Doporučené příklady k procvičení k 2. Průběžnému testu

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Doporučené příklady k procvičení k 2. Průběžnému testu"

Transkript

1 Doporučené příklady k procvičení k 2. Průběžnému testu - Statistika v příkladech Marek a kol. (2013) - kapitola 2.3, 9 řešené příklady , 2.58a,b - kapitola 3.1 o řešené příklady: 3.1, 3.2, 3.4 o neřešené příklady: 1, 3, 4a,b(jen E(X)) - kapitola 3.2 o řešené příklady: 3.7, 3.8, 3.10, 3.14, 3.15 o neřešené příklady: 5a,b, 8(bez p-hodnoty), 11 - kapitola 3.2 o neřešené příklady: 12 - kapitola 4 o řešené příklady: 4.1, 4.3 o neřešené příklady: kapitola 5 o řešené příklady: 5.1 (bez Bartlettova testu) o neřešené příklady: kapitola 6 o 6.1. Jednoduchá regrese řešené příklady: 6.1 (bez IS pro parametry a střední hodnotu) neřešení příklady: 1, 2 (pouze přímka) o 6.2 Regresní parabola řešené příklady: 6.6 neřešené příklady: 1 o 6.3 Vícenásobná regrese řešené příklady: 6.7 neřešené příklady: 1 o 6.4. Korelační analýza řešené příklady: 6.8, 6.9 neřešené příklady: 1, 3

2 1. Jaká je pravděpodobnost, že náhodně vybraný muž bude mít výšku v rozmezí 170 až 185 cm? Předpokládejme přitom, že výška mužů má normální rozdělení s parametry: μ = 180; σ 2 = IQ studentů jedné vysoké školy má normální rozdělení se střední hodnotou 125 a rozptylem 100. Určete pravděpodobnost, že náhodně vybraný student bude mít a) IQ vyšší než 155, b) IQ menší než 100, c) IQ přesně 125,00, d) IQ v intervalu 120 až Hmotnost boxerů v nejvyšší váhové kategorii (open weight) má normální rozdělení se směrodatnou odchylkou 10 kg a střední hodnotou 115 kg. Jestliže vážím 109 kg, určete, pravděpodobnost, že můj soupeř bude a) těžší než já, b) lehčí než já, c) nejvýše o pět kilogramů těžší než já, d) o více než 10 kg těžší než já. e) Kolik kg musím přibrat, abych si byl na 90% jistý, že budu mít soupeře s nižší hmotností. 4. Jaká je pravděpodobnost, že náhodně vybraná žena bude mít výšku v rozmezí 160 a 175 cm? Předpokládejme přitom, že výška žen má normální rozdělení s parametry μ = 170 a σ 2 = Náhodná veličina X má normální rozdělení s parametry μ = 10 a σ 2 = 25. Určete následující pravděpodobnosti a kvantily: a) P(X < 5) b) P(8<X<12) c) P(X >18) d) P(X = 5) e) X 0,975 f) X 0,05 6. Bylo zjištěno, že pevnost v tahu určitého druhu výrobku má normální rozdělení se střední hodnotou 200 jednotek a směrodatnou odchylkou 40 jednotek. Každý výrobek je před expedicí testován a ty výrobky, jejichž pevnost v tahu je větší než 220 jednotek, jsou označovány za velmi kvalitní. Jaká je pravděpodobnost vyrobení velmi kvalitního výrobku?

3 7. Rychlost řidičů na měřeném úseku na okraji Prahy směrem na Brno má normální rozdělení se střední hodnotou 52 km/h a směrodatnou odchylkou 10 km/h. Policejní radar je nastaven na zaznamenávání řidičů překračujících rychlost o 7 km/h. a) Určete kolik procent řidičů dostane krásnou obálku s modrým pruhem, jestliže je v daném místě povolená rychlost 50 km/h. b) Určete kolik řidičů za týden překročí maximální povolenou rychlost o více než 30 km/h, jestliže každý den projede kolem radaru (ve směru měření) automobilů. 8. Odchylka rozměru výrobku od požadované hodnoty má normální rozdělení se střední hodnotou 0 mm a se směrodatnou odchylkou 5mm. Jaká musí být šířka intervalu normy (symetrického kolem požadované hodnoty) pro velikost výrobku, aby rozměr výrobku nepřekročil interval s pravděpodobností 0,95? 9. Byla změřena výška 6 žen s následujícími výsledky 163 cm, 175 cm, 177 cm, 165 cm, 171 cm, 174 cm a) Nalezněte bodový odhad průměrné výšky žen v celé republice. b) Sestrojte 95% oboustranný interval spolehlivosti pro odhad průměrné výšky žen v celé republice. c) Výšku kolika žen bychom museli změřit, abychom přiíustnou chybu intervalového odhadu průměrné výšky žen v celé republice snížili pod 1 cm. Předpokládejte, že výška jedné náhodně vybrané ženy má normální rozdělení s neznámou střední hodnotou (tu právě odhadujeme) a s rozptylem Z velké zásilky balení brambůrků Bohemia Chips bylo vybráno 5 balení a byla zjištěna jejich hmotnost. Výsledky jsou: 163 g, 159 g, 161 g, 157 g, 158 g a) nalezněte bodový odhad pro průměrnou hmotnost jednoho balení v celé zásilce b) sestrojte 99% oboustranný interval spolehlivosti pro průměrnou hmotnost jednoho balení v celé zásilce c) odhadněte, kolik váží celá zásilka, pokud víte, že obsahuje 90 balení. Předpokládejme, že rozdělení hmotnosti balení v zásilce je normální, se známým rozptylem 25.

