= = 2368

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "676 + 4 + 100 + 196 + 0 + 484 + 196 + 324 + 64 + 324 = = 2368"

Transkript

1 Příklad 1 Je třeba prověřit, zda lze na 5% hladině významnosti pokládat za prokázanou hypotézu, že střední doba výroby výlisku je 30 sekund. Přitom 10 náhodně vybraných výlisků bylo vyráběno celkem 540 sekund, v jednotlivých případech to bylo 28, 56, 64, 68, 54, 32, 68, 72, 62, 36. Předpokládáme, že doba výroby výlisku má normální rozdělení. Řešení 1 V tomto případě testujeme střední hodnotu a neznáme rozptyl. Použijeme tedy jednovýběrový t-test. Budeme testovat nulovou hypotézu proti jednostranné alternativní hypotéze H 0 : μ = μ 0 = 30, H 1 : μ > μ 0 = 30 Podle charakteru nerovnosti v alternativní hypotéze vidíme, že jde o jednostranný případ. Pro zjištění testovací hodnoty použijeme tabulku kvantilů Studentova t rozdělení t 1 α o n stupních volnosti. Podle teorie použijeme testovou statistiku T = X μ 0 n S Známe počet prvků výběru n = 10 a střední hodnotu výběru. Tou je X = = 54 Dále potřebujeme směrodatnou odchylku z výběru S. Vypočteme nejprve rozptyl z výběru. S 2 = 1 10 [(28 54)2 + (56 54) 2 + (64 54) 2 + (68 54) 2 + (54 54) 2 + (32 54) 2 + (68 54) 2 + (72 54) 2 + (62 54) 2 + (36 54) 2 ] = ( 26) ( 22) ( 18) = = = 236,8 Odtud směrodatná odchylka výběru je S = 15,38831 Nakonec vypočteme testovou statistiku dle vzorce uvedeného výše T = 15, = 24 3, = 1, , = 4, ,38831 V tabulce kvantilů Studentova t rozdělení t 1 α o n stupních volnosti nalezneme hodnotu t 10 1 (1 0,05) = t 9 (1 0,05) = 1,833 Nyní již jen zbývá učinit závěrečné rozhodnutí. Podle teorie na hladině α pak zamítáme hypotézu H 0 a přikloníme se k alternativní hypotéze H 1, pokud (pozor testujeme jednostranný případ) T t n 1 (1 α) Hypotézu H 0 nezamítáme, pokud T < t n 1 (1 α) V našem konkrétním případě tedy platí první z uvedených možností, neboť T = 4,93197 = 4,93197 > 1,833 = t 9 (1 0,05) Proto hypotézu H 0 zamítáme a přikláníme se k hypotéze H 1. d b 1

2 Příklad 2 Byl proveden náhodný výběr 144 dodaných odlitků. Byla zjištěna jejich průměrná hmotnost x = 344 kg a směrodatná odchylka σ = 52 kg. Chceme testem prokázat, že průměrná hmotnost dodávaných odlitků je větší než 336 kg. Test má být proveden na hladině významnosti α = 0,05. Řešení 2 Formulujeme nulovou hypotézu tedy lze formulovat proti jednostranné alternativní hypotéze. H 0 : μ = 336, H 1 : μ > 336 Vzhledem k tomu, že n = 144 je splněna podmínka dostatečně velkého výběru n 30. Hladina významnosti α = 0,05. Kvantil u 1 α pro pravostranný test najdeme v tabulce kvantilů N(0; 1) rozdělení, u 1 α = 1,645. Máme tedy zadáno μ 0 = 336, X = 344, σ = 52, n = 144, u 1 α = 1,645 Můžeme tedy použít Z-test jednovýběrový test střední hodnoty při známém rozptylu. Podle teorie pro hypotézu H 0 : μ = μ 0 proti alternativní hypotéze H 1 : μ: > μ 0 lze použít testovou statistiku Z = X μ 0 n σ Na hladině α pak zamítáme hypotézu H 0 a přikloníme se k alternativní hypotéze H 1, pokud Z Φ 1 (1 α) Hypotézu H 0 nezamítáme, pokud Z < Φ 1 (1 α) Nyní tedy vypočítáme hodnotu testového statistiky, dosadíme Z = X μ n = 144 = 8 σ = = = 1, Při jednostranném testu a dané hladině významnosti je kritický obor dán množinou hodnot vyšších než 1,645. Protože pro hodnotu testového kritéria 1, > 1,645, zamítáme nulovou hypotézu ve prospěch alternativní hypotézy na 5% hladině významnosti. Můžeme tedy s 5% rizikem omylu tvrdit, že průměrná hmotnost přejímaných odlitků je vyšší než 336 kg. Celou situaci lze graficky znázornit tak, jak uvádí obrázek. d b 2

3 Příklad 3 Chceme ověřit, zda výkon pracovníků v jednom podniku je významně vyšší než v druhém, kde se vyrábí stejný typ výrobků. Je znám rozptyl výkonů v obou podnicích σ 1 2 = 20, σ 2 2 = 18. V obou podnicích byl proveden náhodný výběr o rozsahu n 1 = 60, n 2 = 50 pracovníků a vypočteny průměrné výkony za směnu x 1 = 140, x 2 = 137. Test provedeme na 5% hladině významnosti. Řešení 3 Nulovou hypotézou je předpoklad, že se průměrné výkony pracovníků obou podniků neliší, alternativní hypotéza pak bude, že v prvním podniku je výkon vyšší. H 0 : μ 1 = μ 2, H 1 : μ 1 > μ 2 Hypotézu můžeme přeformulovat takto: H 0 : μ 1 μ 2 = 0, H 1 : μ 1 μ 2 > 0 Je zřejmé, že v úloze jde o dva nezávislé výběry. Pro řešení úlohy tedy použijeme dvouvýběrový t-test. Testovací statistikou bude (jde o jednodušší vyjádření toho, co je v teorii bez snížení stupně výběrů) T = X 1 X 2 0 σ σ 2 2 n 1 n 2 Dosadíme a dostaneme T = = = = = = = 0, = 3 0, = 3, Podle teorie na hladině α zamítáme hypotézu H 0 : μ 1 = μ 2 a přikloníme se k alternativní hypotéze H 1 : μ 1 > μ 2, pokud (nezapomeňme, že jde o jednostranný případ) T t n1 +n 2 2(1 α) Nalezneme tedy v tabulce kvantilů Studentova t rozdělení t 1 α o n stupních volnosti Potřebnou hodnotu (tabulka končí řádky pro 100 a nekonečno, vybereme ten pro 100). t n1 +n 2 2(1 α) = t (1 0,05) = t 108 (1 0,05) 1,660 Jasně vidíme, že platí T = 3, = 3, > 1,660 t 108 (1 0,05) Protože hodnota testového kritéria převyšuje kritickou hodnotu, zamítáme nulovou hypotézu a považujeme alternativní hypotézu, že v prvním podniku je průměrný výkon za směnu vyšší než v podniku druhém, za prokázanou na zvolené 5% hladině významnosti. d b 3

4 Příklad 4 Chceme posoudit přesnost dvou různých měřících metod. Bylo provedeno 16 nezávislých měření jistého objektu první metodou a 10 měření druhou metodou. Byly zjištěny následující hodnoty výběrových rozptylů: s 1 2 = 11,843, s 2 2 = 6,475 Máme ověřit na hladině významnosti 5%, zda existuje shoda v přesnosti obou měřících metod. Řešení 4 Vzhledem k tomu, že jde o výsledky měření, můžeme považovat rozdělení obou metod za normální. Obě sady měření proběhly na tomtéž objektu. Jsou tedy závislé. Pro řešení tedy můžeme použít případ párového t-testu (s jediným párem náhodná veličina X 1 je výsledek první sady měření a náhodná veličina Y 1 je výsledek druhé sady měření). O středních hodnotách obou měření nemáme žádnou informaci, můžeme předpokládat, že jsou stejné. V úloze zřetelně jde o porovnání rozptylů obou měření. Přitom je zřejmé, že za přesnější považujeme metodu, která má menší rozptyl. Budeme testovat nulovou hypotézu, že rozptyly jsou stejné proti alternativní hypotéze, že rozptyly se liší, neboli H 0 : σ 1 2 = σ 2 2, H 1 : σ 1 2 > σ 2 2 Je zřejmé, že v tomto případě jde o oboustrannou situaci. Vzhledem k předpokladu stejné střední hodnoty obou sad měření nemůžeme použít testovou statistiku z teorie (dostali bychom nulový čitatel). Jako statistiku tedy volíme zjednodušení standardní statistiky na podíl obou výběrových rozptylů. T = σ 1 2 σ 2 2 Nyní vypočítáme hodnotu této statistiky T = 11,843 6,475 = 1, Kritickou hodnotu nalezneme v tabulce kvantilů Studentova t rozdělení t 1 α 2 o n stupních volnosti t 1 (1 0,05 2 ) = 12,706 Jelikož hodnota testového kritéria je menší než hodnota kritická, nemůžeme na hladině významnosti 5 % hypotézu H 0 zamítnout. Poznámka Pro testování rozptylu normálního rozdělení na nějakou konkrétní hodnotu se standardně používá metoda uvedená v teoretické části. Na tento konkrétní příklad je ale vhodnější použít statistiku na základě F rozdělení, které je zaměřeno na poměr dvou nezávislých veličin a je velmi často používáno na situaci, kdy má být zkoumána rozdílnost dvou rozptylů. Popis tohoto rozdělení je už ale mimo téma předmětu. d b 4

