Využití strojového učení k identifikaci protein-ligand aktivních míst

Rozměr: px
Začít zobrazení ze stránky:

Download "Využití strojového učení k identifikaci protein-ligand aktivních míst"

Transkript

1 Využití strojového učení k identifikaci protein-ligand aktivních míst David Hoksza, Radoslav Krivák SIRET Research Group Katedra softwarového inženýrství, Matematicko-fyzikální fakulta Karlova Univerzita v Praze

2 Funkce proteinu Interakce s dalšími molekulami DNA RNA Proteiny Malé molekuly (ligandy) Určena strukturou Distribuce fyzikálně-chemických charakteristik v prostoru princip zámku a klíče 4

3 Protein-ligand interakce Aktivní místa (kapsy) Motivace Predikce funkce neznámého proteinu Identifikace potenciálních cílů pro léčiva Predikce vedlejších účinků léčiv 5

4 P2RANK Počítačová metoda (algoritmus) schopný identifikovat místa na povrchu proteinu, na které se může s vysokou pravděpodobností vázat nespecifikovaný ligand Vstup: počítačová reprezentace proteinové struktury Výstup: seznam míst na povrchu proteinu pravděpodobně schopných vázat ligand 6

5 Informatický pohled na protein Sekvence Řetěz aminokyselin lineární sekvence písmen (slovo) Struktura Pozice jednotlivých atomů v 3D prostoru Písmena reprezentují aminokyseliny (ARNDCEQGHILKMFPSTWYV) 7

6 P2RANK princip Využití informací o existujících aktivních místech pro rozpoznání typově podobných míst na neznámém proteinu Jak popsat rysy povrchu proteinu? Projekce fyzikálně chemických vlastností aminokyselin na povrch proteinu Jak určit kapsu na dosud neviděném proteinu? Strojové učení (s učitelem) Fáze učení: naučení modelu pro rozpoznání rysů bodů aktivních míst Fáze rozpoznávání: aplikace modelu na povrch neznámého proteinu 8

7 Algoritmus učící fáze 1. Získání známých protein-ligand komplexů 2. Potažení povrchů proteinů sítí bodů 3. Extrakce vektoru fyzikálně-chemických vlastností pro každý z bodů každého proteinu 4. Vybudování modelu, který pro daný bod (vektor) bude schopný určit, s jakou pravděpodobnostní je tento součástí kapsy = strojové učení 9

8 P2RANK - extrakce vlastností Okolo 30 atributů popisující fyzikálněchemické vlastnosti aminokyselin a lokálního okolí daného bodu < pc 1, pc 2,, pc n > 10

9 Strojové učení Skupina algoritmů schopných identifikovat (naučit se) vzory v datech a a tuto znalost aplikovat na dosud neviděných příkladech Klasifikace Regrese Shlukování Typy Strojové učení s učitelem (supervised learning) Strojové učení bez učitele (unsupervised learning) 11

10 12

11 Algoritmus fáze rozpoznávání 1. Potažení povrchu neznámého proteinu sítí bodů 2. Aplikace modelu pro každý bod sítě vazebné skóre bodu 3. Vypuštění bodů s nízkým vazebným skórem 4. Identifikace shluků vysoce skórujících bodů kapsa 5. Ohodnocení kapes součtem skór jejich bodů 14

12 Jaké znalosti jsou třeba pro vývoj P2RANKu? Základy biologie, proteomiky Znalost zdrojů biologických dat (PDB) Programování Pokročilá algoritmizace (strojové učení) Statistika 15

13 Bioinformatické projekty na KSI MFF UK Proteiny Podobnostní hledání proteinových struktur P3S Identifikací protein-ligand interakcí P2RANK Identifikace protein-protein interakcí Identifikace proteinových sekvencí ze spektrometrických dat - SIMTANDEM RNA Podobnost RNA struktur SETTER Predikce sekundární struktury RNA - rpredictor Malé molekuly Identifikace biologicky aktivních molekul explorací chemického prostoru - Molpher 16

14 Dotazy 17

NAIL072 ROZPOZNÁVÁNÍ VZORŮ

NAIL072 ROZPOZNÁVÁNÍ VZORŮ NAIL072 ROZPOZNÁVÁNÍ VZORŮ RNDr. Jana Štanclová, Ph.D. jana.stanclova@ruk.cuni.cz www.cuni.cz/~stancloj LS Zk 2/0 OSNOVA 1. Úvod do rozpoznávání vzorů 2. Bayesovská teorie rozpoznávání 3. Diskriminační

Více

Genomické databáze. Shlukování proteinových sekvencí. Ivana Rudolfová. školitel: doc. Ing. Jaroslav Zendulka, CSc.

Genomické databáze. Shlukování proteinových sekvencí. Ivana Rudolfová. školitel: doc. Ing. Jaroslav Zendulka, CSc. Genomické databáze Shlukování proteinových sekvencí Ivana Rudolfová školitel: doc. Ing. Jaroslav Zendulka, CSc. Obsah Proteiny Zdroje dat Predikce struktury proteinů Cíle disertační práce Vstupní data

Více

Bioinformatika a výpočetní biologie KFC/BIN. I. Přehled

Bioinformatika a výpočetní biologie KFC/BIN. I. Přehled Bioinformatika a výpočetní biologie KFC/BIN I. Přehled RNDr. Karel Berka, Ph.D. Univerzita Palackého v Olomouci Definice bioinformatiky (Molecular) bio informatics: bioinformatics is conceptualising biology