4 11. Z velké zásilky balení s kukuřičnými vločkami jsme vybrali celkem 5 balení a zjistili jsme jejich hmotnost. Zde jsou výsledky: 460 gramů, 520 gramů, 490 gramů, 560 gramů, 510 gramů. a) Nalezněte bodový odhad pro průměrnou hmotnost jednoho balení v celé zásilce. b) Sestrojte 99% oboustranný interval spolehlivosti pro průměrnou hmotnost jednoho balení v celé zásilce. c) Odhadněte, kolik váží celá zásilka pokud víte, že obsahuje celkem 2400 balení. Předpokládejme přitom, že rozdělení hmotností balení v zásilce je normální. 12. Dne 25. a 26. ledna 2013 se v České republice konalo druhé kolo prezidentské volby. V závěrečném duelu se utkal Karel Schwarzenberg se pozdějším vítězem volby Milošem Zemanem. Představme si hypotetickou situaci. 200 náhodně vybraných voličů, po té co vhodilo svůj hlas do urny, bylo dotázáno, koho volilo. 110 z nich odpovědělo, že Miloše Zemana. Předpokládejme, že odpovědi jsou pravdivé, že vybraný vzorek dotázaných voličů je reprezentativním vzorkem voličů ČR a že k dispozici nejsou žádné jiné dodatečné průzkumy nebo indicie nasvědčující vítězství M. Zemana případně K. Schwarzenberga v daném místě. a.) Bodově odhadněte podíl voličů Miloše Zemana v daném kraji. b.) Nalezněte 95% oboustranný interval spolehlivosti pro podíl voličů Miloše Zemana v daném kraji. c.) Určete pravděpodobnost, že v daném kraji vyhraje volby Miloš Zeman. d.) Určete pravděpodobnost, že Karel Schwarzenberg získá více než 50% hlasů. 13. Mediálně známý ředitel velkého podniku tvrdí, že průměrná mzda v jeho zaměstnanců je korun. Chceme ověřit toto ředitelovo tvrzení, neboť ho podezíráme, že průměrnou mzdu nadhodnocuje. Zjistili jsme tedy mzdy 49 náhodně vybraných zaměstnanců podniku, a napočetli průměr těchto 49 mezd: korun, a výběrovou směrodatnou odchylku těchto 49 mezd: 5500 korun. a. Na 5 % hladině významnosti ověřte, zda je možné na základě těchto údajů zamítnout hypotézu o průměrně mzdě korun v celém podniku (tj. řečeno neformálně: vyvrátit tvrzení ředitele.) b. Na 1% hladině významnosti ověřte, zda je možné na základě těchto údajů zamítnout hypotézu o průměrně mzdě korun v celém podniku (tj. řečeno neformálně: vyvrátit tvrzení ředitele.) c. Sestavte 95% interval spolehlivosti pro průměrnou mzdu ze zjištěných dat.

5 14. Bylo vybráno 73 polí stejné kvality. Na 38 z nich se zkoušel nový způsob hnojení, zbývajících 35 bylo ošetřeno běžným způsobem. Průměrné výnosy pšenice při novém způsobu hnojení (tzn. průměrné výnosy napočtené z 38 polí pohnojených novým hnojivem) byly 5,3875 tun na hektar a výběrový rozptyl (výnosů napočtený z 38 polí pohnojených novým hnojivem) byl 0,2698. Průměrné výnosy pšenice při běžném způsobu hnojení (tzn. průměrné výnosy napočtené z 35 polí pohnojených běžným hnojivem) byly 4,7 tun na hektar a výběrový rozptyl (výnosů napočtený z 35 polí pohnojených běžným hnojivem) byl 0,24. Je třeba zjistit, zda nový způsob hnojení má vliv na výnosy pšenice. 15. Při sledování životnosti nových baterií VTEC 3000 bylo ze souboru baterií vybráno 30 a u nich byl vypočten průměr 195 dnů. Směrodatná odchylka v základním souboru je známá a její hodnota je 20. Předpokládáme, že životnost baterií se řídí normálním rozdělením. a. sestrojte 95% oboustranný interval spolehlivosti (IS) b. Vypočtěte, jak se změní IS, pokud zvýšíme rozsah výběru na 100 baterií c. Jak se změní IS, pokud nebudeme požadovat spolehlivost 95 %, ale 99 %? d. Kolik baterií bychom museli vybrat, aby se přípustná chyba změnila na hodnotu 10. Při zachování spolehlivosti 99%. 16. Prodejna potravin odebírá uzenářské výrobky od dvou dodavatelů a za důležitou považuje dobu, která uplyne od předání objednávky dodavatelům do okamžiku dodání objednaného zboží. První dodavatel byl testován ve 14 případech, průměrná doba čekání na objednané zboží byla 58 hodin při rozptylu 8,5. U druhého dodavatele uzenin bylo provedeno 11 pozorování, s průměrnou dobou 56 hodin s rozptylem 5. Na hladině významnosti 5 % ověřte hypotézu, zda mezi oběma dodavateli existuje takový rozdíl v rychlosti dodávek uzenin, který by byl pro vedení prodejny potravin podstatný. 17. Předpokládá se, že v České republice má: 41 % obyvatel krevní skupinu A 14 % obyvatel krevní skupinu B 7 % obyvatel krevní skupinu AB 38 % obyvatel krevní skupinu 0 V jistém týdnu darovalo krev celkem 215 dárců, kteří měli následující krevní skupiny: 82 mělo krevní skupinu A 38 mělo krevní skupinu B 26 mělo krevní skupinu AB 69 mělo krevní skupinu 0

6 a) Na 1% hladině významnosti rozhodněte, zda tyto zjištěné údaje jsou v souladu s předpokladem o poměrném zastoupení krevních skupin v České republice. b) Na 5% hladině významnosti rozhodněte, zda tyto zjištěné údaje jsou v souladu s předpokladem o poměrném zastoupení krevních skupin v České republice. 18. U osob byla zjišťována barva očí a vlasů. Výsledky jsou zaneseny v tabulce. Rozhodněte, zda barva očí a barva vlasů jsou závislé znaky. 19. Z provedeného průzkumu máme informace o pohlaví a preferenci bydliště. Na základě těchto údajů rozhodněte, zda závisí preference trvalého bydlení na pohlaví. 20. Je třeba rozhodnout, zda varianty testu (označíme je jako A, B, C) jsou stejně náročné. Každou variantu si napsali 4 náhodně vybraní studenti. Jejich výsledky jsou zaneseny v tabulce. Rozhodněte, zda se průměrný počet bodů získaný za různé varianty testu významně liší. (Řešte ručně a v Excelu) 21. V tabulce jsou uvedeny roční náklady na údržbu (v dolarech) a cena domu (v tisících dolarů):