5 Příklad 5 Byly získány přesné hmotnosti jednotlivých prvků souboru z náhodného výběru (na jednotce hmotnosti nijak nezáleží): 243,2; 244,8; 253,1; 247,5; 251,0; 251,7; 254,0; 252,5; 252,8; 250,1; 247,3; 250,9; 253,2; 252,7 Máme na 5% hladině významnosti prokázat, že a) před seřízením stroje střední hodnota hmotnosti překračovala 250, b) před seřízením stroje překračovala směrodatná odchylka hodnotu 1, Řešení 5a V tomto případě jde o náhodný výběr z normálního rozdělení. Budeme testovat střední hodnotu a přitom neznáme rozptyl. Pro tuto úlohu tedy uplatníme t-test jednovýběrový test střední hodnoty při neznámém rozptylu. Budeme testovat nulovou hypotézu proti jednostranné alternativní hypotéze H 0 : μ = μ 0 = 250, H 1 : μ > μ 0 = 250 Podle charakteru nerovnosti v alternativní hypotéze vidíme, že jde o jednostranný případ. Pro zjištění testovací hodnoty použijeme tabulku kvantilů Studentova t rozdělení t 1 α o n stupních volnosti. Podle teorie použijeme testovou statistiku T = X μ 0 n S Známe počet prvků výběru n = 14. Střední hodnotu výběru si vypočteme. n X = 1 n x i i=1 = 1 (243, , , , , , , , , , , , , ,7) = ,8 = 250, ,3 14 Dále potřebujeme směrodatnou odchylku z výběru S. Vypočteme nejprve rozptyl z výběru. S 2 = 1 14 [(243,2 250,3)2 + (244,8 250,3) 2 + (253,1 250,3) 2 + (247,5 250,3) 2 + (251,0 250,3) 2 + (251,7 250,3) 2 + (254,0 250,3) 2 + (252,5 250,3) 2 + (252,8 250,3) 2 + (250,1 250,3) 2 + (247,3 250,3) 2 + (250,9 250,3) 2 + (253,2 250,3) 2 + (252,7 250,3) 2 ] = ( 7,1)2 + ( 5,5) 2 + 2,8 2 + ( 2,8) 2 + 0, , , ,22 + 2,5 2 + ( 0,2) 2 + ( 3,0) 2 + 0, , , , ,25 + 7,84 + 7,84 + 0,49 + 1, ,69 + 4, ,5 + 0, ,36 + 8,41 + 5,76 = 14 = 147,14 = 10,51 14 Odtud směrodatná odchylka výběru je S = 10,51 = 3, Nakonec vypočteme testovou statistiku dle vzorce uvedeného výše 250,3 250 T = 3, = 0,3 3, = 0, , = 0, , V tabulce kvantilů Studentova t rozdělení t 1 α o n stupních volnosti nalezneme hodnotu d b 5

6 t 14 1 (1 0,05) = t 13 (1 0,05) = 1,771 Nyní již jen zbývá učinit závěrečné rozhodnutí. Podle teorie na hladině α pak zamítáme hypotézu H 0 a přikloníme se k alternativní hypotéze H 1, pokud (testujeme jednostranný případ) T t n 1 (1 α) Hypotézu H 0 nezamítáme, pokud T < t n 1 (1 α) V našem konkrétním případě tedy platí první z uvedených možností, neboť T = 0, = 0, < 1,771 = t 13 (1 0,05) Proto hypotézu H 0 nemůžeme zamítnout. Nulová hypotéza v tomto případě patří do oboru přijetí. Řešení 5b V tomto případě máme testovat hypotézu o hodnotě rozptylu vůči dané hodnotě, v tomto případě konkrétně máme nulovou hypotézu a jednostrannou alternativní hypotézu H 0 : σ 2 = σ 2 0 = 1, H 1 : σ 2 > σ 2 0 = 1 Podle teorie použijeme statistiku (s 2 je výběrový rozptyl) χ 2 (n 1)s2 = σ 2 0 Na hladině α pak zamítáme hypotézu H 0 a přikloníme se k alternativní hypotéze H 1, pokud (pracujeme s jednostrannou alternativní hypotézou) χ 2 2 > χ 1 α (n 1) nebo χ 2 < χ 2 α (n 1) V tomto případě pro nalezení kritických hodnot využíváme tabulku kvantilů χ 2 1 α rozdělení. Výběrový rozptyl s 2 = 10,51 jsme vypočítali v řešení odstavce a tohoto příkladu. Ostatní hodnoty pro výpočet statistiky máme k dispozici přímo. Můžeme tedy dosadit a dostaneme χ 2 (n 1)s2 (14 1) 10, ,51 = = = = 136,63 = 136,63 σ V tabulce kvantilů χ 2 1 α rozdělení nalezneme pro zvolenou hladinu významnosti hodnotu odpovídající n = 14 1 = 13. Tou je 22,36. Zcela zřejmě platí 136,63 > 22,36. Proto můžeme zamítnout nulovou hypotézu a s pravděpodobností 0,95 tvrdit, že variabilita hmotnosti před seřízením byla větší než 1. d b 6

7 Příklad 6 Je známo, že IQ má normální rozdělení. Za střední hodnotu se považuje IQ 100 bodů. Při testu inteligence, kterého se zúčastnilo 10 náhodně vybraných jedinců, byly naměřeny následující hodnoty IQ 65, 98, 103, 77, 93, 102, 102, 113, 80, 94 Ověřte čistým testem významnosti hypotézu, že ve vybraném vzorku je střední hodnota IQ podprůměrná. Řešení 6 Pro jednovýběrový t-test, neboli test o střední hodnotě normálního rozdělení s neznámým rozptylem, používáme testové kritérium T = X μ 0 n S Toto kritérium má v případě platnosti nulové hypotézy Studentovo rozdělení s n 1 stupni volnosti. Jelikož je v zadání příkladu uvedeno, že lze předpokládat normalitu IQ, nemusíme normalitu ověřovat. Budeme testovat nulovou hypotézu proti jednostranné alternativní hypotéze nastavené dle očekávaného výsledku. H 0 µ = 100, H 1 µ < 100 Průměrné IQ 10 testovaných jedinců je Po dosazení X = 1 n x i X = ( ) = = 92,7 Zjištěné průměrné IQ (92,7) je menší než testovaná hodnota (100), což je v souladu s očekáváním, že IQ výběru jedinců bude nižší než průměrné IQ. Alternativní hypotéza tedy byla zvolena vhodně. Proto, abychom mohli určit pozorovanou hodnotu testového kritéria, musíme vypočítat výběrovou směrodatnou odchylku S. Tu vypočítáme jako odmocninu výběrového rozptylu. S 2 = n i=1 (x i X ) 2 Po dosazení S 2 d b 7 n i=1 n 1 = (65 92,7)2 +(98 92,7) 2 +(103 92,7) 2 +(77 92,7) 2 +(93 92,7) (102 92,7)2 +(102 92,7) 2 +(113 92,7) 2 +(80 92,7) 2 +(94 92,7) = ( 27,7)2 +5, ,3 2 +( 15,7) 2 +0, ,3 2 +9, ,3 2 +( 12,7) 2 +1, , , , ,49 + 0, , , , ,29 + 1,69 = 9 = 1896,1 = 210, Odtud vypočteme směrodatnou odchylku výběrového souboru S = 210,6778 = 14,51474 Nyní máme všechny hodnoty pro dosazení do testové statistiky

8 92, ,3 T = 10 = 3, = 0, , = 1, , ,51474 Nyní v tabulce kvantilů Studentova t rozdělení t 1 α o n stupních volnosti nalezneme t n 1 (1 α) = t 10 1 (1 0,05) = t 9 (1 0,05) = 1,833 Vidíme, že T = 1,59043 = 1,59043 < 1,833 = t n 1 (1 α 2 ) Proto podle teorie hypotézu H 0 nezamítáme. S tím souvisí závěr testování, že hypotéza H 0 může platit. Jinak řečeno, rozdíl mezi předpokládanou střední hodnotou IQ a pozorovaným průměrným IQ je statisticky nevýznamný. d b 8