Více

NG C Implementace plně rekurentní

NG C Implementace plně rekurentní NG C Implementace plně rekurentní neuronové sítě v systému Mathematica Zdeněk Buk, Miroslav Šnorek {bukz1 snorek}@fel.cvut.cz Neural Computing Group Department of Computer Science and Engineering, Faculty

Více

Hemoglobin a jemu podobní... Studijní materiál. Jan Komárek

Hemoglobin a jemu podobní... Studijní materiál. Jan Komárek Hemoglobin a jemu podobní... Studijní materiál Jan Komárek Bioinformatika Bioinformatika je vědní disciplína, která se zabývá metodami pro shromážďování, analýzu a vizualizaci rozsáhlých souborů biologických

Více

Ing. Petr Hájek, Ph.D. Podpora přednášky kurzu Aplikace umělé inteligence

Ing. Petr Hájek, Ph.D. Podpora přednášky kurzu Aplikace umělé inteligence APLIKACE UMĚLÉ INTELIGENCE Ing. Petr Hájek, Ph.D. Podpora přednášky kurzu Aplikace umělé inteligence Aplikace umělé inteligence - seminář ING. PETR HÁJEK, PH.D. ÚSTAV SYSTÉMOVÉHO INŽENÝRSTVÍ A INFORMATIKY

Více

Strojové učení se zaměřením na vliv vstupních dat

Strojové učení se zaměřením na vliv vstupních dat Strojové učení se zaměřením na vliv vstupních dat Irina Perfilieva, Petr Hurtík, Marek Vajgl Centre of excellence IT4Innovations Division of the University of Ostrava Institute for Research and Applications

Více

Neuronové sítě (11. přednáška)

Neuronové sítě (11. přednáška) Neuronové sítě (11. přednáška) Machine Learning Naučit stroje se učit O co jde? Máme model výpočtu (t.j. výpočetní postup jednoznačně daný vstupy a nějakými parametry), chceme najít vhodné nastavení parametrů,

Více

ZÍSKÁVÁNÍ ZNALOSTÍ Z DATABÁZÍ

ZÍSKÁVÁNÍ ZNALOSTÍ Z DATABÁZÍ metodický list č. 1 Dobývání znalostí z databází Cílem tohoto tematického celku je vysvětlení základních pojmů z oblasti dobývání znalostí z databází i východisek dobývání znalostí z databází inspirovaných

Více

Moderní systémy pro získávání znalostí z informací a dat

Moderní systémy pro získávání znalostí z informací a dat Moderní systémy pro získávání znalostí z informací a dat Jan Žižka IBA Institut biostatistiky a analýz PřF & LF, Masarykova universita Kamenice 126/3, 625 00 Brno Email: zizka@iba.muni.cz Bioinformatika:

Více

VÝUKA studentů celkem 3 000 (bakaláři + magistři + doktorandi); 72 profesorů, 120 docentů

VÝUKA studentů celkem 3 000 (bakaláři + magistři + doktorandi); 72 profesorů, 120 docentů založena roku 1920 centrum výuky a výzkumu rozpočet v roce 2013 cca 1,114 miliardy Kč (zhruba 1:1 státní dotace a grantové prostředky) - z toho biologie má asi 1/3 (i v dalších parametrech) VÝUKA studentů

Více

Studijní materiály pro bioinformatickou část ViBuChu. úloha II. Jan Komárek, Gabriel Demo

Studijní materiály pro bioinformatickou část ViBuChu. úloha II. Jan Komárek, Gabriel Demo Studijní materiály pro bioinformatickou část ViBuChu úloha II Jan Komárek, Gabriel Demo Adenin Struktura DNA Thymin 5 konec 3 konec DNA tvořena dvěmi řetězci orientovanými antiparalelně (liší se orientací

Více

Neuronové sítě Ladislav Horký Karel Břinda

Neuronové sítě Ladislav Horký Karel Břinda Neuronové sítě Ladislav Horký Karel Břinda Obsah Úvod, historie Modely neuronu, aktivační funkce Topologie sítí Principy učení Konkrétní typy sítí s ukázkami v prostředí Wolfram Mathematica Praktické aplikace

Více

Profilování vzorků heroinu s využitím vícerozměrné statistické analýzy

Profilování vzorků heroinu s využitím vícerozměrné statistické analýzy Profilování vzorků heroinu s využitím vícerozměrné statistické analýzy Autor práce : RNDr. Ivo Beroun,CSc. Vedoucí práce: prof. RNDr. Milan Meloun, DrSc. PROFILOVÁNÍ Profilování = klasifikace a rozlišování

Více

Cvičení z matematiky jednoletý volitelný předmět

Cvičení z matematiky jednoletý volitelný předmět Název předmětu: Zařazení v učebním plánu: Cvičení z matematiky O8A, C4A, jednoletý volitelný předmět Cíle předmětu Obsah předmětu je zaměřen na přípravu studentů gymnázia na společnou část maturitní zkoušky

Více

ZÍSKÁVÁNÍ ZNALOSTÍ Z DATABÁZÍ

ZÍSKÁVÁNÍ ZNALOSTÍ Z DATABÁZÍ Metodický list č. 1 Dobývání znalostí z databází Cílem tohoto tematického celku je vysvětlení základních pojmů z oblasti dobývání znalostí z databází i východisek dobývání znalostí z databází inspirovaných

Více

Deriváty karboxylových kyselin, aminokyseliny, estery

Deriváty karboxylových kyselin, aminokyseliny, estery Deriváty karboxylových kyselin, aminokyseliny, estery Zpracovala: Ing. Štěpánka Janstová 29.1.2012 Určeno pro 9. ročník ZŠ V/II,EU-OPVK,42/CH9/Ja Přehled a využití derivátů organických kyselin, jejich