7 a) modelujte závislost nákladů na údržbu na ceně regresní přímkou b) zhodnoťte kvalitu modelu pomocí koeficientu determinace c) interpretujte věcně hodnotu regresního koeficientu b1 d) odhadněte střední hodnotu nákladů u domů za 80. tisíc dolarů e) ověřte pomocí testu, zda se jedná o významnou závislost 22. V následující tabulce jsou uvedeny roky výroby a cena automobilu Mercedes Benz S- Class 350 w221. a) Najděte regresní přímku, která nejlépe vystihuje hledanou závislost. b) Určete koeficient determinace a c) korelační koeficient. d) Kolik procent variability vysvětluje zvolená regresní přímka? e) Proveďte bodový odhad ceny automobilu vyrobeného v roce f) Určete hodnotu residua v roce 2008 (vyrovnaná hodnota empirická hodnota). Rok výroby X Cena (tis) Y U automobilu byla měřena spotřeba benzínu v závislosti na rychlosti. Údaje jsou uvedeny v následující tabulce: (příklad se pokuste řešit za pomoci excelu i ručně) a) vyrovnejte data regresní parabolou b) charakterizujte těsnost závislosti c) ověřte význam kvadratického členu v modelu d) proveďte bodový odhad spotřeby při rychlosti 80 km/h e) interpretujte hodnotu regresního koeficientu 24. V následující tabulce jsou data získaná ze stránek nejmenovaného autobazaru v České republice. Data se týkají automobilu Škoda Fabia ve srovnatelné kvalitě a se stejným rokem výroby. Cena (tis Kč) Počet najetých kilometrů (tis) a) Vyberte vhodnou regresní funkci, b) vyrovnejte data zvolenou regresní funkcí, c) charakterizujte těsnost závislosti d) kolik procent variability vysvětluje zvolená regresní přímka e) proveďte bodový odhad ceny fabie, která má najeto 58 tis km f) proveďte celkový F-test parametrů g) proveďte t-testy jednotlivých parametrů

8 25. Tabulka obsahuje údaje o stáří, počtu najetých km a ceně 20 ojetých aut značky Octavia Combi. a) zkonstruujte regresní model závislosti ceny auta na jeho stáří a počtu najetých km b) posuďte jeho kvalitu c) a použijte jej k odhadu ceny auta starého 6 let, které má najeto 60 tis.km

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

Cvičící Kuba Kubina Kubinčák Body u závěrečného testu

Cvičící Kuba Kubina Kubinčák Body u závěrečného testu 1. Příklad U 12 studentů jsme sledovali počet dosažených bodů na závěrečném testu (od 0 do 60). Vždy 4 z těchto studentů chodili k jednomu ze 3 cvičících panu Kubovi, panu Kubinovi, nebo panu Kubinčákovi.

Více

(motto: An unsophisticated forecaster uses statistics as a drunken man uses lamp-posts - for support rather than for illumination.

(motto: An unsophisticated forecaster uses statistics as a drunken man uses lamp-posts - for support rather than for illumination. Neparametricke testy (motto: An unsophisticated forecaster uses statistics as a drunken man uses lamp-posts - for support rather than for illumination. Andrew Lang) 1. Příklad V následující tabulce jsou

Více

Sever Jih Západ Plechovka Točené Sever Jih Západ Součty Plechovka Točené Součty

Sever Jih Západ Plechovka Točené Sever Jih Západ Součty Plechovka Točené Součty Neparametrické testy (motto: Hypotézy jsou lešením, které se staví před budovu a pak se strhává, je-li budova postavena. Jsou nutné pro vědeckou práci, avšak skutečný vědec nepokládá hypotézy za předmětnou

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Vypočítejte: 8 3 10 9?? 29.11.2014 Tomáš Karel - 4ST201 2 n n! 8! 87654321 40320 k (n k)! k! (8 3)! 3! (5 4321) 321 1206 56 n n! 10! 109 8 7 6 5 4 3 2 1 10 k (n k)! k! (10 9)!

Více

676 + 4 + 100 + 196 + 0 + 484 + 196 + 324 + 64 + 324 = = 2368

676 + 4 + 100 + 196 + 0 + 484 + 196 + 324 + 64 + 324 = = 2368 Příklad 1 Je třeba prověřit, zda lze na 5% hladině významnosti pokládat za prokázanou hypotézu, že střední doba výroby výlisku je 30 sekund. Přitom 10 náhodně vybraných výlisků bylo vyráběno celkem 540

Více

Pravděpodobnost a matematická statistika

Pravděpodobnost a matematická statistika Pravděpodobnost a matematická statistika Příklady k přijímacím zkouškám na doktorské studium 1 Popisná statistika Určete aritmetický průměr dat, zadaných tabulkou hodnot x i a četností n i x i 1 2 3 n

Více

se bude objevovat jen v 5% pokusů. Výsledky měření jsou: 0,31; 0,30; 0,29; 0,32.

se bude objevovat jen v 5% pokusů. Výsledky měření jsou: 0,31; 0,30; 0,29; 0,32. Typ úlohy: A - IS pro střední hodnotu 1. Předpokládejme, že výška chlapců ve věku 9,5 až 10 roků má normální rozdělení N(µ; σ 2 )s neznámou střední hodnotou a rozptylem rovným 39,112. Změřili jsme výšku

Více

Příklad 81b. Předpokládejme, že výška chlapců ve věku 9,5 až 10 roků má normální rozdělení N(mi;sig2)

Příklad 81b. Předpokládejme, že výška chlapců ve věku 9,5 až 10 roků má normální rozdělení N(mi;sig2) Příklad 1. Za předpokladu, že výška dětí ve věku 10 let má normální rozdělení s rozptylem 38, určete pravostranný 99% interval spolehlivosti, ve kterém bude ležet neznámá střední hodnota výšky dětí, jestliže

Více

Pracovní list č. 3 Charakteristiky variability

Pracovní list č. 3 Charakteristiky variability 1. Při zjišťování počtu nezletilých dětí ve třiceti vybraných rodinách byly získány tyto výsledky: 1, 1, 0, 2, 3, 4, 2, 2, 3, 0, 1, 2, 2, 4, 3, 3, 0, 1, 1, 1, 2, 2, 0, 2, 1, 1, 2, 3, 3, 2. Uspořádejte

