29. Atomové jádro a jaderné reakce

Rozměr: px
Začít zobrazení ze stránky:

Download "29. Atomové jádro a jaderné reakce"

Transkript

1 9. tomové jádro a jaderné reakce tomové jádro složení: nukleony protony (p ) a neutrony (n o ) rozmry: ádov -5 m polomr: R=R. kde R =,3. -5 m, je nukleonové íslo jádra Mezi ásticemi psobí slabé gravitaní síly, elektrostatické odpudivé síly a silné pitažlivé krátkodosahové jaderné síly (psobí jen na uritý poet ástic, dosah 5 m). Protonové (atomové) íslo udává poet p v jáde, resp.e - v obalu Neutronové íslo N Nukleonové (hmotnostní) íslo =N Nuklid látka složená z atom se stejným i X v pírod 64 stabilních nuklid a 5 nestabilních (celkem dnes známe asi nuklid, vtšina z nich však byla vytvoena umle a jsou nestabilní). Pi štpení jádra na jednotlivé nukleony je poteba dodat energii. Energie i hmotnost jednotlivých nukleon je vtší než energie i hmotnost celého jádra hmotnostní úbytek B=.m p (-)m n -m j Vazební energie je rovna práci, kterou musíme dodat k rozložení jádra na jednotlivé nukleony E v =B.c vazební energie na nukleon v = E v / (= 7-9 MeV) Jaderné reakce - jsou umle vyvolané pemny jádra srážkou s jiným jádrem nebo ásticí platí pro n: zákon zachování energie zákon zachování hmotnosti (relativistické) zákon zachování hybnosti zákon zachování potu nukleon zákon zachování el. náboje Uvolování energie z atomových jader a) pi jaderné fúzi, tj. sluování lehkých jader (s menší hodnotou j ) za vzniku tžších (s vtší hodnotou j ). Píkladem mohou být procesy ve hvzdách, kdy se slouí jádra vodíku za vzniku helia: HHHe Pi této reakci se uvoluje nejvtší množství energie. Ve hvzd tedy vznikají stále tžší prvky, a to touto adou: HHeBeCO...Fe. Fe je nejstabilnjší (nejvtší v ) a pibývá ho v závrené fázi vývoje hvzdy. Tyto reakce jsou zdrojem energie a prvk ve vesmíru. H H H e ν ν...neutrinum 3 H H He χ χ...gama záení He He He H 4 4. H He χ e ν 6, 7MeV Takto probíhá termonukleární reakce uvnit hvzd. ε j (MeV) Fe 56 6 Na emi byla první umlá jaderná reakce uskutenna Ernstem Rutherfordem v roce 99: He 7N 8O H. Další umlá jaderná reakce pak vedla v roce 93 k objevu neutronu Jamesem Chadwickem: 4 9 He 4Be 6 C n. ízená termonukleární reakce je dnes stále ve stadiu výzkumu a experiment. Problémem jaderných syntéz je piblížit kladn nabitá jádra na dosah jaderných sil (je k tomu zapotebí obrovských teplot (ádov aspo 7 K) a obrovských tlak) Tokamak (zkratka pro název " (toroidní komora v magnetických cívkách). Tokamak byl vynalezen v padesátých letech Igorem Jevgenviem Tammem a ndrejem

2 Sacharovem) - plazma je v nádob prstencového tvaru udržováno v úzkém paprsku ve stedu prstence psobením silného magnetického pole. Deuterium H, (D) jako jaderné palivo je prakticky nevyerpatelné koncentrace D O v oceánech je,5%. Pokud by se podailo zvládnout termojadernou fúzi, získalo by lidstvo istou energii v množství asi tikrát vtší na jeden atom než jakou získává ze štpné reakce v souasných jaderných elektrárnách. Neízená termonukleární reakce na emi vodíková bomba. b) pi jaderném štpení Radioaktivita schopnost jader nkterých nuklid se samovoln rozpadat (vznik jader jiných prvk) a pitom vysílat záení (Becquerel objev 896, výzkum (objev Po, Ra) Marie a Pierre Curie). 4 3 druhy záení: ) svazek helion (jádra helia He ), mají silné ionizaní úinky, malou pronikavost a nesou velkou energii, která je kvantována 4 4 X He Y Ra He 86 Rn nuklid se v tabulce posune o místa vlevo ped pvodní. ) mají vtší pronikavost, menší ionizaní úinky a energie není kvantována, protože je tvoena jen kinetickými energiemi jednotlivých ástic -...tvoeno elektrony e -, jeho zdrojem jsou pirozené atomy, tzn. vzniká pirozená radioaktivita n ~ p e ν ν~...antineutrino ~ X e Y ν 3 P 3 ~ 5 S 6 e ν...tvoeno pozitrony e, vzniká pi umlé radioaktivit (umle vytvoená jádra) p n e X Y P 4 Si e e 3 3) - elektromagnetické vlnní o f (, )Hz, je velmi pronikavé (k zastavení je poteba silná vrstva olova), siln ionizuje plyny, má schopnost uvolovat z látky elektrony nebo celé ionty, doprovází,. ktivita záie fyzikální veliina udávající poet radioaktivních pemn za asovou jednotku. [] = Bq (becquerel) = s -. a poloas pemny T klesne aktivita záie na ½. Poloas pemny T je doba, za kterou se pemní polovina jader. ( t ) ( ) ( )T t = T...poloas pemny, e...eulerovo íslo. t ln ln ln T λ t = e = e, ( t ) = ( ) e = ( ) e, kde Protože ln λ = T je pemnová konstanta(- vyjaduje pravdpodobnost pemny) ákon radioaktivní pemny: λ t N ( t ) = N ( ) e N () je pvodní poet jader (v ase t=) a N (t) je poet jader radionuklidu v ase t. Pirozená radioaktivita aktivita jader radionuklid vyskytujících se v pírod; pemny tvoí tzv. pemnové ady (=posloupnost jaderných pemn). Jsou známy ti pirozené pemnové ady, jejichž leny se

3 vyskytují v pírod, a jedna tzv. umlá pemnová ada, jejíž poátení radionuklid neptunium se bžn v pírod nenachází a musí být pipraven umle; vtšina jader se pemuje pouze jediným zpsobem. V pípad, že se daný radionuklid mže pemnit více zpsoby, dochází ke vzniku vtví ady, které se ale opt spojují u nkterého dalšího radionuklidu v ad, takže ada koní u jediného stabilního nuklidu..ada uran-radiová.ada thoriová 3.ada aktiniová 4. ada neptuniová (umlá) Umlá radioaktivita zdroj: radioaktivní nuklidy vytvoené lovkem získané v jaderném reaktoru nebo v urychlovai ástic objev: 934 Irena a Frederich Joliot Curie l He P n P 3 4 Si e ν p n e ν (proton se pemní na neutron, pozitron a neutrino - rozpad) Využití radionuklid: ) v medicín diagnostické úely (sledování prtoku krve, zjišování innosti štítné žlázy) léení zhoubných nádor, revmatických chorob výroba léiv ) jaderné baterie (v meteorologických stanicích, kosmu) 3) v kouových detektorech a hlásiích požáru 4) k ochran životního prostedí (sledování škodlivých exhalací, toxických látek, sledování kolobhu látek v pírod metoda znaených atom) 5) k mení stáí hornin a organických materiál (uhlíková metoda - ) Úinky na lovka vytváejí ddiné zmny, nádory, zpsobují nemoci z ozáení. E Dávka záení D = m [ D] = Gy (gray). Umle vznikají v reaktorech nebo ostelováním ásticemi z urychlova. Radionuklid se svými chemickými vlastnostmi neliší od svého stabilního izotopu. Jaderná energetika Jadernou reakcí rozumíme pemnu jader atom vyvolanou vnjším zásahem. složením dvou lehích jader vznikne jádro tžší - ízená termonukleární reakce je zatím ve stadiu výzkumu a experiment. vzhledem k tomu, že neutron nemá náboj, proniká relativn snadno i do atomového jádra a mže vyvolat štpnou reakci. Pi ní z jednoho jádra vznikají dv jádra s pibližn stejným protonovým íslem a uvoluje se energie. Existují pouze tyi nuklidy, v nichž je možno uskutenit etzovou jadernou reakci, a které proto mohou sloužit jako štpné materiály k získávání jaderné energie. Jsou to uran 35, plutonium 39, uran 33 a plutonium 4. Pouze jeden z nich se vyskytuje v pírod. Je to uran 35, který je obsažen v pírodním uranu ve smsi s uranem 38 v množství,7%. Další štpné materiály je teba vyrábt v jaderných reaktorech plutonium ozaováním uranu 38 uran 33 ozaováním thoria 3 neutrony. 35 Neutron zpomalený vrstvou vody nebo parafínu mže tedy rozštpit jádro 9 U na pibližn stejn tžká jádra. Nov vzniklá jádra jsou v excitovaném stavu, nestabilní a dále se rozpadají.