Více

přetrénování = ztráta schopnosti generalizovat vlivem přílišného zaměření klasifikátorů na rozeznávání pouze konkrétních trénovacích dat

přetrénování = ztráta schopnosti generalizovat vlivem přílišného zaměření klasifikátorů na rozeznávání pouze konkrétních trénovacích dat Zkouška ISR 2013 přetrénování = ztráta schopnosti generalizovat vlivem přílišného zaměření klasifikátorů na rozeznávání pouze konkrétních trénovacích dat 1. Rozdílné principy u induktivního a deduktivního

Více

Inovace studia molekulární a buněčné biologie

Inovace studia molekulární a buněčné biologie Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. MBIO1/Molekulární biologie 1 Tento projekt je spolufinancován

Více

ANALÝZA BIOLOGICKÝCH A KLINICKÝCH DAT V MEZIOBOROVÉM POJETÍ

ANALÝZA BIOLOGICKÝCH A KLINICKÝCH DAT V MEZIOBOROVÉM POJETÍ ANALÝZA BIOLOGICKÝCH A KLINICKÝCH DAT V MEZIOBOROVÉM POJETÍ INVESTICE Institut DO biostatistiky ROZVOJE VZDĚLÁVÁNÍ a analýz 5. LETNÍ ŠKOLA MATEMATICKÉ BIOLOGIE ANALÝZA BIOLOGICKÝCH A KLINICKÝCH DAT V MEZIOBOROVÉM

Více

Úvodem Dříve les než stromy 3 Operace s maticemi

Úvodem Dříve les než stromy 3 Operace s maticemi Obsah 1 Úvodem 13 2 Dříve les než stromy 17 2.1 Nejednoznačnost terminologie 17 2.2 Volba metody analýzy dat 23 2.3 Přehled vybraných vícerozměrných metod 25 2.3.1 Metoda hlavních komponent 26 2.3.2 Faktorová

Více

Úvod do zpracování obrazů. Petr Petyovský Miloslav Richter

Úvod do zpracování obrazů. Petr Petyovský Miloslav Richter Úvod do zpracování obrazů Petr Petyovský Miloslav Richter 1 OBSAH Motivace, prvky a základní problémy počítačového vidění, pojem scéna Terminologie, obraz, zpracování a analýza obrazu, počítačové vidění,

Více

5. Umělé neuronové sítě. neuronové sítě. Umělé Ondřej Valenta, Václav Matoušek. 5-1 Umělá inteligence a rozpoznávání, LS 2015

5. Umělé neuronové sítě. neuronové sítě. Umělé Ondřej Valenta, Václav Matoušek. 5-1 Umělá inteligence a rozpoznávání, LS 2015 Umělé neuronové sítě 5. 4. 205 _ 5- Model umělého neuronu y výstup neuronu u vnitřní potenciál neuronu w i váhy neuronu x i vstupy neuronu Θ práh neuronu f neuronová aktivační funkce _ 5-2 Neuronové aktivační

Více

Automatické vyhledávání informace a znalosti v elektronických textových datech

Automatické vyhledávání informace a znalosti v elektronických textových datech Automatické vyhledávání informace a znalosti v elektronických textových datech Jan Žižka Ústav informatiky & SoNet RC PEF, Mendelova universita Brno (Text Mining) Data, informace, znalost Elektronická

Více

Aplikovaná bioinformatika

Aplikovaná bioinformatika Aplikovaná bioinformatika Číslo aktivity: 2.V Název klíčové aktivity: Na realizaci se podílí: Implementace nových předmětů do daného studijního programu doc. RNDr. Michaela Wimmerová, Ph.D., Mgr. Josef

Více

Doprovodný materiál k práci s přípravným textem Biologické olympiády 2014/2015 pro soutěžící a organizátory kategorie B

Doprovodný materiál k práci s přípravným textem Biologické olympiády 2014/2015 pro soutěžící a organizátory kategorie B Doprovodný materiál k práci s přípravným textem Biologické olympiády 2014/2015 pro soutěžící a organizátory kategorie B Níže uvedené komentáře by měly pomoci soutěžícím z kategorie B ke snazší orientaci

Více

Magisterský program Biomedicínské inženýrství a informatika na ČVUT FEL Praha

Magisterský program Biomedicínské inženýrství a informatika na ČVUT FEL Praha České vysoké učení technické v Praze Fakulta elektrotechnická Magisterský program Biomedicínské inženýrství a informatika na ČVUT FEL Praha Olga Štěpánková, Lenka Lhotská Filip Železný, Jan Havlík Katedra

Více

Výroční konference ELIXIR CZ

Výroční konference ELIXIR CZ Výroční konference ELIXIR CZ 2.11.2016 Praha 2016 Výroční konference ELIXIR CZ Konformační prostor DNA Bohdan Schneider za Jiří Černý 1, Paulína Božíková 1, Iva Nečasová 1, Petr Čech 2, Daniel Svozil 2,

Více

Klasifikace hudebních stylů

Klasifikace hudebních stylů Klasifikace hudebních stylů Martin Šimonovský (mys7@seznam.cz) Rozpoznávání hudby úloha z oblasti DSP klasifikace dle hudebních stylů

Více

Informatika a výpočetní technika 1. roč./1. sem. 1. roč./2. sem. 2. roč./3. sem. 1 kr. Povinné předměty pro obor IVT

Informatika a výpočetní technika 1. roč./1. sem. 1. roč./2. sem. 2. roč./3. sem. 1 kr. Povinné předměty pro obor IVT 1. roč./1. sem. 1. roč./2. sem. 2. roč./3. sem. 1+0 Zk 2. roč./4. sem. Semestrální Semestrální 460-4064/01 460-4067/01 460-4095/01 460-4096/01 460-4065/01 470-4405/01 Povinně volitelné předměty pro obor