Více

1. Příklad U automobilu byla měřena spotřeba benzínu v závislosti na rychlosti:

1. Příklad U automobilu byla měřena spotřeba benzínu v závislosti na rychlosti: 1. říklad U automobilu byla měřena spotřeba benzínu v závislosti na rychlosti: Rychlost (km/h) 40 50 60 70 80 9010 Spotřeba (l/100 km) 5,7 5,4 5,2 5,2 5,8 6 6,8 8,1 a. Vyrovnejte data regresní přímkou

Více

4ST201 STATISTIKA CVIČENÍ Č. 7

4ST201 STATISTIKA CVIČENÍ Č. 7 4ST201 STATISTIKA CVIČENÍ Č. 7 testování hypotéz parametrické testy test hypotézy o střední hodnotě test hypotézy o relativní četnosti test o shodě středních hodnot testování hypotéz v MS Excel neparametrické

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

Cvičení ze statistiky - 9. Filip Děchtěrenko

Cvičení ze statistiky - 9. Filip Děchtěrenko Cvičení ze statistiky - 9 Filip Děchtěrenko Minule bylo.. Dobrali jsme normální rozdělení Tyhle termíny by měly být známé: Inferenční statistika Konfidenční intervaly Z-test Postup při testování hypotéz

Více

Analýza rozptylu. ANOVA cvičení

Analýza rozptylu. ANOVA cvičení Analýza rozptylu 1. Pět skupin po 4 mužích bylo vystaveno rozličné dietě A1 až A5. Na konci týdne byly vyčísleny kladné a záporné diference hmotnosti mužů po aplikaci týdenní diety. Porovnejte čtyři diety

Více

Bodové a intervalové odhady parametrů v regresním modelu

Bodové a intervalové odhady parametrů v regresním modelu Bodové a intervalové odhady parametrů v regresním modelu 1 Odhady parametrů 11 Bodové odhady Mějme lineární regresní model (LRM) kde Y = y 1 y 2 y n, e = e 1 e 2 e n Y = Xβ + e, x 11 x 1k, X =, β = x n1

Více

Korelace. Komentované řešení pomocí MS Excel

Korelace. Komentované řešení pomocí MS Excel Korelace Komentované řešení pomocí MS Excel Vstupní data Tabulka se vstupními daty je umístěna v oblasti A2:B84 (viz. obrázek) Prvotní představu o tvaru a síle závislosti docházky a počtu bodů nám poskytne

Více

Testování hypotéz. 1 Jednovýběrové testy. 90/2 odhad času

Testování hypotéz. 1 Jednovýběrové testy. 90/2 odhad času Testování hypotéz 1 Jednovýběrové testy 90/ odhad času V podmínkách naprostého odloučení má voák prokázat schopnost orientace v čase. Úkolem voáka e provést odhad časového intervalu 1 hodiny bez hodinek

Více

Korelační a regresní analýza

Korelační a regresní analýza Korelační a regresní analýza Analýza závislosti v normálním rozdělení Pearsonův (výběrový) korelační koeficient: r = s XY s X s Y, kde s XY = 1 n (x n 1 i=0 i x )(y i y ), s X (s Y ) je výběrová směrodatná

Více

Test z teorie VÝBĚROVÉ CHARAKTERISTIKY A INTERVALOVÉ ODHADY

Test z teorie VÝBĚROVÉ CHARAKTERISTIKY A INTERVALOVÉ ODHADY VÝBĚROVÉ CHARAKTERISTIKY A INTERVALOVÉ ODHADY Test z teorie 1. Střední hodnota pevně zvolené náhodné veličiny je a) náhodná veličina, b) konstanta, c) náhodný jev, d) výběrová charakteristika. 2. Výběrový

Více

Parametry hledáme tak, aby součet čtverců odchylek byl minimální. Řešením podle teorie je =

Parametry hledáme tak, aby součet čtverců odchylek byl minimální. Řešením podle teorie je = Příklad 1 Metodou nejmenších čtverců nalezněte odhad lineární regresní funkce popisující závislost mezi výnosy pšenice a množstvím použitého hnojiva na základě hodnot výběrového souboru uvedeného v tabulce.

Více

Určujeme neznámé hodnoty parametru základního souboru. Pomocí výběrové charakteristiky vypočtené z náhodného výběru.

Určujeme neznámé hodnoty parametru základního souboru. Pomocí výběrové charakteristiky vypočtené z náhodného výběru. 1 Statistické odhady Určujeme neznámé hodnoty parametru základního souboru. Pomocí výběrové charakteristiky vypočtené z náhodného výběru. Odhad lze provést jako: Bodový odhad o Jedna číselná hodnota Intervalový

Více

Test z teorie VÝBĚROVÉ CHARAKTERISTIKY A INTERVALOVÉ ODHADY

Test z teorie VÝBĚROVÉ CHARAKTERISTIKY A INTERVALOVÉ ODHADY VÝBĚROVÉ CHARAKTERISTIKY A INTERVALOVÉ ODHADY Test z teorie 1. Střední hodnota pevně zvolené náhodné veličiny je a) náhodná veličina, b) konstanta, c) náhodný jev, d) výběrová charakteristika. 2. Výběrový

Více

otec 165 178 158 170 180 160 170 167 185 165 173 175 syn 162 184 163 170 189 165 177 170 187 176 171 183

otec 165 178 158 170 180 160 170 167 185 165 173 175 syn 162 184 163 170 189 165 177 170 187 176 171 183 Regresní analýza 1. Byla zjištěna výška otců a výška jejich nejstarších synů [v cm]. otec 165 178 158 170 180 160 170 167 185 165 173 175 syn 162 184 163 170 189 165 177 170 187 176 171 183 c) Odhadněte

Více

Regresní analýza 1. Regresní analýza

Regresní analýza 1. Regresní analýza Regresní analýza 1 1 Regresní funkce Regresní analýza Důležitou statistickou úlohou je hledání a zkoumání závislostí proměnných, jejichž hodnoty získáme při realizaci experimentů Vzhledem k jejich náhodnému

Více

Regresní a korelační analýza

Regresní a korelační analýza Regresní a korelační analýza Mějme dvojici proměnných, které spolu nějak souvisí. x je nezávisle (vysvětlující) proměnná y je závisle (vysvětlovaná) proměnná Chceme zjistit funkční závislost y = f(x).