4 n n U U Ba Sr Kr 3 Xe 5 n MeV n n 9U 4 Mo 57La n 7 e prosinec 94.ízený jaderný reaktor v Chicagu (E.Fermi): vznik transuranu: 39 ~ 39 9 U n 9U 93 Np e ν, 39 ~ 93 Np 94 Pu e ν Jaderný reaktor obal (kryt) tepeln odizoluje, odstiuje vznikající záení (=stínící bariéry) palivo tableta s obohaceným U naskládaná do palivových proutk a ty do palivových kazet chladivo H O, HBO regulaní a bezpenostní tye obsahují Cd, B, které siln pohlcují neutrony zastaví reakci (zasunutím) moderátor ke zpomalení ástic (neutron) lehká jádra (H O, díve C) Dukovany, Temelín jaderný reaktor typu VVER (vodovodný) voda se používá jako chladivo i moderátor (bezpenjší, protože pi porušení (když voda vytee) se reakce zastaví) ernobyl moderátorem grafit C(nevýhody: moderátor nelze z reaktoru odstranit, zastavení pomocí tyí, C mže hoet) jen chladivo, moderátor (voda) regulaní tye palivové lánky Jaderná elektrárna Stavba: ) primární okruh (uzavený): jaderný reaktor parogenerátor (ohívá vodu na páru) erpadla ) sekundární okruh (uzavený): parogenerátor parní turbína kondenzátor erpadla 3) terciární okruh (otevený): chladicí vže erpadla kondenzátor vodní zdroj Výhody: poteba nižších teplot než v tepelných elektrárnáchzvýšení doby života levné palivo, levná doprava paliva nejkoncentrovanjší energetický odpad nejkompaktnjší odpad (množství, hustota) možnost citelných zlepšení skrze výzkum nevytváí skleníkové plyny ani kyselé exhaláty Nevýhody: vyžaduje vtší kapitál kvli bezpenosti, kontejnmentu, radioaktivnímu odpadu a skladovacím systémm vyžaduje legislativní povolení kvli skladování dlouhodob radioaktivních odpad ve vtšin zemí možnost zneužití pro vojenské úely Fyzika ástic Detekce ástic: za využití ionizaních úink nabitých ástic.ionizaní komory mohou mit celkovou úrove ionizujícího záení, pomocí Geiger-Müllerova poítae mžeme poítat jednotlivé ástice. Ve Wilsonov mlžné komoe a v bublinové komoe mžeme dráhy ástic zaznamenávat a pak zpracovávat pomocí poítae. Geiger-Mülerv poíta: je trubice naplnná plynem o nízkém tlaku, anodu tvoí drát v ose válce, katodou je válcová nádoba. Mezi elektrodami je naptí asi kv. Pi prletu ionizující ástice vznikne K

5 v plynu nkolik pár kladných iont a elektron. Elektrony jsou elektrickým polem v blízkosti anody urychlovány a nárazem ionizují další molekuly plynu (lavinovitá ionizace). V obvodu vzniká proudový impuls, který je registrován akusticky nebo ítaem. by mohl poíta registrovat další ástici, musí být uveden do pvodního stavu (nap. doasným snížením naptí na elektrodách). Mlžná komora: slouží ke zviditelnní trajektorií ástic jaderného záení. Je to válcová nádoba naplnná nasycenou párou vody nebo ethanolu. Pi prletu ástic jaderného záení dojde k ionizaci molekul páry, ionty se stávají kondenzaními jádry, na nich se vytváejí mikroskopické kapiky, které vyznaují trajektorii. asto se umísuje do magnetického pole, aby bylo možné podle zakivení trajektorie urit hybnost ástice a její mrný náboj. Bublinová komora - zaízení k registraci drah nabitých ástic. V peháté pracovní látce (napíklad v kapalném vodíku pod tlakem) vzniknou sledy drobných bublinek podél dráhy ástic. Urychlovae ástic: ke studiu reakcí mezi ásticemi musíme ástice urychlit na vysoké energie.takové urychlené ástice se vyskytují v kosmickém zání, umle je mžeme získávat na urychlovaích. Lineární urychlovae: jsou tvoeny dlouhou vakuovou trubicí (až 3 km), ve které je ada válcových elektrod. Ve štrbinách mezi elektrodami jsou ástice urychlovány vysokofrekvenním elektrickým polem. Kruhové urychlovae: ástice se pohybují po zakivené trajektorii v magnetickém poli ( F m = Fd ). ástice se pohybuje uvnit polokruhových komor (duant) umístných mezi póly silného magnetu. Duanty jsou pipojeny ke stídavému elektrickému naptí, pi pechodu duanty z jednoho duantu do druhého se ástice urychlí a zvtší se polomr trajektorie. Dosáhne-li ástice rychlosti blízké rychlosti zdroj svtla, zvtší se její hmotnost a prodlouží doba obhu, proto je poteba pizpsobit urychlovací frekvenci dob obhu ástic N fázotron.synchrotron je fázotron s promnným magnetickým polem. To se mní tak, aby byl polomr trajektorie konstantní duanty (buduje se ve tvaru prstence). Synchrofázotron má promnnou S frekvenci urychlovacího naptí a konstantní polomr trajektorie ástic. Elementární ástice Ješt na zaátku ticátých let. století staily k pochopení struktury hmoty ti ástice - elektrony, neutrony, protony. Výsledky experimet i teoretické fyziky tenkrát dávaly nadji, že aplikování kvantové fyziky na proton a neutron brzy umožní poítat vlastnosti jádra atomu. Již na konci zmínné dekády však zaala doba objev nových a nových ástic, která trvá dodnes. Dnes známe nkolik stovek ástic, jejichž pojmenování vyerpalo zásobu písmen ecké abecedy, a jsou vtšinou známy pod ísly. Snaha o jejich klasifikaci vedla k následujícím zpsobm rozdlení ástic:. Všechny ástice mají vlastní moment hybnosti, tzv. spin. S tímto spinem souvisí spinové 3 kvantové íslo s, které mže nabývat hodnot bu! poloíselných (,,...), nebo celoíselných (,,, ). Podle spinového kvantového ísla se ástice dlí na:

6 a) mají! spinové kvantové íslo (nap. elektrony, protony, neutrony (všechny mají s = )) a pro n "# $% #!%&&' b) ( mají &! spinové kvanmtové íslo (nap. fotony, jejich s = ) a pro n "# $% #!%&&.. Síly psobící mezi ásticemi: - gravitaní (zanedbateln malé) - elektromagnetické (pro uvažované dlení nepodstatné) - silné (váží k sob nukleony) - slabé (projevují se nap. pi -rozpadu ) Podle toho, jestli na ástice p sobí silná jaderná síla, je lze dlit na: a) $ psobí na n silná síla b) nepsobí na n silná síla, mezi nimi je dominantní slabá síla. 3. Ke každé!& existuje!& se stejnou hmotností a spinem, ale s opaným znaménkem náboje (jsou-li nabité) a opaným znaménkem dalších kvantových ísel. Pi srážkách ástic s antiásticemi (nap. elektron a pozitron) dochází k anhilaci ástic a vzniká γ záení. Shrnutí: ástice e, µ -, τ -, ν (elektrony, miony, tauony, jejich neutrina a ke všem tmto šesti druhm ástic jejich antiástice) $ (bosony) π, κ, η (piony, kaony, éta) ( (fermiony) #) p, n (protony, neutrony) $ Λ, Σ, Ξ, Ω (lambda, sigma, ksí, omega) Pokud budeme uvažovat o "elementárnosti" a vnitní struktue základních stavebních ástic hmoty, dležitým vodítkem nám mže sloužit to, zda se daná ástice samovoln rozpadá (pemuje) i nerozpadá na jiné druhy ástic. a opravdu elementární ástice bez vnitní struktury mžeme podle dosavadních poznatk považovat foton a elektron, které vznikají i zanikají vždy jako celek a nepemují se na jiné druhy ástic. Neutron a proton se mohou vzájemn pemovat za úasti elektron, pozitron a neutrin; nemohou být tedy v pravém slova smyslu "elementární". Leptony tedy dosud považujeme za elementární ástice, hadrony jsou pravdpodobn z kvark. Také kvarky musí být v uritých kvantových stavech.

7

Atom a molekula - maturitní otázka z chemie

Atom a molekula - maturitní otázka z chemie Atom a molekula - maturitní otázka z chemie by jx.mail@centrum.cz - Pond?lí, Únor 09, 2015 http://biologie-chemie.cz/atom-a-molekula-maturitni-otazka-z-chemie/ Otázka: Atom a molekula P?edm?t: Chemie P?idal(a):

Více

Vlastnosti atomových jader Radioaktivita. Jaderné reakce. Jaderná energetika

Vlastnosti atomových jader Radioaktivita. Jaderné reakce. Jaderná energetika Jaderná fyzika Vlastnosti atomových jader Radioaktivita Jaderné reakce Jaderná energetika Vlastnosti atomových jader tomové jádro rozměry jsou řádově 1-15 m - složeno z protonů a neutronů Platí: X - soustředí

Více

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í. neutronové číslo

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í. neutronové číslo JADERNÁ FYZIKA I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í 1. Úvod 4 14 17 1 jádra E. Rutherford, 1914 první jaderná reakce: α+ N O H 2 7 8 + 1 jaderné síly = nový druh velmi silných sil vzdálenost

Více

eská zem d lská univerzita v Praze, Technická fakulta

eská zem d lská univerzita v Praze, Technická fakulta 4. Jaderná fyzika Stavba atomu Atomy byly dlouho považovány za nedlitelné. Postupem asu se zjistilo, že mají jádro složené z proton a z neutron a elektronový obal tvoený elektrony. Jaderná fyzika se zabývá

Více

RADIOAKTIVITA KAP. 13 RADIOAKTIVITA A JADERNÉ REAKCE. Typy radioaktivního záření

RADIOAKTIVITA KAP. 13 RADIOAKTIVITA A JADERNÉ REAKCE. Typy radioaktivního záření KAP. 3 RADIOAKTIVITA A JADERNÉ REAKCE sklo barvené uranem RADIOAKTIVITA =SCHOPNOST NĚKTERÝCH ATOMOVÝCH JADER VYSÍLAT ZÁŘENÍ přírodní nuklidy STABILNÍ NKLIDY RADIONKLIDY = projevují se PŘIROZENO RADIOAKTIVITO

Více

VY_32_INOVACE_FY.17 JADERNÁ ENERGIE

VY_32_INOVACE_FY.17 JADERNÁ ENERGIE VY_32_INOVACE_FY.17 JADERNÁ ENERGIE Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Jiří Kalous Základní a mateřská škola Bělá nad Radbuzou, 2011 Jaderná energie je energie, která existuje

Více

Chemie. Mgr. Petra Drápelová Mgr. Jaroslava Vrbková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou

Chemie. Mgr. Petra Drápelová Mgr. Jaroslava Vrbková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou Chemie Mgr. Petra Drápelová Mgr. Jaroslava Vrbková Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou JÁDRO ATOMU A RADIOAKTIVITA VY_32_INOVACE_03_3_03_CH Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou Atomové jádro je vnitřní

Více

Atomová a jaderná fyzika

Atomová a jaderná fyzika Mgr. Jan Ptáčník Atomová a jaderná fyzika Fyzika - kvarta Gymnázium J. V. Jirsíka Atom - historie Starověk - Démokritos 19. století - první důkazy Konec 19. stol. - objev elektronu Vznik modelů atomu Thomsonův

Více

Relativistická dynamika

Relativistická dynamika Relativistická dynamika 1. Jaké napětí urychlí elektron na rychlost světla podle klasické fyziky? Jakou rychlost získá při tomto napětí elektron ve skutečnosti? [256 kv, 2,236.10 8 m.s -1 ] 2. Vypočtěte

Více

Prvek, nuklid, izotop, izobar

Prvek, nuklid, izotop, izobar Prvek, nuklid, izotop, izobar A = Nukleonové (hmotnostní) číslo A = počet protonů + počet neutronů A = Z + N Z = Protonové číslo, náboj jádra Frederick Soddy (1877-1956) NP za chemii 1921 Prvek = soubor

Více

Jaderná fyzika. Zápisy do sešitu

Jaderná fyzika. Zápisy do sešitu Jaderná fyzika Zápisy do sešitu Vývoj modelů atomu 1/3 Antika intuitivně zavedli pojem atomos nedělitelná část hmoty Pudinkový model J.J.Thomson (1897) znal elektron a velikost atomu 10-10 m v celém atomu

Více

FYZIKA MIKROSVĚTA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Fyzika mikrosvěta - 3. ročník

FYZIKA MIKROSVĚTA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Fyzika mikrosvěta - 3. ročník FYZIKA MIKROSVĚTA Mgr. Jan Ptáčník - GJVJ - Fyzika - Fyzika mikrosvěta - 3. ročník Mikrosvět Svět o rozměrech 10-9 až 10-18 m. Mikrosvět není zmenšeným makrosvětem! Chování v mikrosvětě popisuje kvantová

Více

Vážení zákazníci, dovolujeme si Vás upozornit, že na tuto ukázku knihy se vztahují autorská práva, tzv. copyright. To znamená, že ukázka má sloužit výhradnì pro osobní potøebu potenciálního kupujícího

Více

CZ.1.07/1.1.30/01.0038

CZ.1.07/1.1.30/01.0038 Monitorovací indikátor: 06.43.10 Počet nově vytvořených/inovovaných produktů Akce: Přednáška, KA 5 Číslo přednášky: 29 Téma: RADIOAKTIVITA A JADERNÝ PALIVOVÝ CYKLUS Lektor: Ing. Petr Konáš Třída/y: 3ST,