9 Příklad 7 Předpokládejme, že pevnost betonu je normální náhodná veličina. Norma předepisuje v daných podmínkách a) minimální průměrnou pevnost 25 MPa b) minimální průměrnou pevnost 24 MPa Určete, zda beton vyhovuje normě. Přípustné riziko omylu je maximálně 1 %. Naměřené hodnoty jsou v příkladu Naměřené hodnoty z příkladu jsou 27,0 24,7 21,4 24,9 28,2 30,9 27,2 25,0 21,9 22,6 27,0 32,3 25,4 27,7 25,6 26,0 23,8 23,1 25,1 31,0 27,2 22,1 18,9 29,5 18,2 26,7 27,0 25,3 22,2 22,5 20,6 30,3 25,3 25,6 28,1 23,2 23,3 18,6 20,0 25,2 22,2 27,9 25,6 22,9 31,6 27,5 21,6 24,5 19,7 26,6 26,5 24,1 29,6 17,6 27,3 24,5 31,0 25,2 27,6 19,8 23,2 23,8 25,6 28,6 29,1 25,7 23,2 23,6 25,6 27,7 28,7 22,5 19,6 29,1 26,8 26,6 24,3 26,3 24,7 26,3 24,6 26,2 23,7 26,0 28,1 28,2 25,9 23,0 21,0 24,0 24,2 23,5 30,5 29,7 26,9 24,4 26,2 23,8 26,0 27,0 Řešení 7 Máme náhodný výběr rozsahu n = 100 z rozdělení N(μ, σ 2 ). Parametry tohoto rozdělení neznáme. Máme určit na hladině významnosti α = 0,01, zda střední hodnota překračuje 25, respektive 24. Budeme postupovat podle teorie. Naším úkolem je tedy testovat střední hodnotu normálního rozdělení při neznámém rozptylu. Budeme testovat hypotézu H 0 μ = μ 0 proti hypotéze H μ > μ 0 Za testovou statistiku volíme statistiku T = X μ 0 n S Tato statistika má za platnosti μ = μ 0 rozdělení t(n 1). Za kritický obor pro tento jednostranný test na hladině významnosti α volíme množinu W = {t; t > t(n 1; 1 α)} Řešení a V našem příkladu tedy konkrétně budeme testovat hypotézu H 0 μ = 25 proti hypotéze H μ > 25 Při řešení příkladu jsme nalezli x = 25,37, s = 3, Můžeme tedy vypočítat realizaci t zvolené testové statistiky T t = x μ 0 25,37 25 n = s 3, = 0,37 3, = 3,7 3, = 1, Kritický obor pro tento test na hladině významnosti α = 0,01 je po vyhledání v tabulkách množina W = {t; t > t(n 1; 1 α)} = {t; t > t(100 1; 1 0,01)} = {t; t > t(99; 0,99)} = {t; t > 2,326} Protože t W, nelze na hladině významnosti 0,01 zamítnout hypotézu H 0 μ 25. Naměřené hodnoty neumožňují rozhodnout, zda materiál vyhovuje normě. d b 9

10 Řešení b V našem příkladu tedy konkrétně budeme testovat hypotézu H 0 μ = 24 proti hypotéze H μ > 24 Při řešení příkladu jsme nalezli x = 25,37, s = 3, Můžeme tedy vypočítat realizaci t zvolené testové statistiky T t = x μ 0 25,37 24 n = s 3, = 1,37 3, = 13,7 3, = 4, Kritický obor pro tento test na hladině významnosti α = 0,01 je po vyhledání v tabulkách množina W = {t; t > t(n 1; 1 α)} = {t; t > t(100 1; 1 0,01)} = {t; t > t(99; 0,99)} = {t; t > 2,326} Protože t W, zamítáme na hladině významnosti 0,01 hypotézu H 0 μ = 24 ve prospěch alternativní hypotézy H μ > 24. Lze konstatovat, že materiál vyhovuje normě. d b 10

11 Příklad 8 Pro určení přesnosti dálkoměru byla desetkrát změřena vzdálenost, jejíž skutečná hodnota je 20 km. Získali jsme následující výsledky v km: 21,1 21,2 20,9 21,0 21,5 21,5 21,0 20,8 20,9 21,0 Zjistěte na hladině významnosti 0,05, zda je přesnost dálkoměru vyjádřená směrodatnou odchylkou menší než 0,5 km. Předpokládáme, že chyba měření je normální náhodná veličina se střední hodnotou 1 km. Řešení 8 Ze zadaných dat vytvoříme výběrový soubor zachycující jednotlivé odchylky v měření. 1,1 1,2 0,9 1,0 1,5 1,5 1,0 0,8 0,9 1,0 Máme náhodný výběr rozsahu n = 10 z rozdělení N(μ = 1, σ 2 = 1). Máme zjistit na hladině významnosti α = 0,05, zda přesnost dálkoměru vyjádřená směrodatnou odchylkou je menší než 0,5. Tomuto požadavku odpovídá situace, zda přesnost dálkoměru vyjádřená rozptylem je menší, než 0,25 na hladině významnosti α = 0,05 (rozptyl je druhou mocninou směrodatné odchylky). Budeme postupovat podle teorie. Naším úkolem je tedy testovat rozptyl normálního rozdělení při známé střední hodnotě. Budeme testovat hypotézu H 0 σ 2 2 σ 0 proti hypotéze H σ 2 2 > σ 0 Za testovou statistiku volíme statistiku T = ns 0 2 σ 2 0 Tato statistika má za platnosti σ 2 2 = σ 0 rozdělení χ 2 (n). Za kritický obor pro tento test volíme množinu W = {t; t > χ 2 (n; 1 α)} V našem příkladu tedy konkrétně budeme testovat hypotézu H 0 σ 2 0,5 2 proti hypotéze H σ 2 > 0,5 2 2 Máme n = 10, μ = 1.Vypočítáme s 0 podle vzorce Po dosazení a krátkém výpočtu dostaneme n s 0 2 = 1 n (x i μ) 2 i=1 s 0 2 = 1 10 [(1,1 1)2 + (1,2 1) 2 + (0,9 1) 2 + (1 1) 2 + (1,5 1) 2 + (1,5 1) 2 + (1 1) 2 + (0,8 1) 2 + (0,9 1) 2 + (1 1) 2 ] = 1 10 [(0,1)2 + (0,2) 2 + ( 0,1) 2 + (0) 2 + (0,5) 2 + (0,5) 2 + (0) 2 + ( 0,2) 2 + ( 0,1) 2 + (0) 2 ] = 1 10 [0,01 + 0,04 + 0, ,25 + 0, ,04 + 0,01 + 0] = ,61 = 0,061 Realizace t zvolené testové statistiky T po dosazení a jednoduchém výpočtu je 10 0,061 t = 0,5 2 = 0,61 0,25 = 2,44 Kritický obor na dané hladině významnosti α = 0,05 je po vyhledání v tabulkách množina W = {t; t > χ 2 (n; 1 α)} = {t; t > χ 2 (10; 1 0,05)} = {t; t > χ 2 (10; 0,95)} = {t; t > 18,31} d b 11

12 Vzhledem k tomu, že t W, není možno zamítnout nulovou hypotézu na hladině významnosti 0,05. Z toho plyne, že přesnost dálkoměru vyjádřená směrodatnou odchylkou je menší než 0,5 km. Dálkoměr tedy vyhovuje požadavku přesnosti. Riziko omylu je maximálně 5%. d b 12

13 Příklad 9 Při odběru 30 vzorků posypového materiálu na dálnici byl získán následující soubor poměrných hodnot obsahu určité chemikálie vzhledem k normovanému předpisu: 0,91 1,08 0,72 1,07 1,14 0,62 1,06 1,20 0,76 1,19 0,96 0,73 0,83 0,55 0,79 1,34 0,60 1,19 1,35 1,13 0,67 0,77 0,48 0,83 1,78 2,25 1,21 0,89 0,83 1,07 Předpokládáme, že realizace pochází z normálního rozdělení. Ověřme na hladině významnosti 0,01, zda: a) střední hodnota obsahu je menší než 0,9 b) směrodatná odchylka obsahu je menší než 0,4 Řešení 9 Máme náhodný výběr rozsahu n = 30 z rozdělení N(μ, σ 2 ) jehož parametry neznáme. Máme zjistit na hladině významnosti α = 0,01, zda: a) střední hodnota obsahu je menší než 0,9 b) směrodatná odchylka obsahu je menší než 0,4 Pro obě úlohy budeme postupovat podle teorie. Řešení a Prvním naším úkolem je testovat střední hodnotu normálního rozdělení při neznámém rozptylu. Budeme testovat hypotézu H 0 μ = μ 0 proti hypotéze H μ > μ 0 Za testovou statistiku volíme statistiku T = X μ 0 n S Tato statistika má za platnosti μ = μ 0 rozdělení t(n 1). Za kritický obor pro tento jednostranný test na hladině významnosti α volíme množinu W = {t; t < t(n 1; 1 α)} Konkrétně tedy budeme testovat hypotézu H 0 μ = 0,9 proti hypotéze H μ < 0,9 Vypočítáme střední hodnotu výběru podle vzorce n Dosadíme a vypočteme x = 1 n x i i=1 μ = x = 1 [0,91 + 1,08 + 0,72 + 1,07 + 1,14 + 0,62 + 1,06 + 1,20 + 0,76 + 1,19 + 0,96 + 0, ,83 + 0,55 + 0,79 + 1,34 + 0,60 + 1,19 + 1,35 + 1,13 + 0,67 + 0,77 + 0,48 + 0,83 + 1,78 + 2,25 + 1,21 + 0,89 + 0,83 + 1,07] = = 1 Výběrový rozptyl vypočteme podle vzorce Dosadíme s 2 = 1 n 1 (x i X ) 2 n i=1 d b 13