Více

Bodové a intervalové odhady parametrů v regresním modelu

Bodové a intervalové odhady parametrů v regresním modelu Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Lineární regresní model Mějme lineární regresní model (LRM) Y = Xβ + e, kde y 1 e 1 β y 2 Y =., e

Více

Testování statistických hypotéz

Testování statistických hypotéz Testování statistických hypotéz Michal Fusek Ústav matematiky FEKT VUT, fusekmi@feec.vutbr.cz 11. přednáška z ESMAT Michal Fusek (fusekmi@feec.vutbr.cz) 1 / 27 Obsah 1 Testování statistických hypotéz 2

Více

MATEMATIKA III V PŘÍKLADECH

MATEMATIKA III V PŘÍKLADECH VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ MATEMATIKA III V PŘÍKLADECH Cvičení 12 Testování hypotéz Mgr. Petr Otipka Ostrava 2013 Mgr. Petr Otipka Vysoká škola báňská Technická univerzita

Více

Statistika (KMI/PSTAT)

Statistika (KMI/PSTAT) Statistika (KMI/PSTAT) Cvičení dvanácté aneb Regrese a korelace Statistika (KMI/PSTAT) 1 / 18 V souboru 25 jedinců jsme měřili jejich výšku a hmotnost. Výsledky jsou v tabulce a grafu. Statistika (KMI/PSTAT)

Více

INDUKTIVNÍ STATISTIKA

INDUKTIVNÍ STATISTIKA 10. SEMINÁŘ INDUKTIVNÍ STATISTIKA 3. HODNOCENÍ ZÁVISLOSTÍ HODNOCENÍ ZÁVISLOSTÍ KVALITATIVNÍ VELIČINY - Vychází se z kombinační (kontingenční) tabulky, která je výsledkem třídění druhého stupně KVANTITATIVNÍ

Více

Normální (Gaussovo) rozdělení

Normální (Gaussovo) rozdělení Normální (Gaussovo) rozdělení Normální (Gaussovo) rozdělení popisuje vlastnosti náhodné spojité veličiny, která vzniká složením různých náhodných vlivů, které jsou navzájem nezávislé, kterých je velký

Více

Statistika. Teorie odhadu statistická indukce. Roman Biskup. (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at) .

Statistika. Teorie odhadu statistická indukce. Roman Biskup. (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at) . Statistika Teorie odhadu statistická indukce Intervalový odhad µ, σ 2 a π Roman Biskup (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at)email.cz 21. února 2012 Statistika

Více

STATISTIKA A INFORMATIKA - bc studium OZW, 1.roč. (zkušební otázky)

STATISTIKA A INFORMATIKA - bc studium OZW, 1.roč. (zkušební otázky) STATISTIKA A INFORMATIKA - bc studium OZW, 1.roč. (zkušební otázky) 1) Význam a využití statistiky v biologických vědách a veterinárním lékařství ) Rozdělení znaků (veličin) ve statistice 3) Základní a

Více

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická

Více

Příklady ze Statistiky

Příklady ze Statistiky Příklady ze Statistiky Regrese Příklad 1 V továrně byla sledována závislost celkových nákladů "n" (v tis. Kč.) na produkci "p". Byly zaznamenány následující údaje p = [532 297 378 121 519 613 592 497];

Více

Lineární regrese. Komentované řešení pomocí MS Excel

Lineární regrese. Komentované řešení pomocí MS Excel Lineární regrese Komentované řešení pomocí MS Excel Vstupní data Tabulka se vstupními daty je umístěna v oblasti A1:B11 (viz. obrázek) na listu cela data Postup Základní výpočty - regrese Výpočet základních

Více

Metodický list pro 3. soustředění kombinovaného Bc. studia předmětu B_St_2 STATISTIKA 2

Metodický list pro 3. soustředění kombinovaného Bc. studia předmětu B_St_2 STATISTIKA 2 Metodický list pro. soustředění kombinovaného Bc. studia předmětu B_St_ STATISTIKA Název tematického celku: Testy parametrů některých, testy shody parametrů v několika souborech Cíl tematického celku:

Více

LINEÁRNÍ REGRESE. Lineární regresní model

LINEÁRNÍ REGRESE. Lineární regresní model LINEÁRNÍ REGRESE Chemometrie I, David MILDE Lineární regresní model 1 Typy závislosti 2 proměnných FUNKČNÍ VZTAH: 2 závisle proměnné: určité hodnotě x odpovídá jediná hodnota y. KORELACE: 2 náhodné (nezávislé)

Více

Jednostranné intervaly spolehlivosti

Jednostranné intervaly spolehlivosti Jednostranné intervaly spolehlivosti hledáme jen jednu z obou mezí Princip: dle zadání úlohy hledáme jen dolní či jen horní mez podle oboustranného vzorce s tou změnou, že výraz 1-α/2 ve vzorci nahradíme

Více

6. Lineární regresní modely

6. Lineární regresní modely 6. Lineární regresní modely 6.1 Jednoduchá regrese a validace 6.2 Testy hypotéz v lineární regresi 6.3 Kritika dat v regresním tripletu 6.4 Multikolinearita a polynomy 6.5 Kritika modelu v regresním tripletu

Více

Intervalový odhad. Interval spolehlivosti = intervalový odhad nějakého parametru s danou pravděpodobností = konfidenční interval pro daný parametr

Intervalový odhad. Interval spolehlivosti = intervalový odhad nějakého parametru s danou pravděpodobností = konfidenční interval pro daný parametr StatSoft Intervalový odhad Dnes se budeme zabývat neodmyslitelnou součástí statistiky a to intervaly v nejrůznějších podobách. Toto téma je také úzce spojeno s tématem testování hypotéz, a tedy plynule

Více

AKM CVIČENÍ. Opakování maticové algebry. Mějme matice A, B regulární, potom : ( AB) = B A

AKM CVIČENÍ. Opakování maticové algebry. Mějme matice A, B regulární, potom : ( AB) = B A AKM - 1-2 CVIČENÍ Opakování maticové algebry Mějme matice A, B regulární, potom : ( AB) = B A 1 1 ( A ) = ( A ) ( A ) = A ( A + B) = A + B 1 1 1 ( AB) = B A, kde A je řádu mxn a B nxk Čtvercová matice

Více

Regresní a korelační analýza

Regresní a korelační analýza Regresní a korelační analýza Mějme dvojici proměnných, které spolu nějak souvisí. x je nezávisle (vysvětlující) proměnná y je závisle (vysvětlovaná) proměnná Chceme zjistit funkční závislost y = f(x).