Více

Nový bakalářský studijní obor Biomedicínská informatika na Fakultě biomedicínského inženýrství v Kladně

Nový bakalářský studijní obor Biomedicínská informatika na Fakultě biomedicínského inženýrství v Kladně Fakulta biomedicínského inženýrství České vysoké učení technické v Praze Nový bakalářský studijní obor Biomedicínská informatika na Fakultě biomedicínského inženýrství v Kladně Zoltán Szabó Katedra biomedicínské

Více

IBM SPSS Decision Trees

IBM SPSS Decision Trees IBM Software IBM SPSS Decision Trees Jednoduše identifikujte skupiny a predikujte Stromově uspořádané postupné štěpení dat na homogenní podmnožiny je technika vhodná pro exploraci vztahů i pro tvorbu rozhodovacích

Více

Úvod do molekulové dynamiky simulace proteinů. Eva Fadrná evaf@chemi.muni.cz

Úvod do molekulové dynamiky simulace proteinů. Eva Fadrná evaf@chemi.muni.cz Úvod do molekulové dynamiky simulace proteinů Eva Fadrná evaf@chemi.muni.cz Molekulová mechanika = metoda silového pole = force field Energie vypočtená řešením Schrodingerovy rovnice Energie vypočtená

Více

Klasifikace a rozpoznávání. Lineární klasifikátory

Klasifikace a rozpoznávání. Lineární klasifikátory Klasifikace a rozpoznávání Lineární klasifikátory Opakování - Skalární součin x = x1 x 2 w = w T x = w 1 w 2 x 1 x 2 w1 w 2 = w 1 x 1 + w 2 x 2 x. w w T x w Lineární klasifikátor y(x) = w T x + w 0 Vyber

Více

Strojové učení Marta Vomlelová

Strojové učení Marta Vomlelová Strojové učení Marta Vomlelová marta@ktiml.mff.cuni.cz KTIML, S303 Literatura 1.T. Hastie, R. Tishirani, and J. Friedman. The Elements of Statistical Learning, Data Mining, Inference and Prediction. Springer

Více

Uživatelská podpora v prostředí WWW

Uživatelská podpora v prostředí WWW Uživatelská podpora v prostředí WWW Jiří Jelínek Katedra managementu informací Fakulta managementu Jindřichův Hradec Vysoká škola ekonomická Praha Úvod WWW obsáhlost obsahová i formátová pestrost dokumenty,

Více

1. Data mining. Strojové učení. Základní úlohy.

1. Data mining. Strojové učení. Základní úlohy. 1... Základní úlohy. Učení s učitelem a bez učitele. Petr Pošík Katedra kybernetiky ČVUT FEL P. Pošík c 2010 Aplikace umělé inteligence 1 / 36 Obsah P. Pošík c 2010 Aplikace umělé inteligence 2 / 36 Co

Více

6. Kde v DNA nalézáme rozdíly, zodpovědné za obrovskou diverzitu života?

6. Kde v DNA nalézáme rozdíly, zodpovědné za obrovskou diverzitu života? 6. Kde v DNA nalézáme rozdíly, zodpovědné za obrovskou diverzitu života? Pamatujete na to, co se objevilo v pracích Charlese Darwina a Alfreda Wallace ohledně vývoje druhů? Aby mohl mechanismus přírodního

Více

Získávání znalostí z dat

Získávání znalostí z dat Získávání znalostí z dat Informační a komunikační technologie ve zdravotnictví Získávání znalostí z dat Definice: proces netriviálního získávání implicitní, dříve neznámé a potencionálně užitečné informace

Více

Sociální síť informatiků v regionech České republiky

Sociální síť informatiků v regionech České republiky SoSIReČR Sociální síť informatiků v regionech České republiky Martin Nečaský, Ph.D. Katedra softwarového inženýrství MFF UK Systémová Integrace 2010 Strategie projektu Vize Sociální síť IT profesionálů

Více

Moderní nástroje pro zobrazování biologicky významných molekul pro zajištění zdraví. René Kizek

Moderní nástroje pro zobrazování biologicky významných molekul pro zajištění zdraví. René Kizek Moderní nástroje pro zobrazování biologicky významných molekul pro zajištění zdraví René Kizek 12.04.2013 Fluorescence je fyzikálně chemický děj, který je typem luminiscence. Luminiscence se dále dělí

Více

1. Vlastnosti diskretních a číslicových metod zpracování signálů... 15

1. Vlastnosti diskretních a číslicových metod zpracování signálů... 15 Úvodní poznámky... 11 1. Vlastnosti diskretních a číslicových metod zpracování signálů... 15 1.1 Základní pojmy... 15 1.2 Aplikační oblasti a etapy zpracování signálů... 17 1.3 Klasifikace diskretních

Více

StatSoft Úvod do neuronových sítí

StatSoft Úvod do neuronových sítí StatSoft Úvod do neuronových sítí Vzhledem k vzrůstající popularitě neuronových sítí jsme se rozhodli Vám je v tomto článku představit a říci si něco o jejich využití. Co si tedy představit pod pojmem

Více

úč úč ž ů ž Č Č č č ů ž úč č úč ť Ň č ú Ý č č Ú Ú ť ú č ď ů ž š úč ž úč úč ž ť ď ť ď ž ú č č úč š ž Ů č č ú úč ž ů ť úč ž ž ž Ů č ž ú č Š úč č Úč Č Č š ď š Š š Ó Ó ž ůč ú Ď ť ž ů ů č ů Č ů ž úč Ý č ž úč