14 s 2 = [(0,91 1)2 + (1,08 1) 2 + (0,72 1) 2 + (1,07 1) 2 + (1,14 1) 2 + (0,62 1) 2 + (1,06 1) 2 + (1,20 1) 2 + (0,76 1) 2 + (1,19 1) 2 + (0,96 1) 2 + (0,73 1) 2 + (0,83 1) 2 + (0,55 1) 2 + (0,79 1) 2 + (1,34 1) 2 + (0,60 1) 2 + (1,19 1) 2 + (1,35 1) 2 + (1,13 1) 2 + (0,67 1) 2 + (0,77 1) 2 + (0,48 1) 2 + (0,83 1) 2 + (1,78 1) 2 + (2,25 1) 2 + (1,21 1) 2 + (0,89 1) 2 + (0,83 1) 2 + (1,07 1) 2 ] Odtud = 1 29 [( 0,09)2 + (0,08) 2 + ( 0,28) 2 + (0,07) 2 + (0,14) 2 + ( 0,38) 2 + (0,06) 2 + (0,20) 2 + ( 0,24) 2 + (0,19) 2 + ( 0,04) 2 + ( 0,27) 2 + ( 0,17) 2 + ( 0,45) 2 + ( 0,21) 2 + (0,34) 2 + ( 0,40) 2 + (0,19) 2 + (0,35) 2 + (0,13) 2 + ( 0,33) 2 + ( 0,23) 2 + ( 0,52) 2 + ( 0,17) 2 + (0,78) 2 + (1,25) 2 + (0,21) 2 + ( 0,11) 2 + ( 0,17) 2 + (0,07) 2 ] = 1 [0, , , , , , , , , , , , , , , , ,16 + 0, , , , , , , , , , , , ,0049] = ,9222 = 0, σ = s = σ n 1 = s 2 = 0, = 0, Můžeme tedy vypočítat realizaci t zvolené testové statistiky T t = x μ 0 n = 1 0,9 s 0, = 0,1 0, , = 0, , = 1, Kritický obor pro tento test na hladině významnosti α = 0,01 je po vyhledání v tabulkách množina W = {t; t > t(n 1; 1 α)} = {t; t > t(30 1; 1 0,01)} = {t; t > t(29; 0,99)} = {t; t > 2,462} Protože t W, nelze na hladině významnosti 0,01 zamítnout hypotézu H 0 μ = 0,9 ve prospěch alternativní hypotézy. Můžeme tedy na hladině významnosti 0,01 konstatovat, že střední hodnota obsahu je menší než 0,9. Řešení b Druhým naším úkolem je testovat zda směrodatná odchylka obsahu je menší než 0,4. Tento test budeme realizovat prostřednictvím testu, zda rozptyl obsahu je menší než 0,16 (směrodatná odchylka je odmocninou rozptylu). Budeme tedy testovat rozptyl normálního rozdělení při neznámé střední hodnotě. Postupovat budeme podle teorie. Budeme testovat hypotézu H 0 σ 2 2 = σ 0 proti hypotéze H σ 2 2 > σ 0 Za testovou statistiku volíme statistiku (n 1)S2 T = σ 2 0 Tato statistika má za platnosti σ 2 2 = σ 0 rozdělení χ 2 (n). Za kritický obor pro tento test volíme množinu W = {t; t > χ 2 (n 1; 1 α)} V našem příkladu tedy konkrétně budeme testovat hypotézu H 0 σ 2 = 0,4 2 proti hypotéze H σ 2 > 0,4 2 Máme n = 30.Vypočítali jsme s 2 = 0, již v řešení první úlohy d b 14

15 Realizace t zvolené testové statistiky T po dosazení a jednoduchém výpočtu je (30 1) 0, t = 0,4 2 = 3,9222 0,16 = 24,51375 Kritický obor na dané hladině významnosti α = 0,01 je po vyhledání v tabulkách množina W = {t; t > χ 2 (n 1; 1 α)} = {t; t > χ 2 (30 1; 1 0,01)} = {t; t > χ 2 (29; 0,99)} = {t; t > 49,59} Protože t W, nelze na hladině významnosti 0,01 zamítnout hypotézu H 0 σ 2 0,4 2 ve prospěch alternativní hypotézy. Můžeme tedy na hladině významnosti 0,01 konstatovat, že směrodatná odchylka obsahu je menší než 0,4. d b 15

4ST201 STATISTIKA CVIČENÍ Č. 7

4ST201 STATISTIKA CVIČENÍ Č. 7 4ST201 STATISTIKA CVIČENÍ Č. 7 testování hypotéz parametrické testy test hypotézy o střední hodnotě test hypotézy o relativní četnosti test o shodě středních hodnot testování hypotéz v MS Excel neparametrické

Více

t-test, Studentův párový test Ing. Michael Rost, Ph.D.

t-test, Studentův párový test Ing. Michael Rost, Ph.D. Testování hypotéz: dvouvýběrový t-test, Studentův párový test Ing. Michael Rost, Ph.D. Úvod do problému... Již známe jednovýběrový t-test, při kterém jsme měli k dispozici pouze jeden výběr. Můžeme se

Více

STATISTICKÉ TESTY VÝZNAMNOSTI

STATISTICKÉ TESTY VÝZNAMNOSTI STATISTICKÉ TESTY VÝZNAMNOSTI jsou statistické postupy, pomocí nichž ověřujeme, zda mezi proměnnými existuje vztah (závislost, rozdíl). Pokud je výsledek šetření statisticky významný (signifikantní), znamená

Více

Příklad 1. Korelační pole. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 13

Příklad 1. Korelační pole. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 13 Příklad 1 Máme k dispozici výsledky prvního a druhého testu deseti sportovců. Na hladině významnosti 0,05 prověřte, zda jsou výsledky testů kladně korelované. 1.test : 7, 8, 10, 4, 14, 9, 6, 2, 13, 5 2.test

Více

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D.

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D. Testování statistických hypotéz Ing. Michal Dorda, Ph.D. Testování normality Př. : Při simulaci provozu na křižovatce byla získána data o mezerách mezi přijíždějícími vozidly v [s]. Otestujte na hladině

Více

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická

Více

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004.

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Testování hypotéz na základě jednoho a dvou výběrů 1 1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/004. Testování hypotéz Pokud nás zajímá zda platí, či neplatí tvrzení o určitém parametru,

Více

Test dobré shody v KONTINGENČNÍCH TABULKÁCH

Test dobré shody v KONTINGENČNÍCH TABULKÁCH Test dobré shody v KONTINGENČNÍCH TABULKÁCH Opakování: Mějme náhodné veličiny X a Y uspořádané do kontingenční tabulky. Řekli jsme, že nulovou hypotézu H 0 : veličiny X, Y jsou nezávislé zamítneme, když

Více

Průzkumová analýza dat

Průzkumová analýza dat Průzkumová analýza dat Proč zkoumat data? Základ průzkumové analýzy dat položil John Tukey ve svém díle Exploratory Data Analysis (odtud zkratka EDA). Často se stává, že data, se kterými pracujeme, se

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ

MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ Má-li analytický výsledek objektivně vypovídat o chemickém složení vzorku, musí splňovat určitá kriteria: Mezinárodní metrologický slovník (VIM 3),

Více

Příklad 1. Řešení 1a. Řešení 1b. Řešení 1c ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 7

Příklad 1. Řešení 1a. Řešení 1b. Řešení 1c ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 7 Příklad 1 a) Autobusy městské hromadné dopravy odjíždějí ze zastávky v pravidelných intervalech 5 minut. Cestující může přijít na zastávku v libovolném okamžiku. Určete střední hodnotu a směrodatnou odchylku

Více

UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11.

UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11. UNIVERZITA OBRANY Fakulta ekonomiky a managementu Aplikace STAT1 Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 Jiří Neubauer, Marek Sedlačík, Oldřich Kříž 3. 11. 2012 Popis a návod k použití aplikace

Více

Statistické metody uţívané při ověřování platnosti hypotéz

Statistické metody uţívané při ověřování platnosti hypotéz Statistické metody uţívané při ověřování platnosti hypotéz Hypotéza Domněnka, předpoklad Nejčastěji o rozdělení, středních hodnotách, závislostech, Hypotézy ve vědeckém výzkumu pracovní, věcné hypotézy

Více

Testování hypotéz Biolog Statistik: Matematik: Informatik:

Testování hypotéz Biolog Statistik: Matematik: Informatik: Testování hypotéz Biolog, Statistik, Matematik a Informatik na safari. Zastaví džíp a pozorují dalekohledem. Biolog "Podívejte se! Stádo zeber! A mezi nimi bílá zebra! To je fantastické! " "Existují bílé

Více

Testy pro porovnání vlastností dvou skupin

Testy pro porovnání vlastností dvou skupin Testy pro porovnání vlastností dvou skupin Petr Pošík Části dokumentu jsou převzaty (i doslovně) z Mirko Navara: Pravděpodobnost a matematická statistika, https://cw.felk.cvut.cz/lib/exe/fetch.php/courses/a6m33ssl/pms_print.pdf

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

Národníinformačnístředisko pro podporu jakosti

Národníinformačnístředisko pro podporu jakosti Národníinformačnístředisko pro podporu jakosti OVĚŘOVÁNÍ PŘEDPOKLADU NORMALITY Doc. Ing. Eva Jarošová, CSc. Ing. Jan Král Používané metody statistické testy: Chí-kvadrát test dobré shody Kolmogorov -Smirnov

Více

Přednáška 9. Testy dobré shody. Grafická analýza pro ověření shody empirického a teoretického rozdělení

Přednáška 9. Testy dobré shody. Grafická analýza pro ověření shody empirického a teoretického rozdělení Přednáška 9 Testy dobré shody Grafická analýza pro ověření shody empirického a teoretického rozdělení χ 2 test dobré shody ověření, zda jsou relativní četnosti jednotlivých variant rovny číslům π 01 ;

Více

SAMOSTATNÁ STUDENTSKÁ PRÁCE ZE STATISTIKY

SAMOSTATNÁ STUDENTSKÁ PRÁCE ZE STATISTIKY SAMOSTATÁ STUDETSKÁ PRÁCE ZE STATISTIKY Váha studentů Kučerová Eliška, Pazdeříková Jana septima červen 005 Zadání: My dvě studentky jsme si vylosovaly zjistit statistickým šetřením v celém ročníku septim

Více

ROZDĚLENÍ NÁHODNÝCH VELIČIN

ROZDĚLENÍ NÁHODNÝCH VELIČIN ROZDĚLENÍ NÁHODNÝCH VELIČIN 1 Vytvořeno s podporou projektu Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny společného základu (reg. č. CZ.1.07/2.2.00/28.0021)

Více

E(X) = np D(X) = np(1 p) 1 2p np(1 p) (n + 1)p 1 ˆx (n + 1)p. A 3 (X) =

E(X) = np D(X) = np(1 p) 1 2p np(1 p) (n + 1)p 1 ˆx (n + 1)p. A 3 (X) = Základní rozdělení pravděpodobnosti Diskrétní rozdělení pravděpodobnosti. Pojem Náhodná veličina s Binomickým rozdělením Bi(n, p), kde n je přirozené číslo, p je reálné číslo, < p < má pravděpodobnostní

Více

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A4. Cvičení, letní semestr DOMÁCÍ ÚLOHY. Jan Šafařík

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A4. Cvičení, letní semestr DOMÁCÍ ÚLOHY. Jan Šafařík Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika 0A4 Cvičení, letní semestr DOMÁCÍ ÚLOHY Jan Šafařík Brno c 200 (1) 120 krát jsme házeli hrací kostkou.

Více

Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu

Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu K čemu slouží statistika Popisuje velké soubory dat pomocí charakteristických čísel (popisná statistika). Hledá skryté zákonitosti v souborech

Více

Předpoklad o normalitě rozdělení je zamítnut, protože hodnota testovacího kritéria χ exp je vyšší než tabulkový 2

Předpoklad o normalitě rozdělení je zamítnut, protože hodnota testovacího kritéria χ exp je vyšší než tabulkový 2 Na úloze ukážeme postup analýzy velkého výběru s odlehlými prvky pro určení typu rozdělení koncentrace kyseliny močové u 50 dárců krve. Jaká je míra polohy a rozptýlení uvedeného výběru? Z grafických diagnostik

Více

HODNOCENÍ VÝKONNOSTI ATRIBUTIVNÍCH ZNAKŮ JAKOSTI. Josef Křepela, Jiří Michálek. OSSM při ČSJ

HODNOCENÍ VÝKONNOSTI ATRIBUTIVNÍCH ZNAKŮ JAKOSTI. Josef Křepela, Jiří Michálek. OSSM při ČSJ HODNOCENÍ VÝKONNOSTI ATRIBUTIVNÍCH ZNAKŮ JAKOSTI Josef Křepela, Jiří Michálek OSSM při ČSJ Červen 009 Hodnocení způsobilosti atributivních znaků jakosti (počet neshodných jednotek) Nechť p je pravděpodobnost

Více

Korelační a regresní analýza

Korelační a regresní analýza Korelační a regresní analýza Analýza závislosti v normálním rozdělení Pearsonův (výběrový) korelační koeficient: r = s XY s X s Y, kde s XY = 1 n (x n 1 i=0 i x )(y i y ), s X (s Y ) je výběrová směrodatná

Více

Biostatistika Cvičení 7

Biostatistika Cvičení 7 TEST Z TEORIE 1. Střední hodnota pevně zvolené náhodné veličiny je a) náhodná veličina, b) konstanta, c) náhodný jev, d) výběrová charakteristika. 2. Výběrový průměr je a) náhodná veličina, b) konstanta,

Více

Stručný úvod do vybraných zredukovaných základů statistické analýzy dat

Stručný úvod do vybraných zredukovaných základů statistické analýzy dat Stručný úvod do vybraných zredukovaných základů statistické analýzy dat Statistika nuda je, má však cenné údaje. Neklesejme na mysli, ona nám to vyčíslí. Z pohádky Princové jsou na draka Populace (základní

Více

Semestrální práce z předmětu Matematika 6F

Semestrální práce z předmětu Matematika 6F vypracoval: Jaroslav Nušl dne: 17.6.24 email: nusl@cvut.org Semestrální práce z předmětu Matematika 6F Zádání: Cílem semestrální práce z matematiky 6F bylo zkoumání hudebního signálu. Pluginem ve Winampu

Více

Testy dobré shody TESTY DOBRÉ SHODY (angl. goodness-of-fit tests), : veličiny X, Y jsou nezávislé nij eij

Testy dobré shody TESTY DOBRÉ SHODY (angl. goodness-of-fit tests),   : veličiny X, Y jsou nezávislé nij eij Testy dobré shody Máme dvě veličiny a předpokládáme, že jsou nezávislé (platí nulová hypotéza nezávislosti). Často chceme naopak prokázat jejich závislost. K tomu slouží: TESTY DOBRÉ SHODY (angl. goodness-of-fit

Více

Malé statistické repetitorium Verze s řešením

Malé statistické repetitorium Verze s řešením Verze s řešením Příklad : Rozdělení náhodné veličiny základní charakteristiky Rozdělení diskrétní náhodné veličiny X je dáno následující tabulkou x 0 4 5 P(X = x) 005 05 05 0 a) Nakreslete graf distribuční

Více

Vysoká škola báňská technická univerzita Ostrava. Fakulta elektrotechniky a informatiky

Vysoká škola báňská technická univerzita Ostrava. Fakulta elektrotechniky a informatiky Vysoká škola báňská technická univerzita Ostrava Fakulta elektrotechniky a informatiky Bankovní účty (semestrální projekt statistika) Tomáš Hejret (hej124) 18.5.2013 Úvod Cílem tohoto projektu, zadaného

Více

IV. CVIENÍ ZE STATISTIKY

IV. CVIENÍ ZE STATISTIKY IV. CVIENÍ ZE STATISTIKY Vážení studenti, úkolem dnešního cviení je nauit se analyzovat data kvantitativní povahy. K tomuto budeme opt používat program Excel 2007 MS Office. 1. Jak mžeme analyzovat kvantitativní

Více

Program Statistica Base 9. Mgr. Karla Hrbáčková, Ph.D.

Program Statistica Base 9. Mgr. Karla Hrbáčková, Ph.D. Program Statistica Base 9 Mgr. Karla Hrbáčková, Ph.D. OBSAH KURZU obsluha jednotlivých nástrojů, funkce pro import dat z jiných aplikací, práce s popisnou statistikou, vytváření grafů, analýza dat, výstupní

Více

ANALÝZA OBTÍŽNOSTI TESTU STUDIJNÍCH PŘEDPOKLADŮ NA EKONOMICKO SPRÁVNÍ A PRÁVNICKÉ FAKULTĚ MASARYKOVY UNIVERZITY V ROCE 2004.