Více

Vybraná rozdělení náhodné veličiny

Vybraná rozdělení náhodné veličiny 3.3 Vybraná rozdělení náhodné veličiny 0,16 0,14 0,12 0,1 0,08 0,06 0,04 0,02 0 Rozdělení Z 3 4 5 6 7 8 9 10 11 12 13 14 15 Život je umění vytvářet uspokojivé závěry na základě nedostatečných předpokladů.

Více

Regresní analýza. Eva Jarošová

Regresní analýza. Eva Jarošová Regresní analýza Eva Jarošová 1 Obsah 1. Regresní přímka 2. Možnosti zlepšení modelu 3. Testy v regresním modelu 4. Regresní diagnostika 5. Speciální využití Lineární model 2 1. Regresní přímka 3 nosnost

Více

Biostatistika Cvičení 7

Biostatistika Cvičení 7 TEST Z TEORIE 1. Střední hodnota pevně zvolené náhodné veličiny je a) náhodná veličina, b) konstanta, c) náhodný jev, d) výběrová charakteristika. 2. Výběrový průměr je a) náhodná veličina, b) konstanta,

Více

Testování hypotéz. 1. vymezení základních pojmů 2. testování hypotéz o rozdílu průměrů 3. jednovýběrový t-test

Testování hypotéz. 1. vymezení základních pojmů 2. testování hypotéz o rozdílu průměrů 3. jednovýběrový t-test Testování hypotéz 1. vymezení základních pojmů 2. testování hypotéz o rozdílu průměrů 3. jednovýběrový t-test Testování hypotéz proces, kterým rozhodujeme, zda přijmeme nebo zamítneme nulovou hypotézu

Více

Testování statistických hypotéz

Testování statistických hypotéz Testování statistických hypotéz Na základě náhodného výběru, který je reprezentativním vzorkem základního souboru (který přesně neznáme, k němuž se ale daná statistická hypotéza váže), potřebujeme ověřit,

Více

PRAVDĚPODOBNOST A STATISTIKA

PRAVDĚPODOBNOST A STATISTIKA PRAVDĚPODOBNOST A STATISTIKA Testování hypotéz Nechť X je náhodná proměnná, která má distribuční funkci F(x, ϑ). Předpokládejme, že známe tvar distribuční funkce (víme jaké má rozdělení) a neznáme parametr

Více

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK211 Základy ekonometrie ZS 2014/15 Cvičení 6: Dummy proměnné, multikolinearita LENKA FIŘTOVÁ KATEDRA EKONOMETRIE, FAKULTA INFORMATIKY A STATISTIKY VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE 1. Pokračování z minula:

Více

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK211 Základy ekonometrie ZS 2014/15 Cvičení 6: Dummy proměnné, úvod do časových řad LENKA FIŘTOVÁ KATEDRA EKONOMETRIE, FAKULTA INFORMATIKY A STATISTIKY VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE 1. Multikolinearita

Více

Jednovýběrový Wilcoxonův test a jeho asymptotická varianta (neparametrická obdoba jednovýběrového t-testu)

Jednovýběrový Wilcoxonův test a jeho asymptotická varianta (neparametrická obdoba jednovýběrového t-testu) Jednovýběrový Wilcoxonův test a jeho asymptotická varianta (neparametrická obdoba jednovýběrového t-testu) Frank Wilcoxon (1892 1965): Americký statistik a chemik Nechť X 1,..., X n je náhodný výběr ze

Více

TECHNICKÁ UNIVERZITA V LIBERCI. Ekonomická fakulta. Semestrální práce. Statistický rozbor dat z dotazníkového šetření školní zadání

TECHNICKÁ UNIVERZITA V LIBERCI. Ekonomická fakulta. Semestrální práce. Statistický rozbor dat z dotazníkového šetření školní zadání TECHNICKÁ UNIVERZITA V LIBERCI Ekonomická fakulta Semestrální práce Statistický rozbor dat z dotazníkového šetření školní zadání Skupina: 51 Vypracovaly: Pavlína Horná, Nikola Loumová, Petra Mikešová,

Více

Testování statistických hypotéz

Testování statistických hypotéz Testování statistických hypotéz 1 Testování statistických hypotéz 1 Statistická hypotéza a její test V praxi jsme nuceni rozhodnout, zda nějaké tvrzeni o parametrech náhodných veličin nebo o veličině samotné

Více

MÍRY ZÁVISLOSTI (KORELACE A REGRESE)

MÍRY ZÁVISLOSTI (KORELACE A REGRESE) zhanel@fsps.muni.cz MÍRY ZÁVISLOSTI (KORELACE A REGRESE) 2.5 MÍRY ZÁVISLOSTI 2.5.1 ZÁVISLOST PEVNÁ, VOLNÁ, STATISTICKÁ A KORELAČNÍ Jednorozměrné soubory - charakterizovány jednotlivými statistickými znaky

Více

Testování hypotéz. 4. přednáška 6. 3. 2010

Testování hypotéz. 4. přednáška 6. 3. 2010 Testování hypotéz 4. přednáška 6. 3. 2010 Základní pojmy Statistická hypotéza Je tvrzení o vlastnostech základního souboru, o jehož pravdivosti se chceme přesvědčit. Předem nevíme, zda je pravdivé nebo

Více

Inovace bakalářského studijního oboru Aplikovaná chemie

Inovace bakalářského studijního oboru Aplikovaná chemie http://aplchem.upol.cz CZ.1.07/2.2.00/15.0247 Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Regrese Závislostproměnných funkční y= f(x) regresní y= f(x)

Více

Zápočtové úkoly Statistika II PAEK, LS 2014 2015

Zápočtové úkoly Statistika II PAEK, LS 2014 2015 Zápočtové úkoly Statistika II PAEK, LS 2014 2015 Pokyny Každý student odevzdává domácí úkol sám za sebe. Odevzdání proběhne přes systém moodle v předmětu Statistika II PaEK (ESE74E) přes odkaz Zápočtový