Více

č ů š ň č č Ú č č č Ú ů Ú č ž ú š š ý č ú ó ó ž č ý ý ý č ž č ý ž ý č ý ž ž č ý ý ý ž ý ý ý ý š ý š ů ů č č ý ž č ý ů š ž ý Ú Ú úč š ů ž ů ů Úč ž č ý č š ý ů č š ý ý ý ů č č ž ů š ů ů š ý ý ů ů č č ž ú

Více

Á Ě Í Ě Á Á ó č ž č ž č Í š úč é úč š ž č é ů č é č é é ů č ů č č ů é Ž š ů ů š č é Ž č é Ž č Í ž Ž Ž é é Ů é Ř ů ť š é é č é é é š č č é č č č č š č š é č é č ů č č š ú é č é š é Ž Ž é é ú č č é ů č š

Více

Autor: Jan Hošek

Autor: Jan Hošek Úvod STC Závěr Autor: Jan Hošek Školitel: RNDr. Radim Řehůřek Fakulta jaderná a fyzikálně inženýrzká České vysoké učení technické v Praze 25. 5. 2009 Osnova Úvod STC Závěr 1 Úvod Motivace Ukázka technologie

Více

Biochemie Ch52 volitelný předmět pro 4. ročník

Biochemie Ch52 volitelný předmět pro 4. ročník Biochemie Ch52 volitelný předmět pro 4. ročník Charakteristika vyučovacího předmětu Vyučovací předmět vychází ze vzdělávací oblasti Člověk a příroda, vzdělávacího oboru Chemie. Mezipředmětové přesahy a

Více

Kybernetika a umělá inteligence, cvičení 10/11

Kybernetika a umělá inteligence, cvičení 10/11 Kybernetika a umělá inteligence, cvičení 10/11 Program 1. seminární cvičení: základní typy klasifikátorů a jejich princip 2. počítačové cvičení: procvičení na problému rozpoznávání číslic... body za aktivitu

Více

Jak bude zítra? Skoro jako dneska. Dan Lessner

Jak bude zítra? Skoro jako dneska. Dan Lessner Jak bude zítra? Skoro jako dneska. Dan Lessner Osnova O čem budu mluvit Motivace, popis problému Vhodná data Použitá architektura sítě Zajímavá zjištění Kde je zakopaný pes? Tady Co teď s tím Další zajímavá

Více

Počítačová chemie. výpočetně náročné simulace chemických a biomolekulárních systémů. Zora Střelcová

Počítačová chemie. výpočetně náročné simulace chemických a biomolekulárních systémů. Zora Střelcová Počítačová chemie výpočetně náročné simulace chemických a biomolekulárních systémů Zora Střelcová Národní centrum pro výzkum biomolekul, Masarykova univerzita, Kotlářská 2, 611 37 Brno, Česká Republika

Více

STRATEGICKÉ ŘÍZENÍ LIDSKÝCH ZDROJŮ

STRATEGICKÉ ŘÍZENÍ LIDSKÝCH ZDROJŮ STRATEGICKÉ ŘÍZENÍ LIDSKÝCH ZDROJŮ Vzdělávání & Rozvoj Plánování & Nábor & Výběr Kariérový růst Firemní strategie STRATEGIE ŘÍZENÍ LIDSKÝCH ZDROJŮ Firemní výsledky FF UK 18. DUBEN 2016 Odměňování Řízení

Více

Principy počítačů I Perspektivní technologie, měření výkonnosti a spolehlivost

Principy počítačů I Perspektivní technologie, měření výkonnosti a spolehlivost Principy počítačů I Perspektivní technologie, měření výkonnosti a spolehlivost snímek 1 Principy počítačů Část XI Perspektivní technologie, měření výkonnosti a spolehlivost 1 snímek 2 1 cm 1 µm 50 nm 1

Více

Fakulta chemicko-technologická

Fakulta chemicko-technologická Fakulta chemicko-technologická Katedra analytické chemie Katedra anorganické technologie

Více

ZÁKLADY PROGRAMOVÁNÍ. Mgr. Vladislav BEDNÁŘ 2014 7.4 13/14

ZÁKLADY PROGRAMOVÁNÍ. Mgr. Vladislav BEDNÁŘ 2014 7.4 13/14 ZÁKLADY PROGRAMOVÁNÍ Mgr. Vladislav BEDNÁŘ 2014 7.4 13/14 Co je vhodné vědět, než si vybereme programovací jazyk a začneme programovat roboty. 1 / 13 0:40 Implementace Umělá inteligence (UI) Umělá inteligence

Více

LABORATOŘ KOVŮ A KOROZE VZDĚLÁVÁNÍ ODBORNÉ KURZY A SEMINÁŘE

LABORATOŘ KOVŮ A KOROZE VZDĚLÁVÁNÍ ODBORNÉ KURZY A SEMINÁŘE ODBORNÉ KURZY A SEMINÁŘE Vysoké učení technické v Brně Fakulta chemická Purkyňova 464/118 612 00 Brno wasserbauer@fch.vutbr.cz Využijte bohaté know-how odborných pracovníků Laboratoře kovů a koroze při

Více

Nanotechnologie jako součást výuky fyziky

Nanotechnologie jako součást výuky fyziky Nanotechnologie jako součást výuky fyziky Lucie Kolářová Oddělení didaktiky fyziky Školitel: Doc. Jiří Tuček Katedra exprimentální fyziky Přírodovědecká fakulta Univerzity Palackého v Olomouci Vítejte