ANALÝZA OBTÍŽNOSTI TESTU STUDIJNÍCH PŘEDPOKLADŮ NA EKONOMICKO SPRÁVNÍ A PRÁVNICKÉ FAKULTĚ MASARYKOVY UNIVERZITY V ROCE 2004. ANALÝZA OBTÍŽNOSTI TESTU STUDIJNÍCH PŘEDPOKLADŮ NA EKONOMICKO SPRÁVNÍ A PRÁVNICKÉ FAKULTĚ MASARYKOVY UNIVERZITY V ROCE 04 Marie Budíková Katedra aplikované matematiky, Přírodovědecká fakulta, Masarykova

Více

KVANTITATIVNÍ METODY V PEDAGOGICKÉM VÝZKUMU

KVANTITATIVNÍ METODY V PEDAGOGICKÉM VÝZKUMU KVANTITATIVNÍ METODY V PEDAGOGICKÉM VÝZKUMU RADEK KRPEC CZ.1.07/2.2.00/29.0006 OSTRAVA, ČERVEN 2013 Studijní opora je jedním z výstupu projektu ESF OP VK. Číslo Prioritní osy: 7.2 Oblast podpory: 7.2.2

Více

Testování hypotéz a měření asociace mezi proměnnými

Testování hypotéz a měření asociace mezi proměnnými Testování hypotéz a měření asociace mezi proměnnými Testování hypotéz Nulová a alternativní hypotéza většina statistických analýz zahrnuje různá porovnání, hledání vztahů, efektů Tvrzení, že efekt je nulový,

Více

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení 2 Zpracování naměřených dat Důležitou součástí každé experimentální práce je statistické zpracování naměřených dat. V této krátké kapitole se budeme věnovat určení intervalů spolehlivosti získaných výsledků

Více

Úvod do statistiky (interaktivní učební text) - Řešené příklady. Martina Litschmannová

Úvod do statistiky (interaktivní učební text) - Řešené příklady. Martina Litschmannová Vysoká škola báňská Technická univerzita Ostrava Západočeská univerzita v Plzni Úvod do statistiky (interaktivní učební text) - Řešené příklady Martina Litschmannová 1. strana ze 159 1 Explorační analýza

Více

8 Střední hodnota a rozptyl

8 Střední hodnota a rozptyl Břetislav Fajmon, UMAT FEKT, VUT Brno Této přednášce odpovídá kapitola 10 ze skript [1]. Také je k dispozici sbírka úloh [2], kde si můžete procvičit příklady z kapitol 2, 3 a 4. K samostatnému procvičení

Více

1 Náhodný výběr a normální rozdělení 1.1 Teoretická a statistická pravděpodobnost

1 Náhodný výběr a normální rozdělení 1.1 Teoretická a statistická pravděpodobnost 1 Náhodný výběr a normální rozdělení 1.1 Teoretická a statistická pravděpodobnost Ve světě kolem nás eistují děje, jejichž výsledek nelze předem jednoznačně určit. Například nemůžete předem určit, kolik

Více

Číselné charakteristiky a jejich výpočet

Číselné charakteristiky a jejich výpočet Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz charakteristiky polohy charakteristiky variability charakteristiky koncetrace charakteristiky polohy charakteristiky

Více

Test obsahoval 7 otevřených otázek a 2 uzavřené alternativní otázky s možností volby ano, ne.

Test obsahoval 7 otevřených otázek a 2 uzavřené alternativní otázky s možností volby ano, ne. ! Cílem vysílání v rámci projektu ŠIK je také předávání praktických informací z oblasti rizikového chování. Vycházíme z přesvědčení, že člověk, který má dostatek pravdivých informací, má také větší "#$%&&%

Více

Tvar dat a nástroj přeskupování

Tvar dat a nástroj přeskupování StatSoft Tvar dat a nástroj přeskupování Chtěli jste někdy použít data v jistém tvaru a STATISTICA Vám to nedovolila? Jistě se najde někdo, kdo se v této situaci již ocitl. Není ale potřeba propadat panice,

Více

5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza

5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5.1 Vícerozměrná data a vícerozměrná rozdělení Při zpracování vícerozměrných dat se hledají souvislosti mezi dvěma, případně

Více

Laboratorní práce č. 1: Měření délky

Laboratorní práce č. 1: Měření délky Přírodní vědy moderně a interaktivně FYZIKA 3. ročník šestiletého a 1. ročník čtyřletého studia Laboratorní práce č. 1: Měření délky G Gymnázium Hranice Přírodní vědy moderně a interaktivně FYZIKA 3.

Více

6.1 Normální (Gaussovo) rozdělení

6.1 Normální (Gaussovo) rozdělení 6 Spojitá rozdělení 6.1 Normální (Gaussovo) rozdělení Ze spojitých rozdělení se v praxi setkáme nejčastěji s normálním rozdělením. Toto rozdělení je typické pro mnoho náhodných veličin z rozmanitých oborů

Více

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1 Logistická regrese Menu: QCExpert Regrese Logistická Modul Logistická regrese umožňuje analýzu dat, kdy odezva je binární, nebo frekvenční veličina vyjádřená hodnotami 0 nebo 1, případně poměry v intervalu

Více

StatSoft Jak poznat vliv faktorů vizuálně

StatSoft Jak poznat vliv faktorů vizuálně StatSoft Jak poznat vliv faktorů vizuálně V tomto článku bychom se rádi věnovali otázce, jak poznat již z grafického náhledu vztahy a závislosti v analýze rozptylu. Pomocí následujících grafických zobrazení

Více

Hodina 50 Strana 1/14. Gymnázium Budějovická. Hodnocení akcií

Hodina 50 Strana 1/14. Gymnázium Budějovická. Hodnocení akcií Hodina 50 Strana /4 Gymnázium Budějovická Volitelný předmět Ekonomie - jednoletý BLOK ČÍSLO 8 Hodnocení akcií Předpokládaný počet : 9 hodin Použitá literatura : František Egermayer, Jan Kožíšek Statistická

Více

Zdroje chyb. Absolutní a relativní chyba. Absolutní chyba. Absolutní chyba přibližného čísla a se nazývá absolutní hodnota rozdílu přesného

Zdroje chyb. Absolutní a relativní chyba. Absolutní chyba. Absolutní chyba přibližného čísla a se nazývá absolutní hodnota rozdílu přesného Zdroje chyb. Absolutní a relativní chyba. Absolutní chyba Absolutní chyba přibližného čísla a se nazývá absolutní hodnota rozdílu přesného čísla A a přibližného čísla a = A a. Je třeba rozlišovat dva případy:

Více

Projekt z předmětu Statistika

Projekt z předmětu Statistika Projekt z předmětu Téma: Typologie hráče české nejvyšší hokejové soutěže VŠB-TU Ostrava:Fakulta Elektrotechniky a informatiky jaro 2011 Martin Dočkal doc068 dockal.martin@gmail.com 1 Obsah 2 Zadání...

Více

Z metodologie známe dělení proměnných do několika skupin. Nejčastěji se užívá dělení dle S. Stevense. Nicméně nám postačí dělení jednodušší:

Z metodologie známe dělení proměnných do několika skupin. Nejčastěji se užívá dělení dle S. Stevense. Nicméně nám postačí dělení jednodušší: Slovo úvodem Ne všechno, co si řekneme v tomto kurzu, je pravda. Není to proto, že by mým záměrem bylo před posluchači něco tajit nebo je uvádět ve zmatek. Problematika testování statistických hypotéz

Více

A 4 9 18 24 26 B 1 5 10 11 16 C 2 3 8 13 15 17 19 22 23 25 D 6 7 12 14 20 21

A 4 9 18 24 26 B 1 5 10 11 16 C 2 3 8 13 15 17 19 22 23 25 D 6 7 12 14 20 21 Příklad 1 Soutěž o nelepší akost výrobků obeslali čtyři výrobci A, B, C, D celkem 26 výrobky. Porota sestavila toto pořadí (uveden pouze původ výrobku od nelepšího k nehoršímu): Pořadí 1 2 3 4 5 6 7 8

Více

Při statistickém zkoumání se snažíme udělat nějaký závěr ohledně vlastností celého statistického souboru

Při statistickém zkoumání se snažíme udělat nějaký závěr ohledně vlastností celého statistického souboru 0.1 Základy statistického zpracování dat 1 0.1 Základy statistického zpracování dat Statistika se zabývá shromažďováním, tříděním a popisem velkých souborů dat. Někdy se pod pojmem statistika myslí přímo

Více

PSY117/454 Statistická analýza dat v psychologii Přednáška 10

PSY117/454 Statistická analýza dat v psychologii Přednáška 10 PSY117/454 Statistická analýza dat v psychologii Přednáška 10 TESTY PRO NOMINÁLNÍ A ORDINÁLNÍ PROMĚNNÉ NEPARAMETRICKÉ METODY... a to mělo, jak sám vidíte, nedozírné následky. Smrť Analýza četností hodnot

Více

Národní informační středisko pro podporu kvality

Národní informační středisko pro podporu kvality Národní informační středisko pro podporu kvality Nestandardní regulační diagramy J.Křepela, J.Michálek REGULAČNÍ DIAGRAM PRO VŠECHNY INDIVIDUÁLNÍ HODNOTY xi V PODSKUPINĚ V praxi se někdy setkáváme s požadavkem

Více

ADDS cvičení 7. Pavlína Kuráňová

ADDS cvičení 7. Pavlína Kuráňová ADDS cvičení 7 Pavlína Kuráňová Analyzujte závislost věku obyvatel na místě kde nejčastěji tráví dovolenou. (dotazník dovolená, sloupce Jaký je Váš věk a Kde nejčastěji trávíte dovolenou) Analyzujte závislost

Více

Modul Analýza síly testu Váš pomocník při analýze dat.