Více

letní semestr 2012 Katedra pravděpodobnosti a matematické statistiky Matematicko-fyzikální fakulta Univerzity Karlovy Matematická statistika

letní semestr 2012 Katedra pravděpodobnosti a matematické statistiky Matematicko-fyzikální fakulta Univerzity Karlovy Matematická statistika Šárka Hudecová Katedra pravděpodobnosti a matematické statistiky Matematicko-fyzikální fakulta Univerzity Karlovy letní semestr 2012 Opakování t- vs. neparametrické Wilcoxonův jednovýběrový test Opakování

Více

Příklady na testy hypotéz o parametrech normálního rozdělení

Příklady na testy hypotéz o parametrech normálního rozdělení Příklady na testy hypotéz o parametrech normálního rozdělení. O životnosti 75W žárovky (v hodinách) je známo, že má normální rozdělení s = 5h. Pro náhodný výběr 0 žárovek byla stanovena průměrná životnost

Více

4ST201 STATISTIKA CVIČENÍ Č. 10

4ST201 STATISTIKA CVIČENÍ Č. 10 4ST201 STATISTIKA CVIČENÍ Č. 10 regresní analýza - vícenásobná lineární regrese korelační analýza Př. 10.1 Máte zadaný výstup regresní analýzy závislosti závisle proměnné Y na nezávisle proměnné X. Doplňte

Více

JEDNOVÝBĚROVÉ TESTY. Komentované řešení pomocí programu Statistica

JEDNOVÝBĚROVÉ TESTY. Komentované řešení pomocí programu Statistica JEDNOVÝBĚROVÉ TESTY Komentované řešení pomocí programu Statistica Vstupní data Data umístěná v excelovském souboru překopírujeme do tabulky ve Statistice a pojmenujeme proměnné, viz prezentace k tématu

Více

Cvičení ze statistiky - 8. Filip Děchtěrenko

Cvičení ze statistiky - 8. Filip Děchtěrenko Cvičení ze statistiky - 8 Filip Děchtěrenko Minule bylo.. Dobrali jsme normální rozdělení Tyhle termíny by měly být známé: Centrální limitní věta Laplaceho věta (+ korekce na spojitost) Konfidenční intervaly

Více

Normální (Gaussovo) rozdělení

Normální (Gaussovo) rozdělení Normální (Gaussovo) rozdělení f x = 1 2 exp x 2 2 2 f(x) je funkce hustoty pravděpodobnosti, symetrická vůči poloze maxima x = μ μ střední hodnota σ směrodatná odchylka (tzv. pološířka křivky mezi inflexními

Více

Regresní a korelační analýza

Regresní a korelační analýza Regresní a korelační analýza Mějme dvojici proměnných, které spolu nějak souvisí. x je nezávisle (vysvětlující) proměnná y je závisle (vysvětlovaná) proměnná Chceme zjistit funkční závislost y = f(x).

Více

Úvod do teorie odhadu. Ing. Michael Rost, Ph.D.

Úvod do teorie odhadu. Ing. Michael Rost, Ph.D. Úvod do teorie odhadu Ing. Michael Rost, Ph.D. Náhodný výběr Náhodným výběrem ze základního souboru populace, která je popsána prostřednictvím hustoty pravděpodobnosti f(x, θ), budeme nazývat posloupnost

Více

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004.

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Prostá regresní a korelační analýza 1 1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Problematika závislosti V podstatě lze rozlišovat mezi závislostí nepodstatnou, čili náhodnou

Více

Regresní a korelační analýza

Regresní a korelační analýza Regresní a korelační analýza Mějme dvojici proměnných, které spolu nějak souvisí. x je nezávisle (vysvětlující) proměnná y je závisle (vysvětlovaná) proměnná Chceme zjistit funkční závislost y = f(x).

Více

STATISTICKÉ ODHADY Odhady populačních charakteristik

STATISTICKÉ ODHADY Odhady populačních charakteristik STATISTICKÉ ODHADY Odhady populačních charakteristik Jak stanovit charakteristiky rozložení sledované veličiny v základní populaci? Populaci většinou nemáme celou k dispozici, musíme se spokojit jen s

Více

31. 3. 2014, Brno Hanuš Vavrčík Základy statistiky ve vědě

31. 3. 2014, Brno Hanuš Vavrčík Základy statistiky ve vědě 31. 3. 2014, Brno Hanuš Vavrčík Základy statistiky ve vědě Motto Statistika nuda je, má však cenné údaje. strana 3 Statistické charakteristiky Charakteristiky polohy jsou kolem ní seskupeny ostatní hodnoty

Více

Regresní a korelační analýza

Regresní a korelační analýza Regresní a korelační analýza Mějme dvojici proměnných, které spolu nějak souvisí. x je nezávisle (vysvětlující) proměnná y je závisle (vysvětlovaná) proměnná Chceme zjistit funkční závislost y = f(x).

Více

MSI LS 2006/2007 Ing. Pavla Hošková, Ph.D., 2. test

MSI LS 2006/2007 Ing. Pavla Hošková, Ph.D., 2. test c 2007 Kompost 1 MSI LS 2006/2007 Ing. Pavla Hošková, Ph.D., 2. test Jestliže při testování výsledek (hodnota testového kritéria) padne do kritického oboru: a) musíme nově formulovat nulovou hypotézu,

Více

UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11.

UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11. UNIVERZITA OBRANY Fakulta ekonomiky a managementu Aplikace STAT1 Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 Jiří Neubauer, Marek Sedlačík, Oldřich Kříž 3. 11. 2012 Popis a návod k použití aplikace

Více

VŠB Technická univerzita Ostrava Fakulta elektrotechniky a informatiky

VŠB Technická univerzita Ostrava Fakulta elektrotechniky a informatiky VŠB Technická univerzita Ostrava Fakulta elektrotechniky a informatiky PRAVDĚPODOBNOST A STATISTIKA Zadání 1 JMÉNO STUDENTKY/STUDENTA: OSOBNÍ ČÍSLO: JMÉNO CVIČÍCÍ/CVIČÍCÍHO: DATUM ODEVZDÁNÍ DOMÁCÍ ÚKOL

Více

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK211 Základy ekonometrie ZS 2015/16 Cvičení 1: Opakování ze statistiky LENKA FIŘTOVÁ KATEDRA EKONOMETRIE, FAKULTA INFORMATIKY A STATISTIKY VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE Z čeho studovat 1) Z KNIHY Krkošková,

Více

Testy. Pavel Provinský. 19. listopadu 2013

Testy. Pavel Provinský. 19. listopadu 2013 Testy Pavel Provinský 19. listopadu 2013 Test a intervalový odhad Testy a intervalové odhady - jsou vlastně to samé. Jiný je jen úhel pohledu. Lze přecházet od jednoho k druhému. Například: Při odvozování

Více

You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com)

You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com) Závislost náhodných veličin Úvod Předchozí přednášky: - statistické charakteristiky jednoho výběrového nebo základního souboru - vztahy mezi výběrovým a základním souborem - vztahy statistických charakteristik

Více

9. cvičení 4ST201. Obsah: Jednoduchá lineární regrese Vícenásobná lineární regrese Korelační analýza. Jednoduchá lineární regrese

9. cvičení 4ST201. Obsah: Jednoduchá lineární regrese Vícenásobná lineární regrese Korelační analýza. Jednoduchá lineární regrese cvčící 9. cvčení 4ST01 Obsah: Jednoduchá lneární regrese Vícenásobná lneární regrese Korelační analýza Vysoká škola ekonomcká 1 Jednoduchá lneární regrese Regresní analýza je statstcká metoda pro modelování

Více

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 010 1.týden (0.09.-4.09. ) Data, typy dat, variabilita, frekvenční analýza

Více

Stanovení manganu a míry přesnosti kalibrace ( Lineární kalibrace )

Stanovení manganu a míry přesnosti kalibrace ( Lineární kalibrace ) Příklad č. 1 Stanovení manganu a míry přesnosti kalibrace ( Lineární kalibrace ) Zadání : Stanovení manganu ve vodách se provádí oxidací jodistanem v kyselém prostředí až na manganistan. (1) Sestrojte

Více

KORELACE. Komentované řešení pomocí programu Statistica

KORELACE. Komentované řešení pomocí programu Statistica KORELACE Komentované řešení pomocí programu Statistica Vstupní data I Data umístěná v excelovském souboru překopírujeme do tabulky ve Statistice a pojmenujeme proměnné, viz prezentace k tématu Popisná

Více

odpovídá jedna a jen jedna hodnota jiných

odpovídá jedna a jen jedna hodnota jiných 8. Regresní a korelační analýza Problém: hledání, zkoumání a hodnocení souvislostí, závislostí mezi dvěma a více statistickými znaky (veličinami). Typy závislostí: pevné a volné Pevná závislost každé hodnotě

Více

Jana Vránová, 3.lékařská fakulta UK, Praha. Hypotézy o populacích

Jana Vránová, 3.lékařská fakulta UK, Praha. Hypotézy o populacích Jana Vránová, 3.lékařská fakulta UK, Praha Hypotézy o populacích Příklad IQ test: Předpokládejme, že z nějakého důvodu ministerstvo školství věří, že studenti absolventi středních škol v Hradci Králové

Více

Ing. Michael Rost, Ph.D.

Ing. Michael Rost, Ph.D. Úvod do testování hypotéz, jednovýběrový t-test Ing. Michael Rost, Ph.D. Testovaná hypotéza Pokud nás zajímá zda platí, či neplatí tvrzení o určitém parametru, např. o parametru Θ, pak takovéto tvrzení

Více

Charakteristika datového souboru

Charakteristika datového souboru Zápočtová práce z předmětu Statistika Vypracoval: 10. 11. 2014 Charakteristika datového souboru Zadání: Při kontrole dodržování hygienických norem v kuchyni se prováděl odběr vzduchu a pomocí filtru Pallflex

Více

TECHNICKÁ UNIVERZITA V LIBERCI

TECHNICKÁ UNIVERZITA V LIBERCI TECHNICKÁ UNIVERZITA V LIBERCI Ekonomická fakulta Semestrální práce Statistický rozbor dat z dotazníkového šetření Počet stran: 10 Datum odevzdání: 13. 5. 2016 Pavel Kubát Obsah Úvod... 3 1 Charakterizujte

Více

13.1. Úvod Cílem regresní analýzy je popsat závislost hodnot znaku Y na hodnotách

13.1. Úvod Cílem regresní analýzy je popsat závislost hodnot znaku Y na hodnotách 13 Regrese 13.1. Úvod Cílem regresní analýzy je popsat závislost hodnot znaku Y na hodnotách znaku X. Přitom je třeba vyřešit jednak volbu funkcí k vystižení dané závislosti a dále stanovení konkrétních

Více

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK Základy ekonometrie Odhad klasického lineárního regresního modelu II Cvičení 3 Zuzana Dlouhá Klasický lineární regresní model - zadání příkladu Soubor: CV3_PR.xls Data: y = maloobchodní obrat potřeb

Více

{ } ( 2) Příklad: Test nezávislosti kategoriálních znaků

{ } ( 2) Příklad: Test nezávislosti kategoriálních znaků Příklad: Test nezávislosti kategoriálních znaků Určete na hladině významnosti 5 % na základě dat zjištěných v rámci dotazníkového šetření ve Šluknově, zda existuje závislost mezi pohlavím respondenta a

Více

Kontingenční tabulky, korelační koeficienty

Kontingenční tabulky, korelační koeficienty Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Mějme kategoriální proměnné X a Y. Vytvoříme tzv. kontingenční tabulku. Budeme tedy testovat hypotézu

Více

Kalibrace a limity její přesnosti

Kalibrace a limity její přesnosti Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie Kalibrace a limity její přesnosti Semestrální práce Licenční studium GALILEO Interaktivní statistická analýza dat Brno, 2015

Více

Testování hypotéz o parametrech regresního modelu

Testování hypotéz o parametrech regresního modelu Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Lineární regresní model kde Y = Xβ + e, y 1 e 1 β y 2 Y =., e = e 2 x 11 x 1 1k., X =....... β 2,

Více