Více

Pravděpodobně skoro správné. PAC učení 1

Pravděpodobně skoro správné. PAC učení 1 Pravděpodobně skoro správné (PAC) učení PAC učení 1 Výpočetní teorie strojového učení Věta o ošklivém kačátku. Nechť E je klasifikovaná trénovací množina pro koncept K, který tvoří podmnožinu konečného

Více

Samoučící se neuronová síť - SOM, Kohonenovy mapy

Samoučící se neuronová síť - SOM, Kohonenovy mapy Samoučící se neuronová síť - SOM, Kohonenovy mapy Antonín Vojáček, 14 Květen, 2006-10:33 Měření a regulace Samoorganizující neuronové sítě s učením bez učitele jsou stále více využívány pro rozlišení,

Více

Získávání dat z databází 1 DMINA 2010

Získávání dat z databází 1 DMINA 2010 Získávání dat z databází 1 DMINA 2010 Získávání dat z databází Motto Kde je moudrost? Ztracena ve znalostech. Kde jsou znalosti? Ztraceny v informacích. Kde jsou informace? Ztraceny v datech. Kde jsou

Více

Vícerozměrné statistické metody

Vícerozměrné statistické metody Vícerozměrné statistické metody Shluková analýza Jiří Jarkovský, Simona Littnerová FSTA: Pokročilé statistické metody Typy shlukových analýz Shluková analýza: cíle a postupy Shluková analýza se snaží o

Více

Služby pro predikci struktury proteinů. Josef Pihera

Služby pro predikci struktury proteinů. Josef Pihera Služby pro predikci struktury proteinů Josef Pihera Struktura proteinů Primární sekvence aminokyselin Sekundární stáčení a spojování vodíkovými vazbami Supersekundární struktura přechod, opakovaná geometrická

Více

Stanovení forem, termínů a témat profilové části maturitní zkoušky oboru vzdělání 78-42-M/01 Technické lyceum STROJNICTVÍ

Stanovení forem, termínů a témat profilové části maturitní zkoušky oboru vzdělání 78-42-M/01 Technické lyceum STROJNICTVÍ Stanovení forem, termínů a témat profilové části maturitní zkoušky oboru vzdělání 78-42-M/01 Technické lyceum STROJNICTVÍ 1. Mechanické vlastnosti materiálů 2. Technologické vlastnosti materiálů 3. Zjišťování

Více

Dolování z textu. Martin Vítek

Dolování z textu. Martin Vítek Dolování z textu Martin Vítek Proč dolovat z textu Obrovské množství materiálu v nestrukturované textové podobě knihy časopisy vědeckéčlánky sborníky konferencí internetové diskuse Proč dolovat z textu

Více

Typy umělých neuronových sítí

Typy umělých neuronových sítí Tp umělých neuronových sítí umělá neuronová síť vznikne spojením jednotlivých modelů neuronů výsledná funkce sítě je určena způsobem propojení jednotlivých neuronů, váhami těchto spojení a způsobem činnosti

Více

UČENÍ BEZ UČITELE. Václav Hlaváč

UČENÍ BEZ UČITELE. Václav Hlaváč UČENÍ BEZ UČITELE Václav Hlaváč Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání hlavac@fel.cvut.cz, http://cmp.felk.cvut.cz/~hlavac 1/22 OBSAH PŘEDNÁŠKY ÚVOD Učení

Více

Rozpoznávání písmen. Jiří Šejnoha Rudolf Kadlec (c) 2005

Rozpoznávání písmen. Jiří Šejnoha Rudolf Kadlec (c) 2005 Rozpoznávání písmen Jiří Šejnoha Rudolf Kadlec (c) 2005 Osnova Motivace Popis problému Povaha dat Neuronová síť Architektura Výsledky Zhodnocení a závěr Popis problému Jedná se o praktický problém, kdy

Více

14 Úvod do plánování projektu Řízení projektu

14 Úvod do plánování projektu Řízení projektu 14 Úvod do plánování projektu Řízení projektu Plánování projektu Vývoj - rozbor zadání odhad pracnosti, doby řešení, nákladů,... analýza rizik strategie řešení organizace týmu PLÁN PROJEKTU 14.1 Softwarové

Více

Statistické metody v ekonomii. Ing. Michael Rost, Ph.D.

Statistické metody v ekonomii. Ing. Michael Rost, Ph.D. Statistické metody v ekonomii Ing. Michael Rost, Ph.D. Jihočeská univerzita v Českých Budějovicích Cíle kurzu: seznámit posluchače s vybranými statistickými metodami, které jsou aplikovatelné v ekonomických

Více

BÍLKOVINY. Autor: Mgr. Stanislava Bubíková. Datum (období) tvorby: 15. 2. 2013. Ročník: devátý

BÍLKOVINY. Autor: Mgr. Stanislava Bubíková. Datum (období) tvorby: 15. 2. 2013. Ročník: devátý BÍLKOVINY Autor: Mgr. Stanislava Bubíková Datum (období) tvorby: 15. 2. 2013 Ročník: devátý Vzdělávací oblast: Člověk a příroda / Chemie / Organické sloučeniny 1 Anotace: Žáci se seznámí s oblastmi chemického

Více

ENZYMY A NUKLEOVÉ KYSELINY

ENZYMY A NUKLEOVÉ KYSELINY ENZYMY A NUKLEOVÉ KYSELINY Autor: Mgr. Stanislava Bubíková Datum (období) tvorby: 28. 3. 2013 Ročník: devátý Vzdělávací oblast: Člověk a příroda / Chemie / Organické sloučeniny 1 Anotace: Žáci se seznámí