Více

R10 F Y Z I K A M I K R O S V Ě T A. R10.1 Fotovoltaika

R10 F Y Z I K A M I K R O S V Ě T A. R10.1 Fotovoltaika Fyzika pro střední školy II 84 R10 F Y Z I K A M I K R O S V Ě T A R10.1 Fotovoltaika Sluneční záření je spojeno s přenosem značné energie na povrch Země. Její velikost je dána sluneční neboli solární

Více

Gymnázium a Střední odborná škola, Rokycany, Mládežníků 1115

Gymnázium a Střední odborná škola, Rokycany, Mládežníků 1115 Gymnázium a Střední odborná škola, Rokycany, Mládežníků 5 Číslo projektu: CZ..07/.5.00/34.040 Číslo šablony: 7 Název materiálu: Ročník: Identifikace materiálu: Jméno autora: Předmět: Tématický celek: Atom

Více

SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH

SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH MECHANIKA MOLEKULOVÁ FYZIKA A TERMIKA ELEKTŘINA A MAGNETISMUS KMITÁNÍ A VLNĚNÍ OPTIKA FYZIKA MIKROSVĚTA ATOM, ELEKTRONOVÝ OBAL 1) Sestavte tabulku: a) Do prvního sloupce

Více

Jaderná energie. Obrázek atomů železa pomocí řádkovacího tunelového mikroskopu

Jaderná energie. Obrázek atomů železa pomocí řádkovacího tunelového mikroskopu Jaderná energie Atom Všechny věci kolem nás se skládají z atomů. Atom obsahuje jádro (tvořené protony a neutrony) a obal tvořený elektrony. Protony a elektrony jsou částice elektricky nabité, neutron je

Více

Jaderné reakce a radioaktivita

Jaderné reakce a radioaktivita Střední průmyslová škola Hranice - - Jaderné reakce a radioaktivita Radioaktivita Je vlastností atomových jader, která se samovolně přeměňují na jiná a vyzařují při tom pronikavé neviditelné záření. Jádra

Více

2. 1 S T R U K T U R A A V L A S T N O S T I A T O M O V É H O J Á D R A

2. 1 S T R U K T U R A A V L A S T N O S T I A T O M O V É H O J Á D R A 2. Jaderná fyzika 9 2. 1 S T R U K T U R A A V L A S T N O S T I A T O M O V É H O J Á D R A V této kapitole se dozvíte: o historii vývoje modelů stavby atomového jádra od dob Rutherfordova experimentu;

Více

8.1 Elektronový obal atomu

8.1 Elektronový obal atomu 8.1 Elektronový obal atomu 8.1 Celkový náboj elektronů v elektricky neutrálním atomu je 2,08 10 18 C. Který je to prvek? 8.2 Dánský fyzik N. Bohr vypracoval teorii atomu, podle níž se elektron v atomu

Více

Monitorovací indikátor: 06.43.10 Počet nově vytvořených/inovovaných produktů Akce: Přednáška, KA 5 Číslo přednášky: 19

Monitorovací indikátor: 06.43.10 Počet nově vytvořených/inovovaných produktů Akce: Přednáška, KA 5 Číslo přednášky: 19 Název projektu: Automatizace výrobních procesů ve strojírenství a řemeslech Registrační číslo: CZ.1.07/1.1.30/01.0038 Příjemce: SPŠ strojnická a SOŠ profesora Švejcara Plzeň Monitorovací indikátor: 06.43.10

Více

Hmotnostní analyzátory a detektory iont

Hmotnostní analyzátory a detektory iont Hmotnostní analyzátory a detektory iont Hmotnostní analyzátory Hmotnostní analyzátory Rozdlí ionty v prostoru nebo v ase podle jejich m/z Analyzátory Magnetický analyzátor (MAG) Elektrostatický analyzátor

Více

JADERNÁ ENERGIE. Autor: Mgr. Stanislava Bubíková. Datum (období) tvorby: 25. 6. 2012. Ročník: devátý

JADERNÁ ENERGIE. Autor: Mgr. Stanislava Bubíková. Datum (období) tvorby: 25. 6. 2012. Ročník: devátý Autor: Mgr. Stanislava Bubíková JADERNÁ ENERGIE Datum (období) tvorby: 25. 6. 2012 Ročník: devátý Vzdělávací oblast: Člověk a příroda / Chemie / Chemické reakce; chemie a společnost 1 Anotace: Žáci se

Více

Jana Nováková Proč jet do CERNu? MFF UK

Jana Nováková Proč jet do CERNu? MFF UK Jana Nováková MFF UK Proč jet do CERNu? Plán přednášky 4 krát částice kolem nás intermediální bosony mediální hvězdy hon na Higgsův boson - hit současné fyziky urychlovač není projímadlo detektor není

Více

Atomové jádro Elektronový obal elektron (e) záporně proton (p) kladně neutron (n) elektroneutrální

Atomové jádro Elektronový obal elektron (e) záporně proton (p) kladně neutron (n) elektroneutrální STAVBA ATOMU Výukový materiál pro základní školy (prezentace). Zpracováno v rámci projektu Snížení rizik ohrožení zdraví člověka a životního prostředí podporou výuky chemie na ZŠ. Číslo projektu: CZ.1.07/1.1.16/02.0018

Více

Úloha č.: I Název: Studium relativistických jaderných interakcí. Identifikace částic a určování typu interakce na snímcích z bublinové komory.

Úloha č.: I Název: Studium relativistických jaderných interakcí. Identifikace částic a určování typu interakce na snímcích z bublinové komory. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM IV Úloha č.: I Název: Studium relativistických jaderných interakcí. Identifikace částic a určování typu interakce na snímcích

Více

Radiační patofyziologie. Zdroje záření. Typy ionizujícího záření: Jednotky pro měření radiace:

Radiační patofyziologie. Zdroje záření. Typy ionizujícího záření: Jednotky pro měření radiace: Radiační patofyziologie Radiační poškození vzniká účinkem ionizujícího záření. Co se týká jeho původu, ionizující záření vzniká: při radioaktivním rozpadu prvků, přichází z kosmického prostoru, je produkováno

Více

Nebezpečí ionizujícího záření

Nebezpečí ionizujícího záření Nebezpečí ionizujícího záření Radioaktivita versus Ionizující záření Radioaktivita je schopnost jader prvků samovolně se rozpadnout na jádra menší stabilnější. Rozeznáváme pak radioaktivitu přírodní (viz.

Více

Jaderná energie Jaderné elektrárny. Vojtěch Motyčka Centrum výzkumu Řež s.r.o.

Jaderná energie Jaderné elektrárny. Vojtěch Motyčka Centrum výzkumu Řež s.r.o. Jaderná energie Jaderné elektrárny Vojtěch Motyčka Centrum výzkumu Řež s.r.o. Obsah prezentace Energie jaderná Vývoj energetiky Dělení jaderných reaktorů I. Energie jaderná Uvolňuje se při jaderných reakcích

Více

Životní prostředí pro přírodní vědy RNDr. Pavel PEŠAT, PhD.

