedra anorganické technologie
Pravděpodobně skoro správné. PAC učení 1
Pravděpodobně skoro správné (PAC) učení PAC učení 1 Výpočetní teorie strojového učení Věta o ošklivém kačátku. Nechť E je klasifikovaná trénovací množina pro koncept K, který tvoří podmnožinu konečného
Základy genomiky. I. Úvod do bioinformatiky. Jan Hejátko
Základy genomiky I. Úvod do bioinformatiky Jan Hejátko Masarykova univerzita, Oddělení funkční genomiky a proteomiky Laboratoř molekulární fyziologie rostlin Základy genomiky I. Zdrojová literatura ke
RADIOIMUNOANALÝZA (RADIOIMMUNOASSAY) Převzato: sciencephoto.com Test krve hepatitis virus
RADIOIMUNOANALÝZA (RADIOIMMUNOASSAY) Převzato: sciencephoto.com Test krve hepatitis virus RADIOIMUNOANALÝZA Stanovení látek, proti kterým lze připravit protilátky ng (10-9 g) až pg (10-12 g) ve složitých
Služby pro predikci struktury proteinů. Josef Pihera
Služby pro predikci struktury proteinů Josef Pihera Struktura proteinů Primární sekvence aminokyselin Sekundární stáčení a spojování vodíkovými vazbami Supersekundární struktura přechod, opakovaná geometrická
Kvantová informatika pro komunikace v budoucnosti
Kvantová informatika pro komunikace v budoucnosti Antonín Černoch Regionální centrum pokročilých technologií a materiálů Společná laboratoř optiky University Palackého a Fyzikálního ústavu Akademie věd
Algoritmy pro shlukování prostorových dat
Algoritmy pro shlukování prostorových dat Marta Žambochová Katedra matematiky a informatiky Fakulta sociálně ekonomická Univerzita J. E. Purkyně v Ústí nad Labem ROBUST 21. 26. leden 2018 Rybník - Hostouň