Více

První testový úkol aminokyseliny a jejich vlastnosti

První testový úkol aminokyseliny a jejich vlastnosti První testový úkol aminokyseliny a jejich vlastnosti Vysvětlete co znamená pojem α-aminokyselina Jaký je rozdíl mezi D a L řadou aminokyselin Kolik je základních stavebních aminokyselin a z čeho jsou odvozeny

Více

TSO NEBO A INVARIANTNÍ ROZPOZNÁVACÍ SYSTÉMY

TSO NEBO A INVARIANTNÍ ROZPOZNÁVACÍ SYSTÉMY TSO NEBO A INVARIANTNÍ ROZPOZNÁVACÍ SYSTÉMY V PROSTŘEDÍ MATLAB K. Nováková, J. Kukal FJFI, ČVUT v Praze ÚPŘT, VŠCHT Praha Abstrakt Při rozpoznávání D binárních objektů z jejich diskrétní realizace se využívají

Více

Interakce proteinu p53 s genomovou DNA v kontextu chromatinu glioblastoma buněk

Interakce proteinu p53 s genomovou DNA v kontextu chromatinu glioblastoma buněk MASARYKOVA UNIVERZITA V BRNĚ Přírodovědecká fakulta Ústav experimentální biologie Oddělení genetiky a molekulární biologie Interakce proteinu p53 s genomovou DNA v kontextu chromatinu glioblastoma buněk

Více

Bílkoviny a rostlinná buňka

Bílkoviny a rostlinná buňka Bílkoviny a rostlinná buňka Bílkoviny Rostliny --- kontinuální diferenciace vytváření orgánů: - mitotická dělení -zvětšování buněk a tvorba buněčné stěny syntéza bílkovin --- fotosyntéza syntéza bílkovin

Více

Tabulace učebního plánu. Obecná chemie. Vzdělávací obsah pro vyučovací předmět : Ročník: 1.ročník a kvinta

Tabulace učebního plánu. Obecná chemie. Vzdělávací obsah pro vyučovací předmět : Ročník: 1.ročník a kvinta Tabulace učebního plánu Vzdělávací obsah pro vyučovací předmět : CHEMIE Ročník: 1.ročník a kvinta Obecná Bezpečnost práce Názvosloví anorganických sloučenin Zná pravidla bezpečnosti práce a dodržuje je.

Více

Neuronové sítě. 1 Úvod. 2 Historie. 3 Modely neuronu

Neuronové sítě. 1 Úvod. 2 Historie. 3 Modely neuronu Neuronové sítě L. Horký*, K. Břinda** Fakulta jaderná a fyzikálně inženýrská, Břehová 7, 115 19 Praha 1 *horkyladislav@seznam.cz, **brinda@fjfi.cvut.cz Abstrakt Cílem našeho příspěvku je získat uživatelský

Více

NMR biomakromolekul RCSB PDB. Progr. NMR

NMR biomakromolekul RCSB PDB. Progr. NMR NMR biomakromolekul Typy biomakromolekul a možnosti studia pomocí NMR proteiny a peptidy rozmanité složení, omezení jen velikostí molekul nukleové kyseliny (RNA, DNA) a oligonukleotidy omezení malou rozmanitostí

Více

OPTIMÁLNÍ SEGMENTACE DAT

OPTIMÁLNÍ SEGMENTACE DAT ROBUST 2004 c JČMF 2004 OPTIMÁLNÍ SEGMENTACE DAT Petr Novotný Klíčová slova: Výpočetní statistika, po částech spojitá regrese. Abstrakt: Snížení paměťové náročnosti při výpočtu po částech spojitého regresního

Více

Lekce 4 - Vektorové a rastrové systémy

Lekce 4 - Vektorové a rastrové systémy Lekce 4 - Vektorové a rastrové systémy 1. Cíle lekce... 1 2. Vlastnosti rastrových systémů... 1 2.1 Zobrazování vrstev... 1 2.1.1 Základní zobrazování... 1 2.1.2 Další typy zobrazení... 2 2.2 Lokální operace...

Více

Získávání znalostí z databází. Alois Kužela

Získávání znalostí z databází. Alois Kužela Získávání znalostí z databází Alois Kužela Obsah související pojmy datové sklady, získávání znalostí asocianí pravidla 2/37 Úvod získávání znalostí z dat, dolování (z) dat, data mining proces netriviálního

Více

Celosvětová produkce plastů

Celosvětová produkce plastů PRODUKCE PLASTŮ Zpracování plastů cvičení 1 TU v Liberci, FS Celosvětová produkce plastů Mil. tun Asie (bez Japonska) 16 % Střední a západní Evropa 21 % Společenství nezávislých států 3 % 235 mil. tun

Více

Tabulace učebního plánu

Tabulace učebního plánu Tabulace učebního plánu Vzdělávací obsah pro vyučovací předmět : Informační a výpočetní technika Ročník: 3. - 4. ročník (septima - oktáva) Tématická oblast DIGITÁLNÍ TECHNOLOGIE informatika hardware software

Více

Modely vyhledávání informací 4 podle technologie. 1) Booleovský model. George Boole 1815 1864. Aplikace booleovské logiky

Modely vyhledávání informací 4 podle technologie. 1) Booleovský model. George Boole 1815 1864. Aplikace booleovské logiky Modely vyhledávání informací 4 podle technologie 1) Booleovský model 1) booleovský 2) vektorový 3) strukturní 4) pravděpodobnostní a další 1 dokumenty a dotazy jsou reprezentovány množinou indexových termů