Životní prostředí pro přírodní vědy RNDr. Pavel PEŠAT, PhD. Životní prostředí pro přírodní vědy RNDr. Pavel PEŠAT, PhD. KAP FP TU Liberec pavel.pesat@tul.cz tel. 3293 Radioaktivita. Přímo a nepřímo ionizující záření. Interakce záření s látkou. Detekce záření, Dávka

Více

ZÁŘIVÝ TOK - Φ e : Podíl zářivé energie E e a doby t, za kterou projde záření s touto energií danou plochou:

ZÁŘIVÝ TOK - Φ e : Podíl zářivé energie E e a doby t, za kterou projde záření s touto energií danou plochou: ZÁŘIVÝ TOK - Φ e : Podíl zářivé energie E e a doby t, za kterou projde záření s touto energií danou plochou: ZÁŘIVOST - I e : Podíl té části zářivého toku Φ e, který vychází ze zdroje do malého prostorového

Více

Fotoelektrický jev je uvolňování elektronů z látky vlivem dopadu světelného záření.

Fotoelektrický jev je uvolňování elektronů z látky vlivem dopadu světelného záření. FYZIKA pracovní sešit pro ekonomické lyceum. 1 Jiří Hlaváček, OA a VOŠ Příbram, 2015 FYZIKA MIKROSVĚTA Kvantové vlastnosti světla (str. 241 257) Fotoelektrický jev je uvolňování elektronů z látky vlivem

Více

Kryogenní technika v elektrovakuové technice

Kryogenní technika v elektrovakuové technice Kryogenní technika v elektrovakuové technice V elektrovakuové technice má kryogenní technika velký význam. Používá se nap. k vymrazování, ale i k zajištní tepelného pomru u speciálních pístroj. Nejvtší

Více

Výukový materiál zpracován v rámci projektu EU peníze školám

Výukový materiál zpracován v rámci projektu EU peníze školám Výukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.5.00/34.0996 Šablona: III/2 č. materiálu: VY_32_INOVACE_FYZ_379 Jméno autora: Mgr. Alena Krejčíková Třída/ročník:

Více

Struktura atomů a molekul

Struktura atomů a molekul Struktura atomů a molekul Obrazová příloha Michal Otyepka tento text byl vysázen systémem L A TEX2 ε ii Úvod Dokument obsahuje všechny obrázky tak, jak jsou uvedeny ve druhém vydání skript Struktura atomů

Více

RADIOAKTIVITA RADIOAKTIVITA

RADIOAKTIVITA RADIOAKTIVITA Předmět: Ročník: Vytvořil: Datum: CHEMIE PRVNÍ Mgr. Tomáš MAŇÁK 20. říjen 2012 Název zpracovaného celku: RADIOAKTIVITA Přirozená radioaktivita: RADIOAKTIVITA Atomová jádra některých nuklidů (zejména těžká

Více

VY_32_INOVACE_06_III./7._STAVBA ATOMOVÉHO JÁDRA

VY_32_INOVACE_06_III./7._STAVBA ATOMOVÉHO JÁDRA VY_32_INOVACE_06_III./7._STAVBA ATOMOVÉHO JÁDRA Fyzika atomového jádra Stavba atomového jádra Protonové číslo Periodická soustava prvků Nukleonové číslo Neutron Jaderné síly Úkoly zápis Stavba atomového

Více

17. Elektrický proud v polovodiích, užití polovodiových souástek

17. Elektrický proud v polovodiích, užití polovodiových souástek 17. Elektrický proud v polovodiích, užití polovodiových souástek Polovodie se od kov liší pedevším tím, že mají vtší rezistivitu (10-2.m až 10 9.m) (kovy 10-8.m až 10-6.m). Tato rezistivita u polovodi

Více

1.Struktura pedmtu 2.Bodové hodnocení 3.Organizace cviení prohlídek laboratoí ELETROENERGETIKA

1.Struktura pedmtu 2.Bodové hodnocení 3.Organizace cviení prohlídek laboratoí ELETROENERGETIKA Úvod. 1.Struktura pedmtu 2.Bodové hodnocení 3.Organizace cviení prohlídek laboratoí #ÁST ELETROENERGETIKA Struktura pednášek ( koresponduje s profesním zamením katedry ) 1. Výroba elektrické energie v

Více

jádro a elektronový obal jádro nukleony obal elektrony, pro chemii významné valenční elektrony

jádro a elektronový obal jádro nukleony obal elektrony, pro chemii významné valenční elektrony atom jádro a elektronový obal jádro nukleony obal elektrony, pro chemii významné valenční elektrony molekula Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti seskupení alespoň dvou atomů

Více

Ocelov{ n{stavba (horní blok) jaderného reaktoru

Ocelov{ n{stavba (horní blok) jaderného reaktoru Anotace Učební materiál EU V2 1/F17 je určen k výkladu učiva jaderný reaktor fyzika 9. ročník. UM se váže k výstupu: žák vysvětlí princip jaderného reaktoru. Jaderný reaktor Jaderný reaktor je zařízení,

Více

Standardní model a kvark-gluonové plazma

Standardní model a kvark-gluonové plazma Standardní model a kvark-gluonové plazma Boris Tomášik Fakulta jaderná a fyzikálně inženýrská, ČVUT International Particle Physics Masterclasses 2012 7.3.2012 Struktura hmoty molekuly atomy jádra a elektrony

Více

1 Měření na Wilsonově expanzní komoře

1 Měření na Wilsonově expanzní komoře 1 Měření na Wilsonově expanzní komoře Cíle úlohy: Cílem této úlohy je seznámení se základními částicemi, které způsobují ionizaci pomocí Wilsonovi mlžné komory. V této úloze studenti spustí Wilsonovu mlžnou

Více

Radioterapie. X31LET Lékařská technika Jan Havlík Katedra teorie obvodů xhavlikj@fel.cvut.cz

Radioterapie. X31LET Lékařská technika Jan Havlík Katedra teorie obvodů xhavlikj@fel.cvut.cz Radioterapie X31LET Lékařská technika Jan Havlík Katedra teorie obvodů xhavlikj@fel.cvut.cz Radioterapie je klinický obor využívající účinků ionizujícího záření v léčbě jak zhoubných, tak nezhoubných nádorů

Více

Koronové a jiskrové detektory

Koronové a jiskrové detektory Koronové a jiskrové detektory Charakteristika elektrického výboje v plynech Jestliže chceme použít ionizační účinky na detekci jaderného záření, je třeba poznat jednotlivé fáze ionizace plynu a zjistit

Více

SPEKTRUM ELEKTROMAGNETICKÉHO ZÁENÍ

SPEKTRUM ELEKTROMAGNETICKÉHO ZÁENÍ SPEKTRUM ELEKTROMAGNETICKÉHO ZÁENÍ Elektromagnetická vlna Z elektiny a magnetismu již víte, že v elektrickém obvodu, do kterého je zapojen kondenzátor a cívka, vzniká elektromagnetické kmitání, které lze

Více

Radiologická klinika FN Brno Lékařská fakulta MU Brno 2010/2011

Radiologická klinika FN Brno Lékařská fakulta MU Brno 2010/2011 Radiologická klinika FN Brno Lékařská fakulta MU Brno 2010/2011 OCHRANA PŘED ZÁŘENÍM Přednáška pro stáže studentů MU, podzimní semestr 2010-09-08 Ing. Oldřich Ott Osnova přednášky Druhy ionizačního záření,

Více

ATOM. Autor: Mgr. Stanislava Bubíková. Datum (období) tvorby: 25. 7. 2012. Ročník: osmý

ATOM. Autor: Mgr. Stanislava Bubíková. Datum (období) tvorby: 25. 7. 2012. Ročník: osmý ATOM Autor: Mgr. Stanislava Bubíková Datum (období) tvorby: 25. 7. 2012 Ročník: osmý Vzdělávací oblast: Člověk a příroda / Chemie / Částicové složení látek a chemické prvky 1 Anotace: Žáci se seznámí se