Modul Analýza síly testu Váš pomocník při analýze dat. 6..0 Modul Analýza síly testu Váš pomocník při analýze dat. Power Analysis and Interval Estimation Analýza síly testu Odhad velikosti vzorku Pokročilé techniky pro odhad intervalu spolehlivosti Rozdělení

Více

Statistická analýza dat podzemních vod. Statistical analysis of ground water data. Vladimír Sosna 1

Statistická analýza dat podzemních vod. Statistical analysis of ground water data. Vladimír Sosna 1 Statistická analýza dat podzemních vod. Statistical analysis of ground water data. Vladimír Sosna 1 1 ČHMÚ, OPZV, Na Šabatce 17, 143 06 Praha 4 - Komořany sosna@chmi.cz, tel. 377 256 617 Abstrakt: Referát

Více

Optimalizace osazování odběrných míst inteligentními plynoměry

Optimalizace osazování odběrných míst inteligentními plynoměry Optimalizace osazování odběrných míst inteligentními plynoměry Ondřej Konár, Marek Brabec, Ivan Kasanický, Marek Malý, Emil Pelikán Ústav informatiky AV ČR, v.v.i. ROBUST 2012 Němčičky 14. září 2012 Měření

Více

Me neˇ nezˇ minimum ze statistiky Michaela S ˇ edova KPMS MFF UK Principy medicı ny zalozˇene na du kazech a za klady veˇdecke prˇı pravy 1 / 76

Me neˇ nezˇ minimum ze statistiky Michaela S ˇ edova KPMS MFF UK Principy medicı ny zalozˇene na du kazech a za klady veˇdecke prˇı pravy 1 / 76 1 / 76 Méně než minimum ze statistiky Michaela Šedová KPMS MFF UK Principy medicíny založené na důkazech a základy vědecké přípravy Příklad Studie syndromu náhodného úmrtí dětí. Dvě skupiny: Děti, které

Více

Hodnocení vlastností materiálů podle ČSN EN 1990, přílohy D

Hodnocení vlastností materiálů podle ČSN EN 1990, přílohy D Hodnocení vlastností materiálů podle ČSN EN 1990, přílohy D Milan Holický Kloknerův ústav ČVUT v Praze 1. Úvod 2. Kvantil náhodné veličiny 3. Hodnocení jedné veličiny 4. Hodnocení modelu 5. Příklady -

Více

META-ANALÝZA Z POHLEDU STATISTIKA. Medicína založená na důkazu - Modul 3B

META-ANALÝZA Z POHLEDU STATISTIKA. Medicína založená na důkazu - Modul 3B META-ANALÝZA Z POHLEDU STATISTIKA Medicína založená na důkazu - Modul 3B OBSAH: Úvodní definice... 2 Ověření homogenity pomocí Q statistiky... 3 Testování homogenity studií pomocí I 2 indexu... 6 Výpočet

Více

Počítačové cvičení. předmětu M6130 Výpočetní statistika. Marie Budíková

Počítačové cvičení. předmětu M6130 Výpočetní statistika. Marie Budíková Počítačové cvičení předmětu M6130 Výpočetní statistika Marie Budíková 013 Poděkování Tento učební text vznikl za přispění Evropského sociálního fondu a státního rozpočtu ČR prostřednictvím Operačního programu

Více

Masarykova univerzita Ekonomicko správní fakulta. Statistika II

Masarykova univerzita Ekonomicko správní fakulta. Statistika II Masarykova univerzita Ekonomicko správní fakulta Statistika II distanční studijní opora Marie Budíková Brno 2006 Tento projekt byl realizován za finanční podpory Evropské unie v rámci programu SOCRATES

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

Návod na statistický software PSPP část 2. Kontingenční tabulky

Návod na statistický software PSPP část 2. Kontingenční tabulky Návod na statistický software PSPP část 2. Kontingenční tabulky Jiří Šafr FHS UK poslední revize 31. srpna 2010 Logika kontingenčních tabulek... 2 Postup vytváření kontingenčních tabulek v PSPP (SPSS)....

Více

INTERVALOVÉ ODHADY A TESTOVÁNÍ HYPOTÉZ INTERVALOVÉ ODHADY INTERVALOVÉ ODHADY PRO JEDEN PARAMETER

INTERVALOVÉ ODHADY A TESTOVÁNÍ HYPOTÉZ INTERVALOVÉ ODHADY INTERVALOVÉ ODHADY PRO JEDEN PARAMETER INTERVALOVÉ ODHADY A TESTOVÁNÍ HYPOTÉZ INTERVALOVÉ ODHADY INTERVALOVÉ ODHADY PRO JEDEN PARAMETER 1. Podnik Canard chce za účelem snížení odchylek od předem stanovených (režijních) nákladů v jednotlivých

Více

Mannův-Whitneyův(Wilcoxonův) test pořadová obdoba dvouvýběrového t-testu. Statistika (MD360P03Z, MD360P03U) ak. rok 2007/2008

Mannův-Whitneyův(Wilcoxonův) test pořadová obdoba dvouvýběrového t-testu. Statistika (MD360P03Z, MD360P03U) ak. rok 2007/2008 Statistika (MD30P03Z, MD30P03U) ak. rok 007/008 Karel Zvára karel.zvara@mff.cuni.cz http://www.karlin.mff.cuni.cz/ zvara (naposledy upraveno. listopadu 007) 1(4) Mann-Whitney párový Wilcoxon párový znaménkový

Více

Jednotky zrychlení odvodíme z výše uvedeného vztahu tak, že dosadíme za jednotlivé veličiny.

Jednotky zrychlení odvodíme z výše uvedeného vztahu tak, že dosadíme za jednotlivé veličiny. 1. Auto zrychlí rovnoměrně zrychleným pohybem z 0 km h -1 na 72 km h -1 za 10 sekund. 2. Auto zastaví z rychlosti 64,8 km h -1 rovnoměrně zrychleným (zpomaleným) pohybem za 9 sekund. V obou případech nakreslete

Více

Střední hodnota a rozptyl náhodné. kvantilu. Ing. Michael Rost, Ph.D.

Střední hodnota a rozptyl náhodné. kvantilu. Ing. Michael Rost, Ph.D. Střední hodnota a rozptyl náhodné veličiny, vybraná rozdělení diskrétních a spojitých náhodných veličin, pojem kvantilu Ing. Michael Rost, Ph.D. Príklad Předpokládejme že máme náhodnou veličinu X která

Více

StatSoft Jak se pozná normalita pomocí grafů?