Více

Marta Vomlelová marta@ktiml.mff.cuni.cz

Marta Vomlelová marta@ktiml.mff.cuni.cz Strojové učení Úvod, lineární regrese Marta Vomlelová marta@ktiml.mff.cuni.cz References [1] P. Berka. Dobývání znalostí z databází. Academia, 2003. [2] T. Hastie, R. Tishirani, and J. Friedman. The Elements

Více

Struktura a funkce biomakromolekul

Struktura a funkce biomakromolekul Struktura a funkce biomakromolekul KBC/BPOL 7. Interakce DNA/RNA - protein Ivo Frébort Interakce DNA/RNA - proteiny v buňce Základní dogma molekulární biologie Replikace DNA v E. coli DNA polymerasa a

Více

Shlukování prostorových dat KDE+

Shlukování prostorových dat KDE+ Podpora tvorby národní sítě kartografie nové generace. Shlukování prostorových dat KDE+ Mgr. Jiří Sedoník Centrum dopravního výzkumu, v. v. i. Tato prezentace je spolufinancována Evropským sociálním fondem

Více

1. Číselné posloupnosti - Definice posloupnosti, základní vlastnosti, operace s posloupnostmi, limita posloupnosti, vlastnosti limit posloupností,

1. Číselné posloupnosti - Definice posloupnosti, základní vlastnosti, operace s posloupnostmi, limita posloupnosti, vlastnosti limit posloupností, KMA/SZZS1 Matematika 1. Číselné posloupnosti - Definice posloupnosti, základní vlastnosti, operace s posloupnostmi, limita posloupnosti, vlastnosti limit posloupností, operace s limitami. 2. Limita funkce

Více

DBS Konceptuální modelování

DBS Konceptuální modelování DBS Konceptuální modelování Michal Valenta Katedra softwarového inženýrství FIT České vysoké učení technické v Praze Michal.Valenta@fit.cvut.cz c Michal Valenta, 2010 BIVŠ DBS I, ZS 2010/11 https://users.fit.cvut.cz/

Více

Už bylo: Učení bez učitele (unsupervised learning) Kompetitivní modely

Už bylo: Učení bez učitele (unsupervised learning) Kompetitivní modely Učení bez učitele Už bylo: Učení bez učitele (unsupervised learning) Kompetitivní modely Klastrování Kohonenovy mapy LVQ (Učení vektorové kvantizace) Zbývá: Hybridní modely (kombinace učení bez učitele

Více

Identifikace. Jiří Jelínek. Katedra managementu informací Fakulta managementu J. Hradec Vysoká škola ekonomická Praha

Identifikace. Jiří Jelínek. Katedra managementu informací Fakulta managementu J. Hradec Vysoká škola ekonomická Praha Identifikace tématických sociálních sítí Katedra managementu informací Fakulta managementu J. Hradec Vysoká škola ekonomická Praha 2 Obsah prezentace Cíl Fáze řešení a navržené postupy Prototyp a výsledky

Více

Spojení OntoUML a GLIKREM ve znalostním rozhodování

Spojení OntoUML a GLIKREM ve znalostním rozhodování 1 Formalizace biomedicínských znalostí Spojení OntoUML a GLIKREM ve znalostním rozhodování Ing. David Buchtela, Ph.D. 16. června 2014, Faustův dům, Praha Skupina mezioborových dovedností Fakulta informačních

Více

Pravidla a podmínky k vydání osvědčení o způsobilosti vykonávat aktuárskou činnost

Pravidla a podmínky k vydání osvědčení o způsobilosti vykonávat aktuárskou činnost Pravidla a podmínky k vydání osvědčení o způsobilosti vykonávat aktuárskou činnost (dále jen společnost) stanoví k vydání osvědčení o způsobilosti vykonávat aktuárskou činnost (dále jen osvědčení) následující

Více

Počítače a volný čas dětí a mládeže

Počítače a volný čas dětí a mládeže Počítače a volný čas dětí a mládeže ICT Koordinátor Jihlava, listopad 2007 Tomáš Pitner Masarykova univerzita, Brno Universität Wien e-mail: tomp@fi.muni.cz, tel: 549495940 Obsah modulu Počítač a volný

Více

Vazebné interakce protein s DNA

Vazebné interakce protein s DNA Vazebné interakce protein s DNA Vazebné možnosti vn jší vazba atmosféra + iont kolem nabité DNA vazba ve žlábku van der Waalsovský kontakt s lé ivem ve žlábku interkalace vmeze ení planárního aromat.

Více

NANOMATERIÁLY, NANOTECHNOLOGIE, NANOMEDICÍNA

NANOMATERIÁLY, NANOTECHNOLOGIE, NANOMEDICÍNA NANOMATERIÁLY, NANOTECHNOLOGIE, NANOMEDICÍNA Nano je z řečtiny = trpaslík. 10-9, 1 nm = cca deset tisícin průměru lidského vlasu Nanotechnologie věda a technologie na atomární a molekulární úrovni Mnoho

Více

Dobývání a vizualizace znalostí

Dobývání a vizualizace znalostí Dobývání a vizualizace znalostí Olga Štěpánková, Lenka Vysloužilová, et al. https://cw.fel.cvut.cz/wiki/courses/a6m33dvz/start 1 Osnova přednášky Úvod: data, objem, reprezentace a základní terminologie

Více

Seminář z matematiky. jednoletý volitelný předmět

Seminář z matematiky. jednoletý volitelný předmět Název předmětu: Zařazení v učebním plánu: Seminář z matematiky O8A, C4A, jednoletý volitelný předmět Cíle předmětu Obsah předmětu je koncipován pro přípravu studentů k úspěšnému zvládnutí profilové (školní)

Více