Více

Západočeská univerzita v Plzni Fakulta pedagogická Katedra chemie

Západočeská univerzita v Plzni Fakulta pedagogická Katedra chemie Západočeská univerzita v Plzni Fakulta pedagogická Katedra chemie Atomové jádro a jaderné reakce Bakalářská práce Andrea Lecjaksová B1001 Chemie se zaměřením na vzdělávání Plzeň 2013 Prohlašuji, že jsem

Více

Látkové množství. 6,022 10 23 atomů C. Přípravný kurz Chemie 07. n = N. Doporučená literatura. Látkové množství n. Avogadrova konstanta N A

Látkové množství. 6,022 10 23 atomů C. Přípravný kurz Chemie 07. n = N. Doporučená literatura. Látkové množství n. Avogadrova konstanta N A Doporučená literatura Přípravný kurz Chemie 2006/07 07 RNDr. Josef Tomandl, Ph.D. Mailto: tomandl@med.muni.cz Předmět: Přípravný kurz chemie J. Vacík a kol.: Přehled středoškolské chemie. SPN, Praha 1990,

Více

PRO VAŠE POUČENÍ. Kdo se bojí radiace? ÚVOD CO JE RADIACE? Stanislav Kočvara *, VF, a.s. Černá Hora

PRO VAŠE POUČENÍ. Kdo se bojí radiace? ÚVOD CO JE RADIACE? Stanislav Kočvara *, VF, a.s. Černá Hora Kdo se bojí radiace? Stanislav Kočvara *, VF, a.s. Černá Hora PRO VAŠE POUČENÍ ÚVOD Od počátků lidského rodu platí, že máme strach především z neznámého. Lidé měli v minulosti strach z ohně, blesku, zatmění

Více

4.5. Atomové jádro. 4.5.1. Neutron protonový model jádra

4.5. Atomové jádro. 4.5.1. Neutron protonový model jádra 4.5. tomové jádro 4.5.. Neutron protonový model jádra. nát složení jádra atomu, hmotnostní jednotku, hmotnosti a náboje částic atomu (protonu, neutronu a elektronu).. Umět napsat a vysvětlit rovnice přeměny

Více

Elektrárny část II. Tepelné elektrárny. Ing. M. Bešta

Elektrárny část II. Tepelné elektrárny. Ing. M. Bešta Tepelné elektrárny 1) Kondenzační elektrárny uhelné K výrobě elektrické energie se využívá tepelné energie uvolněné z uhlí spalováním. Teplo uvolněné spalováním se využívá k výrobě přehřáté (ostré) páry.

Více

Jaderné reaktory a jak to vlastně vše funguje

Jaderné reaktory a jak to vlastně vše funguje Jaderné reaktory a jak to vlastně vše funguje Lenka Heraltová Katedra jaderných reaktorů Fakulta jaderná a fyzikálně inženýrská ČVUT v Praze 1 Výroba energie v České republice Typy zdrojů elektrické energie

Více

2. 2 R A D I O A K T I V I T A

2. 2 R A D I O A K T I V I T A 2. Jaderná fyzika 29 2. 2 R A D I O A K T I V I T A V této kapitole se dozvíte: o podstatě radioaktivity; o typech a vlastnostech radioaktivního záření; o typech a zákonitostech radioaktivních přeměn;

Více

Dvě strany jedné mince - Dvě strany jedné mince - jaderná fyzika pomáhá v lékařství a technologie jaderných zbraní

Dvě strany jedné mince - Dvě strany jedné mince - jaderná fyzika pomáhá v lékařství a technologie jaderných zbraní Dvě strany jedné mince - Dvě strany jedné mince - jaderná fyzika pomáhá v lékařství a technologie jaderných zbraní Anna Macková Ústav jaderné fyziky AV ČR, Řež 250 68 Základní představy - atom a atomové

Více

ATOM VÝVOJ PŘEDSTAV O SLOŽENÍ A STRUKTUŘE ATOMU

ATOM VÝVOJ PŘEDSTAV O SLOŽENÍ A STRUKTUŘE ATOMU Předmět: Ročník: Vytvořil: Datum: CHEMIE PRVNÍ Mgr. Tomáš MAŇÁK 20. říjen 202 Název zpracovaného celku: ATOM VÝVOJ PŘEDSTAV O SLOŽENÍ A STRUKTUŘE ATOMU Leukippos, Démokritos (5. st. př. n. l.; Řecko).

Více

Registrační číslo projektu: CZ.1.07/1.4.00/21.3075

Registrační číslo projektu: CZ.1.07/1.4.00/21.3075 Registrační číslo projektu: CZ.1.07/1.4.00/21.3075 Šablona: III/2 Sada: VY_32_INOVACE_5IS Ověření ve výuce Třída 9. B Datum: 19. 12. 2012 Pořadové číslo 09 1 RADIOAKTIVITA Předmět: Ročník: Jméno autora:

Více

dvojí povaha světla Střední škola informatiky, elektrotechniky a řemesel Rožnov pod Radhoštěm Název školy Předmět/modul (ŠVP) Vytvořeno listopad 2012

dvojí povaha světla Střední škola informatiky, elektrotechniky a řemesel Rožnov pod Radhoštěm Název školy Předmět/modul (ŠVP) Vytvořeno listopad 2012 Název školy Dvojí povaha světla Název a registrační číslo projektu Označení RVP (název RVP) Vzdělávací oblast (RVP) Vzdělávací obor (název ŠVP) Předmět/modul (ŠVP) Tematický okruh (ŠVP) Název DUM (téma)

Více

Odbratel PST. Zdroj CZT. Tepelná sí PST SCZT

Odbratel PST. Zdroj CZT. Tepelná sí PST SCZT Pedávací stanice Soustava centralizovaného zásobování teplem (SCZT) soustava tvoená ústedními zdroji tepla (základními a špikovými, tepelnými sítmi, pedávacími stanicemi a vnitním zaízením). Centralizované

Více

Záření kolem nás. Jaroslav Šoltés, Milan Štefánik Katedra jaderných reaktorů FJFI ČVUT v Praze

Záření kolem nás. Jaroslav Šoltés, Milan Štefánik Katedra jaderných reaktorů FJFI ČVUT v Praze Záření kolem nás Jaroslav Šoltés, Milan Štefánik Katedra jaderných reaktorů FJFI ČVUT v Praze Elektromagnetické záření q Pohybující se elektrický náboj vyzařuje elektromagnetické záření q Vlastnosti záření

Více

postaven náš svět CERN

postaven náš svět CERN Standardní model elementárních částic a jejich interakcí aneb Cihly a malta, ze kterých je postaven náš svět CERN Jiří Rameš, Fyzikální ústav AV ČR, v.v.i. Czech Teachers Programme, CERN, 3.-7. 3. 2008

Více

2. Prostudovat charakter interakcí různých částic v hadronovém kalorimetru

2. Prostudovat charakter interakcí různých částic v hadronovém kalorimetru Pracovní úkol: 1. Seznámit se s interaktivní verzí simulace 2. Prostudovat charakter interakcí různých částic v hadronovém kalorimetru 3. Kvantitativně srovnat energetické ztráty v kalorimetru pro různé

Více

2 Primární zdroje energie. Ing. Petr Stloukal Ústav ochrany životního prostředí Fakulta technologická Univerzita Tomáše Bati Zlín

2 Primární zdroje energie. Ing. Petr Stloukal Ústav ochrany životního prostředí Fakulta technologická Univerzita Tomáše Bati Zlín 2 Primární zdroje energie Ing. Petr Stloukal Ústav ochrany životního prostředí Fakulta technologická Univerzita Tomáše Bati Zlín Obsah přednášky 1. Zdroje energie rozdělení 2. Fosilní paliva 3. Solární

Více

10. Energie a její transformace

10. Energie a její transformace 10. Energie a její transformace Energie je nejdůležitější vlastností hmoty a záření. Je obsažena v každém kousku hmoty i ve světelném paprsku. Je ve vesmíru a všude kolem nás. S energií se setkáváme na

Více

Centrum výzkumu Řež s.r.o. Úvod do problematiky výzkumných jaderných reaktorů. e-learningový kurz

Centrum výzkumu Řež s.r.o. Úvod do problematiky výzkumných jaderných reaktorů. e-learningový kurz Centrum výzkumu Řež s.r.o. Úvod do problematiky výzkumných jaderných reaktorů e-learningový kurz Tento e-learningový kurz byl vypracován v rámci projektu Efektivní přenos poznatků v rámci energetického

Více

Interakce jaderného záření s prostředím a metody detekce. Spektrometrie jaderného záření. Umělé zdroje jaderného záření.