StatSoft Jak se pozná normalita pomocí grafů? StatSoft Jak se pozná normalita pomocí grafů? Dnes se podíváme na zoubek speciální třídě grafů, podle názvu článku a případně i ilustračního obrázku vpravo jste jistě již odhadli, že půjde o třídu pravděpodobnostních

Více

5 ANALÝZA ROZPTYLU. Počet sloupců, K = 7 Počet dat, N = 70 Celkový průměr = 3.9846

5 ANALÝZA ROZPTYLU. Počet sloupců, K = 7 Počet dat, N = 70 Celkový průměr = 3.9846 1 5 ANALÝZA ROZPTYLU Vzorová úloha 5.1 Zkrácený postup jednofaktorové analýzy rozptylu Na úloze B5.02 Porovnání nové metody v sedmi laboratořích ukážeme postup 16 jednofaktorové analýzy rozptylu. Kirchhoefer

Více

Pracovní list č. 3 Charakteristiky variability

Pracovní list č. 3 Charakteristiky variability 1. Při zjišťování počtu nezletilých dětí ve třiceti vybraných rodinách byly získány tyto výsledky: 1, 1, 0, 2, 3, 4, 2, 2, 3, 0, 1, 2, 2, 4, 3, 3, 0, 1, 1, 1, 2, 2, 0, 2, 1, 1, 2, 3, 3, 2. Uspořádejte

Více

6. Lineární regresní modely

6. Lineární regresní modely 6. Lineární regresní modely 6.1 Jednoduchá regrese a validace 6.2 Testy hypotéz v lineární regresi 6.3 Kritika dat v regresním tripletu 6.4 Multikolinearita a polynomy 6.5 Kritika modelu v regresním tripletu

Více

Navrhování experimentů a jejich analýza. Eva Jarošová

Navrhování experimentů a jejich analýza. Eva Jarošová Navrhování experimentů a jejich analýza Eva Jarošová Obsah Základní techniky Vyhodnocení výsledků Experimenty s jedním zkoumaným faktorem Faktoriální experimenty úplné 2 N dílčí 2 N-p Experimenty pro studium

Více

Pravděpodobnost, statistika a operační výzkum

Pravděpodobnost, statistika a operační výzkum Pravděpodobnost, statistika a operační výzkum RNDr. Břetislav Fajmon, Ph.D. Mgr. Jan Koláček, Ph.D. ÚSTAV MATEMATIKY Pravděpodobnost, statistika a operační výzkum 1 Obsah I Statistické metody 7 1 Odhad

Více

Zpracování náhodného výběru. Ing. Michal Dorda, Ph.D.

Zpracování náhodného výběru. Ing. Michal Dorda, Ph.D. Zpracování náhodného výběru popisná statistika Ing. Michal Dorda, Ph.D. Základní pojmy Úkolem statistiky je na základě vlastností výběrového souboru usuzovat o vlastnostech celé populace. Populace(základní

Více

Modul Základní statistika

Modul Základní statistika Modul Základní statistika Menu: QCExpert Základní statistika Základní statistika slouží k předběžné analýze a diagnostice dat, testování předpokladů (vlastností dat), jejichž splnění je nutné pro použití

Více

Experimentáln. lní toků ve VK EMO. XXX. Dny radiační ochrany Liptovský Ján 10.11.-14.11.2008 Petr Okruhlica, Miroslav Mrtvý, Zdenek Kopecký. www.vf.

Experimentáln. lní toků ve VK EMO. XXX. Dny radiační ochrany Liptovský Ján 10.11.-14.11.2008 Petr Okruhlica, Miroslav Mrtvý, Zdenek Kopecký. www.vf. Experimentáln lní měření průtok toků ve VK EMO XXX. Dny radiační ochrany Liptovský Ján 10.11.-14.11.2008 Petr Okruhlica, Miroslav Mrtvý, Zdenek Kopecký Systém měření průtoku EMO Měření ve ventilačním komíně

Více

PRAVDĚPODOBNOST A STATISTIKA aneb Krátký průvodce skripty [1] a [2]

PRAVDĚPODOBNOST A STATISTIKA aneb Krátký průvodce skripty [1] a [2] PRAVDĚPODOBNOST A STATISTIKA aneb Krátký průvodce skripty [1] a [2] Použitá literatura: [1]: J.Reif, Z.Kobeda: Úvod do pravděpodobnosti a spolehlivosti, ZČU Plzeň, 2004 (2. vyd.) [2]: J.Reif: Metody matematické

Více

Pozn. přeskakuji zde popisnou statistiku, jinak by měla být součástí každé analýzy.

Pozn. přeskakuji zde popisnou statistiku, jinak by měla být součástí každé analýzy. Pozn. přeskakuji zde popisnou statistiku, jinak by měla být součástí každé analýzy. Z pastí na daném území byla odhadnuta abundance několika druhů: myšice lesní 250, myšice křovinná 200, hraboš polní 150,

Více

Biostatistika a matematické metody epidemiologie - stručné studijní texty

Biostatistika a matematické metody epidemiologie - stručné studijní texty Biostatistika a matematické metody epidemiologie - stručné studijní texty Bohumír Procházka, SZÚ Praha 1 Co můžeme sledovat Pro charakteristiku nebo vlastnost, kterou chceme sledovat zvolíme termín jev.

Více

Příklad 1. Řešení 1a Máme určit obsah rovinné plochy ohraničené křivkami: ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 14. a) =0, = 1, = b) =4, =0

Příklad 1. Řešení 1a Máme určit obsah rovinné plochy ohraničené křivkami: ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 14. a) =0, = 1, = b) =4, =0 Příklad Určete obsah rovinné plochy ohraničené křivkami: a) =0,=,= b) =4,=0 c) =,=,=3,=0 d) =+, =0 e) + )=,= f) = +4,+= g) =arcsin,=0,= h) =sin,=0, 0; i) =,=,=4,=0 j) =,= k) = 6,= +5 4 l) =4,+=5 m) = +

Více

Simulace. Simulace dat. Parametry

Simulace. Simulace dat. Parametry Simulace Simulace dat Menu: QCExpert Simulace Simulace dat Tento modul je určen pro generování pseudonáhodných dat s danými statistickými vlastnostmi. Nabízí čtyři typy rozdělení: normální, logaritmicko-normální,

Více

Úvod. Struktura respondentů

Úvod. Struktura respondentů Výsledky pilotního průzkumu postojů studentů Policejní akademie ČR v Praze k problematice zálohování dat Ing. Bc. Marek Čandík, Ph.D. JUDr. Štěpán Kalamár, Ph.D. The results of the pilot survey of students

Více

You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com)

You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com) Závislost náhodných veličin Úvod Předchozí přednášky: - statistické charakteristiky jednoho výběrového nebo základního souboru - vztahy mezi výběrovým a základním souborem - vztahy statistických charakteristik

Více

Statistika. Semestrální projekt

Statistika. Semestrální projekt Statistika Semestrální projekt 18.5.2013 Tomáš Jędrzejek, JED0008 Obsah Úvod 3 Analyzovaná data 4 Analýza dat 6 Statistická indukce 12 Závěr 15 1. Úvod Cílem této semestrální práce je aplikovat získané

Více

VYUŽITÍ MATLAB WEB SERVERU PRO INTERNETOVOU VÝUKU ANALÝZY DAT A ŘÍZENÍ JAKOSTI

VYUŽITÍ MATLAB WEB SERVERU PRO INTERNETOVOU VÝUKU ANALÝZY DAT A ŘÍZENÍ JAKOSTI VYUŽITÍ MATLAB WEB SERVERU PRO INTERNETOVOU VÝUKU ANALÝZY DAT A ŘÍZENÍ JAKOSTI Aleš Linka 1, Petr Volf 2 1 Katedra textilních materiálů, FT TUL, 2 Katedra aplikované matematiky, FP TUL ABSTRAKT. Internetové

Více

počet imigrantů imigranti nedospělí dospělí

počet imigrantů imigranti nedospělí dospělí AAV přednášející Mgr. Patrik Galeta 2. října 2008-2. přednáška + cvičení - test - vypisovací odpovědi, pokaždé v odpovědi bude postup a výsledek, pokud budu mít jen jedno z toho, potom dostanu jen část

Více

Bezpečnost práce, měření fyzikálních veličin, chyby měření

Bezpečnost práce, měření fyzikálních veličin, chyby měření I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Laboratorní práce č. 1 Bezpečnost práce, měření fyzikálních

Více

6. Demonstrační simulační projekt generátory vstupních proudů simulačního modelu

6. Demonstrační simulační projekt generátory vstupních proudů simulačního modelu 6. Demonstrační smulační projekt generátory vstupních proudů smulačního modelu Studjní cíl Na příkladu smulačního projektu představeného v mnulém bloku je dále lustrována metodka pro stanovování typů a

Více

Matematická vsuvka I. trojčlenka. http://www.matematika.cz/

Matematická vsuvka I. trojčlenka. http://www.matematika.cz/ Matematická vsuvka I. trojčlenka http://www.matematika.cz/ Trojčlenka přímá úměra Pokud platí, že čím více tím více, jedná se o přímou úměru. Čím více kopáčů bude kopat, tím více toho vykopají. Čím déle

Více

PRAVDĚPODOBNOST A MATEMATICKÁ STATISTIKA

PRAVDĚPODOBNOST A MATEMATICKÁ STATISTIKA VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ HELENA KOUTKOVÁ PRAVDĚPODOBNOST A MATEMATICKÁ STATISTIKA MODUL GA03 M3 ZÁKLADY TEORIE ODHADU STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU STUDIA

Více

Z tohoto setříděného souboru snadno sestavíme tabulku prostého rozdělení četností.

Z tohoto setříděného souboru snadno sestavíme tabulku prostého rozdělení četností. Příklad 1 Firma má pro své zaměstnance stanoveny tyto základní mzdy v Kč: 18600, 17650, 19200, 20400, 20800, 18600, 20400, 24200, 20400, 19200, 24200, 20400, 17650, 25800, 17650. Určete charakteristiky

Více