Interakce jaderného záření s prostředím a metody detekce. Spektrometrie jaderného záření. Umělé zdroje jaderného záření. 18 Jaderné záření Interakce jaderného záření s prostředím a metody detekce. Spektrometrie jaderného záření. Umělé zdroje jaderného záření. 18.1 Průchod tě«kých nabitých částic látkou Za tě«ké částice pova«ujeme

Více

Fyzika (učitelství) Zkouška - teoretická fyzika. Čas k řešení je 120 minut (6 minut na úlohu): snažte se nejprve rychle vyřešit ty nejsnazší úlohy,

Fyzika (učitelství) Zkouška - teoretická fyzika. Čas k řešení je 120 minut (6 minut na úlohu): snažte se nejprve rychle vyřešit ty nejsnazší úlohy, Státní bakalářská zkouška. 9. 05 Fyzika (učitelství) Zkouška - teoretická fyzika (test s řešením) Jméno: Pokyny k řešení testu: Ke každé úloze je správně pouze jedna odpověď. Čas k řešení je 0 minut (6

Více

Patofyziologie radiačního poškození Jednotky, měření, vznik záření Bezprostřední biologické účinky Účinky na organizmus: - nestochastické - stochastické Ionizující záření Radiační poškození vzniká účinkem

Více

K čemu slouží urychlovače a reaktory

K čemu slouží urychlovače a reaktory K čemu slouží urychlovače a reaktory Rozbili jsme atom! Rozbili jsme atom! křičel jinak málomluvný John Cocroft, když vyběhl na ulici poté, co s Ernstem Waltonenem provedli první umělé jaderné reakce pomocí

Více

212 a. 5. Vyzáří-li radioaktivní nuklid aktinia částici α, přemění se na atom: a) radia b) thoria c) francia d) protaktinia e) zůstane aktinium

212 a. 5. Vyzáří-li radioaktivní nuklid aktinia částici α, přemění se na atom: a) radia b) thoria c) francia d) protaktinia e) zůstane aktinium Pracovní list - Jaderné reakce 1. Vydává-li radionuklid záření alfa: a) protonové číslo se zmenšuje o 4 a nukleonové číslo se nemění b) nukleonové číslo se změní o 4 a protonové se nemění c) protonové

Více

Referát z atomové a jaderné fyziky. Detekce ionizujícího záření (principy, technická realizace)

Referát z atomové a jaderné fyziky. Detekce ionizujícího záření (principy, technická realizace) Referát z atomové a jaderné fyziky Detekce ionizujícího záření (principy, technická realizace) Měřicí a výpočetní technika Šimek Pavel 5.7. 2002 Při všech aplikacích ionizujícího záření je informace o

Více

Jaderné elektrárny I, II.

Jaderné elektrárny I, II. Jaderné elektrárny I, II. Jaderné elektrárny I. Úvod do jaderných elektráren, teorie reaktorů, vznik tepla v reaktoru a ochrana před ionizujícím zářením. Jaderné elektrárny II. Jaderné elektrárny typu

Více

JÁDRO ATOMU. m jádra je menší než součet

JÁDRO ATOMU. m jádra je menší než součet JÁDRO ATOMU Stavba a vlastnosti: Rozěry ádra so řádově 5. Jádro e tvořeno nkleony (protony a netrony). A z X Sybol ádra: Z počet protonů N počet netronů A počet nkleonů A = Z+N Nklid e látka složená ze

Více

Zdroje iont používané v hmotnostní spektrometrii. Miloslav Šanda

Zdroje iont používané v hmotnostní spektrometrii. Miloslav Šanda Zdroje iont používané v hmotnostní spektrometrii Miloslav Šanda Ionizace v MS Hmotnostní spektrometrie je fyzikáln chemická metoda, pi které se provádí separace iont podle jejich hmotnosti a náboje m/z

Více

INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ

INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ CZ.1.07/1.1.00/08.0010 RADIOAKTIVITA Mgr. DAGMAR AUTERSKÁ,

Více

PEDAGOGICKÁ FAKULTA JIHOČESKÉ UVIVERZITY

PEDAGOGICKÁ FAKULTA JIHOČESKÉ UVIVERZITY PEDAGOGICKÁ FAKULTA JIHOČESKÉ UVIVERZITY Referát z jaderné fyziky Téma: Atomové jádro Vypracoval: Josef Peterka, MVT bak. II. Ročník Datum dokončení: 24. června 2002 Obsah: strana 1. Struktura atomu 2

Více

Konstrukce a kalibrace t!íkomponentních tenzometrických aerodynamických vah

Konstrukce a kalibrace t!íkomponentních tenzometrických aerodynamických vah Konstrukce a kalibrace t!íkomponentních tenzometrických aerodynamických vah Václav Pospíšil *, Pavel Antoš, Ji!í Noži"ka Abstrakt P!ísp#vek popisuje konstrukci t!íkomponentních vah s deforma"ními "leny,

Více

36 RADIOAKTIVITA. Rozpadový zákon Teorie radioaktivního rozpadu Umělá radioaktivita

36 RADIOAKTIVITA. Rozpadový zákon Teorie radioaktivního rozpadu Umělá radioaktivita 433 36 RADIOAKTIVITA Rozpadový zákon Teorie radioaktivního rozpadu Umělá radioaktivita Radioaktivita je jev, při kterém se jádra jednoho prvku samovolně mění na jádra jiného prvku emisí částic alfa, neutronů,

Více

Vážení zákazníci, dovolujeme si Vás upozornit, že na tuto ukázku knihy se vztahují autorská práva, tzv. copyright. To znamená, že ukázka má sloužit výhradnì pro osobní potøebu potenciálního kupujícího

Více

Referát z Fyziky. Detektory ionizujícího záření. Vypracoval: Valenčík Dušan. MVT-bak.

Referát z Fyziky. Detektory ionizujícího záření. Vypracoval: Valenčík Dušan. MVT-bak. Referát z Fyziky Detektory ionizujícího záření Vypracoval: Valenčík Dušan MVT-bak. 2 hlavní skupiny detektorů používaných v jaderné a subjaderné fyzice 1) počítače interakce nabitých částic je převedena

Více

Vlastnosti nejenergetičtějších částic ve vesmíru

Vlastnosti nejenergetičtějších částic ve vesmíru Vlastnosti nejenergetičtějších částic ve vesmíru Radomír Šmída Fyzikální ústav AV ČR smida@fzu.cz 1/50 Kosmické záření a Astročásticová fyzika 2/50 Objev kosmického záření Zkoumání radioaktivity (1896

Více

Stavba atomu historie pohledu na stavbu atomu struktura atomu, izotopy struktura elektronového obalu atom vodíkového typu

Stavba atomu historie pohledu na stavbu atomu struktura atomu, izotopy struktura elektronového obalu atom vodíkového typu Stavba atomu historie pohledu na stavbu atomu struktura atomu, izotopy struktura elektronového obalu atom vodíkového typu obrázky molekul a Lewisovy vzorce molekul v této přednášce čerpány z: http://.chemtube3d.com/

Více

Píprava teplé vody. Zabezpeovací zaízení tepelných (otopných) soustav

Píprava teplé vody. Zabezpeovací zaízení tepelných (otopných) soustav Pednáška 7 Píprava teplé vody Zabezpeovací zaízení tepelných (otopných) soustav Ohev Píprava teplé vody pímý (ohev s pemnou energie v zaízení ohívae) nepímý (ohev s pedáváním tepla z teplonosné látky)

Více

Proud ní tekutiny v rotující soustav, aneb prozradí nám vír ve výlevce, na které polokouli se nacházíme?

Proud ní tekutiny v rotující soustav, aneb prozradí nám vír ve výlevce, na které polokouli se nacházíme? Veletrh nápad uitel fyziky 10 Proudní tekutiny v rotující soustav, aneb prozradí nám vír ve výlevce, na které polokouli se nacházíme? PAVEL KONENÝ Katedra obecné fyziky pírodovdecké fakulty Masarykovy

Více

PŘÍRODNÍ RADIOAKTIVITA A STAVEBNICTVÍ

PŘÍRODNÍ RADIOAKTIVITA A STAVEBNICTVÍ PŘÍRODNÍ RADIOAKTIVITA A STAVEBNICTVÍ RNDr. Karel Uvíra 2012 Opava Tato příručka vznikla za finanční podpory Evropského sociálního fondu a rozpočtu České republiky. Přírodní radioaktivita a stavebnictví

Více

Jiří Grygar: Velký třesk za všechno může... 1/ 22

Jiří Grygar: Velký třesk za všechno může... 1/ 22 Jiří 1/ 22 C2CR 2005: Od urychlovačů ke kosmickým paprskům 9. 9. 2005 Urychlovače č na nebi a pod zemí, aneb může Jiří Grygar Fyzikální ústav AV ČR, Praha Grafika: Michael Prou Jiří 2/ 22 Cesta do mikrosvěta

Více

2.1 Pokyny k otev eným úlohám. 2.2 Pokyny k uzav eným úlohám. Testový sešit neotvírejte, po kejte na pokyn!

2.1 Pokyny k otev eným úlohám. 2.2 Pokyny k uzav eným úlohám. Testový sešit neotvírejte, po kejte na pokyn! MATEMATIKA základní úrove obtížnosti DIDAKTICKÝ TEST Maximální bodové hodnocení: 50 bod Hranice úspšnosti: 33 % Základní informace k zadání zkoušky Didaktický test obsahuje 26 úloh. asový limit pro ešení

Více

Nebezpečí ionizujícího záření

Nebezpečí ionizujícího záření Nebezpečí ionizujícího záření Ionizující záření je proud: - fotonů - krátkovlnné elektromagnetické záření, - elektronů, - protonů, - neutronů, - jiných částic, schopný přímo nebo nepřímo ionizovat atomy

Více

6.3.1 Jaderné štěpení, jaderné elektrárny

6.3.1 Jaderné štěpení, jaderné elektrárny 6.3.1 Jaderné štěpení, jaderné elektrárny ředpoklady: Druhý způsob výroby energie štěpení těžkých jader na jádra lehčí, lépe vázaná. ostupný rozpad těžkých nestabilních nuklidů probíhá v přírodě neustále

Více

Kam kráčí současná fyzika

Kam kráčí současná fyzika Kam kráčí současná fyzika Situace před II. světovou válkou Kvantová teorie (Max Planck, 1900) teorie malého a lehkého Teorie relativity (Albert Einstein) teorie rychlého (speciální relativita) Teorie velkého

Více

Úvod do fyziky plazmatu

Úvod do fyziky plazmatu Úvod do fyziky plazmatu Plazma Velmi často se o plazmatu mluví jako o čtvrtém skupenství hmoty Název plazma pro ionizovaný plyn poprvé použil Irwing Langmuir (1881 1957) v roce 1928, protože mu chováním

Více

Radioaktivita - dobrý sluha, zlý pán

Radioaktivita - dobrý sluha, zlý pán Radioaktivita - dobrý sluha, zlý pán Science Cafe v Písku 2014 S.Valenta & Z.Drásal Objevy 1896 H.Becquerel objevuje radioaktivitu Objevy 1896 H.Becquerel objevuje radioaktivitu 1897 J.J.Thomson objevuje

Více

BAKALÁŘSKÁ PRÁCE. Univerzita Palackého v Olomouci. Sbírka příkladů z atomové a jaderné fyziky. Přírodovědecká fakulta. Katedra experimentální fyziky

BAKALÁŘSKÁ PRÁCE. Univerzita Palackého v Olomouci. Sbírka příkladů z atomové a jaderné fyziky. Přírodovědecká fakulta. Katedra experimentální fyziky Univerzita Palackého v Olomouci Přírodovědecká fakulta Katedra experimentální fyziky BAKALÁŘSKÁ PRÁCE Sbírka příkladů z atomové a jaderné fyziky Autor: Petr Smilek Studijní program: B1701 Fyzika Studijní

Více

Gama spektroskopie. Vojtěch Motyčka Centrum výzkumu Řež s.r.o.

Gama spektroskopie. Vojtěch Motyčka Centrum výzkumu Řež s.r.o. Gama spektroskopie Vojtěch Motyčka Centrum výzkumu Řež s.r.o. Teoretický úvod ke spektroskopii Produkce a transport neutronů v různých materiálech, které se v daných zařízeních vyskytují (urychlovačem

Více

CESTA DO HLUBIN ATOMOVÉHO JÁDRA

CESTA DO HLUBIN ATOMOVÉHO JÁDRA CESTA DO HLUBIN ATOMOVÉHO JÁDRA A ZPĚT Anna Macková 1 Úvod Současným vědeckým pozorováním jsou dostupné prostorové vzdálenosti v rozsahu přibližně 10 18 m 10 23 m. V následujícím přehledu jevů probíhajících

Více

Technická univerzita v Liberci fakulta přírodovědně-humanitní a pedagogická. Doc. RNDr. Petr Anděl, CSc. ZÁKLADY EKOLOGIE.

Technická univerzita v Liberci fakulta přírodovědně-humanitní a pedagogická. Doc. RNDr. Petr Anděl, CSc. ZÁKLADY EKOLOGIE. Technická univerzita v Liberci fakulta přírodovědně-humanitní a pedagogická Doc. RNDr. Petr Anděl, CSc. ZÁKLADY EKOLOGIE Studijní texty 2010 Struktura předmětu 1. ÚVOD 2. EKOSYSTÉM MODELOVÁ JEDNOTKA 3.

Více

NERVOVÁ SOUSTAVA NEURON NERVOVÁ SOUSTAVA MOZEK

NERVOVÁ SOUSTAVA NEURON NERVOVÁ SOUSTAVA MOZEK NERVOVÁ SOUSTAVA vysvtlí význam nervové soustavy pro život lovka urí polohu CNS a obvodových nerv v tle popíše základní stavbu mozku, míchy a nerv vysvtlí na jakém principu pracuje nervová soustav rozumí

Více